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Abstract

We propose a novel method for preference learning or, more specifically, learn-
ing to rank, where the task is to learn a ranking model that takes a subset of
alternatives as input and produces a ranking of these alternatives as output. Just
like in the case of conventional classifier learning, training information is provided
in the form of a set of labeled instances, with labels or, say, preference degrees taken
from an ordered categorical scale. This setting is known as multipartite ranking in
the literature. Our approach is based on the idea of using the (discrete) Choquet
integral as an underlying model for representing ranking functions. Being an estab-
lished aggregation function in fields such as multiple criteria decision making and
information fusion, the Choquet integral offers a number of interesting properties
that make it attractive from a machine learning perspective, too. The learning
problem itself comes down to properly specifying the fuzzy measure on which the
Choquet integral is defined. This problem is formalized as a margin maximization
problem and solved by means of a cutting plane algorithm. The performance of
our method is tested on a number of benchmark datasets.

Keywords: preference learning, Choquet integral, classification, monotonicity,
attribute interactions

1 Introduction

Preference learning is an emerging subfield of machine learning that has received increas-
ing attention in recent years [18]. Roughly speaking, the goal in preference learning is to
induce preference models from observed data that reveals information about the prefer-
ences of an individual or a group of individuals in a direct or indirect way; these models



are then used to predict the preferences in a new situation. In this regard, predictions
in the form of rankings, i.e., total orders of a set of alternatives, constitute an important
special case [13, 30, 19, 16, 20]. A ranking can be seen as a specific type of structured
output [3], and compared to conventional classification and regression functions, models
producing such outputs require a more complex internal representation.

In this paper, we propose a novel method for such kind of ranking problems, for the first
time using the (discrete) Choquet integral [12] as an underlying model for representing
rankings in a setting of supervised learning. The Choquet integral is an established ag-
gregation function that has been used in various fields of application, including multiple
criteria decision making and information fusion. It can be seen as a generalization of the
weighted arithmetic mean that is not only able to capture the importance of individual
features but also information about the interaction (e.g., redundancy or complementar-
ity) between different features. Moreover, it obeys monotonicity properties in a rather
natural way. Due to these properties, the Choquet integral appears to be very appealing
for preference learning, especially for aggregating the evaluation of individual features
in the form of interacting criteria. The learning problem itself comes down to specifying
the fuzzy measure underlying the definition of the Choquet integral in the most suitable
way. In this regard, we explore connections to kernel-based machine learning methods
[48].

While a number of different types of ranking problems have been introduced in the
literature in recent years, we specifically focus on a setting referred to as multipartite
ranking [13, 20]. Roughly speaking, the task in multipartite ranking is to learn a
ranking model that takes any set of alternatives as input, with each alternative typically
represented in terms of a feature vector, and produces a ranking of these alternatives as
output. Just like in the case of conventional classifier learning, training information is
provided in the form of a set of labeled instances, with labels or, say, preference degrees
taken from an ordered categorical scale (such as bad, good, very good).

The remainder of this paper is organized as follows. In the next section, we give a
brief overview of related work. In Section 3, we recall the basic definition of the (dis-
crete) Choquet integral and related notions. The ranking problem we are dealing with
and our method for tackling this problem are introduced in Sections 4 and 5, respec-
tively. Experimental results are presented in Section 6, prior to concluding the paper
in Section 7.

2 Related Work

In this section, we briefly review related work on preference learning and the use of the
Choquet integral in machine learning.
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2.1 Preference Learning

Methods for the automatic learning, discovery and adaptation of preferences have re-
ceived increasing interest in machine learning, data mining and related research fields
in recent years. Approaches relevant to this area range from preference elicitation
where the utility function of a single agent is estimated by asking questions effectively
[8, 27, 52] to collaborative filtering where a customer’s preferences are estimated from
the preferences of other customers [44, 45]. Preference learning can be formalized within
various settings, depending, e.g., on the underlying preference model and the type of
information provided as an input to the learning system.

There are two main approaches to modeling preferences that prevail in the literature on
choice and decision theory: value functions and preference relations. From a machine
learning point of view, these two approaches give rise to two kinds of learning prob-
lems: learning value functions and learning (binary) preference relations. The latter
deviates more strongly than the former from conventional problems like classification
and regression, as it involves the prediction of complex structures, such as rankings or
partial order relations, rather than single values. Moreover, training input in preference
learning will not, as it is usually the case in supervised learning, be offered in the form of
complete examples but may comprise more general types of information, such as relative
preferences or different kinds of indirect feedback and implicit preference information
[36, 47].

In general, a preference learning system is provided with a set of items (e.g., products)
for which preferences are known, and the task is to learn a function that predicts
preferences for a new set of items (e.g., new products not seen so far), or for the
same set of items in a different context (e.g., the same products but for a different
user). Frequently, the predicted preference relation is required to form a total order,
in which case we also speak of a ranking problem. In fact, among the problems in the
realm of preference learning, the task of “learning to rank” has probably received the
most attention in the literature so far, and a number of different ranking problems
have already been introduced. Based on the type of training data and the required
predictions, Fürnkranz and Hüllermeier [18] distinguish between the problems of object
ranking [13, 38], label ranking [7, 29, 10, 51] and instance ranking [20, 46].

All of these basic learning tasks can be tackled by similar techniques. As with the
distinction between using value functions and binary relations for modeling preferences,
two general approaches to preference learning have been proposed in the literature, the
first one being based on the idea of learning to evaluate individual alternatives by means
of a value function, while the second one seeks to compare (pairs of) competing alter-
natives, that is, to learn one or more binary preference predicates. Making sufficiently
restrictive model assumptions about the structure of a preference relation, one can also
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try to use the data for identifying this structure. Finally, local estimation techniques à
la nearest neighbor can be used, which mostly leads to aggregating preferences in one
way or another.

