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Abstract

Theoretical properties of a multi-scale opening (MSO) algorithm for two conjoined fuzzy objects 

are established, and its extension to separating two conjoined fuzzy objects with different intensity 

properties is introduced. Also, its applications to artery/vein (A/V) separation in pulmonary CT 

imaging and carotid vessel segmentation in CT angiograms (CTAs) of patients with intracranial 

aneurysms are presented. The new algorithm accounts for distinct intensity properties of individual 

conjoined objects by combining fuzzy distance transform (FDT), a morphologic feature, with 

fuzzy connectivity, a topologic feature. The algorithm iteratively opens the two conjoined objects 

starting at large scales and progressing toward finer scales. Results of application of the method in 

separating arteries and veins in a physical cast phantom of a pig lung are presented. Accuracy of 

the algorithm is quantitatively evaluated in terms of sensitivity and specificity on patients' CTA 

data sets and its performance is compared with existing methods. Reproducibility of the algorithm 

is examined in terms of volumetric agreement between two users' carotid vessel segmentation 

results. Experimental results using this algorithm on patients' CTA data demonstrate a high 

average accuracy of 96.3% with 95.1% sensitivity and 97.5% specificity and a high reproducibility 

of 94.2% average agreement between segmentation results from two mutually independent users. 

Approximately, twenty-five to thirty-five user-specified seeds/separators are needed for each CTA 

data through a custom designed graphical interface requiring an average of thirty minutes to 

complete carotid vascular segmentation in a patient's CTA data set.
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Index Terms

Fuzzy connectivity; fuzzy distance transform; morphology; multi-scale opening; CTA; carotid 
vasculature; pulmonary vasculature

I. Introduction

Multi-Layered extraction of knowledge embedded in two- and higher-dimensional images 

has remained a front-line research aim over several decades [1]–[8]. Often, segmentation of 

one or multiple objects in an image presents a major challenge in many such applications. 

Despite paramount research efforts on image segmentation over the last several decades [9]–

[15], there is no universally acceptable segmentation method and, often, we face new 

segmentation tasks that may not be efficiently solved within the conventional framework. 

Here, we address one such segmentation task where the challenge lies in separating two 

fuzzy objects fused at various unknown locations and scales [16]–[18]. The background and 

the area of applications along with literature survey, evolution of the current algorithm and 

novel contributions in this paper are discussed in the following.

Background and the Area of Applications

The method presented in this paper is described in the context of two important medical 

imaging applications—(1) pulmonary artery/vein (A/V) separation in chest CT imaging and 

(2) segmentation of carotid vasculature in CT angiograms (CTAs) of patients with 

intracranial aneurysms. Separating pulmonary A/V trees via CT imaging is a crucial step in 

the quantification of vascular geometry for the purpose of determining pulmonary 

hypertension, pulmonary emboli, emphasyma and more. The couplings or fusions between 

A/V trees are tight and complex attributed with arbitrary and multi-scale geometry, 

especially at branching locations. Limited signal-to-noise ratio (SNR), relatively low spatial 

resolution and subject-specific structural variations of vascular trees further complicate the 

task. Previous works from our group on multi-scale opening (MSO) algorithm [17], [19] 

have been applied successfully for separation of A/V trees in non-contrast CT imaging. 

Here, we extend the application where arteries and veins are assigned separate CT image 

contrasts.

In regards to the other application, intracranial aneurysms are acquired lesions (5-10% of the 

population), a fraction of which rupture leading to subarachnoid hemorrhage with 

devastating clinical consequences. From an imaging perspective, intracranial aneurysms are 

abnormal outpouchings in the cerebral vasculature. Such aneurysms occur predominantly in 

or near the Circle of Willis—a circular configuration of arteries in the base of the brain. 

They are usually anywhere from a few millimeters to several centimeters [20], [21] in 

diameter. Treatments include microsurgical clipping, endovascular insertion of coils into the 

aneurysm and/or deployment of stents for diverting blood flow. However, such treatments 

are themselves associated with some mortality and morbidity. Therefore, it is prudent to 

avoid surgery if the risk of rupture is deemed minimal, and the clinical management of these 

lesions would benefit from a better understanding of factors associated with rupture risk. In 

this context, studies on morphological characteristics, hemodynamics and aneurysm tissue 
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mechanics become valuable. Key to such computational risk-assessment approaches is the 

ability of accurate and rapid segmentation of the vasculature with the aneurysm in the brain. 

Further, cerebral vessel segmentation will also aid in surgical planning and serial follow-up 

of patients [22]. In the arena of both clinical research as well as patient care, CTAs are 

popularly used to evaluate intracranial aneurysms. In CTA, bone picks higher intensities and 

soft tissue, fat, and skin appear with lower intensities while the intensity range for the 

vascular tree falls in between [23]. The major challenge in segmenting the carotid 

vasculature is the coupling between vessels and bone structures at unknown and variable 

scales, especially, at the vicinity of sinus and nasal regions. These challenges are further 

enhanced by – (1) shared intensity band between the two objects at limited SNR and spatial 

resolution and (2) unknown complex geometry of thin bones near carotid sinus. Depending 

upon the applied contrast protocol [24], [25], intensities of either the artery or both artery 

and vein trees are enhanced during the patients' carotid CTA.

Literature Survey

Several algorithms [26]–[30] are available in literature on segmentation of cerebral 

aneurysms. Steinman and colleagues reported on a semi-automatic algorithms for 3D 

reconstruction of giant aneurysms on the posterior communicating artery using a discrete 

dynamic contouring approach [29]. Subsequently, Cebral and colleagues [26] presented a 3D 

reconstruction algorithm for cerebral aneurysms using level sets and deformable models. 

Frangi and his colleagues have used a region-based implicit surface modeling approach [27], 

[28], [30] to accomplish the task. However, these algorithms primarily focus on segmenting 

a cerebral aneurysm and a small part of the attached vessel rather than the entire cerebral 

vessel tree. Reconstruction of the complete cerebral vasculature permits hemodynamic 

analyses with a greater contextual information and, therefore, enhancing the quality of 

analytic results. Also, it is difficult to segment aneurysms when they lie in close proximity to 

the skull (common in aneurysms at the internal carotid artery) or to neighboring vessels 

(common in anterior communicating artery aneurysms). These challenges have not been 

thoroughly addressed in previous studies. Moreover, existing algorithms rely on significant 

user interaction and, therefore, final results are susceptible of subjectivity errors. However, 

dependence of these algorithms on user input has not been thoroughly investigated.

