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 

Abstract— Classification techniques are becoming essential in the 

financial world for reducing risks and possible disasters. 

Managers are interested in not only high accuracy but also in 

interpretability and transparency. It is widely accepted now that 

the comprehension of how inputs and output are related to each 

other is crucial for taking operative and strategic decisions. 

Furthermore, inputs are often affected by contextual factors and 

characterized by a high level of uncertainty. In addition, financial 

data are usually highly skewed towards the majority class. With 

the aim of achieving high accuracies, preserving the 

interpretability and managing uncertain and unbalanced data, 

the paper presents a novel method to deal with financial data 

classification by adopting type-2 fuzzy rule-based classifiers 

(FRBCs) generated from data by a multi-objective evolutionary 

algorithm (MOEA). The classifiers employ an approach, denoted 

as scaled dominance, for defining rule weights in such a way to 

help minority classes to be correctly classified. In particular, we 

have extended PAES-RCS, an MOEA-based approach to learn 

concurrently the rule and data bases of FRBCs, for managing 

both interval type-2 fuzzy sets and unbalanced datasets. To the 

best of our knowledge, this is the first work that generates type-2 

FRBCs by concurrently maximizing accuracy and minimizing 

the number of rules and the rule length with the objective of 

producing interpretable models of real-world skewed and 

incomplete financial datasets. The rule bases are generated by 

exploiting a rule and condition selection (RCS) approach, which 

selects a reduced number of rules from a heuristically generated 

rule base and a reduced number of conditions for each selected 

rule during the evolutionary process. The weight associated with 

each rule is scaled by the scaled dominance approach on the 

fuzzy frequency of the output class, in order to give a higher 

weight to the minority class. As regards the data base learning, 

the membership function parameters of the interval type-2 fuzzy 

sets used in the rules are learned concurrently to the application 

of RCS. Unbalanced datasets are managed by using, in addition 

to complexity, selectivity and specificity as objectives of the 

MOEA rather than only the classification rate. We tested our 

approach, named IT2-PAES-RCS, on eleven financial datasets 

and compared our results with the ones obtained by the original 
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PAES-RCS with three objectives and with and without scaled 

dominance, the fuzzy rule-based classifiers FARC-HD and 

FURIA, the classical C4.5 decision tree algorithm and its cost-

sensitive version. Using non-parametric statistical tests, we will 

show that IT2-PAES-RCS generates FRBCs with, on average, 

accuracy statistically comparable to and complexity lower than 

the ones generated by the two versions of the original PAES-

RCS. Further, the FRBCs generated by FARC-HD and FURIA 

and the decision trees computed by C4.5 and its cost-sensitive 

version, despite the highest complexity, result to be less accurate 

than the FRBCs generated by IT2-PAES-RCS. Finally, we will 

highlight how these FRBCs are easily interpretable by showing 

and discussing one of them. 
 

Index Terms—type-2 fuzzy rule-based classifiers, multi-

objective evolutionary fuzzy systems, financial datasets, 

unbalanced datasets. 

 

I. INTRODUCTION 

HE financial crisis of 2008 demonstrated that lack of 

good information can lead to disasters. Financial services 

organizations, customers, and particularly regulators quickly 

came to understand that clear and relevant information was 

key to risk reduction. Therefore, we are now witnessing 

ongoing efforts by regulators to ensure that firms operating in 

financial services generate comprehensive and comprehensible 

information. Superficially, the demands of regulators look 

burdensome. In reality, however, they provide an opportunity 

for organizations to improve their strategic and operational 

activities through risk reduction based on well-managed 

information [1].  

Machine learning in financial applications differs from 

other domains in how the quality of a model is assessed. 

Whereas in most applications, “accuracy of prediction” is 

often the only metric used, in financial applications, 

interpretability and transparency are also important and 

sometimes a requirement. Within financial applications, the 

accuracy of the model is not the only crucial issue. There is a 

growing interest in having high levels of model transparency, 

which is the ability to provide a clear and understandable 

explanation of the output result. If advanced analytical 

techniques are used, there is now an obligation to manage the 

whole process of creating and using the resulting models. It is 

no longer enough to create a model, deploy it into production 

and leave it unattended without any oversight. A set of 
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capabilities and processes are required to ensure that every 

aspect of model creation, deployment and performance is well 

understood, managed and documented. This implies additional 

technology infrastructure and methods, since in large firms the 

number of models in use might be measured in the thousands. 

This represents a significant shift to much greater 

sophistication [1]. Another reason why it is important that we 

can understand models is trust. A system that can explain why 

a certain decision was taken is more trustworthy in the eyes of 

a layman user. This need for transparency is reflected in 

legislation that forces financial institutions to disclose the 

reasoning behind their financial decisions and models. Left 

unchecked, inevitably there will be rogue models that cause 

financial harm and breach regulatory requirements [2]. 

Furthermore, transparency of a model is important because it 

allows users to understand data association by observing why 

a specific decision has been taken. This process helps users to 

drill-down into their data, understand it, and extract some 

useful knowledge that could be a competitive advantage in the 

market. Ultimately, a transparent model can become not only a 

tool for foresight and prediction but also for analysis and 

domain knowledge extraction. As it is often the case, 

managers in finance face two conflicting demands. On the one 

hand, they need to employ ever more powerful analytical 

techniques to remain competitive, while, on the other hand, 

the models they use must be transparent and relatively easy to 

explain ([1]-[3]). 

Neural networks, Bayesian networks, support vector 

machines are all considered “black box”. This adjective is 

applied to systems that, for a given input, are able to output a 

class label, but without providing a clear explanation of the 

decision process. Logistic regression can provide some 

statistic correlations between the inputs and the output, but 

this is not enough to understand why, for a given input, a 

given label was chosen, or to gain a deep insight of either the 

model or the data. On the other hand, “white box” models 

usually refer to rule-based systems that are able to provide an 

insight of the data on which the models have been trained, and 

an explanation of the decision process through their rules. 

Decision trees can translate their internal state into a set of 

rules and, like any other rule-based system, are able to provide 

transparency. Nevertheless in complex real world applications, 

such as in the financial domain, the number of generated rules 

can explode. It is debatable that a rule base containing 

thousands of rules can be considered an understandable and 

transparent model. Decision trees [4]-[6] and random forests 

[7] produce associations among sets of data, which are 

selected to optimize the classification problem. Thus, the 

produced associations could be meaningless in the context of 

profiling and knowledge extraction.  

Fuzzy logic extends the concepts of association rule 

learning by extending the rule antecedent sets to fuzzy 

concepts. This technique, in conjunction with genetic and 

evolutionary algorithms, is a powerful approach for creating 

accurate and interpretable models. Studies such as [8]-[11] 

have shown that accuracy and interpretability are in a trade-off 

and it is necessary to sacrifice one in order to increase the 

other. It is difficult to define to which extent accuracy or 

interpretability can be sacrificed in order to gain in the other. 

Usually different applications and specific situations have 

different requirements. Multi-objective genetic algorithms are 

able to provide an evolution through the two competitive 

objectives: accuracy and interpretability [12] [13]. Such 

evolutionary algorithms generate a set of solutions, also 

known as Pareto front, that optimize both objectives at 

different levels. This feature gives the ability to easily identify 

the desired level of complexity/accuracy for the specific 

application. However, the vast majority of fuzzy systems 

employ the type-1 fuzzy sets, which cannot directly handle the 

high levels of uncertainty present in financial applications. 

Indeed, type-1 fuzzy sets are crisp and precise (i.e., their 

membership functions are supposed to be perfectly known) 

and do not allow for any uncertainty about membership 

values, which is a liability for their use. A type-2 fuzzy set is 

characterized by a fuzzy membership function, i.e., the 

membership value for each element of this set is itself a fuzzy 

set defined on the universe [0,1] [14]. The membership 

functions of the type-2 fuzzy sets are three-dimensional and 

include a footprint of uncertainty. The third dimension and the 

footprint of uncertainty provide additional degrees of freedom 

that make it possible to directly model and handle the high 

level of uncertainty affecting the inputs in financial 

applications. In addition, it should be noted that using type-2 

fuzzy sets to represent the system inputs can result in 

reduction of the fuzzy classifier rule base and complexity (as it 

will be shown in Section IV) when compared to using type-1 

fuzzy sets. Indeed, the footprint of uncertainty, which 

characterizes the type-2 fuzzy sets, lets us cover the same 

range as type-1 fuzzy sets with a smaller number of labels: of 

course, the rule reduction will be greater when the number of 

inputs increases [14].  

Previous works have already employed type-2 fuzzy 

classifiers in financial domain [15]-[17] and have shown how 

these systems outperform their type-1 versions and other state 

of the art classifiers. However, to date most of the type-2 

fuzzy systems reported in the literature have been generated 

from data by optimizing only the accuracy, while neglecting 

the complexity [17]-[23]. This aspect is of major importance 

to the financial domain since offering compact fuzzy 

classifiers with the same accuracy as their counterparts will 

help to realize transparent and easy to understand models, 

which are becoming essential requirements especially after the 

recent economic crisis.  