A value function assigns an abstract degree of utility to each alternative under consider-
ation. Depending on the underlying utility scale, which is typically either numerical or
ordinal, the problem of learning a (latent) value function from given training data be-
comes one of regression learning or ordinal classification. Both problems are well-known
in machine learning. However, value functions often implicate special requirements and
constraints that have to be taken into consideration such as, for example, monotonicity
in certain attributes. Besides, as mentioned earlier, training data is not necessarily
given in the form of input/output pairs, i.e., alternatives (instances) together with their
utility degrees, but may also consist of qualitative feedback in the form of pairwise
comparisons, stating that one alternative is preferred to another one and therefore has
a higher utility degree. In general, this means that value functions need to be learned
from indirect instead of direct training information [36, 47].

The learning of binary preference relations that compare alternatives in a pairwise man-
ner is normally simpler, mainly because comparative training information (suggesting
that one alternative is better than another one) can be used directly instead of trans-
lating it into constraints on a (latent) value function [19, 35]. On the other hand, the
prediction step may become more difficult, since a binary preference relation learned
from data is not necessarily consistent in the sense of being transitive and, therefore,
does normally not define a ranking in a unique way. What is needed, therefore, is a
ranking procedure that maps a preference relation to a maximally consistent ranking
[33]. The difficulty of this problem depends on the concrete consistency criterion used,
though many natural objectives (e.g., minimizing the number of object pairs whose
ranks are in conflict with their pairwise preference) lead to NP-hard problems [13].
Fortunately, efficient techniques such as simple voting (known as the Borda count pro-
cedure in social choice theory) often deliver good approximations, sometimes even with
provable guarantees [14, 34].

Another approach to learning ranking functions is to proceed from specific model as-
sumptions, that is, assumptions about the structure of the preference relations. This
approach is less generic than the previous ones, as it strongly depends on the concrete
assumptions made. An example is the assumption that the target ranking of a set of
objects described in terms of multiple attributes can be represented as a lexicographic
order [17, 54, 6]. Another example is the assumption that the target ranking can be
represented by a CP-net [11]. From a machine learning point of view, assumptions of
the above type can be seen as an inductive bias restricting the hypothesis space. Pro-
vided the bias is correct, this is clearly an advantage, as it may simplify the learning
problem considerably.
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Yet another alternative is to resort to the idea of local estimation techniques as promi-
nently represented, for example, by the nearest neighbor estimation principle [15, 32]:
Considering the rankings observed in similar situations as representative, a ranking for
the current situation is estimated on the basis of these “neighbored” rankings, typically
using an averaging-like aggregation operator [7, 9]. This approach is in a sense orthog-
onal to the previous model-based one, as it is very flexible and typically comes with
no specific model assumption (except the regularity assumption underlying the nearest
neighbor inference principle).

2.2 The Choquet Integral in Machine Learning

Although the Choquet integral has been widely applied as an aggregation operator in
multiple criteria decision making [23, 21, 50] and as a tool for preference elicitation
[1, 2], it has been used much less in the field of machine learning so far. There are,
however, a few notable exceptions.

Methods for binary classification based on the Choquet integral were developed in [26]
and [55]. In [26], Grabisch essentially employs the Choquet integral as a fusion operator
in this context. For an instance x = (x1, . . . , xn), let φ(j)i (x) express a measure of
confidence (provided by feature i) that x belongs to class j ∈ {0, 1}. Grabisch defines
the global confidence for class j as an aggregation of these confidence degrees:

φµ(j)(x)
df
= Cµ(j)

(
φ
(j)
1 (x), . . . , φ(j)n (x)

)
,

where Cµ denotes the discrete Choquet integral with respect to the fuzzy measure µ.
Eventually, the class with the highest global confidence is predicted as an output. Here,
the fuzzy measures µ(0) and µ(1) express the importance of the features and groups of
features in the classification process. The φ(j)i are assumed to be derived by means
of a conventional parametric or nonparametric probability density estimation method,
subsequent to suitable normalization. The identification of the fusion operator is then
reduced to the identification (or learning) of the fuzzy measures µ(0) and µ(1) with
2(2n − 2) coefficients. To this end, Grabisch minimizes the empirical squared error loss

J =
∑
x∈T0

(
φµ(0)(x)− φµ(1)(x)− 1

)2
+

∑
x∈T1

(
φµ(1)(x)− φµ(0)(x)− 1

)2
,

(1)

i.e., the sum of squared differences between predicted and given output values, using
standard optimization routines (T0 and T1 denote, respectively, the set of observed neg-
ative and positive examples). Yan, Wang and Chen [55] tackle a quite similar problem,
albeit using another optimization criterion (which can be seen as a kind of relaxed class
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separability criterion). Besides, the authors define the Choquet integral based on a
so-called signed non-additive measure [41].

Apart from binary classification, the Choquet integral was also used in ordinal classifi-
cation, a special type of multi-class classification in which the class labels are linearly
ordered (e.g., a paper submitted for publication can be labeled as accept, weak accept,
weak reject, or reject). Grabisch [25, 24] considers input data of the following kind: A
reference set of objects A = {1, . . . , l} and a set of criteria X = {1, . . . , n}; a table
of individual scores (performances) zki (k ∈ A, i ∈ X); a partial preorder ≥A on A

(partial ranking of the objects on a global basis); a partial preorder ≥X on X (partial
ranking of the criteria); a partial preorder ≥P on the set of pairs of criteria (partial
ranking of interaction); the sign of interaction between selected pairs of criteria, reflect-
ing synergy, independence or redundancy. All this information can be translated into
linear equalities or inequalities between the weights of the underlying fuzzy measure µ.
This measure is then identified based on a constraint optimization problem, using as
objective function a criterion that resembles very much the so-called margin principle in
machine learning. The method itself, however, is more oriented towards decision mak-
ing and less suitable for machine learning applications. In particular, it is not tolerant
toward noise in the data and, in terms of complexity, does not scale well with the size
of the data.

In [4], Beliakov and James develop a method for classifying journals in the field of pure
mathematics, which are rated on an ordinal scale with categories A+, A, B and C. The
classification is done on the basis of five criteria serving as input attributes, namely the
number of citations per year, the impact factor, the immediacy index, the total number
of articles published, and the cited half-life index (we shall use the same data set in
our experiments later on). As a loss function, the authors use the absolute difference
between the predicted class and the target (i.e., the loss is |i − j| if the i-th class is
predicted although the j-th class would be correct).

