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Abstract—Based on the definition of admissible order for Besides, it is known that for some decision making prob-
interval-valued Atanassov intuitionistic fuzzy sets, we study |ems, experts may have problems to provide exact numerical
OWA operators in these sets distinguishing between the weights 5/ ,es to represent their preferences and non-preferdrees
associated to the membership and those associated to the non- : .
membership degree which may differ from the latter. We also twe(_an the different alt_ernatlves. In these cases, somewuth
study Choquet integrals for aggregating information which is advise for the use of intervals ([5], [6], [7], [8]) to repesa
represented using interval-valued Atanassov intuitionistic fuzzy such preferences and non-preferences. In this situation, a
sets. We conclude with two algorithms to choose the bestgsyjtable option is to represent the information by means of
alternative in a decision making problem when we use this kind IVAIFSs. To do so, it is necessary an appropriate theoretica
of sets to represent information. ’ ' . .

development of aggregation functions such as OWAs and Cho-

Index Terms—Interval-valued Atanassov intuitionistic fuzzy quet integrals [9]. We discuss the usefulness of our thieatet
set; interval-valued Atanassov intuitionistic OWA operator; Un- developments in the last part of this work, where we present
balanced interval-valued Atanassov intuitionistic OWA operator; . o .
interval-valued Atanassov intuitionistic Choquet Integral. tWO.allgOI’Ithm'S to select the best alternative in a mu|t|€§‘t(p

decision making problem where the preferences are given as
IVAIFSSs.

|. INTRODUCTION This work is organized as follows. In Preliminaries we

OWA operators [1] and Choquet integrals [2] are often usdtiscuss severa_l concepts which are goi_ng_to be used along the
for fusing information. The goal of this paper is to extenegy Paper. In Section IIl, we recall the definition and two meth-
operators for using Interval-Valued Atanassov Intuitaici ©dS Of construction of interval-valued Atanassov intuitsic
Fuzzy Sets (IVAIFSs)[3] to represent the information. T#2Zy admissible orders using aggregation functions. Negt
achieve this goal, we focus on the definition and constracti€velop OWA operators for interval-valued Atanassov intu-
of a particular class of linear orders on IVAIFSs calledfionistic vectors in Section IV while in Section V we propos
admissible and defined in [4]. _Unbalanced OWA operators for_IVAIFSs. In Section VI, we

We know that, in order to aggregate information representitiroduce the discrete Choquet integral for these sets and w
by means of IVAIFSs, we should aggregate the intervals whi@eSent two algorithms which make use of admissible orders,
represent the membership, on one hand, and the inten@I&/A operators and Choquet integrals when we are dealing
which represent the non-membership, on the other hand. THigh IVAIFSs in a multi-expert decision making problem in
fact has suggested us to propose the use of Unbalanced owgction VII. We finish with some concluding remarks and
operators, in the sense that we use admissible orders &Rrences.
different weight vectors for aggregating the membershig an
the non-membership values.
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Definition 2.1: ([3]) Let U # () be a universe. An Interval- integral of a fuzzy sef. : U — [0, 1] with respect tom is
Valued Atanassov Intuitionistic Fuzzy Set (IVAIFG)overU  defined as

is the set

G ={(u, Xu,Y,) |uec U} Z,u Uo (i) )M ({ U (i) - - - Uo(n) })
wherex, = [z(u), 2(u)], y, = [y(u), y(u)] € L([0,1]) state,
respectively, the membership degree and the nonmembership = 1(to(@))m{to (i), - Uom) })
degree ofu to G' and they satisfy that for all € U, z(u) + whereo is a permutation such that(ug(l)> < M(Ua( )) <
y(u) < 1. - < 1t (ny) @Nd, M ({tUg(ni1)s Uo(m) }) = 0 by convention.

Pairs (x,,y,) are called Interval-Valued Atanassov In- " As defined in [19], a fuzzy measure is called symmetric if
tuitionistic Fuzzy pairs (IVAIF-pairs), while the set oflal m(F) depends only on the cardinality of the getC U, i.e.,
possible IVAIF-pairs is denoted for any Fy, F, C U if |Fy| = |Fy| thenm(Fy) = m(Fy).

. S OWA operators are a special class of Choquet integrals where
Lov((0.1) ={= = (ey) Ixy € L([0, 1]) andz + 5 < 1 . the fuzzy measure associated is symmetric.

Given an IVAIFS G, zg(u) = (Xcu,Ye..) denotes the A relevant characteristic of OWA operators and Choquet
IVAIF-pair associated with the referential elememte U. integrals is the fact that they require a linear order on the
However, for the sake of simplicity;(u) is abbreviated to set of inputs. Hence, although the definition of aggregation
z = (X,y) when possible. function is grounded on partial orders, linear orders play a

Definition 2.2: Let G1,G> be two IVAIFSs. Atanassov very relevant role in the generation of some of these opexato
proposed an order< such thatG; < G if and only if, In the development of the paper, some results of [9], [20] are

for all u € U, applied.
q An order < on L([0,1]) is calledadmissibleif it is linear
XGiu 22 X6 ANAY G, Z2 Ve, 0 () and satisfies that, for ak,y € L([0,1]), such thatx <s y
where = is the partial order ori([0,1]), given by thenx <y [20].

- o . - Proposition 2.1:[20] Let By, By : [0,1]*> — [0,1] be
[p1,P1] <2 [p2, P2] if and only if p, <p, andpr <Pa- (2) two continuous aggregation functions, such that, forxat
Aggregation functions [16], [17] are a frequently used todf- 7Y = [, € L([, 1]);the equalltlesBl (.L 7) =

in fuzzy logic with their extensions and their applications 51(¥:7) andBQ(x Z) = Ba(y,y) hold if and only ifx =y.
Definition 2.3:Let (P, <) be a Partially Ordered Seit€,, a If the order<, , on L([0, 1]) is defined byx<p, .y if and

poset) with botton?» and topl . An n-aggregation function only if
with respect to the ordek is a mappingM : P — P such Bi(z,%) < Bi(y,5) or
e (Bu(x.) = By(3.5) and Baz. ) < Ba(y. 7))
T,T) = ,y) an ZT,T) = )
M(0p,...,00) = 0p and M(1p,...,1p) = 1p, L 1y 2 2 Y
o if (x1,...,20) 2 (Y1, -+, Yn), then<p, , is an admissible order of([0, 1]).
then M (a1, ..., a0) < M(y1,- ... yn) In [9], this class of linear orders oi([0,1]) is used to
oIl I extend the definition of OWA operators for interval-valued

where(z1,...,2,) 2 (y1,...,y,) if and only if z; <y, for fuzzy sets
alli € {l,...,n}. Definition 2.7:Let < be an admissible order oh([0, 1]),

