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Abstract—Based on the definition of admissible order for
interval-valued Atanassov intuitionistic fuzzy sets, we study
OWA operators in these sets distinguishing between the weights
associated to the membership and those associated to the non-
membership degree which may differ from the latter. We also
study Choquet integrals for aggregating information which is
represented using interval-valued Atanassov intuitionistic fuzzy
sets. We conclude with two algorithms to choose the best
alternative in a decision making problem when we use this kind
of sets to represent information.

Index Terms—Interval-valued Atanassov intuitionistic fuzzy
set; interval-valued Atanassov intuitionistic OWA operator; Un-
balanced interval-valued Atanassov intuitionistic OWA operator;
interval-valued Atanassov intuitionistic Choquet Integral.

I. I NTRODUCTION

OWA operators [1] and Choquet integrals [2] are often used
for fusing information. The goal of this paper is to extend these
operators for using Interval-Valued Atanassov Intuitionistic
Fuzzy Sets (IVAIFSs)[3] to represent the information. To
achieve this goal, we focus on the definition and construction
of a particular class of linear orders on IVAIFSs called
admissible and defined in [4].

We know that, in order to aggregate information represented
by means of IVAIFSs, we should aggregate the intervals which
represent the membership, on one hand, and the intervals
which represent the non-membership, on the other hand. This
fact has suggested us to propose the use of Unbalanced OWA
operators, in the sense that we use admissible orders and
different weight vectors for aggregating the membership and
the non-membership values.
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Besides, it is known that for some decision making prob-
lems, experts may have problems to provide exact numerical
values to represent their preferences and non-preferencesbe-
tween the different alternatives. In these cases, some authors
advise for the use of intervals ([5], [6], [7], [8]) to represent
such preferences and non-preferences. In this situation, a
suitable option is to represent the information by means of
IVAIFSs. To do so, it is necessary an appropriate theoretical
development of aggregation functions such as OWAs and Cho-
quet integrals [9]. We discuss the usefulness of our theoretical
developments in the last part of this work, where we present
two algorithms to select the best alternative in a multi-expert
decision making problem where the preferences are given as
IVAIFSs.

This work is organized as follows. In Preliminaries we
discuss several concepts which are going to be used along the
paper. In Section III, we recall the definition and two meth-
ods of construction of interval-valued Atanassov intuitionistic
fuzzy admissible orders using aggregation functions. Next, we
develop OWA operators for interval-valued Atanassov intu-
itionistic vectors in Section IV while in Section V we propose
Unbalanced OWA operators for IVAIFSs. In Section VI, we
introduce the discrete Choquet integral for these sets and we
present two algorithms which make use of admissible orders,
OWA operators and Choquet integrals when we are dealing
with IVAIFSs in a multi-expert decision making problem in
Section VII. We finish with some concluding remarks and
references.

II. PRELIMINARIES

In this section we introduce some preliminary notions in
order to fix notation. We denoteL([0, 1]) to the set of all
closed subintervals of the unit interval, that is,

L([0, 1]) = {x = [x1, x1] | 0 ≤ x1 ≤ x1 ≤ 1} .

Since Zadeh [10] introduced the concept of fuzzy sets differ-
ent generalizations have been defined, see [11]. In particular,
Interval-Valued Atanassov Intuitionistic Fuzzy Sets (IVAIFSs)
generalize the concept of intuitionistic fuzzy sets given in
1986 [12] by Atanassov. In this work we introduce the notions
of OWA operator and discrete Choquet integral for IVAIFSs.
Some other studies on these sets are [13], [14], [15].
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Definition 2.1: ([3]) Let U 6= ∅ be a universe. An Interval-
Valued Atanassov Intuitionistic Fuzzy Set (IVAIFS)G overU
is the set

G = {(u, xu, yu) | u ∈ U}

wherexu = [x(u), x(u)], yu = [y(u), y(u)] ∈ L([0, 1]) state,
respectively, the membership degree and the nonmembership
degree ofu to G and they satisfy that for allu ∈ U , x(u) +
y(u) ≤ 1.

Pairs (xu, yu) are called Interval-Valued Atanassov In-
tuitionistic Fuzzy pairs (IVAIF-pairs), while the set of all
possible IVAIF-pairs is denoted

LIV ([0, 1]) = {z = (x, y) | x, y ∈ L([0, 1]) andx+ y ≤ 1} .

Given an IVAIFS G, zG(u) = (xG,u, yG,u) denotes the
IVAIF-pair associated with the referential elementu ∈ U .
However, for the sake of simplicity,zG(u) is abbreviated to
z = (x, y) when possible.

Definition 2.2: Let G1, G2 be two IVAIFSs. Atanassov
proposed an order≤ such thatG1 ≤ G2 if and only if,
for all u ∈ U ,

xG1,u �2 xG2,u andyG1,u
�2 yG2,u

, (1)

where�2 is the partial order onL([0, 1]), given by

[p1, p1] �2 [p2, p2] if and only if p1 ≤ p2 andp1 ≤ p2 . (2)

Aggregation functions [16], [17] are a frequently used tool
in fuzzy logic with their extensions and their applications.

Definition 2.3:Let (P,�) be a Partially Ordered Set (i.e., a
poset) with bottom0P and top1P . An n-aggregation function
with respect to the order� is a mappingM : Pn → P such
that

• M(0P , . . . , 0P ) = 0P andM(1P , . . . , 1P ) = 1P ,
• if (x1, . . . , xn) � (y1, . . . , yn),

thenM(x1, . . . , xn) � M(y1, . . . , yn),

where(x1, . . . , xn) � (y1, . . . , yn) if and only if xi � yi for
all i ∈ {1, . . . , n}.

Note that Definition 2.3 extends the definition of aggrega-
tion operator on the unit interval[0, 1] (see [18]). In particular,
in this work we study some specific aggregation functions that
are OWA operators and Choquet integrals.

Definition 2.4: [1] Let w = (w1, . . . , wn) ∈ [0, 1]n with
w1 + . . .+wn = 1. The Ordered Weighted Averaging (OWA)
operator associated withw is a mappingOWAw : [0, 1]n −→
[0, 1] given by

OWAw(x1, . . . , xn) =
n
∑

i=1

wix(i)

wherex(i), i ∈ {1, . . . , n}, denotes thei-th greatest compo-
nent of (x1, . . . , xn).

Definition 2.5: Let U 6= ∅ be a finite universe. A fuzzy
measurem is a mappingm : 2U −→ [0, 1] such thatm(∅) =
0, m(U) = 1 and m(F1) ≤ m(F2) wheneverF1 ⊂ F2 for
F1, F2 ∈ 2U .

Definition 2.6:Let m be a fuzzy measure on a non-empty
finite universeU = {u1, . . . , un} 6= ∅. The discrete Choquet

integral of a fuzzy setµ : U −→ [0, 1] with respect tom is
defined as

Cm(µ) =

n
∑

i=1

µ(uσ(i))m({uσ(i), . . . , uσ(n)})

− µ(uσ(i))m({uσ(i+1), . . . , uσ(n)}) ,

whereσ is a permutation such thatµ(uσ(1)) ≤ µ(uσ(2)) ≤
. . . ≤ µ(uσ(n)) and,m({uσ(n+1), uσ(n)}) = 0 by convention.

As defined in [19], a fuzzy measure is called symmetric if
m(F ) depends only on the cardinality of the setF ⊆ U , i.e.,
for any F1, F2 ⊆ U if |F1| = |F2| then m(F1) = m(F2).
OWA operators are a special class of Choquet integrals where
the fuzzy measure associated is symmetric.

A relevant characteristic of OWA operators and Choquet
integrals is the fact that they require a linear order on the
set of inputs. Hence, although the definition of aggregation
function is grounded on partial orders, linear orders play a
very relevant role in the generation of some of these operators.
In the development of the paper, some results of [9], [20] are
applied.