Although our focus in this paper is on the use of the Choquet integral in supervised
learning, it is worth mentioning that it can also be used in other settings. In the
recent paper [5] by Beliakov et al., the discrete Choquet integral is used for metric
learning in semi-supervised clustering. The authors investigate necessary and sufficient
conditions for the discrete Choquet integral to define a metric, and, as a special case,
obtain analogous conditions for ordered weighted averaging (OWA) operators. The
corresponding metric learning problem is formulated as a linear programming problem.
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3 The Discrete Choquet Integral

In this section, we give a brief introduction to the (discrete) Choquet integral, starting
with a reminder of non-additive measures. In contrast to other fields, such as decision
making and aggregation operators, the Choquet integral is not widely known in machine
learning so far, which is the main reason to recall its definition in some detail. Readers
familiar with the Choquet integral and related notions can safely skip this section.

3.1 Non-Additive Measures

Let X = {x1, . . . , xn} be a finite set and µ a measure 2X → [0, 1]. For each A ⊆ X,
we interpret µ(A) as the weight or, say, the importance of the set of elements A. As
an illustration, one may think of X as a set of criteria (binary features) relevant for
a job, like “speaking French” and “programming Java”, and of µ(A) as the evaluation
of a candidate satisfying criteria A (and not satisfying X \ A). The term “criterion” is
indeed often used in the decision making literature, where it suggests a monotone “the
higher the better” influence.

A standard assumption on a measure µ(·), which is, for example, at the core of prob-
ability theory, is additivity: µ(A ∪ B) = µ(A) + µ(B) for all A,B ⊆ X such that
A ∩ B = ∅. Unfortunately, additive measures cannot model any kind of interaction
between elements: Extending a set of elements A ⊆ X by a set of elements B ⊆ X \A
always increases the weight µ(A) by the weight µ(B), regardless of A and B.

Suppose, for example, that the elements of two sets A and B are complementary in a
certain sense. For instance, A = {French, Spanish} and B = {Java} could be seen
as complementary, since both language skills and programming skills are important for
the job. Formally, this can be expressed in terms of a positive interaction: µ(A ∪B) >

µ(A) + µ(B). In the extreme case, when language skills and programming skills are
indeed essential, µ(A ∪ B) can be high although µ(A) = µ(B) = 0 (suggesting that a
candidate lacking either language or programming skills is completely unacceptable).
Likewise, elements can interact in a negative way: If two sets A and B are partly
redundant or competitive, then µ(A ∪ B) < µ(A) + µ(B). For example, B = {Java}
and C = {C, C#} might be seen as redundant, since knowledge of one programming
language does in principle suffice.

The above considerations motivate the use of non-additive measures, also called capac-
ities or fuzzy measures, which are simply normalized and monotone:

µ(∅) = 0, µ(X) = 1, and

µ(A) ≤ µ(B) for all A ⊆ B ⊆ X .
(2)

A useful representation of non-additive measures, that we shall explore later on for
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learning Choquet integrals, is in terms of the Möbius transform:

µ(B) =
∑
A⊆B

m(A) (3)

for all B ⊆ X, where the Möbius transform mµ of the measure µ is defined as follows:

mµ(A) =
∑
B⊆A

(−1)|A|−|B|µ(B) . (4)

The value mµ(A) can be interpreted as the weight that is exclusively allocated to A,
instead of being indirectly connected with A through the interaction with other subsets.

A measure µ is said to be k-order additive, or simply k-additive, if k is the smallest
integer such that m(A) = 0 for all A ⊆ X with |A| > k. This property is interesting for
several reasons. First, as can be seen from (3), it means that a measure µ can formally
be specified by significantly fewer than 2n values, which are needed in the general case.
Second, k-additivity is also interesting from a semantic point of view: As will become
clear in the following, this property simply means that there are no interaction effects
between subsets A,B ⊆ X whose cardinality exceeds k.

3.2 Importance of Criteria and Interaction

An additive (i.e., k-additive with k = 1) measure µ can be written as follows:

µ(A) =
∑
xi∈A

µ({xi}) =
∑
xi∈A

wi ,

with wi = µ({xi}) the weight of xi. Due to (2), these weights are non-negative and such
that

∑n
i=1wi = 1. In this case, there is obviously no interaction between the criteria xi,

i.e., the influence of an xi on the value of µ is independent of the presence or absence
of any other xj . Besides, the weight wi is a natural quantification of the importance of
xi.

Measuring the importance of a criterion xi becomes obviously more involved when µ

is non-additive. Besides, one may then also be interested in a measure of interaction
between the criteria, either pairwise or even of a higher order. In the literature, measures
of that kind have been proposed, both for the importance of single as well as the
interaction between several criteria.

Given a fuzzy measure µ on X, the Shapley value (or importance index) of xi is defined
as a kind of average increase in importance due to adding xi to another subset A ⊂ X:

ϕ(xi) =
∑

A⊆X\{xi}

1

n

(
n− 1

|A|

) (µ(A ∪ {xi})− µ(A)
)
. (5)
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The Shapley value of µ is the vector ϕ(µ) = (ϕ(x1), . . . , ϕ(xn)). One can show that
0 ≤ ϕ(xi) ≤ 1 and

∑n
i=1 ϕ(xi) = 1. Thus, ϕ(xi) is a measure of the relative importance

of xi. Obviously, ϕ(xi) = µ({xi}) if µ is additive.

The interaction index between criteria xi and xj , as proposed by Murofushi and Soneda
[40], is defined as follows:

I(xi, xj) =
∑

A⊆X\{xi,xj}

ϑA ·
(
µ(A ∪ {xi, xj})− µ(A ∪ {xi})

−µ(A ∪ {xj}) + µ(A)
)
,

with
ϑA =

1

(n− 1)

(
n− 2

| A |

) .

This index ranges between −1 and 1 and indicates a positive (negative) interaction
between criteria xi and xj if Ii,j > 0 (Ii,j < 0). The interaction index can also be
expressed in terms of the Möbius transform:

I(xi, xj) =
∑

K⊆X\{xi,xj},|K|=k

1

k + 1
m
(
{xi, xj} ∪K

)
.