Evolution of the Current Algorithm and Novel Contributions in this Paper

In this paper, the fundamental challenges of pulmonary A/V separation and vessel 

segmentation in CTA are solved using a new MSO algorithm that is capable of separating 

both intensity-similar as well as intensity-varying conjoined fuzzy objects. The MSO [17] 

algorithm was originally presented for medical image processing research community and 

its application to separate two similar-intensity objects were demonstrated. Here, theoretical 

properties of the MSO algorithm are established and its domain is extended to separate 

mutually fused fuzzy objects with different intensity properties. We address two important 

applications of the new algorithm – (1) separation of A/V from CT imaging of a pig lung 

phantom and (2) separation of carotid vasculature from bones in CTAs of patients with 

intracranial aneurysms. A short version of the MSO algorithm for separation of two objects 

sharing different intensity properties that are fused at unknown locations and scales, was 

presented in a conference paper [31] targeted to biomedical imaging and instrumentation 
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research community. The novel contributions of this paper as compared to our previous 

works include – (1) a detailed and formal presentation of a modified MSO algorithm, (2) 

analytic proofs of disjoincy of separated objects and termination of the algorithm in a finite 

number of steps, (3) new experiments and results on A/V separation with different intensity 

properties, multi-user reproducibility, accuracy analysis on a larger dataset of patients' CTA, 

and comparison with existing algorithms. It may be noted that the premise of the MSO 

algorithm is developed by combining the theories of fuzzy distance transform (FDT) [32], 

[33], fuzzy connectivity [15], [34], [35], and iterative relative fuzzy connectivity [36]–[38]. 

Further, it may be emphasized that our algorithm is independent of the contrast protocol 

used in CT imaging of pulmonary A/V or in CTA.

The theory and properties of multi-scale separation of two conjoined fuzzy objects are 

established in Section II. Algorithm design for separation of conjoined fuzzy objects with 

different intensity properties is presented in Section III, while the experimental methods and 

results are discussed in Section IV. Finally, the conclusion is drawn in Section V.

II. Theory of Multi-Scale Opening for Conjoined Fuzzy Objects

In this section, we describe the MSO algorithm [17], [19] separating two similar-intensity 

fuzzy objects conjoined at various locations and scales and establish its theoretical 

properties. Expansion of the domain of application of the algorithm where the fused objects 

possess different intensity characteristics is discussed in the next section.

A. Basic Definitions and Notations

A three dimensional (3D) cubic grid, or simply a cubic grid, is represented by Ƶ3 | Ƶ is the 

set of integers. A grid point, often referred to as a point or a voxel, is an element of Ƶ3 and is 

represented by a triplet of integer coordinates. Standard 26-adjacency [39] is used here, i.e., 

two voxels p = (x1, x2, x3), q = (y1, y2, y3) ∈ Ƶ3 are adjacent if and only if max1≤i≤3 |xi − yi| 

≤ 1, where | · | gives the absolute value. Two adjacent voxels are often referred to as 

neighbors of each other; the set of 26-neighbors of a voxel p excluding itself is denoted by 

*(p) An object  is a fuzzy subset {(p, μ (p)) | p ∈ Ƶ3}, where μ  : Ƶ3 → [0, 1] is the 

membership function. The support Θ( ) of an object  is the set of all voxels with non-zero 

membership, i.e., Θ( ) = {p | p ∈ Ƶ3 and μ  (p) ≠ 0}; Θ̄( ) = Ƶ3 − Θ( ) is the background. 

Images are always acquired with a finite field of view. Thus, we will assume that an object 

has a bounded support.

Let S denote a set of voxels; a path π in S from p ∈ S to q ∈ S is a sequence 〈p = p1, p2, ⋯, 

pl = q〉 of voxels in S such that every two successive voxels are adjacent. A link is a path 

〈p, q〉 of exactly two adjacent voxels. The length of a path π = 〈p1, p2, ⋯, pl〉 in a 

fuzzy object , denoted as Π (π), is the sum of lengths of all links on the path, i.e.,

(1)
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where, ‖pi − pi+1‖ is the Euclidean distance between p, q. The fuzzy distance [32], [33] 

between two voxels p, q ∈ Ƶ3 in an object , denoted by ω (p, q), is the length of one of the 

shortest paths from p to q, i.e.,

(2)

where, (p, q) is the set of all paths from p to q. The FDT of an object  is an image {(p, 

Ω (p)) | p ∈ Ƶ3}, where Ω  : Ƶ3 → ℛ+ | ℛ+ is the set of positive real numbers including 

zero, is the fuzzy distance from the background, i.e.,

(3)

Here, we use “local scale” of an object voxel as the depth or FDT value at the closest 

locally-deepest voxel. Specifically, a voxel p ∈ Θ( ) is locally-deepest if ∀q ∈ l(p), Ω (q) 

≤ Ω (p), where l(p) is the (2l +1)3 neighborhood of p; here, 2(p) is used to avoid noisy 

local maxima. Let Smax ⊂ Θ( ) be the set of all locally-deepest voxels. Local scale of a 

voxel p, denoted as δ (p), is the FDT value of the voxel in Smax that is nearest to p; in case 

of a tie, the voxel with larger FDT value is chosen. FDT value at each voxel p is normalized 

by dividing it with local scale δ  (p) to reduce effects of spatial scale variation. Now 

onward, both “FDT” and Ω  will refer to “scale-normalized FDT” unless stated otherwise.

Let us comeback to the segmentation task where the challenge is to separate two fuzzy 

objects  and ℬ, which are fused at various unknown locations and scales. This task is 

solved using a new MSO algorithm in two sequential steps – Step 1: segmentation of the 

combined region  ∪ ℬ from the background, and Step 2: separation of  and ℬ. The 

first step may trivially be achieved using simple thresholding [40], [41] and connectivity 

analysis [42], [43]. Let  be the fuzzy segmentation of the combined region obtained in Step 

1. All subsequent analyses will be confined to the support Θ( ) of  which will be the 

“effective image space”; let I : Θ( ) → [Imin, Imax] be image intensity function over Θ( ).