An order≤ on L([0, 1]) is calledadmissibleif it is linear
and satisfies that, for allx, y ∈ L([0, 1]), such thatx �2 y
thenx ≤ y [20].

Proposition 2.1: [20] Let B1, B2 : [0, 1]2 7→ [0, 1] be
two continuous aggregation functions, such that, for allx =
[x, x], y = [y, y] ∈ L([0, 1]), the equalitiesB1(x, x) =
B1(y, y) andB2(x, x) = B2(y, y) hold if and only if x = y.

If the order≤B1,2
onL([0, 1]) is defined byx≤B1,2

y if and
only if

B1(x, x) < B1(y, y) or

(B1(x, x) = B1(y, y) andB2(x, x) ≤ B2(y, y))

then≤B1,2
is an admissible order onL([0, 1]).

In [9], this class of linear orders onL([0, 1]) is used to
extend the definition of OWA operators for interval-valued
fuzzy sets.

Definition 2.7:Let ≤ be an admissible order onL([0, 1]),
and letw = (w1, . . . , wn) ∈ [0, 1]n, with w1 + . . .+wn = 1.
The Interval-Valued OWA operator associated with≤ andw

is a mappingIV OWA[≤,w] : (L([0, 1])
n −→ L([0, 1]) given

by

IV OWA[≤,w]([a1, b1], . . . , [an, bn]) =

n
∑

i=1

wi · [a(i), b(i)]

where [a(i), b(i)], i = 1, . . . , n denotes thei-th greatest of
the inputs with respect to the order≤, and the operations are
w · [a, b] = [wa,wb] and[x1, y1]+[x2, y2] = [x1+x2, y1+y2].

III. IVAIF- ADMISSIBLE ORDERS

Since the aim of the paper is to define OWA operators and
Choquet Integrals for IVAIFS, the generation of linear orders
plays a crucial role. The linear orders we based on the rest of
the work were presented in [4] where a study on linear orders
similar to the previous ones onL([0, 1]) [9], but focused on
IVAIFS is done.
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An IVAIF-admissible order≤ on LIV ([0, 1]) is a linear
order which refines Atanassov’s partial order in Eq. (1). We
recall a method to construct IVAIF-admissible orders [4] .

Proposition 3.1: Let B = 〈B1, B2, B3, B4〉 be a set of
four aggregation functions,Bi : [0, 1]2 −→ [0, 1] such that
they generate admissible orders≤B1,2

,≤B3,4
on L([0, 1]) as

in the Proposition 2.1. An IVAIF-admissible order≤B on
(L([0, 1]))2 is such that(x1, y1) ≤B (x2, y2) if an only if

x1 <B1,2
x2 or (x1 =B1,2

x2 andy1 ≥B3,4
y2) .

In particular, if B1 = B3 and B2 = B4, the orders≤B1,2

and≤B3,4
are equal: the same order is used to compare both

intervals although in the second one the order is reversed.
Proposition 3.2: Let A = 〈A1, A2, A3, A4〉 be a set of

four aggregation functions,Ai : [0, 1]4 → [0, 1] such that,
for all (p1, q1, r1, s1), (p2, q2, r2, s2) ∈ [0, 1]4 the equalities
Ai(p1, q1, r1, s1) = Ai(p2, q2, r2, s2) for all i ∈ {1, . . . , 4}
only hold simultaneously if(p1, q1, r1, s1) = (p2, q2, r2, s2).

Then, the relation(x1, y1) ≤A (x2, y2) if and only if one
of the (mutually exclusive) conditions is satisfied

i) A1(x1, x1, 1− y
1
, 1− y1) < A1(x2, x2, 1− y

2
, 1− y2).

ii) A1(x1, x1, 1 − y
1
, 1 − y1) = A1(x2, x2, 1 − y

2
, 1 − y2)

and
A2(x1, x1, 1− y

1
, 1− y1) < A2(x2, x2, 1− y

2
, 1− y2).

iii) A1(x1, x1, 1− y
1
, 1− y1) = A1(x2, x2, 1− y

2
, 1− y2),

A2(x1, x1, 1 − y
1
, 1 − y1) = A2(x2, x2, 1 − y

2
, 1 − y2)

and
A3(x1, x1, 1− y

1
, 1− y1) < A3(x2, x2, 1− y

2
, 1− y2).

iv) A1(x1, x1, 1− y
1
, 1− y1) = A1(x2, x2, 1− y

2
, 1− y2),

A2(x1, x1, 1− y
1
, 1− y1) = A2(x2, x2, 1− y

2
, 1− y2),

A3(x1, x1, 1 − y
1
, 1 − y1) = A3(x2, x2, 1 − y

2
, 1 − y2)

and
A4(x1, x1, 1− y

1
, 1− y1) ≤ A4(x2, x2, 1− y

2
, 1− y2)

is an IVAIF-admissible order onLIV ([0, 1]).
Example 3.3:Particular examples of≤A orders are the

following.

1) Let Qi refer to an aggregation function given by

Qi(x1, x1, y1, y1) = aix+ bix+ ciy + diy ,

such thatai, bi, ci, di ≥ 0, ai, bi, ci, di ≥ 0, ai + bi +
ci + di = 1. Let A = 〈Q1, Q2, Q3, Q4〉 be the set of
four of such aggregation functions satisfying

|D| =

∣

∣

∣

∣

∣

∣

∣

∣

a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

∣

∣

∣

∣

∣

∣

∣

∣

6= 0 .

Since the aggregation functions satisfy the conditions
of Proposition 3.2, they generate an IVAIF-admissible
order. We denote this particular class of orders by≤Q.

2) Let i ∈ {1, 2}, j ∈ {3, 4} andki, kj ∈ [0, 1]. Then the
functions:

• Ki(x, x, y, y) = x+ ki(x− x), i ∈ {1, 2} and
• Kj(x, x, y, y) = y + kj(y − y), j ∈ {3, 4}

are aggregation functions sincex ≤ x andy ≤ y.

The orders generated by sets of the typeA =
〈K1,K2,K3,K4〉 are particular instances of≤Q orders
where

D =









1− k1 k1 0 0
1− k2 k2 0 0

0 0 1− k3 k3
0 0 1− k4 k4









whose determinant is|D| = (k2−k1)(k4−k3). If k1 6=
k2 and k3 6= k4 then the aggregation functions satisfy
the conditions of the Proposition 3.2 and they generate
an IVIAIF-admissible order.
We denote this particular class of orders by≤K .

3) Let Πi refer to thei-th projection of a 4-place vector.
A general lexicographic order, denoted by≤Π is con-
structed from the four projections. For instance:

• the lexicographic1 order is generated by the set
A = 〈Π1,Π2,Π3,Π4〉 that we denote with≤Π1

;
• the composed lexicographic2 order is generated by

the set A = 〈Π2,Π1,Π4,Π3〉 that we denote with
≤Π2

.

Notice that also the projections are particular instances
of Ki or Kj aggregation functions forki, kj ∈ {0, 1}.
Thereby, the determinant of|D| is 1 or −1 since each
row and each column of the matrixD is generated
by all zeros except one element whose value is1. For
instance, the matrixD associated with the composed
lexicographic2 order is

D =









0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0









.

IV. I NTERVAL-VALUED ATANASSOV’ S INTUITIONISTIC

OWA OPERATORS

The original definition of OWA operator was given by
Yager [1]. In this section we generalize this definition
on interval-valued Atanassov intuitionistic fuzzy sets using
IVAIF-admissible orders and we study under which conditions
they satisfy monotonicity.