Furthermore, as proposed by Grabisch [22], the definition of interaction can be extended
to more than two criteria, i.e., to subsets T ⊆ X:

I(T ) =

n−|T |∑
k=0

1

k + 1

∑
K⊆X\T,|K|=k

m
(
T ∪K

)
.

3.3 The Choquet Integral

So far, the criteria xi were simply considered as binary features, which are either present
or absent. Mathematically, µ(A) can thus also be seen as an integral of the indicator
function of A, namely the function fA given by fA(x) = 1 if x ∈ A and = 0 otherwise.
Now, suppose that f : X → R+ is any non-negative function that assigns a value
to each criterion xi; for example, f(xi) might be the degree to which a candidate
satisfies criterion xi. An important question, then, is how to aggregate the evaluations
of individual criteria, i.e., the values f(xi), into an overall evaluation, in which the
criteria are properly weighted according to the measure µ. Mathematically, this overall
evaluation can be considered as an integral Cµ(f) of the function f with respect to the
measure µ.

Indeed, if µ is an additive measure, the standard integral just corresponds to the weighted
mean

Cµ(f) =

n∑
i=1

wi · f(xi) =

n∑
i=1

µ({xi}) · f(xi) , (6)
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which is a natural aggregation operator in this case. A non-trivial question, however,
is how to generalize (6) in the case where µ is non-additive.

This question, namely how to define the integral of a function with respect to a non-
additive measure (not necessarily restricted to the discrete case), is answered in a satis-
factory way by the Choquet integral, which has first been proposed for additive measures
by Vitali [53] and later on for non-additive measures by Choquet [12]. The point of de-
parture of the Choquet integral is an alternative representation of the “area” under
the function f , which, in the additive case, is a natural interpretation of the integral.
Roughly speaking, this representation decomposes the area in a “horizontal” instead of
a “vertical” manner, thereby making it amenable to a straightforward extension to the
non-additive case. More specifically, note that the weighted mean can be expressed as
follows:

n∑
i=1

f(xi) · µ({xi})

=

n∑
i=1

(
f(x(i))− f(x(i−1))

)
·
(
µ({x(i)}) + . . .+ µ({x(n)})

)
=

n∑
i=1

(
f(x(i))− f(x(i−1))

)
· µ
(
A(i)

)
,

where (·) is a permutation of {1, . . . , n} such that 0 ≤ f(x(1)) ≤ f(x(2)) ≤ . . . ≤ f(x(n))

(and f(x(0)) = 0 by definition), and A(i) = {x(i), . . . , x(n)}.

Now, the key difference between the left and right-hand side of the above expression is
that, whereas the measure µ is only evaluated on single elements xi on the left, it is
evaluated on subsets of elements on the right. Thus, the right-hand side suggests an
immediate extension to the case of non-additive measures, namely the Choquet integral,
which, in the discrete case, is formally defined as follows:

Cµ(f) =
n∑
i=1

(
f(x(i))− f(x(i−1))

)
· µ(A(i)) .

In terms of the Möbius transform of µ, the Choquet integral can also be expressed as
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follows:

Cµ(f) =
n∑
i=1

(
f(x(i))− f(x(i−1))

)
· µ(A(i))

=
n∑
i=1

f(x(i)) · (µ(A(i))− µ(A(i+1)))

=
n∑
i=1

f(x(i))
∑

R⊆T(i)

m(R)

=
∑
T⊆X

m(T )× min
xi∈T

f(xi) (7)

where T(i) =
{
S ∪ {x(i)} |S ⊂ {x(i+1), . . . , x(n)}

}
. Note that the expression (7) can

also be written in terms of an inner product〈
mϕ, ϕ(f(x))

〉
,

with the mapping ϕ : Rn → R2n−1 defined as follows:

ϕ(x) = ϕ(x1, . . . , xn)

=
(
x1, . . . , xn,min{x1, x2}, . . . ,min{xn−1, xn},

min{x1, x2, x3}, . . . ,min{x1, . . . , xn}
)
.

Moreover, mϕ denotes the vector (m1, . . . ,mn,mn+1, . . . ,m2n−1) of values of the
Möbius transform in the order determined by ϕ(x).

4 Multipartite Ranking

As mentioned earlier, different types of ranking problems have recently been studied
in the machine learning literature. Here, we are specifically interested in the so-called
multipartitle ranking problem [20].

In most ranking problems, the goal is to learn a ranking function that accepts a subset
O ⊂ O of objects as input, where O is a reference set of objects (e.g., the set of all
books or movies). As output, the function produces a ranking (total order) � of the
objects O. Typically, a ranking function of that kind is implemented by means of a
scoring function U : O → R, so that

o � o′ ⇔ U(o) ≥ U(o′)

for all o,o′ ∈ O. Obviously, U(o) can be considered as a kind of utility degree assigned
to the object o ∈ O. Seen from this point of view, the goal in multipartite ranking is to
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learn a latent utility function on a reference set O. In the following, we shall also refer
to U(·) itself as a ranking function. Moreover, we assume that this function produces a
strict order relation �, i.e., ties U(o) = U(o′) do not occur or are broken at random.

In order to induce a ranking function U(·), a learning algorithm (or “learner” for short)
is provided with training information. In the case of multipartite ranking, the “ground
truth” is supposed to be an ordinal categorization of objects. That is, each object o ∈ O
belongs to one of the classes in L = {λ1, λ2, . . . , λk}, where the classes are sorted such
that λ1 < λ2 < . . . < λk. Correspondingly, training data consists of a set of labeled
objects (oi, `i) ∈ O × L, just like in ordinal regression.