In the second step, the separation task is modeled as an opening algorithm of two fuzzy 

objects mutually fused at different unknown regions and scales. Often, a simple fuzzy 

connectivity or edge analysis may not be suitable to separate the two structures. On the other 

hand, the two objects may frequently be locally separable using a suitable morphological 

opening operator. The challenges here are – (1) how to determine local size of suitable 

morphological operators and (2) how to combine the locally separated regions. The MSO 

algorithm combines fuzzy distance transform (FDT) [32], [33] a morphologic function with 

a topologic fuzzy connectivity [35], [44]–[46] to iteratively open the two objects starting at 

large scales and progressing toward finer scales.
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B. Optimal Erosion using Morpho-Connectivity

Here, we define the algorithm for the first iteration. The basic idea of this step is to gradually 

erode the assembly of two fused fuzzy objects until those two objects get mutually 

disconnected creating two separate objects. It starts with two sets of seed voxels S  and Sℬ 
and a set of common separators S  The initial FDT map Ω ,0 for the first object is 

computed from  except that the voxels in Sℬ ∪ S  are added to the background; it is worth 

mentioning that the local scale map δ , derived from the original assembled object , is 

used for normalization. FDT map Ωℬ,0 for the other object is computed similarly. It is 

reasonable to assume that the sets S , Sℬ, and S  are mutually exclusive.

Fuzzy morpho-connectivity strength of a path π = 〈p1, p2, ⋯, pl〉 in a fuzzy object , 

denoted as Γ (π), is the minimum FDT value along the path:

(4)

Fuzzy morpho-connectivity between two voxels p, q ∈ Ƶ3, denoted as γ  (p, q), is the 

strength of the strongest morphological paths between p and q, i.e.,

(5)

Definition 1. Optimum erosion of a fuzzy object  represented by the set of seed voxels 

S  with respect to its co-object ℬ represented by the set of seed voxels Sℬ and a set of 

common separator S  is the set of all voxels p such that there exists an erosion scale that 

disconnects p from ℬ while leaving it connected to , i.e.,

(6)

where, the fuzzy morpho-connectivity functions γ ,0 and γℬ,0 are defined from the FDT 

maps Ω ,0 and Ωℬ,0, respectively. The optimum erosion Rℬ,0 of the object ℬ is defined 

similarly.

Proposition 1. For any fuzzy object  in Ƶ3, for any two mutually exclusive sets of seeds 

S  and Sℬ, representing two different objects, and a set of common separator S  disjoint to 

both S  and Sℬ, the separated regions R ,0, Rℬ,0, after optimum erosion, are always 

disjoint, i.e., R ,0 ∩ Rℬ,0 = ∅.

Proof. To prove this proposition by contradiction, first, let us assume that the proposition is 

not true, i.e., R ,0 ∩ Rℬ,0 ≠ ∅. Let us consider a voxel p ∈ R ,0∩Rℬ,0. Following Equation 

6 and our assumption that the voxel p belongs to R ,0, we get maxa∈S  γ ,0(a, p) > 
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maxb∈Sℬ γℬ,0 (b, p). But since the voxel p also belongs to Rℬ,0 according to our assumption, 

following the same equation, we get maxb∈Sℬ γℬ,0 (b, p) > maxa∈S  γ ,0(a, p). Hence 

contradiction.

C. Constrained Dilation

The two optimally eroded regions R ,0 and Rℬ,0 (Fig. 1(a)) separates the two target objects 

using morpho-connectivity. However, each of these two separated regions captures only an 

eroded version of the target objects over respective local regions and dilation is needed to 

further improve the delineation results (Fig. 1(b)). Also, the annular left-over from optimal 

erosion (Fig. 1(a)) wrongly permits path leakages from one separated region into the other. It 

is crucial to block such leakages in order to proceed with the separation process to the next 

finer scale. Both objectives are fulfilled by local dilation of the two separated objects and we 

refer to it as a “constrained dilation” to emphasize that the process must preserve separate 

identities of the two objects (Fig. 1(b)). Constrained dilation is applied over a 

“morphological neighborhood” to ensure that the dilation is locally confined. The purpose of 

morphological neighborhood is to define a morphological locality that matches with the 

scale and geometry of the local structure.

Definition 2. Morphological neighborhood of a set of voxels X in an object , denoted by 

N (X), is a set of all voxels p ∈ Θ( ) such that ∃q ∈ X for which ω (p, q) < Ω (q) and p is 

connected to q by a path π = 〈p = p1, p2, ⋯, pl = q〉 of monotonically increasing FDT 

values.

In Definition 2, the original FDT map without scale normalization is used as morphological 

neighborhood should capture original un-normalized scale and geometry of the local 

structure.

Definition 3. Constrained dilation of R ,0 with respect to its co-object Rℬ,0 within the 

fuzzy object , denoted as M ,0, is the set of all voxels p ∈ N  (R ,0), which are strictly 

closer to R ,0 than Rℬ,0 (Fig. 1(b)), i.e.,

(7)

where, the fuzzy distance function ω  is defined over the fuzzy object  in Ƶ3. The region 

Mℬ,0 is defined similarly.

It may be noted that, gaps between the separated regions visible in Fig. 1(a) are filled in Fig. 

1(b) after constrained dilation, and thus, undesired paths running through those gaps are 

blocked enabling separation at the next finer scale. The two steps of optimal erosion and 

constrained dilation lead to an “optimal opening” operation preparing the ground for 

separation at next finer scales.

Proposition 2. For any fuzzy object  in Ƶ3, for any two mutually exclusive sets of seeds 

S  and Sℬ, representing two different objects, and a set of common separator S  disjoint to 
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both S  and Sℬ, the constrained dilations M ,0, Mℬ,0 are always disjoint, i.e., M ,0 ∩ 
Mℬ,0 = ∅.

Proof. To prove this proposition by contradiction first let us assume that the proposition is 

not true, i.e., M ,0 ∩ Mℬ,0 ≠ ∅. Let us consider a voxel p in M ,0 ∩ Mℬ,0. Following the 

assumption that p ∈ M ,0 and Definition 3, we get mina∈R ,0 ω (a, p) < minb∈Rℬ,0 ω (b, 

p). Therefore p is strictly closer to R , 0. But, since p also belongs to Mℬ,0, following 

Definition 3, we get minb∈Rℬ,0 ω (b, p) < mina∈R ,0 ω (a, p), making p strictly closer to 

Rℬ,0 as well. Therefore the voxel p cannot be strictly closer to both R ,0 and Rℬ,0 

simultaneously. Hence the contradiction.