Definition 4.1: Let ≤ be an IVAIF-admissible order on
LIV ([0, 1]) and letw = (w1, . . . , wn) ∈ [0, 1]n, with w1 +
. . . + wn = 1. The Interval-Valued Atanassov’s Intuitionistic
OWA (IVAIOWA) operator associated withw and ≤ is a
mapping(LIV ([0, 1]))

n 7→ LIV ([0, 1]) defined by

IV AIOWA[w,≤](z1, . . . , zn) =

n
∑

i=1

wi · z(i)

=

(

n
∑

i=1

wi · x(i),
n
∑

i=1

wi · y(i)

)

=

(

n
∑

i=1

wi · [x(i), x(i)],

n
∑

i=1

wi · [y(i), y(i)]

)

wherez(i) denotes thei-th greatest IVAIF-pair of the inputs
(z1, . . . , zn) with respect to the order≤ on LIV ([0, 1]) and
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the interval product and sum are the same as used in Defini-
tion 2.7.

Notice thatw1x(1) + . . . + wnx(n) ≤ w1 + . . . + wn = 1
(indeed, the same holds forx, y, andy). The monotonicity of
real-valued weighted arithmetic means ensures that each ofthe
components of the result yield by an IVAIOWA is an interval.
In addition, the result is always an IVAIF-pair, since
n
∑

i=1

wix(i) +
n
∑

i=1

wiy(i) =
n
∑

i=1

wi(x(i) + y(i)) ≤
n
∑

i=1

wi = 1 .

Example 4.1:
Let w = (0.15, 0.35, 0.5) and let≤Q be the order generated

by the set A = 〈Q1, Q2, Q3, Q4〉 as in the Example 3.3 with

• Q1(x1, x1, y1, y1) =
3

8
x1 +

3

8
x1 +

1

8
y
1
+

1

8
y1,

• Q2(x1, x1, y1, y1) =
10

20
x1 +

5

20
x1 +

3

20
y
1
+

2

20
y1,

• Q3(x1, x1, y1, y1) =
1

20
x1 +

10

20
x1 +

8

20
y
1
+

1

20
y1,

• Q4(x1, x1, y1, y1) =
1

4
x1 +

1

4
x1 +

1

4
y
1
+

1

4
y1.

Taking into account that
([0.8, 1], [0, 0]) ≥Q ([0, 0.5], [0, 0.5]) ≥Q ([0, 0.3], [0.2, 0.7])
it holds

IV AIOWA[w,≤Q](([0, 0.3], [0.2, 0.7]), ([0.8, 1], [0, 0]),

([0, 0.5], [0, 0.5])) = ([0.12, 0.475], [0.1, 0.525]).

Remark 1:It is important to mention:

1) Due to the characteristics of the orders above, in general,
it is not true that

IV AIOWA[w,≤](z1, . . . , zn)

= (IV OWA[w,≤B1,2
](x1, . . . , xn),

IV OWA[w,≤B1,2
](y1, . . . , yn)) . (3)

In fact, this is not necessarily true even if the order
is ≤B , with B = 〈B1, B2, B1, B2〉. For example,
consider the weight vectorw = (0.2, 0.5, 0.3) and
the ≤Π1

order on LIV ([0, 1]). Taking into account
that ([0.2, 0.8], [0, 0]) ≥Π1

([0.1, 0.2], [0.4, 0.8]) ≥Π1

([0, 0.3], [0.5, 0.7]) (see item 3 of Example 3.3) it holds

IV AIOWA[w,≤Π1
](([0.2, 0.8], [0, 0]),

([0, 0.3], [0.5, 0.7]), ([0.1, 0.2], [0.4, 0.8]))

= ([0.09, 0.35], [0.35, 0.61])

Similarly, since[0.2, 0.8] ≥Π1,2
[0.1, 0.2] ≥Π1,2

[0, 0.3]
and [0.5, 0.7] ≥Π1,2

[0.4, 0.8] ≥Π1,2
[0, 0] with Π1,2 =

〈Π1,Π2〉 then
IV OWA([0.2, 0.8], [0, 0.3], [0.1, 0.2]) = [0.09, 0.35]
and
IV OWA([0, 0], [0.5, 0.7], [0.4, 0.8]) = [0.3, 0.54].
However, ([0.09, 0.35], [0.35, 0.61]) 6=
([0.09, 0.35], [0.3, 0.54]).

2) Due to the monotonicity of OWAs, if we apply fixed
weights tox, x, y, y, we produce the corresponding
intervals. For example, taking the weight vectorw =
(0.2, 0.5, 0.3), such that we have the following results:

• OWAw(0.2, 0, 0.1) = 0.09
• OWAw(0.8, 0.3, 0.2) = 0.37
• OWAw(0, 0.5, 0.4) = 0.3
• OWAw(0, 0.7, 0.8) = 0.51,

we observe that the IVAI-pair
([0.09, 0.37], [0.3, 0.51]) 6= ([0.09, 0.35], [0.4, 0.6])
In fact, we obtain the first one, by ordering the extreme
values of the intervals and not the intervals (see
Aumann [21]).
This, or some others approaches generalizing the the-
oretical results on Atanassov Intuitionistic Fuzzy Sets
such as [22] would be another manners of generalizing
OWA operators over IVAIFSs but in this work we
focus on studying the first approach of OWA operator
given in Def 4.1. However, this example lets some open
questions:What are the differences of these definitions?
Are there any relation between the orders? Are there
any orders which generate the same OWA operator for
different definitions?

Proposition 4.2:Let be the IVAIOWA operator associated
with ≤ andw. Given an order≤B1,2

on L([0, 1]) there exist
w

′

andw
′′

two permutations of the vectorw induced by≤B1,2

such that

IV AIOWA[w,≤](z1, . . . , zn)

= (IV OWA[w′
,≤B1,2

](x1, . . . , xn),

IV OWA[w′′
,≤B1,2

](y1, . . . , yn)). (4)

Proof. Straight. Besides, ifx(i) is the i-th greatest element
according to≤B1,2

thenw
′

i = wj wherej is the position of
the IVAIF-pair whose first interval isx(i) through the≤ order
of IVAIF-pairs, namely,z(j) = (x(i), y∗) .

Analogously, ify(i) is thei-th greatest element according to
≤B1,2

thenw
′′

i = wj wherej is the position of the IVAIF-pair
whose second interval isy(i) through the≤ order of IVAIF-
pairs, namely,z(j) = (x∗, y(i)).

Corollary 4.3: Let be≤B with B = 〈B1, B2, B1, B2〉 and
≤B1,2

the orders used in the Prop. 4.2. Thenw
′

= w satisfies
Eq. (4).

Proof. Remember that≤B uses first≤B1,2
on L([0, 1]) to

compare the membership interval so that the elements in the
set {xi | i ∈ {1, . . . , n}} are ordered in a decreasing order.

OWA operators, with the standard order between real num-
bers, are a special class of aggregation functions. However, as
it occurs with IVOWA operators ([9]), IVAIOWA operators do
not necessarily satisfy monotonicity.

Example 4.4:Let B = 〈B1, B2, B1, B2〉 with B1(x1, x2) =
x1x2 andB2(x1, x2) =

x1+x2

2 .

Let z1 = ([0, 1], [0, 0]), z2 = ([0.2, 0.35], [0.4, 0.6]) and
w = (0.9, 0.1).

Taking into account thatz2 >B z1 it holds

IV AIOWA[w,≤B ](z1, z2) = ([0.18, 0.415], [0.36, 0.54]) .

However, if we take z̃1 given by z̃1 =
([0.1, 0.15], [0.7, 0.8]) >B z1 = ([0, 1], [0, 0]) it holds
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z2 ≥B z̃1 and consequently,

IV AIOWA[w,≤B ](z̃1, z2) = ([0.19, 0.33], [0.43, 0.62]) .