Note that Definition 2.3 extends the definition of aggregay,q ety — (w1, ..., wy) € [0,1]7, With wy + ... +w, = 1.

tion operator on the unit interva, 1] (see [18]). In particular, 1ha |nterval- Valued OWA operator assouated withand w
in this work we study some specific aggregation functions tha mappinglVOW A< 1 : (L([0,1])" —s L([0,1]) given
are OWA operators and Choquet integrals. S

Definition 2.4: [1] Let w = (w1,...,w,) € [0,1]™ with

w1 + ...+ w, = 1. The Ordered Weighted Averaging (OWA) )
operator associated with is a mappingDW A, : [0, 1]” VoW Aic.u(lar, bul, - [an, b Z i »b
[0,1] given by )
where [a¢;,by], i = 1,...,n denotes thei-th greatest of
the inputs with respect to the ordet, and the operations are
OW Aw(z1,..., @ sz w-[a,b] = [wa,wd] and[z1, y1]+[r2, y2] = [21+22, Y1 + Y]
wherez(;), i € {1,...,n}, denotes the-th greatest compo-
nent of (z1, ..., 2,). [1l. IVAIF- ADMISSIBLE ORDERS
Definition 2.5:Let U # () be a finite universe. A fuzzy  Since the aim of the paper is to define OWA operators and
measuren is a mappingn : 2V — [0, 1] such thatm(0) = Choquet Integrals for IVAIFS, the generation of linear asde
0, m(U) = 1 andm(F1) < m(F,) wheneverFy C I for plays a crucial role. The linear orders we based on the rest of
P, Fye2Y, the work were presented in [4] where a study on linear orders

Definition 2.6:Let m be a fuzzy measure on a non-emptgimilar to the previous ones oh([0, 1]) [9], but focused on
finite universeU = {u4,...,u,} # (. The discrete Choquet IVAIFS is done.



An IVAIF-admissible order< on L;y([0,1]) is a linear
order which refines Atanassov’s partial order in Eq. (1). We
recall a method to construct IVAIF-admissible orders [4] .

Proposition 3.1:Let B = <Bl,Bg7Bg,B4> be a set of
four aggregation functionsB; : [0,1]> — [0, 1] such that
they generate admissible ordefss, ,, <p,, on L([0,1]) as
in the Proposition 2.1. An IVAIF-admissible ordet; on
(L([0,1]))? is such thatx;,y;) <p (X2,Y,) if an only if

X1 <By, X or (Xl =By, X2 andyl 233,4 y2)

In particular, if By = B3 and B, = By, the orders<p, ,
and<g, , are equal: the same order is used to compare both
intervals although in the second one the order is reversed. 3)
Proposition 3.2:Let A = (A, As, A3, Ay) be a set of
four aggregation functionsd; : [0,1]* — [0,1] such that,
for all (p1,q1,71,51), (P2, q2,72,52) € [0,1]* the equalities
Ai(ph q1,71, 81) = Ai(p27 q2, 72, 82) for all 7 € {1, . ,4}
only hold simultaneously ifp1, ¢1,71, s1) = (p2, g2, 72, S2).
Then, the relationx;,y;) <a (X2,Y,) if and only if one
of the (mutually exclusive) conditions is satisfied

) Az, 71,1 —y,,1-7;) < A2y, 72,1 —y,, 1 = ).
”) Al(glﬁflv 1 — Y 1 - yl) = A1(£2’E27 1 — Yy 1 - 52)
and
As(21,T1,1 —y,, 1 —7y) < Ag(zy,T2, 1 — y,, 1 = T).
i) A (zq,71,1 — Y 1—7;) = Ai(z,, T2, 1 — Yy 1—7,),
AQ(glvflvl _ylvl _yl) = A2(£27E271 —y2»1 _y2)
and
As(zy, 71,1 =y, 1=7)) < A3(29, T2, 1 = y,, 1 = J).
iV) Al(@laflvl ylal_ﬂ ):A (35232’1—%71—?2):
Ao(zq,%1,1 — Yy, 1= ) = Az(zq,T2,1 — y2»1*?2):
AB(EDED]- glvl_y ) A3($2,$2,1—QQ,1—E2)
and
Ay(zy, 71,1 — Y 1 =7;) < As(zo,To, 1 — Yy 1-7,)

The orders generated by sets of the type =
(K1, Ko, K3, K4) are particular instances efy orders
where

1—k k0 0
1=k ke 00
b= 0 0 1—ksy ks
0 0 1—ky kg

whose determinant ifD| = (ko — k1) (ka — k3). If k1 #

ko and ks # k4 then the aggregation functions satisfy
the conditions of the Proposition 3.2 and they generate
an IVIAIF-admissible order.

We denote this particular class of orders Hy .

Let II; refer to thei-th projection of a 4-place vector.

A general lexicographic order, denoted ki is con-
structed from the four projections. For instance:

« the lexicographicl order is generated by the set
A = (11,11, 113, 11,) that we denote with<yy,;

« the composed lexicographicorder is generated by
the set A = (Il,, I1;, 14, IT3) that we denote with
<11,

Notice that also the projections are particular instances
of K, or K; aggregation functions fok;, k; € {0,1}.
Thereby, the determinant ¢D| is 1 or —1 since each
row and each column of the matrib is generated
by all zeros except one element whose valué.igor
instance, the matrixD associated with the composed
lexicographic2 order is

01 00
10 0 0
b= 00 01
00 10

IV. INTERVAL-VALUED ATANASSOV'S INTUITIONISTIC

is an IVAIF-admissible order oty ([0, 1]).

Example 3.3:Particular examples oK 4 orders are the
following.

1) Let @, refer to an aggregation function given by

Qi(z1,T1,y,,71) = @iz + bT + iy + diy,

OWA OPERATORS

The original definition of OWA operator was given by
Yager [1].
on interval-valued Atanassov intuitionistic fuzzy setsngs
IVAIF-admissible orders and we study under which condgion

In this section we generalize this definition

they satisfy monotonicity.

such thata;, b;,¢;,d; > 0, a;,b;,¢;,d; > 0, a; + b; +
c; +d; = 1. Let A= <Q1,Q2,Q3,Q4> be the set of
four of such aggregation functions satisfying

aq
az
as
ay

C1
C2
C3
Cq

D] = £0.

Since the aggregation functions satisfy the conditions
of Proposition 3.2, they generate an IVAIF-admissible
order. We denote this particular class of orders<y.
Let: € {1,2}, j € {3,4} andk;, k; € [0,1]. Then the
functions:

o Ki(z,7,y,9) =z + ki(T — ), i € {1,2} and

o Kj(z,7,p,9) =y+kiU—y)jec{34}
are aggregation functions singe< 7 andy < 7.

