Robust Self-Organizing Neural-Fuzzy Control With Uncertainty Observer for MIMO Nonlinear Systems | IEEE Journals & Magazine | IEEE Xplore

Robust Self-Organizing Neural-Fuzzy Control With Uncertainty Observer for MIMO Nonlinear Systems


Abstract:

This paper proposes a robust self-organizing neural-fuzzy-control (RSONFC) scheme for a class of uncertain nonlinear multiple-input-multiple-output (MIMO) systems. We fir...Show More

Abstract:

This paper proposes a robust self-organizing neural-fuzzy-control (RSONFC) scheme for a class of uncertain nonlinear multiple-input-multiple-output (MIMO) systems. We first develop a self-organizing neural-fuzzy network (SONFN) with concurrent structure and parameter learning. The fuzzy rules of SONFN are generated or pruned systematically. The proposed RSONFC scheme comprises an SONFN identifier, an uncertainty observer, and a supervisory controller. The SONFN identifier functions as the principal controller, and the uncertainty observer is designed to oversee uncertainties within the compound system. The supervisory controller combines sliding-mode control (SMC) and an adaptive bound-estimation scheme with various weights to achieve H tracking performance with a desired level of attenuation. Projection-type adaptation laws of network parameters developed using the Lyapunov's synthesis approach guarantee the stability of the overall control system. Simulation studies on a single-link flexible-joint manipulator and a two-link robot demonstrate the effectiveness of the proposed control scheme.
Published in: IEEE Transactions on Fuzzy Systems ( Volume: 19, Issue: 4, August 2011)
Page(s): 694 - 706
Date of Publication: 05 April 2011

ISSN Information:


Contact IEEE to Subscribe

References

References is not available for this document.