Since
([0.19, 0.33], [0.43, 0.62]) <B ([0.18, 0.415], [0.36, 0.54]) the
monotonicity of the operator does not hold.

For sake of simplicity, givenM a 4-aggregation function
we write M(z) where z is the IVAIF-pair given byz =
([x, x], [y, y]) to denote the image ofM(x, x, 1− y, 1− y).

Proposition 4.5:Let be≤Q the admissible order generated
as in the Example 3.3 then

Qi(IV AIOWA[w,≤Q](z1, . . . , zn))

= w1Qi(z(1)) + . . .+ wnQi(z(n)) , (5)

wherez(i) denotes thei-th greatest IVAIF-pair of the inputs
(z1, . . . , zn) through the order≤Q on LIV ([0, 1]).
Proof. Straight.

Remark 2:In the Proposition 4.5, fori = 1 we have

Q1(IV AIOWA[w,≤Q](z1, . . . , zn))

= OWAw(Q1(z1), . . . , Q1(zn)) .

However, this does not necessarily hold for any other index.
Proposition 4.6: Let ≤Q be the order generated as in

the Example 3.3 andw ∈ (0, 1]n. An IVAIOWA operator
on LIV ([0, 1]) associated with≤Q and w is an aggregation
function.
Proof. In order to simplify notation, we assume that the IVAIF-
pairs(z1, . . . , zn) are ordered in a decreasing way with respect
to the order≤Q, i.e., z1 ≥Q z2 ≥Q . . . ≥Q zn. Notice
that since IVAIOWA operators are symmetric, we do not lose
generality by this assumption.

The boundary conditions are straight, but the monotonicity
of the function needs to be proven. Let us assume that the
IVAIOWA is not monotone. Then, there exist̂zi satisfying
that zi ≤Q ẑi and such that

IV AIOWA[w,≤Q](z1, . . . , zi, . . . , zn)

>Q IV AIOWA[w,≤Q](z1, . . . , ẑi, . . . , zn) .

If zi = ẑi then IV AIOWA[w,≤Q](z1, . . . , zi, . . . , zn) =Q

IV AIOWA[w,≤Q](z1, . . . , ẑi, . . . , zn) so we requirezi <Q

ẑi. There exist four different cases:
i) Q1(IV AIOWA[w,≤Q](z1, . . . , zi, . . . , zn))

> Q1(IV AIOWA[w,≤Q](z1, . . . , ẑi, . . . , zn))

ii) Q1(IV AIOWA[w,≤Q](z1, . . . , zi, . . . , zn))

= Q1(IV AIOWA[w,≤Q](z1, . . . , ẑi, . . . , zn)) and
Q2(IV AIOWA[w,≤Q](z1, . . . , zi, . . . , zn))

> Q2(IV AIOWA[w,≤Q](z1, . . . , ẑi, . . . , zn)).
iii) Q1(IV AIOWA[w,≤Q](z1, . . . , zi, . . . , zn))

= Q1(IV AIOWA[w,≤Q](z1, . . . , ẑi, . . . , zn)) and
Q2(IV AIOWA[w,≤Q](z1, . . . , zi, . . . , zn))

= Q2(IV AIOWA[w,≤Q](z1, . . . , ẑi, . . . , zn)) and
Q3(IV AIOWA[w,≤Q](z1, . . . , zi, . . . , zn))

> Q3(IV AIOWA[w,≤Q](z1, . . . , ẑi, . . . , zn)).
iv) Q1(IV AIOWA[w,≤Q](z1, . . . , zi, . . . , zn))

= Q1(IV AIOWA[w,≤Q](z1, . . . , ẑi, . . . , zn)) and

Q2(IV AIOWA[w,≤Q](z1, . . . , zi, . . . , zn))

= Q2(IV AIOWA[w,≤Q](z1, . . . , ẑi, . . . , zn)) and

Q3(IV AIOWA[w,≤Q](z1, . . . , zi, . . . , zn))

= Q3(IV AIOWA[w,≤Q](z1, . . . , ẑi, . . . , zn)) and

Q4(IV AIOWA[w,≤Q](z1, . . . , zi, . . . , zn))

> Q4(IV AIOWA[w,≤Q](z1, . . . , ẑi, . . . , zn)).

We tackled them individually:

i) If Q1(IV AIOWA[w,≤Q](z1, . . . , zi, . . . , zn)) >

Q1(IV AIOWA[w,≤Q](z1, . . . , ẑi, . . . , zn)), then by the
Remark 2,

Q1(IV AIOWA[w,≤Q](z1, . . . , zi, . . . , zn)) =

OWA(Q1(z1), . . . , Q1(zi), . . . , Q1(zn)) >

OWA(Q1(z1), . . . , Q1(ẑi), . . . , Q1(zn))

= Q1(IV AIOWA[w,≤Q](z1, . . . , ẑi, . . . , zn)).

By the increasing monotonicity of OWA operators this
impliesQ1(zi) > Q1(ẑi) which contradictszi ≤Q ẑi.

ii) If Q1(IV AIOWA[w,≤Q](z1, . . . , zi, . . . , zn)) =
Q1(IV AIOWA[w,≤Q](z1, . . . , ẑi, . . . , zn)), then by
Eq. (5), Q1(zi) = Q1(ẑi). Two cases can be further
discriminated:

– If the order of the IVAIF-pairs has not changed, by
the Proposition 4.6, then

Q2(IV AIOWA[w,≤Q](z1, . . . , zi, . . . , zn)) =

w1Q2(z1) + . . .+ wiQ2(zi) + . . . wnQ2(zn) >

w1Q2(z1) + . . .+ wiQ2(ẑi) + . . . wnQ2(zn) =

Q2(IV AIOWA[w,≤Q](z1, . . . , ẑi, . . . , zn)) ,

which implies Q2(zi) > Q2(ẑi), in contradiction
with zi ≤Q ẑi.

– If the order of the IVAIF-pairs has changedr posi-
tions, then it holds true

Q1(ẑi) = Q1(zi−r) = . . . = Q1(zi−1) = Q1(zi)

and

Q2(ẑi) ≥ Q2(zi−r) ≥ . . . ≥ Q2(zi−1) ≥ Q2(zi).
(6)

However,

Q2(IV AIOWA[w,≤Q](z1, . . . , zi, . . . , zn))

= w1Q2(z1) + . . .+ wiQ2(zi) + . . .+ wnQ2(zn)

> w1Q2(z1)+. . .+wi−rQ2(ẑi)+wi−(r−1)Q2(zi−r)

+. . .+wiQ2(zi−1)+wi+1Q2(zi+1)+. . .+wnQ2(zn)

= Q2(IV AIOWA[w,≤Q](z1, . . . , ẑi, . . . , zn)).

This implies that

wi−rQ2(zi−r)+wi−(r−1)Q2(zi−(r−1))+. . .+wiQ2(zi)

> wi−rQ2(ẑi)+wi−(r−1)Q2(zi−r)+. . .+wiQ2(zi−1),

which is in contradiction with (6).
Items iii) and iv) are similar to item ii).
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V. UNBALANCED INTERVAL-VALUED INTUITIONISTIC

OWA OPERATORS

In Def. 4.1 IVAIOWA operators used a fixed weight vector
for both membership and nonmembership degrees. This is
certainly practical, but at some situations it might be desirable
to treat them differently. In this section we study the extension
of IVAIOWA operators to cope with different weight vectors
for the membership and nonmembership degrees.