Corollary 1. For any fuzzy object  in Ƶ3, for any two mutually exclusive sets of seeds S
and Sℬ, representing two different objects, and a set of common separator S  disjoint to 

both S  and Sℬ, the constrained dilations M ,0 and Mℬ,0 include the optimum erosions 

R ,0 and Rℬ,0, respectively, i.e., R ,0 ⊂ M ,0 and Rℬ,0 ⊂ Mℬ,0.

D. Iterative Progression to Multi-Scale Opening

The optimal opening algorithm, as described above, separates two target objects at a specific 

scale and the purpose of the current step is to freeze the boundary of previous separation 

enabling propagation to the next finer scale. This step operates in a fashion similar to the 

iterative strategy described in references [36]–[38] for intensity based fuzzy connectivity. 

For each of the two objects, we set the FDT values to zero over the region currently acquired 

by its rival object. It puts a hypothetical wall at the boundary of each object separated in the 

previous iteration stopping paths from one object to run through the territory already 

acquired by the rival object. Specifically, after each iteration, the FDT image of object  is 

updated as follows:

(8)

The FDT map of the other object is updated similarly. The seed voxels S  and Sℬ for the 

two objects are replaced by M ,i−1 and Mℬ,i−1 respectively (Fig. 1(c)). With this set-up the 

algorithm enters into the next iteration and the morphological separations M ,i and Mℬ,i are 

derived using the Equations 6—8 and Definitions 1—3.

Proposition 3. For any fuzzy object  in Ƶ3, for any two mutually exclusive sets of seeds 

S  and Sℬ, representing two different objects, and a set of common separator S  disjoint to 

both S  and Sℬ, for any positive integer i, the separation results M ,i, Mℬ,i of the MSO 
algorithm are always disjoint, i.e., M ,i ∩ Mℬ,i = ∅.

Proof. This proposition will be proved by induction. From Proposition 1, we get R ,0 ∩ 
Rℬ,0 = ∅ and from Proposition 2 we get M ,0 ∩ Mℬ,0 = ∅. This ensures disjoint separation 

of the two fuzzy objects after the first iteration of the MSO algorithm. Let us assume that 

this proposition is true after (i − 1)th iteration, for some i ≥ 1. To complete the proof, we will 
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show that the proposition remains true after the ith iteration. During the ith iteration of multi-

scale opening, the following changes take place in the optimum erosion and iterative 

progression steps as compared to the first iteration: Ω ,0 (or, Ωℬ,0) is replaced by Ω ,i 

(respectively, Ωℬ,i) in Equation 6 and the set seeds S  is replaced by M , i−1, while Sℬ is 

replaced by Mℬ, i−1. Therefore, following Propositions 1 and 2, the results of optimum 

erosion and constrained dilation, the output separation of the ith iteration remain disjoint, 

i.e., M ,0 ∩ Mℬ,0 = ∅.

Proposition 4. For any fuzzy object  in Ƶ3, for any two mutually exclusive sets of seeds 

S  and Sℬ, representing two different objects, and a set of common separator S  disjoint to 

both S  and Sℬ, for any positive integer i, the separation results M ,i ⊂ M ,i+1.

Proof. Following iterative progression of multi-scale opening, during the (i + 1)th iteration, 

M ,i is used as the set of seeds for the object . Following Definition 3, we get M ,i ⊂ 
N  (R ,i); and following Proposition 3, we get M ,i ∩ Mℬ,i = ∅. Therefore, p ∈ M ,i = 

M ,i − Mℬ,i, ⊂ N  (R ,i) − Mℬ,i. Thus, following Equation 8, ∀p ∈ M ,i, Ωℬ,i+1(p) = 0. 

Hence, following Equations 4—6, M ,i ⊂ R ,i+1 ⊂ M ,i+1.

Proposition 5. For any fuzzy object  in Ƶ3, for any two mutually exclusive sets of seeds 

S  and Sℬ, representing two different objects, and a set of common separator S  disjoint to 

both S  and Sℬ, the MSO algorithm terminates in a finite number of iterations.

Proof. For all voxels, p ∈ Θ̄( ), for any i ≥ 0, the FDT maps Ω ,i(p) = Ωℬ,i(p) = 0. 

Therefore, following Equations 4—6, R ,i,Rℬ,i ⊂ Θ( ). Following Definition 2, the 

morphological neighborhoods N (R ,i), N (Rℬ,i) ⊂ Θ( ). Therefore, the results of 

constrained dilation M ,i and Mℬ,i are confined to the finite set Θ( ). Again, following 

Proposition 4, M ,i and Mℬ,i are monotonically non-contracting. Therefore, after a finitely 

many iterations, both of these sets converge when the MSO algorithm terminates.

III. Multi-Scale Opening of Conjoined Objects with Different Intensity 

Characteristics

Previous algorithms [17], [19] of multi-scale opening for two conjoined objects assume that 

the two objects share a common intensity characteristic. Here a revised formulation of the 

MSO algorithm is presented where the two conjoined fuzzy objects possess different 

intensity characteristics with an overlapping shared intensity band. Let us explain the 

algorithm from the perspective of carotid vessel segmentation in human CTAs; however, 

similar formulation works for the other application of A/V separation in pig lung phantom 

CT imaging. First, the segmentation of combined regions for bone and vessels (in the rest of 

this paper by “vessel” we will refer to the vasculature together with aneurysms, if any) is 

completed. Subsequently, the MSO algorithm is applied to separate vessels from bone. The 

first step is achieved in CTA using simple thresholding [40], [41] and connectivity analysis 

[42], [43]. Let  be the fuzzy segmentation of the combined bone and vessels after removing 

low intensity regions mostly occupied by soft tissue and skin. All subsequent analyses are 

confined to the support Θ( ) of  representing the effective image space; let ICTA : Θ( ) → 
[Imin, Imax] be CTA image intensity function. Major challenges in our carotid vessel 
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segmentation approach are embedded in the second step, i.e., separation of vasculature from 

bone which is modeled here as opening two fuzzy objects with different intensity 

characteristics while sharing a common intensity band and mutually fused at unknown 

locations and scales.

Let us consider the coupling of two objects illustrated in Fig. 2(a) where a bone-like 

structure (green) and a vessel (red), with significant intensity overlap (Fig. 2(b)), are fused 

with each other at unknown locations and scales. Color-coded combined vessel (red channel) 

and bone (green channel) membership maps on a CTA axial image slice is shown in Fig. 