2)

IVAIOWAUJ< Zl,...,

where Z(4)
(Zla tey

Definition 4.1: Let < be an IVAIF-admissible order on
Lrv([0,1]) and letw = (wy,...,wy,) €
.. +w, = 1. The Interval-Valued Atanassov’s Intuitionistic
OWA (IVAIOWA) operator associated withv and < is a
mapping(Lv ([0, 1]))™ — L1y ([0,1]) defined by

[O,l]n, with wy +
ZU}Z Z()
= (Zw -x@»Zwi 'Yu))
=1 1=
= (Zwi'[%wﬂ“( sz' ))y(w)
=1

denotes the-th greatest IVAIF-pair of the inputs
zn) With respect to the ordex on Ly ([0, 1]) and



the interval product and sum are the same as used in Defini- e OWA,(0.2,0,0.1) = 0.09
tion 2.7. « OWA,(0.8,0.3,0.2) = 0.37
Notice thatwiz(yy + ... + wp(,) < w1+ ... +wy, =1 e OWA,(0,0.5,0.4) =0.3
(indeed, the same holds far 3, andy). The monotonicity of e OWA,(0,0.7,0.8) = 0.51,
real-valued weighted arithmetic means ensures that edtie of we observe that the IVAI-pair
components of the result yield by an IVAIOWA is an interval. ([0.09,0.37], [0.3,0.51]) # ([0.09,0.35], [0.4, 0.6])

In addition, the result is always an IVAIF-pair, since In fact, we obtain the first one, by ordering the extreme

values of the intervals and not the intervals (see
szx()JrZwa )*sz Z() +YG) <sz*1 Aumann [21]).

This, or some others approaches generalizing the the-

Example 4.1: oretical results on Atanassov Intuitionistic Fuzzy Sets
Let w = (0.15,0.35,0.5) and let<q be the order generated such as [22] would be another manners of generalizing
by the set A = <Q1,Q2,Q3,Q4> as in the Example 3.3 with OWA operators over IVAIFSs but in this work we
_ _ 3 1 1 focus on studying the first approach of OWA operator
o Qi(z,T1,y,,71) = % 1Tt yl * 8y1’ given in Def 4.1. However, this example lets some open
o Qa(zy,%1,y,,71) = O 5 7+ — 2 questions:What are the differences of these definitions?
B 210 %8 280 Are there any relation between the orders? Are there
. Qs(&ﬁhyl»%) =50t + 20301 + 55 20 20 any orders which generate the same OWA operator for
_ _ _ 1 1 different definitions?
o Qu(z1,71,y,,71) = 2%t gt gy T
Taking into account that Proposition 4.2:Let be the IVAIOWA operator associated
([0.8,1],[0,0]) >¢ (]0,0.5],]0,0.5]) >¢ ([0,0.3],[0.2,0.7)) Wi/th < a/r)dw. Given an ordep, , on L([0, 1]) there exist
it holds w andw two permutations of the vectar induced by<p, ,

such that
IVAIOW Ay <) (([0,0.3],[0.2,0.7]), ([0.8, 1], [0, 0]),

([0,0.5],[0,0.5])) = ([0.12,0.475], [0.1, 0.525]). IVAIOW A< (21, - 2n)

- (IVOWA[w/:SBLZ] (Xl, e ,Xn)7

Remark 1:It is important to mention:
IVOWA[w”,gBLQ](yl’“"yn»' 4

1) Due to the characteristics of the orders above, in general

it is not true that Proof. Straight. Besides, ik is the i-th greatest element

according to<g, , then w; = w,; wherej is the position of

IVAIOW A, (21, - 2n) the IVAIFg—pair whose first inter\;al i) t{wough tﬁeg order
= (IVOWA[wSBl,z](Xl’ S Xn), of IVAIF-pairs, namely,z(;) = (X(;),Y*) -
IVOW Ay <, 1V15---5¥n)) - () Analogously, ify; is thei-th greatest element according to
In fact, this is not necessarily true even if the ordeF5i.» thenw;” = w; wherej is the position of the IVAIF-pair
is <p, with B = (By, By, By, Bs). For example, Whose second interval I%;) through the< order of IVAIF-
consider the weight vecto = (0.2,0.5,0.3) and Pars, namelyz;, = (X, y;)-
the <y, order on Ly ([0,1]). Taklng into account Corollary 4.3: Let be<p Wlth B = (B1, By, By, B;) and
that ([0.2,0.8],[0,0]) >p, ([0.1,0.2],[0.4,0.8]) >p, <B,, the orders used in the Prop. 4.2. Then= w satisfies
([0,0.3],[0.5,0.7]) (see item 3 of Example 3.3) it holdsEq. (4).
Proof. Remember thakp uses first<p, , on L([0,1]) to

IVAIOW Ay <1r,1(([0-2, 0.8}, 0, 0)), compare the membership interval so that the elements in the
([0,0.3],[0.5,0.7]), ([0.1,0.2],]0.4, 0.8])) set {x; |i € {1,...,n}} are ordered in a decreasing order.
= ([0.09,0.35],[0.35,0.61]) OWA operators, with the standard order between real num-

bers, are a special class of aggregation functions. Howaser

Similarly, since[0.2,0.8] 2, , [0.1,0.2] 2, , [0,0-3] jt occurs with IVOWA operators ([9]), IVAIOWA operators do
and [0.5,0.7] >, , [0.4,0.8] >m,, [0,0] with Tl > = ot hecessarily satisfy monotonicity.

(I, IT) then Example 4.4Let B = (By, Bo, By, Bo) With By (z1,z2) =

IVOW A([0.2,0.8],[0,0.3],[0.1,0.2)) = [0.09,0.35 PR
IVOWA(0:2,08)0,03,01,02) = | | o 200 Ba(rro ) = 2288

IVOW A([0,0],[0.5,0.7], [0.4,0.8]) = [0.3,0.54]. Let 21 = ([0,1],[0,0]), 22 = ([0.2,0.35],[0.4,0.6]) and
However, ([0.09,0.35],10.35,0.61]) +  w=(0.9,0.1).

([0.09,0.35],[0.3,0.54]). Taking into account thats >pg z it holds

2) Due to the monotonicity of OWAs, if we apply fixed
weights tox, 7, y, ¥, we produce the corresponding
intervals. For example, taking the weight vector= However, if we take z; given by 2z =
(0.2,0.5,0.3), such that we have the following results:([0.1,0.15],[0.7,0.8]) > =z = ([0,1],[0,0]) it holds

IVAIOW Ay < 1(21, 22) = ([0.18,0.415], [0.36,0.54]) .



z9 >p Z; and consequently,
IVAIOW Ay, < ,1(Z1, 22) = ((0.19,0.33], [0.43,0.62]) .