Definition 5.1: Let ≤ be an IVAIF-admissible order on
LIV ([0, 1]) and letw, v ∈ [0, 1]n with w1 + . . . + wn = 1
and v1 + . . . + vn = 1. An Unbalanced IVAIOWA operator
associated withw, v and≤ is a mapping(LIV ([0, 1]))

n −→
(L([0, 1]))2 given by

UIV AIOWA[w,v,≤](z1, . . . , zn)

=

(

n
∑

i=1

wi · [x(i), x(i)],

n
∑

i=1

vi · [y(i), y(i)]

)

, (7)

where([x(i), x(i)], [y(i), y(i)]) denotes thei-th greatest of the
inputs(z1, . . . , zn) with respect to the order≤ on LIV ([0, 1])
and the interval product and sum are the same as used in
Definition 2.7.

Remark 3:IVAIOWA operators in Section 3 are particular
instances of Unbalanced IVAIOWA operators withw = v.

Notice that if there exist an indexi such thatwi < vi, then
there is an indexj such thatwj > vj .

Next, we study the conditions under which Unbalanced
IVAIOWA operators are aggregation functions, that is:

• They satisfy the boundary conditions.
• They are monotonic.
• The co-domain isLIV ([0, 1]), i.e. , the image ofn IVAIF-

pairs is always an IVAIF-pair. This is satisfied if
n
∑

i=1

wix(i) +

n
∑

i=1

viy(i) ≤ 1.

Theorem 5.1:Unbalanced IVAIOWA operators always sat-
isfy the boundary conditions.
Proof. The boundary conditions imply that

UIV AIOWA[w,v,≤](([1, 1], [0, 0]), . . . , ([1, 1], [0, 0]))

=

(

n
∑

i=1

wi · [1, 1],
n
∑

i=1

vi · [0, 0]

)

= ([1, 1], [0, 0])

which is satisfied due to
∑n

i=1 wi = 1, and

UIV AIOWA[w,v,≤](([0, 0], [1, 1]), . . . , ([0, 0], [1, 1]))

=

(

n
∑

i=1

wi · [0, 0],
n
∑

i=1

vi · [1, 1]

)

= ([0, 0], [1, 1]) ,

which is satisfied due to
∑n

i=1 vi = 1.
By the Proposition 4.6, the IVAIOWA operators associated

with orders≤Q (as in the Example 3.3) and weight vectors
w = v satisfy monotonicity. This property is not guaranteed
for weight vectorsw 6= v.

Example 5.2:Let w = (0.1, 0.9), andv = (0.9, 0.1) and let
the order≤Q be given by the four aggregation functions that
follow:

• Q1(x1, x1, y1, y1) =
1

4
x1 +

1

4
x1 +

1

4
y
1
+

1

4
y1,

• Q2(x1, x1, y1, y1) = x1,
• Q3(x1, x1, y1, y1) = y

1
,

• Q4(x1, x1, y1, y1) = y1.

Then, although([0, 0], [0, 0]) <Q ([0.5, 0.5], [0.5, 0.5]), it
holds

UIV AIOWA[w,v,≤Q](([0, 0], [0, 0]), ([0, 0], [1, 1]))

= ([0, 0], [0.1, 0.1]) > ([0.05, 0.05], [0.55, 0.55])

UIV AIOWA[w,v,≤Q](([0.5, 0.5], [0.5, 0.5]), ([0, 0], [1, 1])) .

Consequently,UIV AIOWA[w,v,≤Q] is not monotonic.
Proposition 5.3:Let be ≤K an order generated as in the

Example 3.3. Then the following holds

Ki(UIV AIOWA[w,v,≤K ](z1, . . . , zn))

= w1Ki(z(1)) + . . .+ wnKi(z(n)), i ∈ {1, 2} and

Kj(UIV AIOWA[w,v,≤K ](z1, . . . , zn))

= w1Kj(z(1)) + . . .+ wnKj(z(n)), j ∈ {3, 4}.

Proof. Straight.
Proposition 5.4:Let be≤K the order generated as in the

Example 3.3, and letw, v ∈ (0, 1]n with w1+. . .+wn = 1 and
v1 + . . . + vn = 1. Then theUIV AIOWA[w,v,≤K ] operator
satisfies monotonicity.
Proof. Considering the Proposition 5.3, the proof is almost
analogous to that of the Proposition 4.6.

Next, we study when the image of Unbalanced
IVAIOWA operators is guaranteed to be IVAIF-pairs,

i.e.,

(

n
∑

i=1

wix(i) +

n
∑

i=1

viy(i) ≤ 1

)

. Note that this is trivially

satisfied withw = v, and in the remainder of this section we
only considerw 6= v.

Besides, whenyi = 1− xi the equation is reduced to
n
∑

i=1

wix(i) +

n
∑

i=1

vi(1− x(i)) ≤ 1 ,

which is equivalent to
(

n
∑

i=1

wix(i) ≤
n
∑

i=1

vix(i)

)

. (8)

Proposition 5.5:Let be ≤K an order generated as in the
Example 3.3 withk1 ∈ (0, 1), and letw, v ∈ (0, 1]n with
w1 + . . .+wn = 1 andv1 + . . .+ vn = 1. Then, the operator
UIV AIOWA[w,v,≤K ] is not always an IVAIF-pair.

Proof. We define the set of indexes

I = {j | wj1 = vj1} ,

J1 = {j | wj1 < vj1} and

J2 = {j | wj2 > vj2} .

As w 6= v, we haveJ1 6= ∅ andJ2 6= ∅. Let j0 = min J1∪J2.
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As w, v sum1 and{1, . . . , j0 − 1} ⊆ I, then

j0−1
∑

k=1

wk =

j0−1
∑

k=1

vk and
n
∑

k=j0

wk =

n
∑

k=j0

vk. (9)

Let us show that there are alwaysn IVAIF-pairs whose
image does not satisfy Eq. (8). We separate the proof in two
different cases.

• If j0 ∈ J2, thenwj0 > vj0 . We choose the IVAIF-pairs

i) zi = ([1; 1], [0; 0]) for i ∈ {1, . . . , j0};
ii) zi = ([0; 0], [1; 1]) for i ∈ {j0 + 1, . . . , n}.

These IVAIF-pairs are top and bottom inLIV ([0, 1]) and
they are ordered in a decreasing order. Sincex(i) = 0 for
i ∈ {j0 + 1, . . . , n} Eq. (8) results it

j0
∑

i=1

wi ≤

j0
∑

i=i

vi .

However, this only holds if

j0−1
∑

i=1

wi + wj0 ≤

j0−1
∑

i=i

vi + vj0 .

By Eq. (9), this is equivalent towj0 ≤ vj0 , which is in
contradiction withj0 ∈ J2.

• If j0 ∈ J1, sincewj0 < vj0 then
n
∑

i=j0+1

wk >

n
∑

i=j0+1

vk. (10)

We choose the IVAIF-pairs

i) zi = ([1, 1], [0, 0]) for i ∈ {1, . . . , j0 − 1};
ii) zj0 = ([0.4, 0.4], [0.6, 0.6]);
iii) zi = ([0, a], [0, 1− a]) for i ∈ {j0 + 1, . . . , n}, with

a ∈ (0.4, 1] satisfying a < 0.4
k1

(this can hold as
k1 6= 1).

Notice that the IVAIF-pairs are ordered in a decreasing
order. From1 to j0 − 1 the IVAIF-pairs are the top.
Besideszj0 > zj0+1 since K1([0.4, 0.4], [0.6, 0.6]) =
0.4 + k1(0.4 − 0.4) = 0.4 and K1([0, a], [0, 1 − a]) =
0 + k1(a− 0) = k1a but k1a < k1

0.4
k1

= 0.4. As the last
ones are equal they are also ordered.
These IVAIF-pairs do not satisfy Eq. (8).

j0−1
∑

k=1

wk + 0.4wj0 +

n
∑

k=j0+1

awk

≤

j0−1
∑

k=1

vk + 0.4vj0 +

n
∑

k=j0+1

avk.