In financial applications, as in many real-world problems, 

the data presents challenges that are not often found in 

traditional academic datasets. Some of these are: size, noise, 

sparsity and uncertainty. Furthermore, in the vast majority of 

financial applications, data is highly unbalanced [24]. For 

example, in credit card applications the number of good 

customers is much higher than that of bad customers, and in 

fraud detection the majority of the data is normal transactions 

with only a few fraudulent transactions. Most classifiers 

designed for minimizing the global error rate perform poorly 

on unbalanced datasets, because they misclassify most of the 
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data belonging to the class with few examples. To tackle this 

problem, pre-processing techniques like under-sampling or 

over-sampling are usually applied, but both of them present 

problems. On the one hand, under-sampling techniques may 

increment the noise since they could eliminate some important 

patterns. On the other hand, over-sampling techniques may 

add noise for the original input data or violate the inherent 

geometrical structure of the minority and majority classes. 

Hence, in financial applications it is not desirable to pre-

process or sample the data as this could cause problems. Thus, 

there is a need for predictive analytics techniques that can 

handle unbalanced financial data sets to give accurate and 

interpretable financial models. 

In this paper, with the aim of dealing with uncertain and 

unbalanced data, and generating accurate and interpretable 

classifiers, we employ PAES-RCS [25][26], an MOEA-based 

approach to learn concurrently the rule and data bases of fuzzy 

rule-based classifiers (FRBCs). In PAES-RCS, the learning 

process is performed by selecting a set of rules from an initial 

rule base and a set of conditions for each selected rule. This 

scheme is denoted as rule and condition selection (RCS). 

During the multi-objective evolutionary process, PAES-RCS 

generates the rule bases of the classifiers by using the RCS 

approach and concurrently learns the membership function 

parameters of the linguistic values used in the rules. The 

original PAES-RCS is extended so as to manage interval type-

2 (IT2) fuzzy sets and unbalanced datasets. We denote this 

extension as IT2-PAES-RCS in the following. We modified 

both the inference mechanism and the evolutionary process for 

coping with the IT2 fuzzy sets. Further, we adopted three 

objectives, namely false positive rate (FPR), true positive rate 

(TPR) and complexity. In our previous works [27], we have 

verified that the use of FPR and TPR as objectives of the 

evolutionary optimization process has proved to be very 

effective in managing unbalanced datasets. Indeed, one of the 

main strengths of IT2-PAES-RCS is that it can be applied to 

unbalanced datasets without any rebalancing.  

We tested IT2-PAES-RCS on eleven financial datasets and 

compared the results with the ones obtained by the original 

PAES-RCS, employing FPR and TPR as objectives, with 

(PAES-RCS-SD) and without scaled dominance, the fuzzy 

rule-based classifiers FARC-HD [28] and FURIA [29], the 

classical C4.5 decision tree algorithm [30] and its cost-

sensitive version (C4.5-CS) [31]. Using non-parametric 

statistical tests, we will show that IT2-PAES-RCS generates 

FRBCs with accuracy statistically comparable to the ones 

generated by PAES-RCS and PAES-RCS-SD, employing a 

lower number of rules and a lower number of conditions in the 

antecedent of the rules. The FRBCs generated by IT2-PAES-

RCS results therefore to be less complex and more 

interpretable. Further, the FRBCs generated by FARC-HD and 

FURIA, and the decision trees computed by C4.5 and its cost-

sensitive version, despite the lowest interpretability, result to 

be less accurate than the solutions generated by IT2-PAES-

RCS. 

The paper is organized as follows. In Section II, we provide 

a basic description of FRBCs based on IT2 fuzzy sets and 

introduce some notations. Section III shows the proposed 

MOEA-based learning approach and includes the details of the 

initial rule base generation technique, of the chromosome 

coding and mating operators, and of the adopted MOEA. In 

Section IV, we illustrate the experimental results and in 

Section V we draw some final conclusion. 

II. INTERVAL TYPE-2 FUZZY RULE-BASED CLASSIFIER 

Object classification consists of assigning a class Cj from a 

predefined set {C1, …, CK} of classes to an object. Each object 

is considered as an F-dimensional point in a feature space ℜF. 

Let X = {X1, …, XF} be the set of features and Uf, f = 1,…, F, 

be the universe of the f-th feature. Let 𝑃̃f = {𝐴̃𝑓,1, , … , 𝐴̃𝑓,𝑇𝑓
}, 

𝑓 = 1, … 𝐹, be a fuzzy partition with Tf  IT2 fuzzy sets of the 

universe Uf. We recall that an IT2 fuzzy set 𝐴̃  is characterized 

by a fuzzy membership function 𝜇𝐴(𝑥), that is, the 

membership value for each element of this set is a fuzzy set 

[32]. The membership functions of IT2 fuzzy sets include a 

footprint of uncertainty, which provides additional degrees of 

freedom that make it possible to directly model and handle 

uncertainties. In the IT2 fuzzy sets, all the third dimension 

values are equal to one. More formally, the membership 

function 𝜇𝐴̃(𝑥) of an IT2 fuzzy set 𝐴̃ is defined as: 
 

𝜇𝐴(𝑥) = ∫ [∫ 1/𝑢
𝑢∈[𝜇𝐴̃(𝑥),𝜇̅𝐴̃(𝑥) ]

]
𝑥∈𝑋

/𝑥 (1) 

 

where 𝜇̅𝐴(𝑥) and   𝜇𝐴(𝑥) represent, respectively, the upper and 

lower membership functions of the IT2 fuzzy set 𝐴̃. In this 

paper, we use triangular membership functions defined by 

three points (a,b,c), where a and c correspond to the endpoints 

of the support and b to the core. We build the IT2 fuzzy sets 

by using the following procedure. First, we define the upper 

triangular membership functions 𝜇̅𝐴̃(𝑥) through the three 

points (𝑎̅𝑓,𝑗  , 𝑏̅𝑓,𝑗 , 𝑐𝑓̅,𝑗). Then, the left endpoints 𝑎𝑓,𝑗 of the 

supports of the lower membership functions 𝜇𝐴𝑓
(𝑥)  are 

computed as midpoints 
𝑎̅𝑓,𝑗+𝑏̅𝑓,𝑗

2
  between the left endpoints 

𝑎̅𝑓,𝑗   of the supports of the upper membership functions 

𝜇̅𝐴𝑓
(𝑥) and their cores 𝑏̅𝑓,𝑗  . Similarly, the right endpoints 𝑐𝑓,𝑗  

of the supports of the lower membership functions 𝜇𝐴𝑓
(𝑥) 

correspond to the mid-points 
𝑏̅𝑓,𝑗+𝑐𝑓̅,𝑗

2
 between the right 

endpoints 𝑐𝑓̅,𝑗 of the supports of the upper membership 

functions 𝜇̅𝐴𝑓
(𝑥) and the cores 𝑏̅𝑓,𝑗. It follows that 𝑎𝑓,𝑗  =

 𝑐𝑓,𝑗−1, for 𝑗 = 2, … , 𝑇𝑓. The cores 𝑏𝑓,𝑗 coincide with the cores 

𝑏̅𝑓,𝑗. Fig. 1 shows an example of IT2 fuzzy partition with Tf  = 

5. Here, the upper membership functions (thick lines) are 

obtained by defining a uniform Ruspini partition with 

triangular membership functions on the universe Uf.  

The m-th rule Rm (m=1, ..., M) of an IT2 FRBC is typically 

expressed as: 

Rm: IF X1 is 𝐴̃1,𝑗𝑚,1
 and … and XF is 𝐴̃𝐹,𝑗𝑚,𝐹

  (2) 

 THEN Y is 𝐶𝑗𝑚
 with RWm 

where Y is the classifier output, 𝐶𝑗𝑚
 is the class label 
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associated with the m-th rule, 𝑗𝑚,𝑓 ∈ [1, 𝑇𝑓]  identifies the 

index of the IT2 fuzzy set (among the Tf IT2 fuzzy sets of the 

partition 𝑃̃f ), which has been selected for Xf in rule Rm, and 

RWm is the rule weight, i.e., a certainty degree of the 

classification in the class 𝐶𝑗𝑚
 for a pattern that fires the 

antecedent of the rule.  