Since
([0.19,0.33],[0.43,0.62]) <p ([0.18,0.415],[0.36,0.54]) the
monotonicity of the operator does not hold.

For sake of simplicity, givenV/ a 4-aggregation function
we write M(z) where z is the IVAIF-pair given byz =
(lz, 7], [y,7]) to denote the image of/(z,Z,1 —y,1 — 7).

Proposition 4.5:Let be <, the admissible order generated

as in the Example 3.3 then

Qi([VAIOWA[w7SQ](Zl, ey Zn))
=w1Qi(z1)) + ... +wnQi(2(ny), (5)

where z(;) denotes the-th greatest IVAIF-pair of the inputs

(21,...,2y) through the ordeKy on Ly ([0, 1]).
Proof. Straight.
Remark 2:In the Proposition 4.5, fof = 1 we have

Ql(IVAIOWA[u,7SQ](Zl, ey Z"))
= OWAL(Q1(21),---,Q1(2n)) -

However, this does not necessarily hold for any other index.
Proposition 4.6: Let <, be the order generated as in

the Example 3.3 andv € (0,1]". An IVAIOWA operator
on Ly ([0,1]) associated with<q andw is an aggregation
function.

Proof. In order to simplify notation, we assume that the IVAIF-
pairs(zi, ..., z,) are ordered in a decreasing way with respect

to the order<g, i.e., z1 > 22 >¢ ... =@ 2,. Notice

that since IVAIOWA operators are symmetric, we do not lose

generality by this assumption.

The boundary conditions are straight, but the monotonicity
of the function needs to be proven. Let us assume that the

IVAIOWA is not monotone. Then, there exigt satisfying
that z; <¢ %; and such that

IVAIOW Ay, <o) (215 -+« Ziy 5 2Zn)
>Q IVAIOWA[M7SQ](21, ey 21', RN Zn) .

If z; = 2, then IVAIOW Ay <,1(21, -+ Zis 5 2n) =@
IVAIOW Apy, <) (215 -+ -5 2iy -, 2n) SO WE requirez; <q
%;. There exist four different cases:

) QUVAIOW Apy < (215 -+ -5 Ziy -+, 20))

> Ql(IVAIOWA[w,SQ](Zl, R TR Zn))
i) QuUVAIOW Ay <p)(215 -5 Zis -5 2n))
= Ql(IVAIOWA[wSQ](Zl, ey By ,Zn)) and
QQ(IVAIOWA[w’SQ](Zl’ ey Ziy ey Zn))
> QQ(IVAIOWA[wéQ](Zl, ey By ,Zn))
i) QiUVAIOW Apy <1 (215 -+ -5 Ziy -+, 20))
= Ql(IVAIOWA[wSQ](Zl, ey By ,Zn)) and
QQ(IVAIOWA[w’SQ](Zl’ ey Ziy ey Zn))
= QQ(IVAIOWA[W’SQ](ZM ey By ,Zn)) and
Q3(IVAIOW Ay <) (215, Zis -+ -5 2n)
> Qg(IVAIOWA[wéQ](Zl, ey By ,Zn))
V) QLUVAIOW Ay <)(21, -5 Zis -+ -5 2n)

= Ql(IVAIOWA[w7SQ](Zl, ey éi, ey Zn)) and

622(IVD‘L[OVVA[M,SQ](2’17 ey Ry ey Zn))

— Q2(IVAIOWA[w,§Q](Zla .. -72i7 .. 7Zn)) and

Qg(IVAIOWA[w7SQ](Zl, ey Ry e ,Zn>)

= Qg(IVAIOWA[w’SQ](Zl, B P Zn)) and

Q4(IVA[OWA[U,,SQ](2’1, ey Ry ey Zn))

> Q4(IVAIOWA[W7SQ](Z1, ey By ,Zn))

We tackled them individually:

Ql(IVAIOWA[w7§Q](Zl,...,Zi7...,2n)) >

Ql(IVAIOWA[w7SQ](Zl, ey 21', ceey Zn)), then by the
Remark 2,

Ql(IVAIOWA[w7§Q](Zl, ey Ry e ,Zn)) =

OWA(Q1(21), .-, Q1(2i),...,Q1(2zn)) >
OWA(Q1(21)7 B Ql(ii)a ) Ql(zn))
- Ql(IVAIOWA[w,SQ}(Zl, cee ,ﬁi, ceey Zn))

By the increasing monotonicity of OWA operators this
implies Q1(z;) > Q1(2;) which contradicts; <q 2;.

Ql(IVAIOWA[u,7SQ](Zl,...,Zi7...,2n)) =

Ql(IVAIOWA[w,SQ](Zl,...,Zi,...,Zn)), then by
Eqg. (5), Q1(z:) = Q1(%;). Two cases can be further
discriminated:

— If the order of the IVAIF-pairs has not changed, by

the Proposition 4.6, then

QQ(IVAIOWA[U)7SQ](21, e g Ry e ,Zn)) =
wi1Q2(21) + ... FwiQ2(2) + .. wyQ2(2n) >
wi1Q2(z1) + ... +wiQ2(%) + ... wpQa(2n) =
QQ(IVAIOWA[“,7§Q](21, .o ,27;, ey Zn)) s
which implies Q2(z;) > Q2(%;), in contradiction
with z; <q %
If the order of the IVAIF-pairs has changedposi-
tions, then it holds true

Ql(ﬁz) = Ql(zifr) ... = Q1(Zz>1) = Ql(zz)
and
Q2(%) > Qa2(zi—r) > ... > Q2(2i—1) > Q2(2:).
(6)
However,

Q2(IVAIOW Apy <) (215 - -5 Ziy - -+, Zn))
=w1Qa2(z1) + ... + wiQa2(2;) + ... + Wy Q2(2n)
> w1 Q2(21)+. . Awi Q2 (2;)+w;—(r—1)Q2(2i—r)

+o A wiQo(zi—1) Fwip1Q2(zig1)+. . A wnQ2(2n)
= Q2IVAIOW Ay <)(21, -+ -5 Zis 5 20))-

This implies that
Wi—r Q2 (Zi—r ) FWi— (r—1)Q2(%i— (r—1) )+ . AW Q2(2;)
> wi—rQ2(2:)Fwi—(r—1)Q2(2i—r)+. . AwiQ2(2i—1),

which is in contradiction with (6).
Items iii) and iv) are similar to item ii).