2(c). Let μbone and μvessel denote the bone and vessel membership functions defined as 

follows:

(9)

(10)

where, Ivessel and Ibone are representative vessel and bone intensities defining the respective 

transition between pure and shared intensity bands (Fig. 2(b)). Let Pbone ⊂ Θ( ) (or, Pvessel 

⊂ Θ( )) be the set of voxels falling inside the pure intensity band for bones (respectively, 

vessels). Thus, the set of voxels falling within the shared intensity band is Oshared = Θ( ) − 

Pbone − Pvessel. A fuzzy representation of the composite object may be obtained by taking 

the fuzzy union of the two membership functions shown in Equations 9 and 10.

An overall work flow diagram of the MSO algorithm for two fuzzy objects with different 

intensity properties are is presented in Fig. 3. In the iterative approach of multi-scale 

opening of two structures, it takes several iterations to grow path-continuity of an object 

starting from its seed voxels, commonly added in large scale regions, to a peripheral location 

with fine scale details. This phenomenon of gradual extension of an object within the MSO 

framework may lead to a challenge in separating peripheral structures in some applications, 

e.g., separation of vasculature from bone in CTA. Let us consider the following situation – a 

peripheral voxel, say p, of the vascular object, say , come to the vicinity of pure intensity 

regions of its rival bone object, say ℬ, and gets fused. Due to the iterative nature of multi-

scale progression model in the MSO separation algorithm, it takes several iterations for 

vasculature  to propagate its path continuity from seed voxels (primarily located at 

central regions) to the peripheral voxel p along the paths in the vascular structure. On the 

other hand, the path-continuity of ℬ reaches to p quicker due to immediate spatial vicinity 

of p and pure intensity region of ℬ which are included as seed voxels. Thus, p may be 

seized by ℬ before a path from a seed voxel of  reaches there in the process of iterative 
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gradual multi-scale progression. This problem is solved by using a one voxel thick 

prohibited region P around pure intensity regions of both objects. It may be noted that for 

most applications, since no pure intensity zone is assigned for the lower intensity object, P 
only surround the brighter intensity object. This allows lower intensity objects to reach 

peripheral sites through iterations. Finally, the MSO algorithm runs in two sequential phases. 

During the first phase, the separation is confined to Θ( ) − P and then, in the second phase, 

the separation is made open to the entire Θ( ).

IV. Experimental Methods and Results

To facilitate the experimental methods, an integrated custom-designed 2-D/3-D graphical 

user interface was developed in our laboratory allowing simultaneous viewing of 2-D and 3-

D geometry of target objects along with current segmentation results using different options 

for overlay colors. The correspondence of target object geometry in 3-D and three planar 

views is realized by tagging the 3-D cursor with 2-D planar cursors. Facilities of selecting 

and editing different seeds and separators are supported within the graphical interface along 

with various display and overlay-related options.

Results of application of the algorithm to a CT image of a pig lung cast phantom with 

different CT contrasts for arterial and venous trees are presented in Fig. 4. To generate the 

pig pulmonary vessel cast phantom, the animal was first exsanguinated. While maintaining 

ventilation at low positive end-expiratory pressure (PEEP), the pulmonary vasculature was 

flushed with 1L 2% Dextran solution and pneumonectomy was performed. While keeping 

the lungs inflated at approximately 22 cm H2O Pawy, a rapid hardening methyl methacrylate 

compound (Orthodontic Resin, DENTSPLY International, York, PA) was injected into the 

vasculature to create a cast of the pulmonary arterial and venous trees. The casting 

compound was mixed with red oil paint for the venous (oxygenated) side and blue oil paint 

for the arterial (deoxygenated) side of the vascular beds. The arterial side was also contrast-

enhanced by the addition of 10 cc of Ethiodol (Savage Laboratories, Melville, NY) to the 

casting compound (Fig. 4(a)). The vessel cast was scanned on a Siemens Somatom 

Definition Flash 128 CT scanner using the following protocol − 120 kV, 115 effective mAs, 

1-s rotation speed, pitch factor: 1.0, nominal collimation: 16 mm×0.3 mm, image matrix: 

512×512 and (0.34 mm)2 in-plane resolution, and 0.75 mm slice thickness.

Axial (Fig. 4(b)) and coronal (Fig. 4(d)) image slices from the original CT images of the 

pig-lung phantom are shown along with the intensity histogram (Fig. 4(f)); in Fig. 4(f), the 

part of the histogram for the background region is only partially shown. Two CT intensity 

values Imin and Iartery segmenting the background and pure artery regions were manually 

selected by three independent users and the mean values were selected as shown in Fig. 4(f). 

Although, the histogram show a mode of CT values for veins, no intensity values could be 

selected as pure vein intensity as partially volume artery voxels share those intensity values. 

Therefore, the intensity range [Imin, Iartery] was used as the shared intensity space. A sharp 

peak was identified as primarily contributed by partial voluming of arteries; however, this 

information is not used by the algorithm. The CT intensity-based classification of artery and 

vein is shown in Fig. 4(c) and Fig. 4(e) where the partial voluming effect appears as a thin 

red films wrapping around arteries.
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A thresholding and morphological erosion was applied to separate the core arteries and 

veins, and the results are shown in Fig. 4(g, i, k). Such an approach succeeds to capture core 

arteries and veins but fails to preserve fine details due to partial voluming. The superiority of 

the new MSO algorithm lies in its ability to trace fine structures of individual objects despite 

the presence of partial voluming and intensity sharing. The results of A/V separation using 

the MSO algorithm are shown in Fig. 4(h, j, l) which successfully capture fine details. For 

this experiment, two seed voxels were used for arteries and another three seed voxels were 

used for veins using our custom 2D/3D graphical interface.

The overall aim of our experimental plan is to examine the accuracy, reproducibility, and 

efficiency of the MSO algorithm for separating two fuzzy objects with distinct intensity 

characteristics but sharing a common intensity band while conjoined at unknown locations 

and scales. For quantitative evaluation of the accuracy of the algorithm, we used image data 

from human cerebral CTAs. Inter-user reproducibility of the method was examined using 

results of bone-removed vessel segmentation in human carotid CTAs obtained by interactive 

inputs from two mutually-blinded independent users. In the following subsections, we 

describe detail plans, methods and results for each of these experiments. The efficiency of 

the algorithm is reported in terms of the number of user specified seed voxels and separators 

and user interaction time for different experiments. Also, the average computation time for 

the algorithm is reported.