Let T = {(𝒙1, 𝑦1), … , (𝒙𝑁 , 𝑦𝑁)} be a training set composed 

of N input-output (𝒙𝑡 , 𝑦𝑡) pairs, with 𝒙𝑡 = [𝑥𝑡,1, … , 𝑥𝑡,𝐹] ∈  ℜ𝐹  

and 𝑦𝑡  ∈ {𝐶1, … , 𝐶𝐾}. The strength of activation 𝑤𝑚(𝒙𝑡) 

(matching degree of the rule with the input) of the rule Rm is 

calculated as: 

 

𝑤𝑚(𝒙𝑡) =
𝑤𝑚(𝒙𝑡)+𝑤𝑚(𝒙𝑡)

2
 (3) 

 

where 𝑤𝑚(𝒙𝑡) = ∏ 𝜇𝐴̃𝑓
(𝑥𝑡,𝑓)𝐹

𝑓=1  and 𝑤𝑚(𝒙𝑡) =

∏ 𝜇̅𝐴𝑓
(𝑥𝑡,𝑓)𝐹

𝑓=1  are the lower and upper bounds of the strength 

of activation computed, respectively, on the lower and upper 

membership functions. To take the “don’t care” condition into 

account, a particular IT2 fuzzy set 𝐴̃𝑓,0 (f = 1,…, F) is added 

to all the F partitions 𝑃̃f. This fuzzy set is characterized by 

both the lower and upper membership functions equal to 1 on 

the overall universe. This means that the condition Xf is 𝐴̃𝑓,0 

does not affect the computation of the strength of activation. 

In other words, for the specific rule, the variable Xf is not 

taken into account and therefore can be removed. The terms 

𝐴̃𝑓,0, therefore, allow generating rules, which contain only a 

subset of the input variables, thus reducing the total rule length 

and consequently increasing the interpretability of the rules. 

 

 
Fig. 1. An example of IT2 fuzzy partitions with Tf = 5 IT2 fuzzy sets (the 

thick and thin lines represent the upper and lower membership functions, 

respectively). 

 

As we have pointed out in Section I, financial data is 

usually highly unbalanced. To give minority class a fair 

chance when competing with majority class, we adopted a 

new approach to calculate the rule weight that takes the fuzzy 

frequency of the class into account. The approach is called 

“scaled dominance”, and has been introduced in [33]-[35]. In 

the literature, fuzzy rule weights are traditionally calculated as 

fuzzy extension of the confidence and support. Confidence 

and support are data mining metrics used in association rule 

learning. These metrics, in fuzzy rule-based systems, are 

extended by using fuzzy strength instead of crisp counting of 

the item-sets. The confidence and support extensions used in 

this paper exploit a scaled version 𝑤𝑚
𝑠  of the matching degree. 

For a given rule Rm, having a consequent class 𝐶𝑗𝑚
, we scale 

the matching degree of the rule by dividing the upper and 

lower bounds of the strengths of activation by the sum of, 

respectively, the upper 𝑤𝑙(𝒙𝑡) and lower 𝑤𝑙(𝒙𝑡) bounds of the 

strengths of activation of all the rules Rl, which have 𝐶𝑗𝑚
 as 

the consequent class. The scaled upper and lower bounds are 

therefore computed as follows: 

 

𝑤𝑚
𝑠 (𝒙𝑡) =

𝑤𝑚(𝒙𝑡)

∑ 𝑤𝑙(𝒙𝑡)𝑙,𝑜𝑢𝑡= 𝐶𝑗𝑚

 (4) 

 

𝑤𝑚
𝑠 (𝒙𝑡) =

𝑤𝑚(𝒙𝑡)

∑ 𝑤 𝑙𝑙,𝑜𝑢𝑡= 𝐶𝑗𝑚
(𝒙𝑡)

. (5) 

 
In IT2 fuzzy rule-based systems, confidence and support of 

a rule are determined from the strength of activation and, 

therefore, defined by upper and lower bounds. From equations 

(4) and (5), we derive the following scaled upper and lower 

bounds of the confidence: 

 

𝑐𝑚̅
𝑠 (𝐴𝑛𝑡𝑚 ⇒ 𝐶𝑗𝑚

) =
∑ 𝑤𝑚

𝑠
(𝒙𝑡)𝑥𝑡∈𝐶𝑗𝑚

∑ 𝑤𝑚
𝑠

(𝒙𝑡)𝑀
𝑚=1

 (6) 

 

𝑐𝑚
𝑠 (𝐴𝑛𝑡𝑚 ⇒ 𝐶𝑗𝑚

) =
∑ 𝑤𝑚

𝑠 (𝒙𝑡)𝑥𝑡∈𝐶𝑗𝑚

∑ 𝑤𝑚
𝑠 (𝒙𝑡)𝑀

𝑚=1
 (7) 

 
where M is the number of rules in the rule base and Antm is the 

antecedent of Rm. The confidence can be viewed as a 

numerical approximation of the conditional probability 

𝑃(𝐶𝑗𝑚
|𝐴𝑛𝑡𝑚). The scaled upper and lower bounds of the 

support are defined as: 

 

𝑠̅𝑚
𝑠 (𝐴𝑛𝑡𝑚 ⇒ 𝐶𝑗𝑚

) =
∑ 𝑤𝑚

𝑠
(𝒙𝑡)𝑥𝑡∈𝐶𝑗𝑚

𝑀
 (8) 

 

𝑠𝑚
𝑠 (𝐴𝑛𝑡𝑚 ⇒ 𝐶𝑗𝑚

) =
∑ 𝑤𝑚

𝑠 (𝒙𝑡)𝑥𝑡∈𝐶𝑗𝑚

𝑀
. (9) 

 
The support can be viewed as a measure of the coverage of 

training patterns performed by Rm.  

The rule weight is then calculated as product of the scaled 

confidence and support. It follows that the rule weight RWm in 

(2) becomes a closed interval bounded by the upper 𝑅𝑊̅̅ ̅̅
𝑚̅ and 

𝑅𝑊𝑚 endpoints, calculated as: 

 

𝑅𝑊̅̅ ̅̅
𝑚̅ =  𝑐𝑚̅

𝑠  ∙ 𝑠̅𝑚
𝑠  (10) 

 
𝑅𝑊 𝑚 = 𝑐 𝑚

𝑠 ∙ 𝑠 𝑚
𝑠  (11) 

 
The association degree with the class 𝐶𝑗𝑚

 will be, in its 

turn, a closed interval bounded by the upper ℎ̅𝑚(𝒙𝑡) and lower 

ℎ 𝑚(𝒙𝑡) endpoints, which are computed as follows: 
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ℎ̅𝑚(𝒙𝑡) = 𝑤𝑚
𝑠 (𝒙𝑡) ∙ 𝑅𝑊̅̅ ̅̅

𝑚̅ = 𝑤𝑚
𝑠 (𝒙𝑡) ∙

∑ 𝑤𝑚
𝑠

(𝒙𝑡)𝑥𝑡∈𝐶𝑗𝑚

∑ 𝑤𝑚
𝑠

(𝒙𝑡)𝑀
𝑚=1

∙

∑ 𝑤𝑚
𝑠

(𝒙𝑡)𝑥𝑡∈𝐶𝑗𝑚

𝑀
=

𝑤𝑚
𝑠

(𝒙𝑡)

𝑀
∙

(∑ 𝑤𝑚
𝑠

(𝒙𝑡)𝑥𝑡∈𝐶𝑗𝑚
)

2

∑ 𝑤𝑚
𝑠

(𝒙𝑡)𝑀
𝑚=1

 (12) 

 

ℎ 𝑚(𝒙𝑡) =  𝑤𝑚
𝑠 (𝒙𝑡) ∙ 𝑅𝑊𝑚 = 𝑤𝑚

𝑠 (𝒙𝑡) ∙
∑ 𝑤𝑚

𝑠 (𝒙𝑡)𝑥𝑡∈𝐶𝑗𝑚

∑ 𝑤𝑚
𝑠 (𝒙𝑡)𝑀

𝑚=1
∙

∑ 𝑤𝑚
𝑠 (𝒙𝑡)𝑥𝑡∈𝐶𝑗𝑚

𝑀
=

𝑤𝑚
𝑠 (𝒙𝑡)

𝑀
∙

(∑ 𝑤𝑚
𝑠 (𝒙𝑡)𝑥𝑡∈𝐶𝑗𝑚

)
2

∑ 𝑤𝑚
𝑠 (𝒙𝑡)𝑀

𝑚=1
. (13) 

 

We adopt the maximum matching method as reasoning 

method: an input pattern is classified into the class 

corresponding to the rule with the maximum association 

degree calculated for the pattern. In the case of tie, we 

randomly classify the pattern. The association degree for rule 

Rm is computed as: 

 

ℎ𝑚(𝒙𝑡) =
ℎ̅𝑚(𝒙𝑡)+ℎ 𝑚(𝒙𝑡)

2
 (14) 

 

Once fixed the number Tf of IT2 fuzzy sets for each 

linguistic variable, we adopt an MOEA-based approach to 

learn rules and membership function parameters so as to 

generate a set of IT2 FRBCs with different trade-offs between 

accuracy and rule base complexity.  