The goal is to learn a ranking function U(·) that agrees well with the sorting of the
classes in the sense that objects from higher classes are ranked higher than objects from
lower classes. In [20], it was proposed to use the so-called C-index as a performance
measure reflecting this goal in an adequate way:

C(U,O) =

∑
1≤i<j≤k

∑
(o,o′)∈Oi×Oj

S(U(o), U(o′))∑
i<j |Oi| · |Oj |

,

where Oi is the subset of objects o ∈ O whose true class is λi and

S(u, v) =

{
1 u < v

0 otherwise
(8)

indicates whether or not a pair of objects has been ranked correctly. Thus, the C-index
compares those object pairs (o,o′) ∈ O × O where the class of o is lower than the
class of o′, and checks whether U(o) < U(o′), i.e., whether U correctly assigns a higher
utility degree to o′ than to o. C(U,O) is then simply given by the fraction of correct
pairwise comparisons of this kind. In the case of two classes, C-index reduces to AUC
(area under the ROC curve) that is widely used in binary classification.

5 Learning to Rank using the Choquet Integral

The idea of our approach is to represent the latent utility function U(·) in terms of a
Choquet integral. Assuming that objects o ∈ O are represented as feature vectors

fo = (fo(x1), . . . , fo(xn)) ,

where fo(xi) can be thought of as the evaluation of object o on the criterion xi, this
means that

U(o) = Cµ(fo) . (9)

This approach appears to be interesting for a number of reasons, notably the following:
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• The representation (9) covers the commonly used linear utility functions as a
special case.

• Generalizing beyond the linear case, it is also able to capture more complex, non-
linear dependencies and interactions between criteria.

• The Choquet integral offers various means for explaining and understanding a
utility function, including the importance value and the interaction index.

• As opposed to many other models used in machine learning, the Choquet integral
guarantees monotonicity in all criteria [49]. This is a reasonable property of a
utility function which is often required in practice.

We assume training data to be available in the form of a set of objects oi or, more
specifically, the feature representation foi of these objects, together with corresponding
label information `i, i = 1, . . . , N . From this data, a set D of pairwise preferences is
constructed: (oi,oj) ∈ D, suggesting that oi � oj , if the training data contains (oi, `i)

and (oj , `j) with `i > `j .

Following the idea of empirical risk minimization [48], we seek to induce a Choquet
integral that minimizes the number of ranking errors (8) on the training data D. Since
the Choquet integral is uniquely identified by the underlying measure µ on the set of
criteria X = {x1, . . . , xn}, this comes down to defining this measure in a most suitable
way. In this regard, we make use of the representation (7) of µ in terms of its Möbius
transform. Inspired by the maximum margin principle in kernel-based machine learning
[48], we formulate the problem of learning µ as an optimization problem:

max
M,ξ1,...,ξN

M − γ

|D|
∑

(os,ot)∈D

ξs + ξt

 (10)

such that

Cµ(fos)− Cµ(fot) > M − ξs − ξt ∀(os,ot) ∈ D (11)

ξs ≥ 0 s ∈ {1, . . . , N} (12)∑
T⊆X

m(T ) = 1 (13)

∑
B⊆A

m(B) ≥ 0 ∀A ⊆ X (14)

∑
L⊆A

m(L) ≤
∑
K⊆B

m(K) ∀A ⊂ B ⊆ X (15)

In this problem, M denotes the margin to be maximized, that is, the smallest difference
between the utility degrees of two training objects os and ot with os � ot. More specif-
ically, M is a soft margin: Accounting for the fact that it will generally be impossible to
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satisfy all inequalities simultaneously, each object os is associated with a slack variable
ξs. The slack variables are non-negative, and a positive slack is penalized in proportion
to its size. Finally, γ is a trade-off parameter that controls the flexibility of the model;
the higher γ, the stronger the slacks are punished.

5.1 Dealing with Constraints on the Fuzzy Measure

The constraints (13–15) formalize, respectively, the normalization, non-negativity and
monotonicity of the Möbius transform. Obviously, the non-negativity and monotonicity
conditions are quite costly and produce as many as 3n−2n constraints, since each subset
of X is compared with all its subsets:

n∑
i=1

(
n

i

)
(2i − 1) =

n∑
i=1

(
n

i

)
2i −

n∑
i=1

(
n

i

)
= 3n − 2n

Fortunately, the last two constraints can be represented in a more compact way, ex-
ploiting a transitivity property:∑

B⊆A\{xi}

m(B ∪ {xi}) ≥ 0 ∀A ⊆ X,xi ∈ X

This representation reduces the number of constraints to n2n−1, which, despite still
being large, is a significant reduction in comparison to the original formulation.

Another way of reducing complexity is to restrict the class of fuzzy measures to k-
additive measures, that is, setting m(A) = 0 for all A ⊆ X with |A| > k. In fact,
choosing a k � n is not only interesting from an optimization but also from a learning
point of view: Since the degree of additivity of µ offers a way to control the capacity
of the underlying model class, selecting a proper k is crucial in order to guarantee the
generalization performance of the learning algorithm. More specifically, the larger k is
chosen, the more flexibly the Choquet integral can be fitted to the data. Thus, choosing
k too large comes along with a danger of overfitting the data.

5.2 Dealing with Soft Margin Constraints

The number of soft margin constraints (11–12) may become quite large, too, as it scales
quadratically with the size N of the training data. To cope with the complexity implied
by these constraints, we refer to the idea underlying cutting plane algorithms, which
originates from linear optimization theory and has already been used successfully in
learning support vector machines for classification [37].

The key idea of cutting plane algorithms is to solve the problem by considering only a
subset of all constraints, hoping that the rest will be satisfied, too. If this is not the
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Algorithm 1 Cutting plane algorithm
1: Input: training set S = {(fi1j1 , y1), ..., (fiKjK , yK)} ⊂ [−1,+1]n × {−1,+1}, ζ, ε
2: W = ∅
3: repeat
4: (w, ξ) ← arg minw,ξ≥0

1
2w
>w + ζξ

s.t.
5: ∀(y1, . . . , yK) ∈ W :

w> ·
∑K

k=1 ∆(yk, yk) [ψ(fikjk , yk)− ψ(fikjk , yk)] ≥
∑K

k=1 ∆(yk, yk)−Kξ
6: w · (φ(Z∗) − φ(Z)) ≤ 0 for all Z∗ ∈ S∗l−1, Z ∈ S∗l s. t.