First, by Eq.(9) the expression is reduced to

0.4wj0 +
n
∑

k=j0+1

awk ≤ 0.4vj0 +
n
∑

k=j0+1

avk.

The expression can be rewritten

0.4

n
∑

k=j0

wk + (a− 0.4)

n
∑

k=j0+1

wk

≤ 0.4

n
∑

k=j0

vk + (a− 0.4)

n
∑

k=j0+1

vk

if and only if

(a − 0.4)

n
∑

k=j0+1

wk ≤ (a − 0.4)

n
∑

k=j0+1

vk ,

where the equivalence is due to Eq. (9).
Since(a− 0.4) > 0, the expression is reduced to

n
∑

k=j0+1

wk ≤
n
∑

k=j0+1

vk ,

which is in contradiction with Eq. (10).
Consequently, the image of then IVAIF-pairs is not an
IVAIF-pair and Unbalanced IVAIOWA operators could
not be an aggregation function (since the domain and co-
domain are different sets).

Remark 4:In [20], it was proven that givenk1 ∈ (0, 1], all
the admissible orders onL([0, 1]) with k2 < k1 are equivalent.
In this case, for the particular case of Unbalanced IVAIOWA
operators, onlyk1 = 1 can lead to well-defined operators. As
a consequence, all the possible admissible orders are givenby
(x1, y1) ≤B (x2, y2) if and only if

• (x1 < x2 ), or
• (x1 = x2 andx1 < x2), or
• (x1 = x2, x1 = x2, and

K3(x1, x1, y1, y1) > K3(x2, x2, y2, y2), or

• (x1 = x2, x1 = x2,

K3(x1, x1, y1, y1) = K3(x2, x2, y2, y2) and

K4(x1, x1, y1, y1) ≥ K4(x2, x2, y2, y2))

for somek3, k4 ∈ [0, 1] with k3 6= k4.
We refer to these orders as≤O.
Next, we study the conditions under which the orders≤O

define an aggregation function.
Lemma 5.6:Let be w, v ∈ (R+)

n. Then the following
statements are equivalent.

i)
i
∑

j=1

wj ≤
i
∑

j=1

vj for all i ∈ {1, . . . , n}.

ii)
n
∑

j=1

wjtj ≤
n
∑

j=1

vjtj for all tj ∈ [0, 1] such thatt1 ≥

t2 ≥ . . . ≥ tn ≥ 0.

Proof. We first prove that i) implies ii). As

w1 ≤ v1 thena1w1 ≤ a1v1 for all a1 ≥ 0.

w1 + w2 ≤ v1 + v2 then

a2(w1 + w2) ≤ a2(v1 + v2) for all a2 ≥ 0.

. . .
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w1 + . . .+ wn ≤ v1 + . . .+ vn then

an(w1 + . . .+ wn) ≤ an(v1 + . . .+ vn) for all an ≥ 0.

If we sum

(a1 + . . .+ an)w1 + (a2 + . . .+ an)w2 + . . .+ anwn

≤ (a1 + . . .+ an)v1 + (a2 + . . .+ an)v2 + . . .+ anvn

for all a1, . . . , an ≥ 0.

Taking t1 = (a1+ . . .+an), t2 = (a2+ . . .+an), . . . , tn =
an it satisfies ii).

To prove that ii) implies i), giveni ∈ {1, . . . , n} take t1 =
t2 = . . . = ti = 1 and ti+1 = ti+2 = . . . = tn = 0.

Finally, we have the following characterization of Unbal-
anced IVAIOWA operators.

Theorem 5.7:Let w, v ∈ [0, 1]n with w1 + . . . + wn = 1
and v1 + . . . + vn = 1. Then the following statements are
equivalent:

i) Unbalanced IVAIOWA operators associated withw, v and
the orders≤O is an aggregation function;

ii)
n
∑

i=1

witi ≤
n
∑

i=1

viti for all i = 1, . . . , n for all ti ∈ [0, 1]

such thatt1 ≥ t2 ≥ . . . ≥ tn ≥ 0.

Proof. Let us show that i) implies ii). Suppose Unbalanced
IVAIOWA operator is well defined. Then it satisfies Eq.(8) for
the right endpoints of intervals

∑n

i=1 wix(i) ≤
∑n

i=1 vix(i).
Taking ti = x(i), it satisfies ii) sincex(i) ≥ x(j) (because the
order used is≤O).

Finally let us show that ii) implies i). First of all ii) can be
rewritten as

n
∑

i=1

(wi − vi)ti ≤ 0, for all ti ∈ [0, 1]

such thatt1 ≥ t2 ≥ . . . ≥ tn ≥ 0. (11)

Let zi = (xi, yi), i = 1, . . . , n, be n IVAIF-pairs. The
expression of Unbalanced IVAIOWA operator associated with
w, v and one order≤O is an aggregation function.

UIV AIOWA[w,v,≤O](z1, . . . , zn)

=

(

n
∑

i=1

wi · [x(i), x(i)],

n
∑

i=1

vi · [y(i), y(i)]

)

= (x, y)

wherex(1) ≥ x(2) ≥ . . . ≥ x(n) due to the order≤O.
Considering thatx(i)+ y(i) ≤ 1 andv1+ v2+ . . .+ vn = 1

then

x+ y =

w1x(1)+w2x(2)+. . .+wnx(n)+v1y(1)+v2y(2)+. . .+vny(n)

≤ w1x(1) + w2x(2) + . . .+ wnx(n)

+ v1(1− x(1)) + v2(1− x(2)) + . . .+ vn(1− y(n))

= 1+(w1−v1)x1+(w2−v2)x2+ . . .+(wn−vn)xn ≤ 1,

where the last inequality is due to Eq. 11).
Corollary 5.8: Let w, v ∈ (0, 1]n with w1 + . . . + wn = 1

and v1 + . . . + vn = 1. Then the following statements are
equivalent:

i) Unbalanced IVAIOWA operators associated withw, v and
the orders≤O ;

ii)
i
∑

j=1

wj ≤
i
∑

j=1

vj for all i ∈ {1, . . . , n}

Proof. Straight by the Lemma 5.6 and the Theorem 5.7.
Example 5.9:Takew = (0.3, 0.2, 0.5), v = (0.5, 0.1, 0.4)

and the composed lexicographic2 order ≤O which corre-
sponds tok1 = k3 = 1 and k2 = k4 = 0. Then for z1 =
([0, 0.3], [0.5, 0.7]), z2 = ([0.2, 0.8], [0, 0.2]) and z3 =
([0.1, 0.2], [0.75, 0.8]), sincez2 ≥O z1 ≥O z3, it holds

UIV AIOWA[w,v,≤O](z1, z2, z3) = ([0.11, 0.4], [0.35, 0.49]) ,

which is an IVAIF-pair.

VI. D ISCRETEINTERVAL-VALUED ATANASSOV

INTUITIONISTIC CHOQUET INTEGRAL

In this section, using IVAIF-admissible orders we define
discrete Choquet integrals for IVAIFS.

Definition 6.1:Let m be a fuzzy measure of a non-empty
finite universeU = {u1, . . . , un} 6= ∅. The discrete Choquet
integral ofG (an IVAIFS), with respect to an admissible order
≤ on LIV ([0, 1]) is given by

C[m,≤](G) =

n
∑

i=1

(

G(uσ(i))m({uσ(i), . . . , uσ(n)})

−G(uσ(i))m({uσ(i+1), . . . , uσ(n)})
)

where σ : {1, . . . , n} −→ {1, . . . , n} is a permutation
such thatG(uσ(1)) ≤ G(uσ(2)) ≤ . . . ≤ G(uσ(n)) and
m({uσ(n+1), uσ(n)}) = 0, by convention.