III. THE PROPOSED THREE OBJECTIVE EVOLUTIONARY 

OPTIMIZATION OF IT2 FUZZY RULE-BASED CLASSIFIERS 

MOEAs have been applied in several different domains to 

search for optimal solutions to problems characterized by 

multiple performance criteria in competition with each other 

[36]. MOEAs do not generate a unique solution, but rather a set 

of equally valid solutions, where each solution tends to fulfill a 

criterion to a higher extent than another. Comparison between 

different solutions is performed by using the notion of Pareto 

dominance. A solution x, associated with a performance vector 

u, dominates a solution y, associated with a performance vector 

v, if and only if, ∀ 𝑖 ∈ {1, …, I}, with I the number of criteria, 

ui performs better than, or equal to, vi and  ∃𝑖 ∈ {1, …, I}, such 

that ui performs better than vi, where ui and vi are the i-th 

elements of vectors u and v, respectively. The set of solutions, 

which are not dominated by any other possible solution, is 

denoted as Pareto front. The objective of any MOEA is, 

therefore, to search for a set of solutions that are a good 

approximation of the Pareto front. In the last years, in 

designing fuzzy rule-based systems, developers have not only 

considered accuracy, but also interpretability as a crucial 

requirement. Since accuracy and interpretability are objectives 

in competition with each other, MOEAs have been so 

extensively applied that the term multi-objective evolutionary 

fuzzy system has been coined to identify fuzzy rule-based 

systems generated by MOEAs [12] [13] [37] [38]. While the 

accuracy objective has been typically measured in terms of 

classification rate and approximation error for, respectively, 

classification and regression problems, a number of specific 

measures have been proposed for evaluating the 

interpretability, taking the rule base complexity and the data 

base integrity into account [39] [40]. A large number of 

contributions have been recently published under the 

framework of multi-objective evolutionary fuzzy systems, with 

application mostly to regression [41]-[51] and classification 

[52]-[58] problems. Recently, some taxonomies of the main 

contributions have been also introduced in [12] [13]. 

In this paper, we extend PAES-RCS, a multi-objective 

evolutionary fuzzy system that has been recently proposed by 

some of the authors of this paper in [25][26]. PAES-RCS has 

proved to be very effective and efficient in classification 

problems [26]. The original PAES-RCS learns concurrently the 

rule and data bases of type-1 FRBCs by exploiting the RCS 

approach, which selects a reduced number of rules from a 

heuristically generated rule base and a reduced number of 

conditions for each selected rule during the evolutionary 

process. Thus, RCS can be considered a sort of rule learning in 

a search space constrained by the heuristically generated rule 

base. The membership function parameters of the type-1 fuzzy 

sets are learned concurrently to the application of RCS. This 

requires an appropriate chromosome coding and properly 

defined mating operators. In particular, chromosome C consists 

of two parts (CRB, CDB), which define the rule base and the 

membership function parameters of the input variables, 

respectively. Both crossover and mutation operators are applied 

to each part of the chromosome independently. The objectives 

used in PAES-RCS are classification rates and complexity 

measured in terms of the total number of antecedent conditions 

of the rules in the rule base.  

In this paper, we extend PAES-RCS along three directions. 

First of all, we employ IT2 fuzzy sets rather than type-1 fuzzy 

sets. This has required the adoption of a different inference 

mechanism. Second, in order to cope with unbalanced datasets, 

we split the accuracy into two objectives, namely True Positive 

Rate (TPR) and False Positive Rate (FPR). We recall that TPR 

and FPR coincide, respectively, with the sensitivity and the 

complement to 1 of the specificity. As experimented in [27] 

and [37] using rule learning, this approach allows achieving 

high accuracies when dealing with unbalanced datasets without 

needing to re-balance the dataset. Third, we use an approach 

denoted as scaled dominance, which was introduced in [33]-

[35], to handle unbalanced data by trying to give minority 

classes a fair chance when competing with a majority class. 

This improvement further contributes to manage unbalanced 

data. 

In the following subsections, we will discuss the method to 

generate the initial rule base and summarize the RCS approach 

and the membership function parameter learning used in IT2-

PAES-RCS.  

 

A. The initial rule base generation 

We generate the initial rule base by first transforming each 

continuous variable into a categorical and ordered variable. 

Then, we apply the well-known C4.5 algorithm to the 

transformed dataset for generating a decision tree. Finally, we 

extract the initial rule base from the decision tree. 
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More precisely, for each continuous variable Xf, first we 

generate an IT2 fuzzy partition 𝑃̃f = {𝐴̃𝑓,1, , … , 𝐴̃𝑓,𝑇𝑓
} of Tf  IT2 

fuzzy sets as shown in Fig. 1. The number Tf  of IT2 fuzzy sets 

can be different from an input variable to another. For the sake 

of simplicity, in our experiments, we have used the same 

number of IT2 fuzzy sets for all the variables Xf. Then, we 

compute the α-cut, with α=0.5, of the fuzzy sets defined by the 

upper membership functions 𝜇̅𝐴𝑓,𝑗
 of the IT2 fuzzy sets 𝐴̃𝑓,𝑗, 

j=1,…, Tf. The corresponding contiguous intervals, shown in 

Fig. 2, are used to discretize the universe Uf of each variable Xf 

before applying the C4.5 algorithm. For simplicity, we will 

denote the intervals with the index of the corresponding IT2 

fuzzy set, which the α-cut is applied to. For instance, interval 1 

denotes the interval corresponding to the α-cut of the fuzzy set 

defined by 𝜇̅𝐴𝑓,1
. Then, each input value of the input-output 

pairs in the training set is replaced by the interval, which 

contains it. Thus, the overall training set is transformed so as to 

contain exclusively categorical values. Finally, we apply the 

classical C4.5 algorithm to the transformed training set. We 

extract the initial rule base from the decision tree generated by 

the C4.5 algorithm. Rules are extracted from each path from 

the root to a leaf node. Each splitting criterion along a given 

path is logically ANDed to form the rule antecedent (“IF” 

part). The leaf node holds the class prediction, forming the rule 

consequent (“THEN” part). Since each branch is identified by 

one of the intervals determined by the discretization process 

and an input variable is involved in just one node in a path, the 

rules extracted from the decision tree are expressed as in (2). 

Each rule is identified by an integer from 1 to MC45, where 

MC45 is the number of rules extracted from the tree and 

included in the initial rule base. 

 

 
 

Fig. 2. Discretization of the universe Uf  based on an IT2 fuzzy partition (the 

thick and thin lines represent the upper and lower membership functions, 

respectively; the dashed lines denote the boundaries of the intervals generated 

by the α-cut). 

 

Figure 3 shows an example of a decision tree generated by 

the C4.5 algorithm from a training set characterized by six 

input variables and two classes (C1, C2). Each input variable Xf 

, f = 1,…, 6, has been partitioned with Tf = 5 fuzzy sets. We 

observe that only three out of the six original input variables 

are included in the decision tree. This is due to the well-known 

characteristic of the C4.5 algorithm that can select features 

during the generation of the tree. Figure 4 shows the rule base 

extracted from the decision tree of Figure 3. We note that the 

rule base consists of thirteen rules, which correspond to the 

thirteen possible paths from the root to the leaf nodes.  

 

 
 
Figure 3. An example of decision tree generated by the C4.5 algorithm applied 

to the transformed training set. 

 

R1: IF 4X  is 1,4A  and 1X  is 1,1A  THEN Y is 2C  

R2: IF 4X  is 1,4A  and 1X  is 2,1A  THEN Y is 1C  

R3: IF 4X  is 1,4A  and 1X
 
is 3,1A  THEN Y is 1C  

R4: IF 4X  is 1,4A  and 1X  is 4,1A  THEN Y is 2C  

R5: IF 4X  is 1,4A  and 1X  is 5,1A  THEN Y is 1C  

R6: IF 4X is 2,4A  THEN Y is 2C  

R7: IF 4X is 3,4A  THEN Y is 2C  

R8: IF 4X is 4,4A  THEN Y is 1C  

R9: IF 4X  is 5,4A  and 2X  is 1,2A  THEN Y is 1C  

R10: IF 4X  is 5,4A  and 2X  is 2,2A  THEN Y is 1C  

R11: IF 4X  is 5,4A  and 2X  is 3,2A  THEN Y is 2C  

R12: IF 4X  is 5,4A  and 2X  is 4,2A  THEN Y is 2C  

R13: IF 4X  is 5,4A  and 2X  is 5,2A  THEN Y is 2C  

Figure 4. The fuzzy rule base extracted from the decision tree shown in Fig. 3. 

 

B. Rule and condition selection 

The CRB part of the chromosome is a vector of Mmax pairs pm 

= (km,vm), where km identifies the index of the rule in the set of 

MC45 rules extracted from the decision tree, and vm = [vm,1, …, 

vm,F] is a binary vector, which indicates, for each condition in 

the rule, if the condition is present (vm,f = 1) or corresponds to a 

“don’t care” (vm,f = 0). Rule bases generated by the C4.5 

algorithm could include a high number of rules, especially 

when dealing with large and high dimensional training sets. 