∑n
k=1 zk − z∗k = 1

(1 ≤ l ≤ n)

7: for k = 1 to K do
8: ỹk ← arg maxỹ∈{−1,+1}∆(yk, ỹ)

(
1− w> · [ψ(fikjk , yk)− ψ(fikjk , ỹ)]

)
9: end for

10: W ← W ∪ {(ỹ1, . . . , ỹK)}
11: until∑K

k=1 ∆(yk, ỹk)− w> ·
∑K

k=1 ∆(yk, ỹk)[ψ(fikjk , yk)− ψ(fikjk , ỹk)] ≤ Kξ +Kε

12: return(w,ξ)
13: mφ = 1∑2n−1

k=1 wk
· w

case, then more constraints are added. More concretely, most algorithms start with an
empty set of constraints and successively add the constraint that is maximally violated
by the current solution.

The pseudo-code of the cutting plane approach is shown in Algorithm 1. For each pair
of objects (oi,oj) ∈ D with oi � oj , we denote by fij the difference foi − foj , to which
we assign the class label +1; conversely, fji = foj − foi is assigned the class label −1.
The function ψ is defined as ψ(x, y) = φ(x)y, where y ∈ {−1,+1}. Moreover, ∆ is a
loss function defined as

∆(y, y) =

{
0 y = y

L otherwise
, (16)

where L is a rescaling parameter that can be set to 1 without loss of generality. Roughly
speaking, the lower L, the stronger the slack ξ is penalized; the importance of the slack
in the objective function is controlled by the parameter ζ. Finally, S∗l = {(z1, . . . , zn) ∈
{0, 1}n |

∑n
i=1 zi = l }, where n is the number of features and l ∈ {1, . . . , n}.

As can be seen, the algorithm iteratively constructs a working set W =W1 ∪ . . . ∪Wr

of constraints, starting with an empty set W = ∅. In each step, the algorithm finds the
constraint that is mostly violated by the current solution w, ξ and adds it to the working
set. Additionally, it guarantees the monotonicity constraints; the formulation in line 6
is provably equivalent to the inequality constraints (15). The algorithm terminates as
soon as no further constraints are violated by more than the predefined precision ε.
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Table 1: Data sets and their properties
data set #instances #attributes #classes source
Color (CLR) 1–7 120 3 3 [43]
Scientific Journals (SCJ) 172 5 4 [4]
CPU 209 6 2 UCI
Auto MPG 398 8 6 UCI
Employee Selection (ESL) 488 4 9 WEKA
Mamographic (MMG) 830 5 2 UCI
Lecturers Evaluation (LEV) 1000 4 5 WEKA
Concrete Compressive Strength (CCS) 1030 8 6 UCI
Car Evaluation (CEV) 1728 6 4 UCI

6 Experimental Results

6.1 Data

Preference learning data meeting the requirements of our setting is by far not as abun-
dant as data for standard machine learning problems such as classification and regres-
sion. In particular, note that we require data in which the output is measured on an
ordered categorical scale. Moreover, since the Choquet integral is a monotone aggrega-
tion operator, the data should be monotone in the sense that the output can be expected
to increase with each input attribute.

In total, we managed to collect 15 data sets meeting these requirements, mainly from the
UCI repository1 and the WEKA machine learning framework [28]. These are all bench-
mark data sets commonly used for experimental purposes in machine learning. Besides,
we collected a number of real-world data sets from other sources, namely data from an
industrial polyester dyeing process [42] and data about the evaluation of mathematical
journals [4]. Table 1 provides a summary of all data sets, which can be downloaded
from our website.2 In what follows, we give a brief description of these data sets.

• Color: The first data set is color yield. It originates from an industrial polyester
dyeing process that was also analyzed in [43]. Here, the output variable is the color
yield, which has been measured as a function of three important factors of the
production process: disperse dyes concentration, temperature and time of dyeing.
Corresponding experiments have been made for seven different colors, giving rise
to seven data sets. Since the output variable is actually numeric, we turn it into
an ordinal class variable with three values; to this end, two thresholds are defined
in such a way that the class distribution is uniform.

1http://archive.ics.uci.edu/ml/
2http://www.uni-marburg.de/fb12/kebi/research/
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• Scientific Journals: This data set is comprised of journals in the field of pure
mathematics, which are rated on a scale with categories A+, A, B and C [4].
Each journal is moreover scored in terms of 5 criteria serving as input attributes,
namely, cites (the total number of citations per year), the impact factor (average
number of citations per article within two years after publication), the immediacy
index (cites to articles in current calendar year divided by the number of articles
published in that year), articles (the total number of articles published), and cited
half-life (median age of articles cited).

• CPU: This is a standard benchmark data set from the UCI repository. It con-
tains nine attributes, three of which were removed since they are obviously of no
predictive value (vendor name, model name, ERP).

• Auto MPG: This data set contains eight attributes and one output. The attributes
are cylinders, displacement, horsepower, weight, acceleration, model year, origin,
car name. The last attribute (car name) was removed because it has no predictive
value. The output is fuel consumption in miles per gallon (MPG). In order to ob-
tain an ordinal class structure, the MPG value was discretized into six consecutive
intervals.

• Employee Selection: This data set contains profiles of applicants for certain in-
dustrial jobs. The values of the four input attributes were determined by psychol-
ogists based upon psychometric test results and interviews with the candidates.
The output is an overall score on an ordinal scale between 1 and 9, corresponding
to the degree of suitability for each candidate to this type of job.

• Mammographic: This data set is about breast cancer screening by mammography.
The goal is to predict the severity (benign or malignant) of a mammographic
mass lesion from BI-RADS attributes (mass shape, mass margin, density) and
the patient’s age.

• Lecturers Evaluation: This data set contains examples of anonymous lecturer
evaluations, taken at the end of MBA courses. Students were asked to score
their lecturers according to four attributes such as oral skills and contribution to
their professional/general knowledge. The output was a total evaluation of each
lecturer’s performance, measured on an ordinal scale from 0 to 4.