A. Accuracy

The accuracy of the algorithm on mathematical phantoms with known truths was examined 

and the results were presented in [31]. Although the phantoms were designed to simulate 

various geometry of coupling between two objects, it's difficult to simulate the complexity of 

coupling between two objects present in a true biological environment. Here, we evaluate the 

accuracy of our algorithm on patients' carotid CTA datasets and compare its performance 

with existing algorithms.

An axial image slices from a carotid CTA and the intensity-based bone-vessel classification 

results are shown in Fig. 5(a, b); the CT intensity histogram is presented in Fig. 5(c). It is 

evident from Fig. 5(b) that carotid vasculature and soft/thin bones appear with similar CT 

intensities. To evaluate the performance of the algorithm, ten CTA data sets were collected 

using Siemens Somatom Sensation 16 scanner at 120 kV, rotation time of 0.5 second, 0.75 

pitch and 0.75 mm collimation. The contrast medium used was 75 cc of Omipaque 300. Ten 

matured adult patients with suspected cerebral aneurysm were imaged using the above 

mentioned protocol. Three out of the ten patients were clinically diagnosed with cerebral 

aneurysm. In a CTA data, bone receives high intensity values while contrast enhanced 

vascular trees appear with intermediate intensity values. Although the intensity 

characteristics are different for bone and vascular tree, there is a significant overlap between 

the two due to the presence of partial voluming, noise and soft/thin bones; see Fig. 5(b). The 

minimum intensity Imin for the assembly of vessel and bone and the core bone intensity Ibone 

were manually selected by three users on three randomly selected CTA data as follows:

• Imin: Intensity threshold to separate bone and vessel from other tissue 

regions and air.
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• Ibone: Intensity threshold for confident bone, i.e., no vascular region is 

included in the intensity space higher Ibone.

By taking the average of these values from three independent users on three CTAs, we 

selected Imin = 130Hu and Ibone = 500Hu and applied these values on all CTAs used in our 

experiments. It may further be mentioned that both soft bones and bone partial volume share 

the intensity band [Imin, Ibone] with vascular trees in CTAs (see Fig. 5(b)) and the objective 

of multi-scale opening is to separate bone and vessels over this shared intensity band. For 

the current experiment, the core vessel intensity Ivessel was set at Imin and the fuzzy 

membership functions μbone and μvessel were computed following Equations 9 and 10. Since 

the pure intensity zone for vessel was empty, no intensity value-defined seed voxels was 

used for vessels. For the bone structure, two types of seed voxels were used as follows:

• boneSeedintensity: The set of voxels with their intensity values greater than 

or equal to Ibone.

• boneSeedmanual: The set of bone seed voxels interactively indicated using 

a custom built graphical user interface.

Manual bone seed voxels were used for soft bones near sinus cavities. For each CTA, 

approximately 8 to 12 seed voxels were manually selected. Following the fact that no 

intensity based seed voxels may be used for vessels, we adopted a fuzzy connectivity and 

distance transform based approach to generate core vessels from a small set of user-specified 

vessel seed voxels. Let vesselSeedmanual be the set of manually indicated seed voxels for 

carotid vessels; in our experiments 8 to 12 manual seed voxels were added using our 2-D/3-

D graphical interface. A fuzzy representation for vessels was computed from CTA using the 

membership function of Equation 10.

An FDT image Ωvessel : Ƶ3 → ℛ+ of vascular structures was computed from the fuzzy 

vessel image with the membership function μvessel : Ƶ3 → ℛ+. Let γvessel : Ƶ3 × Ƶ3 → ℛ+ 

denote the morpho-connectivity between two voxels as defined by Ωvessel. Using the manual 

vessel seed voxels vesselSeedmanual, a fuzzy morpho-connected vasculature image ϒvessel : 

Ƶ3 → ℛ+ was computed as follows:

(11)

It may be noted that the domain of ϒvessel expands into soft bones and partial volume bone 

voxels and to remove those from the core vessels we used morphological erosion by setting 

a threshold of 1.5 on ϒvessel. Here, the threshold value of 1.5 on ϒvessel indicate an erosion 

by 1.5 voxel units, i.e., ∼0.6 mm as the FDT image was computed in the voxel unit. Thus, 

vessels with diameter greater than 1.2 mm diameter survived as core vessel. Although the 

threshold value was empirically selected and may not be the optimum choice, it allowed 

successful disconnection of all soft bone and partial volume bone structures from the core 

vessel. A result of core vessel segmentation is illustrated in Fig. 5(d, e). Additional 8 to 12 

separators (separatormanual) were manually selected and the MSO algorithm was applied to 

separate the entire vasculature (Fig. 5(f, g)) from bone. Results of bone/vessels separations 
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for three other patients' CTA are illustrated in Fig. 6. Here, a half-skull representation of the 

carotid bone is adopted to display the vascular structure in the context of bone geometry.

The performance of our method was compared with two existing algorithms [26]–[28], [30], 

[36]–[38]. The first algorithm was based on the method presented by Frangi and colleagues 

[26]–[28], [30]. It combines three popular concepts – Frangi's multi-scale vessel 

enhancement filtering [47], minimal cost-path using marching [48], and geodesic active 

region propagation using level-sets [49]. First, the user-indicated vessel seeds are connected 

using minimum cost-paths on the vesselness field and the voxels on those paths are treated 

as seeds for the next step of active region propagation. During this step vessel volume is 

segmented using geodesic active region propagation using level-sets. Let us refer to this 

method as multi-scale vesselness geodesic active region (MSVGAR) algorithm. A result of 

application of MSVGAR on a CTA is presented in Fig. 7(c). Essentially, the active region 

based propagation step in MSVGAR radially expands the vessel region and the propagation 

along the vessel is limited as it often leads to uncontrolled leaking prior to reaching distant 

vessels. These issues of the algorithm were also discussed by the authors [26]–[28], [30]. 

The parameters for scale-range, step-size and the gradient strength in MSVGAR were 

determined following the protocol recommended by the authors [26]–[28], [30].