With the aim of obtaining compact and interpretable FRBCs, 

we have set an upper bound Mmax to the number of rules that 

can be contained in any rule base generated during the 

evolutionary process. In the experiments, we have set Mmax = 

50. In our previous works [26], we have verified that this value 

permits us to generate FRBCs with reasonable accuracy, 
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maintaining the complexity at an adequate level. Let MC45 be 

the number of rules extracted from the decision tree. If MC45 < 

Mmax, then Mmax = MC45. During the evolutionary process, the 

MOEA can generate rule bases, which contain a number of 

rules lower than Mmax. Indeed, if km = 0, then the mth rule is not 

included in the rule base. Further, the number of conditions can 

be lower than the number F of features. Indeed, if vm,f = 0, then 

the f th condition of the mth rule is replaced by a “don’t care” 

condition and, therefore, is not considered in the inference 

process. Whenever a condition selection is performed on the 

rule, the rule weight associated with the rule is re-computed. 

As an example, given a two input fuzzy model, let us assume 

that the C4.5 algorithm has generated the following four rules: 

 

R1: IF X1 is 𝐴̃1,1 and X2 is 𝐴̃2,1 THEN Y is 𝐶1 

R2: IF X1 is 𝐴̃1,2 and X2 is 𝐴̃2,2 THEN Y is 𝐶2 

R3: IF X1 is 𝐴̃1,5 and X2 is 𝐴̃2,3 THEN Y is 𝐶1 

R4: IF X2 is 𝐴̃2,1 THEN Y is 𝐶1 

 

Let us suppose that, during the evolutionary process 

executed with Mmax = 3, the CRB chromosome part shown in 

Figure 5 is generated. 

 

 

Figure 5. An example of the CRB part of a chromosome. 

 

The first gene of the chromosome selects rule R2 (k1 is equal 

to 2) with all the conditions (both v1,1 and v1,2 are equal to 1). 

The second gene selects rule R3 (k2 is equal to 3) with only the 

first condition (v2,1 is equal to 1, while v2,2 is equal to 0). The 

third gene selects no rule (k3 is equal to 0). 

The rule base corresponding to the chromosome in Fig. 5 

will therefore be:  

 

R2: IF X1 is 𝐴̃1,2 and X2 is 𝐴̃2,2 THEN Y is 𝐶2 

R3: IF X1 is 𝐴̃1,5 THEN Y is 𝐶1 

 

We note that, even though Mmax = 3, only two rules have 

been selected in the final rule base. Furthermore, for the third 

rule, only the first condition has been selected. 

The CDB part of the chromosome codifies the upper 

membership functions of each variable Xf. Since the lower 

membership functions are built, as described in Section II, 

from the upper membership functions, the CDB part codifies 

exclusively these functions. Since we adopt strong fuzzy 

partitions for defining the upper membership functions with, 

for j = 2, …, Tf - 1, 𝑏𝑓,𝑗 = 𝑐𝑓,𝑗−1 and 𝑏𝑓,𝑗 = 𝑎𝑓,𝑗+1, each 

triangular fuzzy set (𝑎𝑓,𝑗 , 𝑏𝑓,𝑗 , 𝑐𝑓,𝑗) of the partition is 

completely defined by fixing the positions of the cores 𝑏𝑓,𝑗 

along the universe Uf of the f th variable (we normalize each 

variable in [0,1]). Since 𝑏𝑓,1 and 𝑏𝑓,𝑇𝑓
 coincide with the lower 

and upper extremes of universe Uf, the partition of each 

linguistic variable Xf is completely defined by Tf - 2 parameters 

{𝑏𝑓,2, … , 𝑏𝑓,𝑇𝑓−1 }, which define the positions of the cores of 

the upper membership functions defined on Xf. As shown in 

Fig. 6, the CDB chromosome part, therefore, consists of F 

vectors of Tf - 2 real numbers. A good level of integrity, in 

terms of order, coverage and distinguishability, of the partitions 

is ensured by, ∀𝑗 ∈ [2, 𝑇𝑓 − 1], forcing 𝑏𝑓,𝑗 to vary in the 

definition interval [𝑏𝑓,𝑗 −
𝑏𝑓,𝑗−𝑏𝑓,𝑗−1

2
, 𝑏𝑓,𝑗 +

𝑏𝑓,𝑗+1−𝑏𝑓,𝑗

2
]. 

 

 
Figure 6. The CDB part of a chromosome. 

 

C. The genetic operators 

Both crossover and mutation operators are employed to 

generate the offspring population. In particular, we apply the 

one-point crossover to the CRB part and the BLX-α crossover, 

with α = 0.5, to the CDB part. In applying the one-point 

crossover, the common gene between the two mating 

chromosomes s1 and s2 is determined by extracting randomly a 

number in [1, 𝜌𝑀𝐴𝑋], where 𝜌𝑀𝐴𝑋 is the maximum number of 

rules in s1 and s2. The crossover point is always chosen 

between two rules and not within a rule.  

As regards mutation, two operators are applied to the CRB 

part. Both the operators randomly choose a pair pm, i.e. a rule, 

in the chromosome. Then, the first operator replaces the rule in 

pm with another rule by setting km to an integer value randomly 

generated in [1, 𝑀𝐶45]. The second operator modifies the rule 

in pm by complementing each gene 𝑣𝑚,𝑓 with a probability 

equal to 𝑃𝑐𝑜𝑛𝑑 (𝑃𝑐𝑜𝑛𝑑 = 2 𝑓⁄  in the experiments).  

The mutation operator applied to CDB, first, randomly 

chooses an input variable 𝑋𝑓, 𝑓 ∈ [1, 𝐹], and a fuzzy set 𝑗 ∈

[2, 𝑇𝑓 − 1] and then replaces the value of 𝑏𝑓,𝑗 with a value 

randomly chosen within the definition interval of 𝑏𝑓,𝑗.  

If, after applying the crossover, the rule base contains one or 

more pairs of equal rules, we simply eliminate one of the rules 

from each pair setting the corresponding km to zero. 

 

D. Multi-objective evolutionary algorithm 

The MOEA used in this paper is the (2+2)M-PAES 

algorithm proposed in [41] and adopted in [26]. The 

application scheme of the crossover and mutation operators 

employed in (2+2)M-PAES for generating the offspring 

solutions o1 and o2 from the current solutions s1 and s2 is shown 

in Figure 7. Here, PCRB, PCDB, PMRB1 and P MRB2 represent the 

probabilities of applying the crossover operators to CRB and 

CDB parts and the first and the second mutation operators to 

CRB, respectively. PMDB represents the probability of applying 

the mutation operator to CDB. Unlike classical (2+2)PAES, 

which maintains the current solutions s1 and s2 until they are 

not replaced by solutions with particular characteristics, we 
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observe that in (2+2)M-PAES s1 and s2 are randomly extracted 

at each iteration.  

At the beginning, we generate two current solutions s1 and 

s2. While the genes of the CDB part and the km values of the CRB 

part of s1 and s2 are randomly generated, all the values vm,f of 

the conditions of all the rules are set to 1. An offspring solution 

ox is added to the archive only if it is dominated by no solution 

contained in the archive; possible solutions in the archive 

dominated by ox are removed. If the archive is full and no 

solution in the archive can be removed, then the offspring 

solution ox is inserted into the archive and the solutions 

(possibly ox itself), which belong to the region with the highest 

crowding degree, are removed. If the region contains more than 

one solution, then, the solution to be removed is randomly 

chosen. (2+2)M-PAES concurrently optimizes three objectives, 

namely false positive rate (FPR), true positive rate (TPR) and 

complexity. The complexity is measured as the sum of the 

conditions, which compose the antecedents of the rules in the 

rule base. This number is denoted as total rule length (TRL). 

Low values of TRL correspond to rule bases characterized by a 

low number of rules and a low number of input variables really 

used in each rule.  

 
//Generate two new solutions 

[s1, s2] = random_selection(archive)  

o1 = s1 

o2 = s2 

if (rand() < 
CRBP ) 

    [o1.CRB,o2.CRB] = crossover_CRB(s1.CRB,s2.CRB); 

else 

   
1MRBP = 1; 

endif 

if (rand() < 
CDBP ) 

    [o1.CDB,o2.CDB] = crossover_CDB(s1.CDB,s2.CDB); 

endif 

 

loop i=1,2 

    if (rand() <
1MRBP ) 

       oi.CRB = first_mutation_operator(oi.CRB); 

    endif 

    if (rand() < 
2MRBP ) 

       oi.CRB = second_mutation_operator(oi.CRB); 

    endif 

    if (rand() < 
MDBP )  

       oi.CDB = DB_mutation_operator(oi.CDB); 

    endif 

endloop 

Figure 7. Application scheme of the genetic operators. 