V. UNBALANCED INTERVAL-VALUED INTUITIONISTIC Example 5.21et w = (0.1,0.9), andv = (0.9,0.1) and let

OWA OPERATORS the order<q be given by the four aggregation functions that
In Def. 4.1 IVAIOWA operators used a fixed weight veCtoIOHOW' 1 1 1 1
for both membership and nonmembership degrees. This is @1(21:71,¥,,51) = R + 4jl T 1% * 1?1,
certainly practical, but at some situations it might be cese . Qz(xl,xl,yl, yy) = T1,
to treat them differently. In this section we study the esten o Q3(z,71,Y,, Y1) =Y,
of IVAIOWA operators to cope with different weight vectors e Qa(21,71,y,,71) = ;-

for the membership and nonmembership degrees. Then, although([0,0],[0,0]) < ([0.5,0.5],[0.5,0.5]), it
Definition 5.1: Let < be an IVAIF-admissible order on pg|ds

Lrv([0,1]) and letw,v € [0,1]™ with wy + ... + w, =1

andv; + ...+ v, = 1. An Unbalanced IVAIOWA operator  UIVAIOW Ay, ., <,)(([0,0], [0, 0]), ([0, 0], [1,1]))

aSSOCiateg WlthU, v and < is a mapping(ﬁ;v([(), ].D)n — _ ([0,0]’ [01’ 01]) > ([005’ 005]7 [0557055])

L([0,1 given by

(L([0,1])) UIVAIOW Ay, ,<(([0.5,0.5], [0.5,0.5]), ([0, 0], [1,1])) -
UIVAIOW Apy,p,<)(215 -, 2n) Consequentlyl/ IV AIOW Ay, ., <) IS Not monotonic.

_ B Proposition 5.3:Let be <x an order generated as in the
= sz [z, To, Z”i ' [Q(i)vy(i)] () Example 3.3. Then the following holds
= =1

where ([z(;), T (i), [g(i),y(i)]) denotes the-th greatest of the  K;(UIVAIOW Apy, 0 <,1(21, -+ -5 20))

inputs(z1, . . ., z,) with respect to the ordex on £y ([0, 1]) = w1 K;(z(1)) + - .. + wn Ki(2(n)), i€ {1,2} and
and the interval product and sum are the same as used in
Definition 2.7. K (UIVAIOW Apy o < (21, - 20)

Remark 3:IVAIOWA operators in Section 3 are particular
instances of Unbalanced IVAIOWA operators with= v.
Notice that if there exist an indexsuch thatw; < v;, then proof. Straight.

= lej(Z(l)) +...+ ’wn}—(j(Z(”))7 J € {3, 4}

there is an indey such thatw; > v;. Proposition 5.4:Let be <y the order generated as in the
Next, we study the conditions under which Unbalancquamme 3.3,and lab, v € (0, 1]™ with wy+. .. 4w, = 1 and
IVAIOWA operators are aggregation functions, that is: vy + ...+ v, = 1. Then theUIVAIOW Ay, , <, operator
« They satisfy the boundary conditions. satisfies monotonicity.
« They are monotonic. Proof. Considering the Proposition 5.3, the proof is almost
o The co-domain i<y ([0, 1]), i.e., the image of IVAIF-  analogous to that of the Proposition 4.6.
pairs is always an IVAIF-pair. This is satisfied if Next, we study when the image of Unbalanced
n n IVAIOWA operators is guaranteed to be IVAIF-pairs,
i T (; Yoy < 1. L
;wzx(l) * ;vly(” = Zwla?( + szy <1 |. Note that this is trivially
Theorem 5.1Unbalanced IVAIOWA operators always satsatlsﬁed withw = v, and in the remainder of this section we
isfy the boundary conditions. only considerw # v.
Proof. The boundary conditions imply that Besides, wherj; = 1 — 7; the equation is reduced to
UIVAIOW Ay, .0,0 1,1],[0,0
<[, ]n[ D, ([n J,10,0])) ZW(WZ% 2w <1,
(Zw [1,1] Zvi-[0,0]>
i—1 i=1 which is equivalent to
= ([1,1],0,0]) n n
which is satisfied due t3~" , w; = 1, and Zl“’ix(i) < ;”ix(zﬁ : (®)
UIVAIOW Ay, <1(([0,0], [1,1]),... ., ([0, 0], [1,1])) Proposition 5.5:Let be <y an order generated as in the

n Example 3.3 withk; € (0,1), and letw,v € (0,1]™ with
= sz ’ [0,0]721)@- (1, 1] wy+...+w, =1andv, +...+wv, = 1. Then, the operator
’ ' UIVAIOW Ay, <, is not always an IVAIF-pair.

= ([0,0], [1,1]), Proof. We define the set of indexes
which is satisfied due t§_." , v; = 1. I={j|w; =v;},
By the Proposition 4.6, the IVAIOWA operators associated Ji={j | w,, <v;} and

with orders<q (as in the Example 3.3) and weight vectors Jo = |w;, > v}
w = v satisfy monotonicity. This property is not guaranteed 2= U W 2 YVt
for weight vectorsw # v. As w # v, we haveJ; # () and.J; # (). Let jo = min J; U.J5.



As w,v sum1 and{1,...,jo — 1} C I, then

3 -

k=jo

Jo—1

> v
k=1

Jjo—1

D> k=
k=1

and i V.

k=jo

9)

Let us show that there are always IVAIF-pairs whose

image does not satisfy Eq. (8). We separate the proof in two

different cases.

o If jo € Jo, thenw;, > v;,. We choose the IVAIF-pairs

i) Zi:([lal]’[v ]) fOf’LG{l '~7j0};
i) 25 = ([0:0]. [1:1]) for i € {jo + L....,n}.

These IVAIF-pairs are top and bottom iy ([0, 1]) and
they are ordered in a decreasing order. Singg= 0 for
i € {jo+1,...,n} Eq. (8) results it

Jo Jo
g w; < E Vj .
i=1 i=i

However, this only holds if

By Eq. (9), this is equivalent ta;, < v;,, which is in
contradiction withj, € J5.
o If jo € Jy, sincew;, < vy, then

n n
Z wg > Z V-

(10)
i=jo+1 i=jo+1
We choose the IVAIF-pairs
i) zi=([1,1],[0,0]) for i € {1,...,jo — 1};
i) zj, = ([0.4,0.4],[0.6,0.6]);
i) z; = ([0,a],[0,1 —a]) fori € {jo+1,...,n}, with

The expression can be rewritten

0.4 i wg + (a —0.4) i W

k=jo k=jo+1
<04ka+ a—0.4) Z Vi
k=jo k=jo+1
if and only if
(a — 0.4) Z W, (a — 0.4) Z Vg

k=jo+1 k=jo+1
where the equivalence is due to Eq. (9).