If G(ui) = (xi, yi) for all i = 1, . . . , n and mi =
m({uσ(i), . . . , uσ(n)}) − m({uσ(i+1), . . . , uσ(n)}) for i =
1, . . . , n, the expression can be rewritten as

C[m,≤](G) =
([

n
∑

i=1

xσ(i)mi,

n
∑

i=1

xσ(i)mi

]

,

[

n
∑

i=1

y
σ(i)

mi,

n
∑

i=1

yσ(i)mi

])

.

Remark 5:If we use a symmetric fuzzy measure [23] in
the integral Choquet for IVAIFS, we also recover IVAIOWA
operators defined in Section 3.

Remember that if the order used is≤Q as in the Example 3.3
then IV AIOWA operators are monotonic. However, this is
not true in Choquet Integrals as proves the next example.

Example 6.1: Let U = {u1, u2} and G be an IVAIFS
such that G(u1) = ([0, 0.3], [0.1, 0.2]) and G(u2) =
([0.1, 0.5], [0, 0.4]).

Let m be the fuzzy measure given for eachV ⊂ U by

m(V ) =

(

∑

ui∈V xi + xi + y
i
+ yi

∑

uj∈U xj + xj + y
j
+ yj

)2

whereG(ui) = ([xi, xi], [yi, yi)].
Consider the order≤Π2

, namely, the composed lexico-
graphic 2 order:
(x1, y1) ≤Π2

(x2, y2) if and only if
• (x1 < x2 ), or
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• (x1 = x2 andx1 < x2), or
• (x1 = x2, x1 = x2, andy1 > y1), or
• (x1 = x2, x1 = x2, y1 = y1 andy1 ≥ y1)

The Choquet integral ofG is

C[m,≤Π2
](G) = ([0, 0.3] · (1− 0.39)+ [0.1, 0.5] · (0.39− 0),

[0.1, 0.2] · (1− 0.39) + [0, 0.4] · (0.39− 0)) =

([0.039, 0.378], [0.061, 0.278]).

If we take the IVAIF-pairG′(u2) = ([0, 0.6], [0, 0]) ≥Π2

([0.1, 0.5], [0, 0.4]) = G(u2), then

C[m,≤Π2
](G

′) = ([0, 0.3] · (1− 0.25) + [0, 0.6] · (0.25− 0),

[0.1, 0.2] · (1− 0.25) + [0, 0] · (0.25− 0)) =

([0, 0.375], [0.075, 0.15]).

But
([0, 0.375], [0.075, 0.15]) <Π2

([0.039, 0.378], [0.061, 0.278])
and the Choquet integral is not monotonic.

Open Problem:When are discrete Choquet integrals mono-
tone? Notice that they depend on the measurem, that can
depend on the values of the inputs as in the Example 6.1.

VII. A PPLICATION TO MULTI-EXPERT DECISION MAKING

Multi-expert decision making consists of choosing an alter-
native out of a given setU = {u1, . . . , up}, (p ≥ 2), according
to the pairwise preferences given by some expertsE =
{e1, . . . , en}, (n > 2). The concordances and discordances
of such preferences must be taken into account in the process
of choosing the best-possible alternative. Frequently, experts
have difficulties in defining and quantifying their preferences
between pairs of alternatives. In order to solve these difficul-
ties, decision-making algorithms allow increasingly elaborated
expressions of preference [24], [25] . In this work we consider
the case where the expression of the preference of the experts
is given by IVAIF-pairs.

A. Algorithms for interval-valued intuitionistic preference re-
lations

B. Algorithms for interval-valued intuitionistic preference re-
lations

An interval-valued Atanassov intuitionistic fuzzy preference
relationRIVAIF onU is a mappingU×U −→ LIV ([0, 1]) such
thatRIVAIF (ui, uj) represents the desirability of the alternative
ui over alternativeuj . For each of such IVAIF-pairs the first
interval denotes the degree of preference ofui overuj , while
the second one represents the non-preference ofui over uj .

A multi-expert decision making algorithm takes as input
the opinion of multiple experts. Each of such expertse ∈
E expresses his preferences as an interval-valued Atanassov
intuitionistic fuzzy relation, which is denotedRe

IVAIF .

Re
IVAIF =











− z12 . . . z1p
z21 − . . . z2p
...

. ..
. . .

...
zp1 . . . zp(p−1) −











.

Note that the elements in the main diagonal are unset, since
they represent preference of each alternative over itself.For
the sake of simplicity, we takezij = (xije , yije).

The method for choosing one alternativeu′ ∈ U is depicted
in Algorithm 1. The a priori information consists of the
set of alternativesU , the preference relations generated by
the experts and the weight vector and admissible orders
used by the IVAIOWA operator and IVAIF Choquet integral,
respectively. The result is expressed as the preferred alternative
u′. The algorithm has two main phases, namelyinformation
fusion and exploitation. In the information fusion phase, the
so-called collective preference relation is created. Thisrelation
fusions the preferences of each of the experts for each pair of
alternatives. In the exploitation phase the algorithm models
the global desirability of each of the alternatives. In order
to do so, it computes a fuzzy measure for each of the
alternatives (i.e. for each row in the collective preference
relation). This fuzzy measure is further used in an IVAIF
Choquet integral to produce a global desirability valuezi,
which recalls the preference of the alternativeui over all of
the other alternatives. Finally, the alternativeui whosezi is
maximum is taken as preferred alternative (if more than one
alternative produces such maximum, any of them can be taken
as preferred alternative).

Data: A set of alternativesU , a set of relationsRe
IVAIF , a weight

vectorw ∈ (0, 1]n, an IVAIF-admissible order≤Q

Result: A preferred alternativeu′ ∈ U
// 1- Information fusion: Creating a

collective preference relation
for each position(i, j) ∈ U × U do

Rc
IVAIF (i, j)←
IV AIOWA[w,≤Q](R

e1
IVAIF (i, j), . . . , R

en
IVAIF (i, j));

end
// 2- Exploitation
for each rowi of Rc

IVAIF do
// 2.1- Build the fuzzy measures mi

Ai = P({1, . . . , p} \ i);
for eachA′ ∈ Ai do

mi(A
′)←





∑

j∈A′ xij + xij + (1− y
ij
) + (1− yij)

∑p
l=1
l 6=i

xil + xil + (1− y
il
) + (1− yil)





2

;

end
end
// 2.2- Aggregate the matrix row-wise
for each rowi of Rc

IVAIF do
zi ← C[mi,≤Q](R

c
IVAIF (i, j)) with j ∈ {1, . . . , n} \ {i};

end
// 2.3- Select the most preferred

alternative
u′ ← uk such thatzk is maximum;

Algorithm 1: First algorithm for multi-expert decision mak-
ing using interval-valued Atanassov intuitionistic fuzzypref-
erence relations.

The method in Algorithm 1 is fairly simple and powerful,
but can also suffer from unexpected behaviours. This is due to
the non-monotonicity of Choquet integrals through the IVAIF-
admissible orders≤Q. Hence, an increase of the values in
the i-th row of RIVAIF c

might potentially lead to a reduction
of the valuezi. Put to interpretable terms, this means that
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an increase of the preferences of a given alternative over
the others can lead to a reduction of its global desirability.
Although in some situations this fact might have no impact
on the final choice, it is certainly undesirable. This issue is
solved by the Algorithm 2. It modifies the exploitation phase
of Algorithm 1 by aggregating the fuzzyRc

IVAIF through an
Unbalanced IVAIOWA operator. However, the orders must be
restricted to≤O.