The second method selected for comparison was based on the iterative relative fuzzy 

connectedness (IRFC) [36]–[38], which was developed for separating conjoined objects and 

was applied for A/V separation in MR angiograms [36]–[38]. IRFC separates two objects 

using an iterative approach of relative strength of fuzzy connectivity between two competing 

objects. The fuzzy connectivity utilizes both gradient as well as object intensity feature 

through the “affinity” function as discussed in [15], [35]. Different parameters for object 

intensity and gradient features were computed over manually thresholded regions for bone 

and vessel regions. Two different versions of the IRFC algorithm were used for comparison

—(1) IRFC-conservative and (2) IRFC-generous. For IRFC-conservative, the object 

intensity and gradient parameters were computed over a conservatively thresholded vessel 

region that ensured exclusion of all bone regions. On the other hand, for IRFC-generous, the 

object intensity and gradient parameters were computed over a generously thresholded 

vessel region that ensured inclusion of all visible vessels. Results of application of IRFC-

conservative and IRFC-generous algorithm on a CTA are presented in Fig. 7(d) and (e), 

respectively. As observed in Fig. 7(d) and (e), the IRFC methods under-performed both 

MSO and MSVGAR algorithms. The primary reason behind the underperformance of IRFC 

methods is the absence of any intensity gradient at conjoining locations between vessels and 

bones and the lack of use of morphologic features in IRFC. Thus, the performance of IRFC 

methods is essentially similar to connectivity analysis on thresholded regions.

1) Quantitative Evaluation—To quantitatively examine the accuracy of the MSO 

algorithm, we manually indicated carotid vessel voxels as well as bone voxels at the vicinity 

of carotid vessels to define the gold standard or the ground truth. We carefully selected 

ground truth vessel/bone voxels from both large- and small-scale vessel regions.

• Vesseltrue: Three thousand vessel voxels were manually selected on each 

CTA dataset by picking isolated voxels on different image slices.
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• Bonetrue: Three thousand bone voxels were manually selected on each 

CTA dataset by picking isolated voxels at the vicinity but outside vessels 

on different image slices.

The set of voxels Vesseltrue was used to determine true positive (TP) and false negative (FN) 

while Bonetrue was used to determine true negative (TN) and false positive (FP). Let 

Vesselcomputed be the set of voxels obtained for vessels using the proposed algorithm. Note 

that, unlike Vesseltrue, Vesselcomputed contains a large number of voxels of order of 100 

million representing a volumetric region. Accuracy, sensitivity and specificity measures 

were defined as follows:

(12)

(13)

(14)

True positive, true negative, false positive and false negative of MSO-based vessel 

segmentation on individual CTA images from ten human subjects are presented in Table I 

and the accuracy, sensitivity and specificity of vessel segmentation from these experimental 

results are summarized Table II. It is observed from Table II that an average accuracy of 

96.3% is achievable with the sensitivity and specificity of 95.1% and 97.5% respectively. 

Also, the variation in performance among different CTA images was relatively small with 

the observed standard deviation for accuracy, sensitivity and specificity among different 

images being 2.1, 3.1, and 2.5, respectively. A similar trend was observed the minimum and 

maximum values of these performance measures among different images. Comparative 

results of accuracy, sensitivity and specificity of vessel segmentation on the ten CTAs using 

MSO and the three existing algorithm, namely, MSVGAR, IRFC-conservative and IRFC-

generous, are presented in Table III. As observed in the table, MSO outperforms the three 

methods in terms of all three performance metrics—accuracy, sensitivity and specificity— 

and these results reconfirm the of comparative segmentation results illustrated in Fig. 7. It 

may be noted segmentation results using IRFC-conservative method yields low sensitivity, 

while those using IRFC-generous are attributed with low specificity. As discussed earlier, 

the formulation of IRFC based methods assume a gradient separator at conjoining locations 

between two object and the absence of such gradient separation in the current application 

leads to the poor performance of IRFC methods.
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B. Reproducibility

In this section, we present our experimental methods and results evaluating the 

reproducibility of the MSO algorithm. A multi-user reproducibility analysis of vessel 

segmentation was performed on the same human CTA images described in accuracy 

experiment. Specifically, the reproducibility of vessel segmentation results from two 

mutually-blinded independent trained-users was examined. Eight to twelve seed voxels for 

each of the two objects and another 8 to 12 separators were manually added by two mutually 

blinded independent trained-users using our custom 2D/3D graphical interface and the 

results of carotid vessel segmentation were used for reproducibility analyses. 3D renditions 

of segmented vascular trees for two data sets by two different users are illustrated in Fig. 8. 

Vascular segmentation results generated by two mutually blinded trained-users for one 

dataset are shown in Fig. 8(a, b). Although the results are visually similar, differences are 

observed in some finer vessels. In the case of the other dataset, differences in vascular 

segmentation results are different at the bottom of the vascular tree (see Fig. 8(c, d)). This is 

mainly due to the choice of placement of seeds at those regions. Despite complex structure 

of cerebral vasculatures, for most datasets, segmentation results by two independent experts 

agree significantly. In order to quantitatively evaluate multiuser reproducibility of the 

method, we computed the following measure of agreement:

(15)

where, Bi and Vi denote separated objects using seed voxels selected by the ith expert. Using 

two mutually blinded trained-user inputs, the MSO algorithm produced an average 

Agreement of 94.2±3.8%. The maximum and minimum values of Agreement observed in 

our experiment are 96.9% and 88.6%. Although agreement between two independent 

trained-users is generally high, there are some disagreements in object separations by two 

trained-users. It may be noted that these results of reproducibility reflect the robustness of 

the entire process in the presence of human errors and effectiveness of the graphical 

interface.

C. Efficiency

Approximately, 25-35 seeds/separators were used for each CTA data through a custom 

graphical user interface (GUI) requiring an average of thirty minutes to complete carotid 

vascular segmentation in each CTA data. Current implementation of the MSO algorithm on a 

desktop with a 2.53-GHz Intel(R) Xeon(R) CPU and Linux OS requires approximately 10 

minutes to complete the MSO computation on a patient's CTA data set excluding the user 

interface time through the GUI. The average computation time for one CTA data set using 

MSVGAR and IRFC algorithms on the same machine are 3 minutes and 5 minutes, 

respectively.
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V. Conclusion

In this paper, the theoretical properties of the MSO algorithm for similar-intensity fuzzy 

objects have been established and a new algorithm has been presented for separating two 

conjoined fuzzy objects with different intensity characteristics while partially sharing a 

common intensity band, which are fused at different scales and locations. The current work 

extends our previous research [17], [19] on artery-vein separation in 3-D non-contrast 

pulmonary CT imaging which was formulated as a multi-scale separation task for two 

similar-intensity conjoined objects. Besides the establishment of new theoretical properties 

of the MSO algorithm, the key methodological contributions in the current work include—

(1) modeling of multi-scale bone-vasculature separation problem for human CTA images, 

(2) GUI based practical solution to extract the carotid vascular tree with minimal user 

intervention, and (3) opens a new avenue for effective separation of fuzzy objects over a 

shared intensity space. Results of application of the new algorithm to A/V separation in a 

physical cast phantom of a pig lung have been illustrated. Accuracy and reproducibility of 

the algorithm in segmenting carotid vasculature in patients' CTAs have been examined and 

the results have been presented. Overall, high accuracy and reproducibility were observed in 

our experimental results. High accuracy and reproducibility at the cost of moderate user 

efforts demonstrates that the algorithm is suitable for application to clinical and research 

studies involving pulmonary A/V separation and human CT angiography.