Since(a — 0.4) > 0, the expression is reduced to

n n
Z wy < Z Uk
k=jo+1 k=jo+1
which is in contradiction with Eq. (10).
Consequently, the image of the IVAIF-pairs is not an
IVAIF-pair and Unbalanced IVAIOWA operators could
not be an aggregation function (since the domain and co-
domain are different sets).
Remark 4:In [20], it was proven that give; € (0, 1], all
the admissible orders ah([0, 1]) with k2 < k; are equivalent.
In this case, for the particular case of Unbalanced IVAIOWA
operators, onlyt; = 1 can lead to well-defined operators. As
a consequence, all the possible admissible orders are given

(X1,¥1) <p (X2,Y,) if and only if
o (T1 <Zy), 0r
o (T1 =T andz, < z,), Or
° (fl =T, L1 = Xq, and
K3(£17§17y11y1) > K3(£27527y27?2)1 or
o (T1 =72, 21 = 2y,
KS(@DEhyFyl)
K4(‘Tlvjl7y17y1) > K4(l2af23y23y2))

= K3(£2752>y27§2) and

a € (0.4,1] satisfyinga < 42 (thIS can hold as for someks, k4 € [0,1] with ks # ky.

We refer to these orders a%.
Next, we study the conditions under which the orders

Notice that the IVAIF-pairs are ordered in a decreasingefine an aggregation function.

order. From1 to jo — 1 the IVAIF-pairs are the top.
Besidesz;, > zj,+1 since K([0.4,0.4],[0.6,0.6]) =

0.4 4+ k1(0.4 — 0.4) = 0.4 and K([0,a],[0,1 — a]) =

0+ ki(a—0) =kia butkia < ki 9 = 0.4. As the last
ones are equal they are also ordered.

These IVAIF-pairs do not satisfy Eq. (8).

Jjo—1
Zwk+04w30+ Z awy
k=jo+1
Jo—1
< ka+04vm+ Z avy.

k=jo+1
First, by Eq.(9) the expression is reduced to

n n
0.4w;, + Z awy, < 0.4v,, + Z avy.
k=jo+1 k=jo+1

Lemma 5.6:Let be w,v € (R*)"
statements are equivalent.

) > w; <> wforallie{l,...,n}
P

. Then the following

i) ijt < Zvjt for all t; € [0,1] such thatt; >

jl
to > >t >0

Proof. We first prove that i) implies ii). As

wy < vy thenajwy < aqvq for all ap > 0.

wy + we < w1 + vy then
ag(wl + ’U)Q) < ag(vl + ’02) for all ay > 0.



w4+ ... +w, <vy+...+wv, then
an(wy + ... +wy) <ap(vy+...+wv,) forall a, > 0.
If we sum
(a1 4 ...+ ap)wy + (az + ... + ap)ws + ... + apw,
<(a1+...+ap)v1+ (a2 + ...+ ap)va + ...+ apv,
for all ay,...,a, > 0.
Takingt; = (a1 +...+an), to = (as+...+ay),...,t, =
a,, it satisfies ii).
To prove that ii) implies i), giveni € {1,...,n} taket; =

tgi...:tizlandti+1:ti+2: --:tn:O-

i) Unbalanced IVAIOWA operators associated withv and
the orders<o :

i) ZwJ<ZvJ forallie {1,...,n}

Proof Stralght by the Lemma 5.6 and the Theorem 5.7.
Example 5.9:Take w = (0.3,0.2,0.5), v = (0.5,0.1,0.4)
and the composed lexicographic order <, which corre-
sponds tok; = k3 =1 and ks = k4 = 0. Then for z; =
([0,0.3],[0.5,0.7]), 22 = (]0.2,0.8],[0,0.2]) and z3 =
([0.1,0.2],[0.75,0.8]), sincezy >p 21 >0 zs3, it holds

UIVAIOW Apy o <0)(21, 22, 23) = ([0.11,0.4],[0.35,0.49)) ,

Finally, we have the following characterization of Unbalwhich is an IVAIF-pair.

anced IVAIOWA operators.
Theorem 5.7:Let w,v € [0, 1]"
and vy + ...
equivalent:
i) Unbalanced IVAIOWA operators associated withv and
the orders<o is an aggregation function;

i) szt <ZW for all i =1,.

with wy +... +w, =1

,n forall ¢; € [0,1]

+ v, = 1. Then the following statements are

VI. DISCRETEINTERVAL-VALUED ATANASSOV
INTUITIONISTIC CHOQUETINTEGRAL

In this section, using IVAIF-admissible orders we define
discrete Choquet integrals for IVAIFS.

Definition 6.1:Let m be a fuzzy measure of a non-empty
finite universeU = {uy,...,u,} # 0. The discrete Choquet
integral of G (an IVAIFS), with respect to an admissible order
< on Ly ([0,1]) is given by

such thattl 2 to >...>1,>0.
Proof. Let us show that i) implies ii). Suppose Unbalanced "
IVAIOWA operator is well defined. Then it satisfies Eq.(8) for Clm.<] (@) = Z (G(“o(i))m({“a(i)’ Sy Uo(n) })
the right endpoints of intervaly™;" | wiT) < Y7 viT(). =1
Taking t; = 7(;, it satisfies ii) sincer(;) > ;) (because the = G(ugiy)m({ o (it1)s - - - ,ug(n)})>

order used is<p).

Finally let us show that ii) implies i). First of all ii) can beWhere o = {1,...,

rewritten as
n
Z(wi —;)t; <0, for all t; € [0,1]
=1
such thatty >ty > ... > ¢,

>0. (11)

Let z; = (Xi;yi)a = 1,...,
w,v and one ordeK is an aggregation function.

UIVAIOWA[ww,SO](Zl, ey Zn)

i=1 =1

wherez () > Z(3) > ... > T(,) due to the ordexo.
Considering that; +Yu <1 andv; +wvo+...+v, =1
then

T+Y=
W1T(1) Fw2T(2) t. . . FWnT(n) TV1Y(1) FV2Y(2) +- - - FUnY(n)
< W1T(1) + W2T(2) + ... + WpT(n)
+o1(1 =Zq)) +v2(1 = T2)) + ... +va(l - y(n))
=14+ (w1 —v1)T1 + (we —v2)Ta+. ..+ (Wy, — V)T, < 1,
where the last inequality is due to Eq. 11).
Corollary 5.8: Let w,v € (0,1]" with wy; + ... +w, =1

andvy + ...+ v
equivalent:

n, be n IVAIF-pairs. The
expression of Unbalanced IVAIOWA operator associated wit}(

n} — {1,...,n} is a permutation
such thatG(us(1)) < Gluge) < ... < G(ugp)) and
m({Uy(nt1), Us(n)}) = 0, by convention.