Data: A set of alternativesU , a set of relationsRe
IVAIF , a

weight vectorw1 ∈ (0, 1]n, two vectorsw2, v2
satisfying the conditions in the Corollary 5.8, an
IVAIF-admissible order≤O

Result: A preferred alternativeu′ ∈ U
// 1- Information fusion: Creating a

collective preference relation
for each position(i, j) ∈ U × U do

Rc
IVAIF (i, j)←
IV AIOWA[w,≤O ](R

e1
IVAIF (i, j), . . . , R

en
IVAIF (i, j));

end
// 2- Exploitation
// 2.1- Aggregate the matrix row-wise
for each rowi of Rc

IVAIF do
zi ← UIV AIOWA[w2,v2,≤O ](R

c
IVAIF (i, j)) with

j ∈ {1, . . . , n} \ {i};
end
// 2.2- Select the most preferred

alternative
u′ ← uk such thatzk is maximum;

Algorithm 2: Second algorithm for multi-expert decision
making using interval-valued Atanassov intuitionistic fuzzy
preference relations.

Note that although in Algorithm 2 the non-monotonicity of
Choquet integral is solved, it impose the order to be in the
class of≤O which is more restrictive than≤Q class.

C. Example of multi-expert decision making

Let {z1, . . . , z4} represent four alternatives on which three
experts provide their personal preferences. The preference
relations obtained for each of the experts are depicted in
Table I.

We intend to take a decision on the best possible option
using the weight vectorw = (0.3, 0.4, 0.3), which gives more
importance to the intermediate IVAIF-pair, i.e., we give more
importance to the neutral expert (neither the optimistic, nor
the pessimistic).

The collective matrix if the Lexicographic-1 order (≤Π1
) is

chosen in Algorithm 1, is given in Table II.
After exploitation phase, the global desirability values are

z1 = ([0.4299, 0.5592], [0.231 , 0.355 ]) ,

z2 = ([0.3826, 0.5162], [0.257 , 0.3448]) ,

z3 = ([0.3024, 0.4201], [0.3272, 0.4227]) , and

z4 = ([0.3551, 0.6636], [0.181 , 0.2692]) .

In this way, through the Lexicographic-1 order, the preferred
option isu1, followed byu2, u4 andu3. The question remains
open on whether other orders would yield the same decision
on the existing preferences. The algorithm has been repeated
using

• ≤Π2
as in the Example 3.3.

• ≤K generated byK1,K2,K3,K4 with k1 = k3 = 3
4 and

k2 = k4 = 1
4 .

• ≤Q with Q1, Q2, Q3, Q4 given by

Q1(x1, x1, y1, y1) =
1

4
x1 +

1

4
x1 +

1

4
y
1
+

1

4
y1 ,

Q2(x1, x1, y1, y1) =
10

20
x1 +

3

20
x1 +

3

20
y
1
+

4

20
y1 ,

Q3(x1, x1, y1, y1) =
2

10
x1 +

2

10
x1 +

3

10
y
1
+

3

10
y1 and

Q4(x1, x1, y1, y1) =
1

10
x1 +

4

10
x1 +

1

10
y
1
+

4

10
y1 .

The global desirability of the alternatives with each of the
orders is as follows:

• Order≤Π1
: z1 ≥ z2 ≥ z4 ≥ z3;

• Order≤Π2
: z4 ≥ z1 ≥ z2 ≥ z3;

• Order≤K : z1 ≥ z4 ≥ z3 ≥ z2;
• Order≤Q: z4 ≥ z1 ≥ z2 ≥ z3.

So, depending on the chosen IVAIF-admissible order Alter-
natives 1 and 4 can be depicted. If non-monotonicity of
IVAIF Choquet is affecting the result, we decide to run
Algorithm 2. Taking the order≤Π2

and the weight vectors
w2 = (0.3, 0.2, 0.5) andv2 = (0.5, 0.1, 0.4) (which satisfy the
conditions of Corollary 5.8). The final values of Unbalanced
IVAIOWA operator are

z1 =([0.4265, 0.5640], [0.1930, 0.3280]),

z2 =([0.3460, 0.4917], [0.2334, 0.3252]),

z3 =([0.3470, 0.4397], [0.2445, 0.3115]),

z4 =([0.4455, 0.6395], [0.1820, 0.2868]).

Consequently,u4 is preferred over all the other alternatives by
Algorithm 2.

VIII. C ONCLUSIONS

In this work we have analyzed the extension of OWA
operators and discrete Choquet integral to cope with IVAIFSs.
This has led to the proposal of novel definitions of IVAIOWA
operators, Unbalanced IVAIOWA operators and IVAIF Cho-
quet integrals. In the definition of these operators we have con-
sidered the possibility of choosing different weight vectors for
the membership and non-membership. We have also studied
the role of the IVAIF-admissible orders of IVAIF-pairs, more
specifically the impact of such orders in the monotonicity of
the IVAIOWA operators. For illustrative purposes, we have
presented examples of application in the context of multi-
expert decision making, considering two different algorithms
in which the novel operators can take a relevant role.

ACKNOWLEDGMENT

This work has been partially supported by the project
TIN2013-40765-P(Spain); the Research Services of the Uni-
versidad Publica de Navarra; the project APVV-14-0013;
and the Brazilian funding agency CNPq under the Processes
406503/2013-3 and 307681/2012-2.



11

Re1
IV AIF =









− [0.38, 0.38], [0.57, 0.62] [0.64, 0.68], [0.24, 0.3] [0.49, 0.71], [0.14, 0.22]
[0.3, 1], [0, 0] − [0.11, 0.23], [0.64, 0.68] [0.2, 0.3], [0, 0.05]

[0, 0.1], [0.6, 0.68] [0.16, 0.27], [0.3, 0.55] − [0.6, 0.62], [0, 0.1]
[0.28, 0.76], [0.22, 0.22] [1, 1], [0, 0] [0.07, 0.29], [0.6, 0.71] −









Re2
IV AIF =









− [0.3, 0.46], [0, 0.5] [0.1, 0.43], [0.5, 0.57] [0.86, 0.92], [0, 0.05]
[0.9, 0.9], [0, 0.1] − [0.14, 0.36], [0.2, 0.6] [0.6, 0.67], [0.1, 0.21]
[0, 0.1], [0.3, 0.4] [0.16, 0.27], [0.7, 0.73] − [0.4, 0.5], [0.5, 0.5]

[0.61, 0.76], [0, 0.11] [0.5, 0.6], [0.2, 0.4] [0.22, 0.76], [0.1, 0.18] −









Re3
IV AIF =









− [0.4, 0.6], [0, 0] [0.71, 0.83], [0, 0.1] [0.15, 0.3], [0.48, 0.6]
[0.9, 0.9], [0, 0] − [0.1, 0.15], [0.7, 0.84] [0.3, 0.4], [0.5, 0.52]

[0.8, 0.84], [0.06, 0.1] [0.26, 0.6], [0.31, 0.4] − [0.9, 0.95], [0, 0.02]
[0.12, 0.46], [0, 0.3] [0.2, 0.23], [0.7, 0.74] [0.74, 0.93], [0, 0] −









TABLE I
PREFERENCES RELATIONS GIVEN BY THE THREE EXPERTS

R
c
IV AIF =







− [0.362, 0.47], [0.228, 0.398] [0.499, 0.65], [0.246, 0.321] [0.499, 0.65], [0.2, 0.283]
[0.72, 0.93], [0, 0.04] − [0.116, 0.245], [0.526, 0.704] [0.36, 0.451], [0.23, 0.286]

[0.24, 0.322], [0.318, 0.394] [0.19, 0.369], [0.423, 0.559] − [0.63, 0.683], [0.15, 0.196]
[0.331, 0.67], [0.088, 0.211] [0.56, 0.609], [0.29, 0.382] [0.331, 0.67], [0.22, 0.285] −






.

TABLE II
COLLECTIVE PREFERENCE RELATION USING LEXICOGRAPHIC-1 ORDER FOR FUSING THE INFORMATION.
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