The performance of the new method in terms of accuracy, sensitivity and specificity of 

carotid vessel segmentation in patients' CTAs was compared with three existing methods and 

the results are presented. The current methods outperform all three methods with respect to 

all the three performance metrics. Visual segmentation results show that, while MSVGAR 

generates acceptable results in segmentation the local vascular structure, its ability to 

propagate along vessels without leaking into bones is limited. The performance of IRFC 

methods in the current application was lower relative to both MSO and MSGVGAR 

algorithms. The computational complexity of the current method is somewhat higher than 

existing methods due to repeated computation of FDT at the beginning of the algorithm as 

well as during constrained dilation in each iteration. Currently, we are working on improving 

computational efficiency of the MSO algorithm using parallelization and ideas related to 

locally-confined efficient computation of FDT for iterative constrained dilation.

This method may be applied to generate an augmented virtual reality environment where the 

segmented arterial tree obtained using our algorithm may be mapped onto low-resolution 

dynamic CT images to interactively guide a surgeon in reaching an aneurysm along the 

optimum pathway in the cerebral arterial tree in the actual patient coordinate system. Our 

future plan is to develop such an environment using our algorithm that will maximally utilize 

smart graphical user interface, parallel processing and ultra-low dose imaging of modern CT 

scanner.
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Fig. 1. 
A schematic illustration of the results of different steps in the MSO algorithm—(a) optimal 

erosion, (b) constrained dilation, and (c) iterative progression to the next iteration.
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Fig. 2. 
A schematic description of challenges in separating bone and vasculature in CTA. (a) Multi-

scale fusion of bone (green) and vessel (red) demands local scale-adaptive opening. (b) 

Intensity-based membership functions for vessel and bone along with pure and shared 

intensity bands. (c) Color-coded combined vessel and bone membership maps on an axial 

image slice in a patient's CTA. Regions indicated in pure green are pure bone; here, no pure 

vessel region is identified and therefore all other regions fall in the shared space. The figures 

shown in (a) and (b) were previously published by the authors in an IEEE conference paper 

[31].
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Fig. 3. 
A modular representation of the MSO algorithm.
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Fig. 4. 
A/V separation on a pulmonary pig vessel cast phantom. (a) A photograph of the phantom. 

(b) An axial image slice from the phantom CT image with different contrast for A/V trees. 

(c) CT intensity-based A/V classification showing partial voluming effects as thin red films 

wrapping around blue arteries. (d,e) Same as (b,c) on a coronal image slice. (f) CT intensity 

histogram of the phantom where the two CT intensity values Imin and Iartery segments the 

background and pure artery regions. (g) Optimum thresholding and morphological erosion 

are applied on (b) to separate the core arteries and veins. (h) A/V separation on (b) using the 

MSO algorithm. (i,j) Same as (g,h) on the matching coronal image slice of (d,e). (k) 3-D 

rendering of A/V separation using optimum thresholding morphological erosion. (l) Same as 

(k) but using the MSO algorithm.
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Fig. 5. 
Result of carotid vessel segmentation in a patient's CTA. (a) An axial image slice. (b) 

Intensity based characterization of pure bone (green) and shared intensity band with red 

indicating high likelihood for vessels. (c) CTA intensity histogram with Imin and Ibone 

segmenting the background and the pure bone regions. (d) Axial image slice with the core 

vasculature marked in red. (e) 3-D rendering of the core vasculature. (f, g) 2-D and 3-D 

displays of bone-vessel separation using the MSO algorithm.
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Fig. 6. 
Illustration of vascular segmentation results in three patients' CTAs. Here the bone structure 

is illustrated with partial transparency to depict segmented vessels through soft bones.
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Fig. 7. 
Illustration of comparative results of vessel segmentation in a patient's CTA data using 

different algorithms – (a,b) MSO, (c) MSVGAR, (d) IRFC-conservative, and (d) IRFC- 

generous.
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Fig. 8. 
Results of vascular segmentation and bone removal in two patients' CTA data sets as 

obtained by two mutually blinded trained-users. Reproducibility results shown in the first 

row are visually almost indistinguishable due to high Agreement (96.9%), while the results 

in the bottom row have moderate Agreement (94.2%) with apparent differences in 

segmentation results near the bottom section of the arterial tree
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Table I
Results of True Positive (TP), True Negative (TN), False Positive (FP) and False Negative 
(FN) on Individual Ten Datasets

Data-ID TP TN FP FN

1005 2514 2882 33 170

1016 2966 3067 33 60

2001 2088 2532 12 80

2005 2627 3548 75 120

2008 2166 2725 279 108

3029 2558 2977 85 191

3032 2102 2306 34 52

3036 2219 2316 130 108

4001 2326 2568 44 104

4002 2032 2482 120 118
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Table II
Quantitative Results of Accuracy, Sensitivity and Specificity of the Developed MSO 
Algorithm for Ten Human CTA Datasets

Accuracy Sensitivity Specificity

Average 96.3 95.1 97.5

Std. dev. 2.1 3.1 2.5

Min. 91.6 88.6 91.8

Max. 98.4 98.6 99.7
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Table III
Comparative Results of Accuracy, Sensitivity and Specificity of Vessel Segmentation on 
Ten Patients' CTA Data Sets Using Different Methods

Accuracy Sensitivity Specificity

MSO 96.3±2.1 95.1±3.1 97.5±2.5

MSVGAR [26]–[28], [30] 87.2±3.4 84.9±8.0 89.4±5.4

IRFC-conservative [36]–[38] 53±5.4 32.1±4.3 73.5±13.3

IRFC-generous [36]–[38] 75.9±6.9 92.8±7.7 59.5±16.4
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