If Glu;)) = (x;,y;) foral @ = 1,....,n and m; =

m({uo(i)a s auo(n)}) - m({uo(i+1)> s »Uo(n)}) for i =
1,...,n, the expression can be rewritten as
Cim.<)(G) =

Lo (1) Z T (i)

i=1

7 [Zygu)mmzzwmi ) :
=1 =1 =1

Remark 5:1f we use a symmetric fuzzy measure [23] in
the integral Choquet for IVAIFS, we also recover IVAIOWA
operators defined in Section 3.

Remember that if the order usedds, as in the Example 3.3
then IVAIOW A operators are monotonic. However, this is
not true in Choquet Integrals as proves the next example.

Example 6.1: Let U = {uj,us} and G be an IVAIFS
such that G(u;) = ([0,0.3],]0.1,0.2]) and G(uz) =
([0.1,0.5],[0,0.4]).

Let m be the fuzzy measure given for eathC U by

_ N2
V) dDowev T Tty Y
m =
DLyt Ty A+

whereG(us) = ([z;, T4, [y, Ui)]-
Consider the ordexy,, namely, the composed lexico-
graphic 2 order:

= 1. Then the following statements are (X1,Y1) <m, (X2,¥>) if and only if

. (fl < T ), or



e (T1 =T andz, < z,), Or Note that the elements in the main diagonal are unset, since

e (T1 =79, z; = zy, andy; > 7,), OF they represent preference of each alternative over itBelf.
o (T1 =72, &, =24, J; =y, andy; > 74) the sake of simplicity, we take;; = (xije,yije).
The Choquet integral of; is The method for choosing one alternativec U is depicted

in Algorithm 1. The a priori information consists of the
Clm,<n,1(G) = ([0,0.3] - (1 —0.39) +[0.1,0.5] - (0.39 —0), set of alternatived/, the preference relations generated by
[0.1,0.2] - (1 — 0.39) +[0,0.4] - (0.39 — 0)) = the experts and the weight vector and adm|SS|pIe orders
used by the IVAIOWA operator and IVAIF Choquet integral,
([0.039,0.378],[0.061, 0.278]). respectively. The result is expressed as the preferrechatiee
If we take the IVAIF-pairG’(us) = ([0,0.6],[0,0]) >, u’. The algorithm has two main phases, namieffjprmation
([0.1,0.5],[0,0.4]) = G(us), then fusion and exploitation In the information fusion phase, the
so-called collective preference relation is created. Téltion
Clm,<n,1(G") = ([0,0.3] - (1 - 0.25) +[0,0.6] - (0.25 — 0),  fusions the preferences of each of the experts for each pair o
0.1,0.2] - (1 — 0.25) + [0, 0] - (0.25 — 0)) = alternatives. In the exploitation phase the algorithm nede
the global desirability of each of the alternatives. In orde
([0,0.375], [0.075,0.15]). to do so, it computes a fuzzy measure for each of the

But alternatives i(e. for each row in the collective preference
([0,0.375],[0.075,0.15]) <, ([0.039,0.378],[0.061,0.278]) relation). This fuzzy measure is further used in an IVAIF
and the Choquet integral is not monotonic. Choquet integral to produce a global desirability valye

Open ProblemWhen are discrete Choquet integrals monohich recalls the preference of the alternativeover all of
tone? Notice that they depend on the measurethat can the other alternatives. Finally, the alternative whosez; is

depend on the values of the inputs as in the Example 6.1 maximum is taken as preferred alternative (if more than one
alternative produces such maximum, any of them can be taken

as preferred alternative).
VII. APPLICATION TO MULTI-EXPERT DECISION MAKING

Multi-expert decision making consists of choosing an alter Data: A set of alternatived/, a set of relationszjye, a weight
vectorw € (0, 1]", an IVAIF-admissible ordeK

native out pf "?‘ given sdf’ = {uy, e »up}, (p = 2), according Result: A preferred alternative)’ ¢ U

to the pairwise preferences given by some expdits= /I 1- Information fusion: Creating a
{e1,...,en}, (n > 2). The concordances and discordances col l ective preference relation

of such preferences must be taken into account in the proces®r each position(i, j) € U x U do

of choosing the best-possible alternative. Frequentlpees Rivir (i, )

el .. en S\
have difficulties in defining and quantifying their prefeces | IVAIOW Apy < o) (Rimie (4:7), - - - Riae (i 7))

between pairs of alternatives. In order to solve these diffic ;5. Expl oi tati on
ties, decision-making algorithms allow increasingly elatted for each rowi of R do
expressions of preference [24], [25] . In this work we coasid /1 2.1- Build the fuzzy nmeasures m;
the case where the expression of the preference of the expert | Ai = P({L,....p} \ i);
is given by IVAIF-pairs. for eachA” € A; do
ZjeA/L'j + Tij +(1_Qij)+(1_?ij) )
2%1 z; + Tu + (1 —yﬂ) + (1 =Yu) ’

A. Algorithms for interval-valued intuitionistic preferee re-

lations
end
B. Algorithms for interval-valued intuitionistic preferee re- end
lations /1 2.2- Aggregate the matrix row w se

for each rowi of Ry do

An interval-valued Atanassov intuitionistic fuzzy preface 2i 4= Clm; <o) (Bivar (4,5)) with j € {1,...,n}\ {i};

relation Ryair onU is a mappind/ xU — Ly ([0, 1]) such end
that Rivair (ui, u;) represents the desirability of the alternative // 2.3- Sel ect the nmost preferred

u; over alternativeu;. For each of such IVAIF-pairs the first alternative .
interval denotes the degree of preference.pbver v;, while u’ 4= uy such thatz, is maximum;
the second one represents the non-prefereneg ofrer u;. Algorithm 1: First algorithm for multi-expert decision mak-

A multi-expert decision making algorithm takes as inputing using interval-valued Atanassov intuitionistic fuzasef-
the opinion of multiple experts. Each of such expertss  erence relations.
E expresses his preferences as an interval-valued Atanassov

intuitionistic fuzzy relation, which is denoteH - The method in Algorithm 1 is fairly simple and powerful,
but can also suffer from unexpected behaviours. This is due t
- A2 e Fp the non-monotonicity of Choquet integrals through the IFAI
Ripp — 721 Z?P ' admissible orders<,. Hence, an increase of the values in

the i-th row of Ryar, might potentially lead to a reduction

Zpl e Zp(p1) of the valuez;. Put to interpretable terms, this means that
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an increase of the preferences of a given alternative ovefe <p, as in the Example 3.3.

the others can lead to a reduction of its global desirability « <y generated byK;, K>, K3, K4 with k1 = k3 = % and
Although in some situations this fact might have no impact k; = ky = i.