IV. EXPERIMENTS AND RESULTS 

We analysed eleven financial datasets. For each dataset, we 

performed a ten-fold cross-validation and executed three trials 

for each fold with different seeds for the random function 

generator (30 trials in total). We fixed 50,000 evaluations as 

stopping criteria.  

In the following, we first describe the financial datasets. 

Then, we show the results obtained by IT2-PAES-RCS, PAES-

RCS, PAES-RCS-SD, FARC-HD, FURIA, C4.5 and its cost-

sensitive version C4.5-CS. Finally, we analyse the results along 

accuracy and interpretability dimensions.  

 

A. The Financial Datasets 

In financial applications, as in many real-world problems, 

the data is highly unbalanced. For example, in a credit card 

application, the number of good customers is much higher than 

that of bad customers; in fraud detection, the majority of the 

data are normal transactions whereas a few fraudulent 

transactions are usually present. Most classifiers designed for 

minimizing the global error rate perform poorly on unbalanced 

datasets because they misclassify most of the data belonging to 

the class represented by few examples. Hence, in our 

experiments, in order to evaluate the proposed system for 

various financial applications, we have chosen eleven datasets 

with various sizes and different levels of imbalance ratios 

between the minority and majority classes. The chosen datasets 

cover different financial applications, including credit card and 

loan authorization, stock market related predictions, insurance, 

fraud detection and investment banking.  

We have used eleven real-world datasets from various 

financial domains. Table I summarizes the main characteristics 

of these datasets. For each dataset, we report the name, the 

number of instances (#Instances), the number of attributes 

(#Attributes), and the imbalance ratio (IR). We recall that IR is 

defined as the ratio between the number of instances of the 

majority class and of the minority class. The datasets are sorted 

for increasing IRs. We do not show the number of classes 

because all the datasets represent two classes problems. 

 

TABLE I  
FINANCIAL DATASETS USED IN THE EXPERIMENTS  

(SORTED FOR INCREASING IRS) 

Dataset #Instances #Attributes IR 

BLA 1747 42 1.47 

CARD 176463 66 1.59 

AF 1894 121 2.50 

ARB 1641 7 3.09 

COMM 16102 83 3.34 

SL 35798 63 4.16 

LEN 24772 20 4.50 

DPKG 72983 23 7.20 

BAN 45211 13 7.54 

GIV 150000 10 13.96 

COI 9823 85 15.79 

 

In the following, we shortly describe each financial dataset.  

 BLA: the dataset is related to the prediction of good 

(profitable) or bad (non-profitable) customers for bank 

loan authorization.  

 CARD: the dataset is used to evaluate if a customer is 

going to default on a credit card or no. 

 AF: the dataset is related to investment banking and is used 

to predict if customers are going to pay back their loans or 

if they will default on the given loan. 

 ARB: the dataset is used for spotting arbitrage 

opportunities in the London International Financial Futures 

Exchange (LIFFE) market. The dataset was developed in 
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[4]-[6] to identify arbitrage situations by analyzing option 

and futures prices in the LIFFE market. 

 COMM: the dataset is used for the evaluation of customers 

(Fraud or No Fraud customer) for commercial loans 

applications. 

 SL: the dataset is used for the evaluation of customers 

(good or bad customers) for personal small loans 

applications where there is no knowledge on the customer 

full credit history. 

 LEN: the dataset is used for evaluation of small companies 

(good or bad customer) for business loans applications 

when the customer full credit history is known. 

 DPKG: the dataset is used to predict whether in an auction, 

the customer will be real or fraud. 

 BAN: the dataset is used to predict if a customer is eligible 

for increasing the credit limits on her/his credit cards.  

 GIV: the dataset is used to predict whether an applicant is 

eligible to give her/him extra credit on her/his existing loan 

or not. 

 COI: the dataset is used to predict whether a customer will 

buy a caravan insurance or not.  

 

B. The Classifiers 

In this section, we shortly describe the classifiers applied to 

the financial datasets. IT2-PAES-RCS was widely discussed in 

Section III. The PAES-RCS algorithm used in this paper is 

slightly different from the original version. Indeed, to manage 

unbalanced datasets, we use three objectives as in IT2-PAES-

RCS, but generate type-1 FRBCs. PAES-RCS-SD is the 

version of PAES-RCS with three objectives and with the scaled 

domain approach. 

FARC-HD (Fuzzy Association Rule-Based Classification 

Model for High Dimensional Datasets) was introduced in [28] 

and is a single objective evolutionary fuzzy classifier, which 

exploits association rules mining for generating FRBCs. 

FARC-HD is based on three stages. First, it mines all possible 

fuzzy association rules building a search tree to list all frequent 

fuzzy item sets, limiting the depth of the branches in order to 

find a small number of short fuzzy rules. Second, it uses a 

pattern weighting scheme to reduce the number of candidate 

rules, preselecting the most interesting rules, in order to 

decrease the computational costs for the third step. Finally, a 

single-objective genetic algorithm, namely CHC, is used to 

select and tune a compact set of fuzzy association rules. 

FRBCs generated by FARC-HD use the certainty factor and 

the additive combination [59] as rule weight and reasoning 

method, respectively. 

FURIA (Fuzzy Unordered Rules Induction Algorithm) is an 

extension of the RIPPER algorithm [60]. Given a classification 

problem with K classes, prior to the learning process, RIPPER 

sorts the training data by class label in ascending order 

according to the corresponding class frequencies. Then, rules 

are learned for the first K − 1 classes, starting with the least 

frequent. Once a rule has been generated, the instances covered 

by that rule are removed from the training data, and this is 

repeated until no instance from the target class is left. The 

algorithm then proceeds with the next class. Finally, when 

RIPPER finds no more rules to learn, a default rule (with 

empty antecedent) is added for the last (and hence most 

frequent) class. To learn each rule the training set is split into a 

growing set and a pruning set: the former is used to specialize 

the rule by adding antecedents, while the latter is used to 

generalize the rule by removing antecedents. FURIA extends 

RIPPER along three directions: i) the use of fuzzy rather than 

crisp rules, employing fuzzy intervals with trapezoidal 

membership functions instead of crisp intervals, ii) the 

exploitation of unordered rather than ordered rule sets, and iii) 

the introduction of a novel rule stretching method in order to 

manage uncovered examples.  

C4.5 builds decision trees from a set of training data using 

the concept of information entropy. At each node of the tree, 

the C4.5 algorithm chooses one attribute of the training set that 

most effectively splits its set of samples into subsets enriched 

in one class or the other. The splitting criterion is the 

normalized information gain that results from choosing an 

attribute for splitting the data. The attribute with the highest 

normalized information gain is chosen to make the decision. 

The cost-sensitive version of C4.5, denoted as C4.5-CS, 

exploits an instance weighting method similar to the one 

adopted in the boosting decision tree approach developed by 

Quinlan [61]. C4.5-CS changes the class distribution so that the 

induced tree is in favour of the class with high weight/cost. 

Thus, this version of the C4.5 is less likely to commit errors 

with high costs.  

Before applying FARC-HD, FURIA and C4.5, the datasets 

are pre-processed by using the Synthetic Minority 

Oversampling Technique (SMOTE) [62]. In SMOTE, the 

minority class is oversampled by taking each minority class 

sample and introducing synthetic examples along the line 

segments joining any or all of the k minority class nearest 

neighbours. Depending upon the amount of oversampling 

required, neighbours from the k-nearest neighbours are 

randomly chosen. 

Table II shows the parameters used for IT2-PAES-RCS, 

PAES-RCS and PAES-RCS-SD. The values of the parameters 

come, on the one side, from the long experience we maturated 

in the application of (2+2)M-PAES for generating fuzzy rule-

based systems since our initial paper on this subject [41]. On 

the other side, we performed a number of experiments with 

different values of these parameters using the datasets in Table 

I and realized that the parameters in Table II are effective also 

for these datasets. For the other algorithms, we adopted the 

implementation in Keel [63] and the default parameters.  

 

C. Analysis of the results  

The execution of IT2-PAES-RCS, PAES-RCS and PAES-

RCS-SD generates a set of solutions with different trade-offs 

among the three objectives. At the end of each execution of the 

algorithms, we verified that the archive of (2+2)M-PAES is 

always full for each dataset in Table I. Thus, each execution of 

the three algorithms generates 128 different FRBCs. In order to 

analyse the results of IT2-PAES-RCS, PAES-RCS and PAES-

RCS-SD, each three-dimensional Pareto front approximation is 
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projected onto the FPR-TPR plane: each FRBC of the Pareto 

front approximation is therefore represented as a point 

corresponding to the pair (FPR, TPR). We recall that one 

classifier in the FPR-TPR plane is better than (dominates) 

another if it is located more north-west (higher TPR and/or 

lower FPR) than the other [64]. For this reason, in order to 

select a set of potentially optimal FRBCs, we extract the non-

dominated solutions obtained on the training set in the FPR-

TPR plane. Since we do not assume to use any cost function 

for selecting a single optimal classifier, we consider all the 

non-dominated solutions in the FPR-TPR plane. With the aim 

of comparing the outputs of the three multi-objective 

evolutionary approaches among them and with the other 

algorithms, for each non-dominated solution, we calculate the 

Area under the Curve (AUC), defined as 𝐴𝑈𝐶 =
100+𝑇𝑃𝑅−𝐹𝑃𝑅

2
, 

and select the solution with the highest AUC on the training 

set. The highest AUC identifies the most north-west solution in 

the FPR-TPR plane. Thus, for each comparison algorithm, we 

consider just one classifier and compare these classifiers in 

terms of AUC computed on the test set. 
 