• Concrete Compressive Strength: This data set comprises 8 quantitative input
variables, namely the following features of concrete: cement, blast furnace slag,
fly ash, water, superplasticizer, coarse aggregate, fine aggregate, age. The output
set is the concrete compressive strength measured in megapascal. We turned it
into an ordinal attribute using equi-width binning with 6 bins.
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• Car Evaluation: This data set contains 6 attributes describing a car: buying price,
price of the maintenance, number of doors, capacity in terms of persons to carry,
the size of luggage boot, estimated safety of the car. The output is the overall
evaluation of the car: unacceptable, acceptable, good, very good.

6.2 Comparison with Linear and Polynomial Kernel Methods

We compared our approach (subsequently referred to as CI) with kernel-based methods
for ranking, using the spider implementation3 of the RankSVM approach with a linear
and a polynomial kernel [31]. A comparison with this class of methods is interesting for
several reasons. First, kernel-based methods belong to the state-of-the-art in the field of
learning to rank. Second, they make use of the same type of learning algorithm (large
margin maximization). Third, the use of a polynomial kernel leads to a model that
bears some resemblance with a Choquet integral. In fact, using a polynomial kernel of
degree d on the original feature representation of objects, i.e., a kernel of the form

K(o,o′) = (〈fo, fo′〉+ λ)d , (17)

essentially comes down to fitting a linear model in an expanded feature space, in which
the original features f(x1), . . . , f(xn) are complemented by all monomials of order ≤ d.
Thus, a polynomial kernel of degree d captures the same level of interactions between
criteria as a Choquet integral on a k-additive fuzzy measure, when k = d. Note, however,
that it does not guarantee monotonicity in the input attributes.

Moreover, we compared with the weighted mean (WM), which does indeed assure mono-
tonicity, but which is not able to capture any interaction between variables. This model
was implemented as a special case of our method, namely the case of the Choquet
integral based on a 1-additive measure.

6.3 Experimental Setup

In order to assure commensurability [39], all features were normalized to the range 0
and 1 before learning, thereby turning them into a criterion, i.e., a “the higher the
better” attribute. To this end, the transformation fo(xi) = (xi −mi)/(Mi −mi) was
used, where mi and Mi are, respectively, the lower and upper bounds for xi (estimated
from the data); if the influence of xi is actually negative, the mapping fo(xi) = (Mi −
xi)/(Mi −mi) is used instead.

We randomly split the data into two parts, one half for training and one half for testing.
In order to find the trade-off parameter γ, we conducted a 5-fold cross validation on the
training data, selecting an optimal γ from {10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103}. The

3http://people.kyb.tuebingen.mpg.de/spider/
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Table 2: Performance in terms of the average C-index ± standard deviation. Addition-
ally, the rank of each method it shown in brackets.

data set WM PL d=1 PL d=2 PL d=3 CI
CLR 1 .9663±.0148(4) .9506±.0155(5) .9674±.0129(3) .9700±.0141(2) .9828±.0090(1)
CLR 2 .8740±.0293(4) .8601±.0294(5) .8876±.0200(3) .9341±.0244(2) .9804±.0128(1)
CLR 3 .9343±.0204(4) .9268±.0219(5) .9375±.0156(3) .9633±.0143(2) .9878±.0150(1)
CLR 4 .9357±.0171(4) .9228±.0247(5) .9431±.0189(3) .9659±.0166(2) .9915±.0056(1)
CLR 5 .9518±.0194(3) .9485±.0179(5) .9565±.0142(2) .9516±.0171(4) .9682±.0140(1)
CLR 6 .9046±.0202(4) .8923±.0205(5) .9127±.0201(3) .9460±.0191(2) .9825±.0121(1)
CLR 7 .8880±.0312(4) .8797±.0256(5) .8892±.0219(3) .9258±.0237(2) .9688±.0167(1)
SCJ .8168±.0105(4) .8098±.0112(5) .8270±.0241(3) .8313±.0109(2) .8450±.0201(1)
CPU .9965±.0027(3) .9950±.0093(5) .9978±.0012(2) .9955±.0005(4) .9986±.0014(1)
MPG .8887±.0176(4) .8850±.0143(5) .8912±.0078(3) .8967±.0093(2) .9060±.0111(1)
ESL .9497±.0162(2) .9559±.0071(1) .9465±.0104(4) .9491±.0126(3) .9424±.0098(5)
MMG .8961±.0230(2) .8536±.0168(4) .8714±.0181(3) .7813±.0350(5) .9015±.0210(1)
LEV .8710±.0289(2) .8620±.0320(3) .8713±.0250(1) .8527±.0300(5) .8610±.0320(4)
CCS .8650±.0068(4) .8586±.0102(5) .8862±.0184(3) .8962±.0203(2) .9050±.0038(1)
CEV .8981±.0066(4) .8804±.0076(5) .9118±.0059(3) .9585±.0090(2) .9771±.0039(1)
average rank 3.47 4.53 2.8 2.73 1.47

model induced from the training data is then evaluated on the test data, measuring
performance in terms of the C-index. This procedure was repeated 100 times, and the
results were averaged.

6.4 Results

An overview of the results is given in Table 2. Moreover, Table 3 provides a summary in
terms of win-loss statistics, showing, for each pair of methods, on how many data sets
the first one is better than the second one. The overall picture conveyed by the results
is clearly in favor of our method. In fact, the superiority of CI can also be corrobo-
rated statistically, noting that 12 wins is enough to reject the null-hypothesis of equal
performance according to a simple (two-tailed) sign test at the 5% significance level.
Statistically, the results thus suggest that CI is signifiantly better than the competitor
methods.