on the final choice, it is certainly undesirable. This isssie i « <o with Q1,Q2, @3, Q4 given by

solved by the Algorithm 2. It modifies the exploitation phase 1 1

1 1
of Algorithm 1 by aggregating the fuzzf, e through an Q1(z1,T1,y,,7) = 14t Ty
Unbalanced IVAIOWA operator. However, the orders must be 10 3 3 4
restricted to<o. Q2(21, 71,4, 71) = 5521 + 55T+ 558, + 557
) . _ _ 2 2 _ 3 3 _

Data: A set of alternatived/, a set of relationsRi e, @ Q;;(gl,xl,yl, Y1) = —x,+—T1+ =Y, + =7 and
weight vectorw; € (0, 1]", two vectorswsz, va o 110 140 1107 140
satisfying the conditions in the Corollary 5.8, an = =) - = = =
IVAIF-admissible order<o Q4(§1,w1,g1, 71) 0% + 107! + 104 + 107t

Result: A preferred alternative’ € U _ The global desirability of the alternatives with each of the
/1 1- Information fusion: Creating a - .
orders is as follows:

collective preference relation

for each position(s, j) € U x U do o Order<py,:z; > 29> 24 > 23;
‘ Rinir (17]) — . Order§H2: 24> 21 2 22 2 23,
d IVAIOW Apy, < o) (Rivair (4,7), - -, Riae (i 9)); o Order<py: z; > 24> 25 > 29;
/e? 2- Exploitation o Order<q:zs >z > 2 > 23.
/1 2.1- Aggregate the matrix row w se So, depending on the chosen IVAIF-admissible order Alter-
for each row: of Riyxe do N natives 1 and 4 can be depicted. If non-monotonicity of
‘ Zij:ﬁIVAan}"\Véiup,w,go](RIVAIF(”J)) with IVAIF Choquet is affecting the result, we decide to run
end ’ Algorithm 2. Taking the ordery, and the weight vectors
/1 2.2- Select the nost preferred we = (0.3,0.2,0.5) andvs = (0.5,0.1,0.4) (which satisfy the
alternative conditions of Corollary 5.8). The final values of Unbalanced
u’ + wug such thatzj, is maximum; IVAIOWA operator are
Algorithm 2: Second algorithm for multi-expert decision 21 =([0.4265, 0.5640], [0.1930, 0.3280])
making using interval-valued Atanassov intuitionistizZy T T o ’
preference relations. zo =([0.3460,0.4917],[0.2334, 0.3252]),
73 =(]0.3470, 0.4397], [0.2445,0.3115]),
Note that although in Algorithm 2 the non-monotonicity of z4 =([0.4455,0.6395], [0.1820, 0.2868]).

Choquet integral is solved, it impose the order to be in t

o o rE?onse uentl is preferred over all the other alternatives b
class of<p, which is more restrictive thar, class. q Wi 1S P y

Algorithm 2.

C. Example of multi-expert decision making

Let {z1,..., 24} represent four alternatives on which three ] .
experts provide their personal preferences. The preferenc!n this work we have analyzed the extension of OWA
relations obtained for each of the experts are depicted JRerators and discrete Choquet integral to cope with IVAIFS
Table I. This has led to the proposal of novel definitions of IVAIOWA

We intend to take a decision on the best possible opti@Rerators, Unbalanced IVAIOWA operators and IVAIF Cho-
using the weight vectow = (0.3, 0.4, 0.3), which gives more quet integrals. In the definition of these operators we have ¢
importance to the intermediate IVAIF-pair, i.e., we givenmo Sidered the possibility of choosing different weight vesttor
importance to the neutral expert (neither the optimistio nthe membership and non-membership. We have also studied

VIII. CONCLUSIONS

the pessimistic). the role of the IVAIF-admissible orders of IVAIF-pairs, negor
The collective matrix if the Lexicographic-1 ordeg, ) is specifically the impact of such orders in the monotonicity of
chosen in Algorithm 1, is given in Table II. the IVAIOWA operators. For illustrative purposes, we have

After exploitation phase, the global desirability values a presented examples of application in the context of multi-
expert decision making, considering two different aldoris

z1 = ([0.4299,0.5592], [0.231 ,0.355 ]) , in which the novel operators can take a relevant role.

2 = ([0.3826,0.5162], [0.257 ,0.3448)) ,

z3 = ([0.3024,0.4201], [0.3272,0.4227]) , and ACKNOWLEDGMENT
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. 0.3 1} [0,0] -
1 —
IVAIF = [0,0.1], (0.6, 0.68] 0.16,0.27], (0.3, 0.55]
10.28,0.76], [0.22, 0.22] [1,1],[0,0]
- [0.3,0.46], [0, 0.5]
w 0.9,0.9], [0, 0.1]
IVAIF = 0,0.1],[0.3,0.4]  [0.16,0. 27] [0.7,0.73]
(0.61,0.76],[0,0.11]  [0.5,0.6],[0.2,0.4]
- 0.4,0.6], [0, 0]
o [0.9,0.9], [0, 0] -
IVAIF = | [0.8,0.84],[0.06,0.1] [0.26,0.6],[0.31,0.4]
0.12,0.46],[0,0.3]  [0.2,0.23],]0.7,0.74]
TABLE |
- [0.362, 0.47], [0.228, 0.398)
reo | 1072,093 (0,004 -
IVAIF = [0.19,0.369], [0.423, 0.559]

(1]
(2]
(3]
(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

(23]

[0.38,0.38], [0.57, 0.62]
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[0.64, 0.68], [0.24, 0.3]
[0.11,0.23], [0.64, 0.68]

[0.07,0.29], [0.6,0.71]

[0.49,0.71], [0.14, 0.22]
[0.2,0.3], [0, 0.05]
[0.6,0.62],[0,0.1]

[0.1,0.43], [0.5,0.57] )

[0.14,0.36], [0.2, 0.6]

0.86,0.92], [0, 0.05]
[0.6,0.67], 0 1,0.21]
0.4,0.5],[0.5,0.5]

0.22,0.76], [0.1,0.18]

0.71,0.83],[0,0.1]
[0.1,0.15],[0.7,0.84]

[0.74,0.93], [0, 0]

[0.15,0.3],[0.48, 0.6]
[0.3,0.4],[0.5,0.52]
[09095 [0,0.02]
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0.24,0.322], [0.318,0.394]

0.331,0.67], [0.088,0.211]  [0.56,0.609], [0.29, 0.382]

TABLE I

[0.499, 0.65], [0.246, 0.321]
[0.116, 0.245], [0.526, 0.704]

[0.499,0.65], [0.2, 0.283)
0.36,0.451], [0.23, 0.286]
0.63,0.683], [0.15, 0.196]

0.331,0.67], [0.22, 0.285]
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