TABLE II  
VALUES OF THE PARAMETERS USED IN THE EXPERIMENTS FOR IT2-PAES-

RCS, PAES-RCS AND PAES-RCS-SD 

AS (2+2)M-PAES archive size  128 

Tf Number of fuzzy sets for each variable Xf, f=1,…, F 5 

maxM  Maximum number of rules in a rule base 50 

CRBP
 

Probability of applying the crossover operator to RBC  0.4 

CDBP
 

Probability of applying the crossover operator to DBC   0.5 

1MRBP
 
Probability of applying the first mutation operator to RBC  0.1 

2MRBP
 
Probability of applying the second mutation operator to RBC  0.6 

MDBP
 
Probability of applying the mutation operator to DBC  0.2 

 

Table III shows, for each dataset, the average AUC, FPR and 

TPR on both the training and the test sets, the average number 

of rules and the average TRL for the classifiers with the highest 

AUC on the training set generated by IT2-PAES-RCS, PAES-

RCS and PAES-RCS-SD, and for the classifiers generated by 

FARC-HD, FURIA, C4.5 and C4.5-CS. For each dataset, we 

have shown in bold the best values. We can observe that C4.5 

and C4.5-CS suffer very much from overtraining. Indeed, the 

value of the AUC is very high on the training set, but is quite 

low on the test set. Although it is less evident than for C4.5 and 

C4.5-CS, also FURIA suffers from overtraining: the AUC 

computed on the test set is at least for some datasets much 

lower than on the training set. IT2-PAES-RCS, PAES-RCS 

and PAES-RCS-SD do not suffer from overtraining and show 

similar performance, thus testifying the validity of the three 

objective approach. 

To statistically verify these observations, we apply non-

parametric statistical tests for multiple comparisons. First, for 

each approach, we generate a distribution consisting of the 

average values of the AUCs on the test set. Then, we apply the 

Friedman test in order to compute a ranking among the 

distributions [65], and the Iman and Davenport test [66] to 

evaluate whether there exist statistically relevant differences 

among the distributions. If there exists a statistical difference, 

we apply a post-hoc procedure, namely the Holm test [67]. 

This test allows detecting effective statistical differences 

between the control approach, i.e. the one with the lowest 

Friedman rank, and the remaining approaches.  

Table IV shows the results of the non-parametric statistical 

tests: for each algorithm, we show the Friedman rank and the 

Iman and Davenport p-value. If the p-value is lower than the 

level of significance α (in the experiments α = 0.05), we can 

reject the null hypothesis and affirm that there exist statistical 

differences between the multiple distributions associated with 

each approach. Otherwise, no statistical difference exists 

among the distributions and therefore the solutions are 

statistically equivalent. We observe that the Iman and 

Davenport statistical hypothesis of equivalence is rejected and 

so statistical differences among the six approaches are detected. 

Thus, we have to apply the Holm post-hoc procedure 

considering the PAES-RCS-SD as control algorithm 

(associated with the lowest rank and in bold in the Table). In 

the part of the table corresponding to the results obtained by the 

application of the Holm post-hoc procedure, the algorithms are 

sorted by decreasing Friedman ranks. Index i denotes the 

position of the algorithm in the sorted list (i = 1 and i = 6 

correspond to the lowest and highest Friedman ranks, 

respectively). The Holm post-hoc procedure computes the z-

values and p-values shown in the table: if the p-value of the 

algorithm in position i is lower than the adjusted α value (α / i), 

then the null hypothesis is rejected.  

The Holm post-hoc procedure states that the AUCs on the 

test set of IT2-PAES-RCS and PAES-RCS are statistically 

equivalent to the AUC of PAES-RCS-SD. The null hypothesis 

is rejected for all the other algorithms. Thus, we can conclude 

that the three versions of PAES-RCS with three objectives 

obtain classifiers, which outperform the ones obtained by the 

other approaches in terms of AUCs. Also, this result is 

obtained without rebalancing the datasets. Further, if we 

analyze the Friedman ranks, we realize that the two algorithms 

with the highest ranks are just PAES-RCS-SD and IT2-PAES-

RCS. Further, both PAES-RCS-SD and IT2-PAES-RCS obtain 

this result with classifiers characterized by a low number of 

rules. To verify this observation, we have also applied the non-

parametric statistical tests for multiple comparisons to the 

number of rules and to the TRL values. 

Tables V and VI show the results. Since the null hypothesis 

is rejected for both the tests, we apply the Holm post-hoc 

procedure by using IT2-PAES-RCS as control algorithm. The 

procedure states that, in terms of average number of rules (see 

Table V), the classifiers generated by PAES-RCS, PAES-RCS-

SD and FURIA are statistically equivalent to the ones 

generated by IT2-PAES-RCS. On the contrary, the null 

hypothesis is rejected for FARC-HD, C4.5 and C4.5-CS. As 

regards TRL, the Holm post-hoc procedure concludes that the 

most accurate classifiers generated by IT2-PAES-RCS result to 

be characterized by an average TRL value statistically 

equivalent to the most accurate classifiers generated by PAES-

RCS and to the classifiers generated by FURIA. On the 
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contrary, the null hypothesis is rejected for PAES-RCS-SD, 

FARC-HD, C4.5 and C4.5-CS.  

Among the classifiers used for comparison, only FURIA 

shows a complexity comparable to the three versions of PAES-

RCS. We have to highlight, however, that the interpretability of 

the classifiers generated by FURIA is limited by the 

membership functions computed by the method. Indeed, these 

membership functions are hardly describable using linguistic 

terms. On the contrary, thanks to the constraints imposed on 

the membership function learning during the evolutionary 

process, the partitions generated by IT2-PAES-RCS, PAES-

RCS and PAES-RCS-SD can be easily described by linguistic 

terms. Just to provide a glimpse of this interpretability, we 

consider one of the datasets in Table I, namely ARB. Table VII 

describes in detail the meaning of the attributes for the ARB 

dataset. We recall that the output here is spotting arbitrage 

opportunities in the LIFFE market. 

TABLE III  
AVERAGE AUC, FPR AND TPR ON BOTH THE TRAINING AND THE TEST SETS, AVERAGE TRL AND NUMBER OF RULES FOR THE CLASSIFIERS WITH THE HIGHEST 

AUC ON THE TRAINING SET GENERATED BY IT2-PAES-RCS, PAES-RCS, PAES-RCS-SD, AND FOR THE CLASSIFIERS GENERATED BY FARC-HD, FURIA, C4.5 

AND C4.5-CS 

  AUCTr FPRTr TPRTr AUCTs FPRTs TPRTs TRL #Rules 

B 

L 

A 

IT2-PAES-RCS 65.36 44.95 75.68 59.35 50.13 68.82 123.7 28.8 

PAES-RCS 68.97 41.10 79.03 59.97 48.78 68.73 159.6 34.0 

PAES-RCS-SD 69.11 41.11 79.33 58.70 50.22 67.62 192.6 37.1 

FARC-HD 68.37 36.04 72.78 59.90 42.27 62.07 598.8 203.0 

FURIA 64.39 35.76 64.53 58.37 40.16 56.89 18.4 7.6 

C4.5 90.43 10.40 91.26 57.89 38.04 53.82 445.6 223.8 

C4.5-CS 88.71 14.38 91.81 56.24 39.77 52.26 348.8 175.4 

C 

A 

R 

D 

IT2-PAES-RCS 68.57 25.74 62.87 68.51 25.74 62.77 458.1 27.4 

PAES-RCS 68.45 26.90 63.79 68.34 27.00 63.69 485.5 28.8 

PAES-RCS-SD 68.57 26.80 63.95 68.51 26.87 63.89 485.6 27.7 

FARC-HD 68.41 24.65 61.59 66.66 24.60 58.04 1852.6 628.0 

FURIA 70.96 25.29 67.20 68.00 25.36 61.35 22.4 5.6 

C4.5 94.43 4.69 93.56 65.78 28.98 60.53 33396.8 16699.4 

C4.5-CS 92.90 9.41 95.20 66.26 30.25 62.77 26145.2 13073.6 

A 

F 

IT2-PAES-RCS 62.27 28.44 52.98 54.41 32.77 41.59 364.7 33.0 

PAES-RCS 66.56 36.98 70.09 52.72 45.06 50.50 501.1 38.8 

PAES-RCS-SD 67.34 30.24 64.92 54.79 36.50 46.08 592.5 41.3 

FARC-HD 68.53 26.18 63.24 55.22 32.29 42.73 768.7 264.0 

FURIA 66.59 35.90 69.07 53.90 39.28 47.08 31.8 11.6 

C4.5 88.14 10.16 86.43 54.06 32.32 40.45 508.3 255.4 

C4.5-CS 87.37 21.72 96.46 50.95 43.29 45.20 412.4 207.2 

A 

R 

B 

 