Table 4 shows results for our method when restricting the Choquet integral to k-additive
measures, for different values of k. A restriction of this kind is interesting for several
reasons. First, since less parameters need to be estimated, it reduces complexity and,
therefore, increases the efficiency of our learning algorithm. Second, as already explained
earlier, a restriction to k-additive measures is also interesting from a learning (induction)
point of view, as it allows for controlling the capacity of the underlying hypothesis space:
The larger the value of k, the richer the model space becomes. In other words, k can be
used to control the flexibility (non-linearity) of the model class. If k is too small, the
model is not able to fit the data sufficiently well. On the other hand, if k is too large,
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Table 3: Win statistics (number of data sets on which the first method was better than
the second one)

WM PL d=1 PL d=2 PL d=3 CI
WM – 14 2 5 2
PL d=1 1 – 1 3 2
PL d=2 13 14 – 4 2
PL d=3 10 12 11 – 1
CI 13 13 13 14 –

Table 4: C-index for restriction to k-additive measures (best result highlighted in bold).
data set CI k=2 CI k=3 CI k=4 CI k=5 CI k=6
CLR 1 .9825±.0103 .9828±.0090 ——– ——– ——–
CLR 2 .9803±.0095 .9804±.0128 ——– ——– ——–
CLR 3 .9874±.0101 .9878±.0150 ——– ——– ——–
CLR 4 .9921±.0063 .9915±.0056 ——– ——– ——–
CLR 5 .9683±.0141 .9682±.0140 ——– ——– ——–
CLR 6 .9867±.0120 .9825±.0121 ——– ——– ——–
CLR 7 .9665±.0162 .9688±.0167 ——– ——– ——–
SCJ .8459±.0245 .8447±.0201 .8458±.0191 .8450±.0201 ——–
CPU .9986±.0009 .9985±.0016 .9988±.0010 .9984±.0011 .9986±.0014
MPG .9038±.0136 .9044±.0111 .9049±.0104 .9058±.0093 .9060±.0111
ESL .9486±.0172 .9457±.0176 .9424±.0098 ——– ——–
MMG .8941±.0290 .8960±.0217 .8964±.0172 .9015±.0210 ——–
LEV .8667±.0216 .8635±.0241 .8610±.0320 ——– ——–
CCS .9149±.0131 .9123±.0155 .9120±.0184 .9104±.0104 .9050±.0038
CEV .9411±.0082 .9660±.0066 .9670±.0053 .9678±.0041 .9771±.0039

there is a danger of over-fitting the data, which may lead to poor generalization. Ideally,
k is chosen so as to avoid both problems, namely under- and over-fitting the data. As
can be seen in Table 4, the ideal value does indeed depend on the data set and is often
smaller than the largest possible value (namely k = #attributes). The question of how
to determine an optimal value of k in an efficient way (i.e., without simply trying all
alternatives) is an important topic of future work.

As one of the key features of our approach, we already mentioned the aspect of in-
terpretability. In particular, the Choquet integral (or, more specifically, the underlying
fuzzy measure) provides natural measures of the importance of individual and the inter-
action between pairs (or even groups) of attributes. As an illustration, Fig. 1 visualizes
the (pairwise) interaction between attributes for the car evaluation data, for which CI
performs significantly better than WM. Recall that, in this data set, the evaluation of
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a car (output attribute) depends on a number of criteria, namely (a) buying price, (b)
price of the maintenance, (c) number of doors, (d) capacity in terms of persons to carry,
(e) size of luggage boot, (f) safety of the car. These criteria form a natural hierarchy:
(a) and (b) form a subgroup PRICE, whereas the other properties are of a TECH-
NICAL nature and can be further decomposed into COMFORT (c–e) and safety (f).
Interestingly, the interaction in our model nicely agrees with this hierarchy: Interaction
within each subgroup tends to be smaller (as can be seen from the darker colors) than
interaction between criteria from different subgroups, suggesting a kind of redundancy
in the former and complementarity in the latter case.

In addition, Fig. 2 visualizes the interaction between the three attributes in the color
yield data sets, namely for CLR-1 and CLR-7. The interaction is not very strong
in the case of CLR-1, but more pronounced for CLR-7. This is in agreement with
the improvement achieved by CI in comparison with a simple linear model (WM),
which is relatively small in the former but much higher in the latter case. In fact, it is
plausible that a complex, non-linear model like CI is not needed unless the attributes are
strongly interacting. Or, stated differently, if there is (almost) no interaction between
the attributes, a simple linear model will generally be enough.

Figure 1: Visualization of the interaction index for the car evaluation data (numerical
values are shown in terms of level of gray, values on the diagonal are set to 0). Groups
of related criteria are indicated by the black lines.

7 Summary and Conclusions

In this paper, we have advocated the use of the discrete Choquet integral in the context
of preference learning. More specifically, we have used the Choquet integral for rep-
resenting a latent utility function in multipartite ranking, a specific type of preference
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Figure 2: Visualization of the interaction index for data sets CLR-1 (left) and CLR-7
(right). The reduction of prediction error is about twice as much as for CLR-7. For the
ease of representation, the values on the diagonal are set to 0.

learning problem. This idea is motivated by several appealing properties offered by the
Choquet integral, making it quite attractive from a preference learning point of view.
This includes its ability to capture dependencies between criteria (attributes) and to
obey natural monotonicity conditions, as well as its interpretability. In fact, in prefer-
ence learning, one is often not only interested in the prediction of preferences. Instead,
it may also be important to get an explanation of a prediction, i.e., a reason for why
an alternative A is (presumably) preferred to another alternative B. The measures of
importance and interaction between attributes, which can directly be derived from the
fuzzy measure underlying the Choquet integral, provide extremely valuable information
in this regard.

The proper specification of this measure, i.e., the adaptation of the fuzzy measure to
the data at hand, is the main challenge from a machine learning point of view. We
formalized this problem as a (soft) margin maximization problem and solved it by
means of a cutting plane algorithm. Our algorithm was compared to state-of-the-art
ranking methods on a number of benchmark datasets. The results of these experiments
are very promising and clearly in favor of our approach.

Needless to say, the method proposed in this paper can be refined in several directions.
Especially interesting in this regard is the idea of restricting the model class to k-
additive measures, connected with the use of k as a kind of regularization parameter
(cf. Section 6). Moreover, going beyond the specific problem of multipartite ranking, one
may of course also think of applying the Choquet integral to other types of preference
learning problems. Indeed, being convinced of the high potential of this idea, we consider
this paper as a first step toward establishing the Choquet integral as an important
mathematical tool of preference learning, and a precursor for research along similar
lines.
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