 

 

IT2-PAES-RCS 94.73 6.88 96.33 94.25 7.04 95.55 51.4 21.1 

PAES-RCS 97.21 3.01 97.43 97.02 3.17 97.21 49.0 20.3 

PAES-RCS-SD 95.23 6.12 96.52 94.69 6.49 95.88 47.9 20.0 

FARC-HD 86.15 15.49 87.80 87.28 15.91 90.48 35.5 16.6 

FURIA 98.23 2.28 98.73 98.14 3.23 99.50 60.0 26.0 

C4.5 98.64 2.16 99.44 98.18 3.39 99.75 78.4 40.2 

C4.5-CS 98.73 2.42 99.88 98.37 2.50 99.25 32.4 17.2 

C 

O 

M 

M 

IT2-PAES-RCS 67.19 18.76 53.13 66.44 19.08 51.96 115.4 27.5 

PAES-RCS 67.42 17.59 52.44 66.05 18.17 50.26 145.1 30.9 

PAES-RCS-SD 67.33 17.38 52.04 66.33 17.79 50.44 167.6 35.4 

FARC-HD 76.77 10.03 63.57 65.86 10.18 41.91 313.3 118.8 

FURIA 80.47 9.33 70.27 65.14 9.76 40.05 73.6 20.8 

C4.5 93.91 4.36 92.18 61.04 22.18 44.26 2470.0 1236.0 

C4.5-CS 93.36 13.09 99.82 61.62 28.66 51.90 2139.6 1070.8 

S 

L 

IT2-PAES-RCS 60.03 34.50 54.56 59.64 34.61 53.90 249.4 21.9 

PAES-RCS 60.35 38.23 58.93 59.58 38.20 57.37 306.1 24.1 

PAES-RCS-SD 61.20 40.04 62.43 59.99 40.51 60.48 423.4 32.2 

FARC-HD 65.24 33.08 63.56 58.80 33.22 50.82 2154.6 720.6 

FURIA 69.20 36.42 74.82 58.13 37.22 53.48 70.2 19.2 

C4.5 93.72 4.53 91.97 54.15 22.36 30.67 7962.8 3982.4 

C4.5-CS 94.94 9.81 99.69 54.83 26.36 36.01 7836.8 3301.8 

L 

E 

N 

IT2-PAES-RCS 63.92 36.11 63.95 63.10 36.39 62.58 191.8 42.8 

PAES-RCS 64.14 35.95 64.24 62.96 36.42 62.33 236.6 50.6 

PAES-RCS-SD 64.42 36.61 65.46 63.29 37.07 63.64 300.4 59.2 

FARC-HD 70.59 23.77 64.96 59.34 24.08 42.75 1855.9 644.4 
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FURIA 83.86 5.04 72.76 52.98 5.55 11.51 202.4 49.2 

C4.5 92.79 3.46 89.03 55.09 18.46 28.64 3987.2 1994.6 

C4.5-CS 94.91 10.15 99.97 56.35 25.57 38.28 3776.4 1889.2 

D 

P 

K 

G 

IT2-PAES-RCS 67.48 22.53 57.50 67.17 22.58 56.91 94.2 23.4 

PAES-RCS 67.89 23.46 59.24 67.50 23.62 58.62 102.4 24.4 

PAES-RCS-SD 67.88 23.72 59.48 67.53 23.74 58.80 138.2 29.5 

FARC-HD 70.66 27.48 68.79 64.97 27.54 57.48 1959.7 664.3 

FURIA 81.67 14.11 77.44 63.58 14.55 41.71 560.8 100.4 

C4.5 96.50 1.88 94.88 75.23 8.10 58.56 9379.2 4690.6 

C4.5-CS 97.83 4.28 99.94 78.03 9.80 65.87 7111.2 3556.6 

B 

A 

N 

IT2-PAES-RCS 80.85 16.85 78.56 80.59 17.24 78.44 111.5 28.3 

PAES-RCS 80.26 22.44 82.96 79.76 23.40 82.93 98.6 24.6 

PAES-RCS-SD 81.02 16.73 78.77 80.76 17.20 78.74 114.0 30.2 

FARC-HD 85.41 13.82 84.64 77.24 30.07 84.55 810.9 331.2 

FURIA 92.96 9.12 95.04 77.61 39.09 94.31 233.4 41.8 

C4.5 95.34 5.77 96.46 70.24 53.11 93.59 1932.8 966.6 

C4.5-CS 98.73 2.42 99.88 98.37 2.50 99.25 273.5 17.2 

G 

I 

V 

IT2-PAES-RCS 72.59 17.68 62.87 72.54 17.69 62.77 40.3 19.8 

PAES-RCS 68.14 13.64 49.92 68.07 13.63 49.77 27.8 14.9 

PAES-RCS-SD 72.77 17.47 63.01 72.67 17.44 62.78 43.1 19.9 

FARC-HD 73.44 13.07 59.96 66.51 13.05 46.07 253.2 87.6 

FURIA 78.35 14.46 71.15 73.26 14.53 61.04 129.6 19.8 

C4.5 86.38 10.03 82.79 70.53 13.40 54.46 7045.6 3523.8 

C4.5-CS 95.99 8.03 100.00 71.51 11.82 54.84 9162.4 4582.2 

C 

O 

I 

IT2-PAES-RCS 66.36 34.84 67.57 63.93 39.94 67.80 55.87 22.1 

PAES-RCS 67.88 31.45 67.21 62.62 41.36 66.68 92.63 29.9 

PAES-RCS-SD 66.87 32.94 66.69 63.74 39.25 66.74 85.5 27.3 

FARC-HD 65.51 32.40 66.20 61.74 38.90 65.45 1304.1 457.6 

FURIA 95.50 7.10 98.10 62.13 73.29 97.54 510.5 91.4 

C4.5 97.60 3.68 98.89 61.34 73.48 96.17 596.4 299.2 

C4.5-CS 95.83 3.50 91.65 60.43 66.91 87.78 772.4 387.2 

 

TABLE IV  

RESULTS OF THE NON-PARAMETRIC STATISTICAL TESTS ON THE AUC 

COMPUTED ON THE TEST SET AMONG THE CLASSIFIERS WITH THE HIGHEST 

AUC ON THE TRAINING SET GENERATED BY IT2-PAES-RCS, PAES-RCS AND 

PAES-RCS-SD, AND THE CLASSIFIERS GENERATED BY FARC-HD, FURIA, 

C4.5 AND C4.5-CS 

 Algorithm 
Friedman 

Rank 

Iman and Davenport  

p-value 
Hypothesis 

 PAES-RCS-SD 2.3182 

0.003 Rejected 

 IT2-PAES-RCS 2.7727 

 PAES-RCS 3.6364 

 FARC-HD 4.6364 

 FURIA 4.6364 

 C4.5 4.6364 

 C4.5-CS 5.3636 

Holm post-hoc procedure 

i Algorithm z-value p-value alpha/i Hypothesis 

6 C4.5-CS 3.30 9.46E-2 0.0083 Rejected 

5 FURIA 2.51 1.18E-3 0.0100 Rejected 

4 FARC-HD 2.51 1.18E-3 0.0125 Rejected 

3 C4.5-CS 2.51 1.18E-3 0.0166 Rejected 

2 PAES-RCS 1.43 1.57E-1 0.0250 Not Rejected 

1 IT2-PAES-RCS 0.49 6.21E-1 0.0500 Not Rejected 

 

Fig. 8 shows an example of partitions generated by IT2-

PAES-RCS for one of the classifiers with the highest AUC on 

the training set for the ARB. Here, only 6 out of 7 attributes are 

shown since one of the attributes was not used in the final rule 

base. We can observe that, although the evolutionary process 

has tuned the IT2 fuzzy sets on the specific dataset, the 

partitions of the different attributes result to be easily 

interpretable. 

 
TABLE V  

RESULTS OF THE NON-PARAMETRIC STATISTICAL TESTS ON THE NUMBER OF 

RULES AMONG THE CLASSIFIERS WITH THE HIGHEST AUC ON THE TRAINING 

SET GENERATED BY IT2-PAES-RCS, PAES-RCS AND PAES-RCS-SD, AND 

THE CLASSIFIERS GENERATED BY FARC-HD, FURIA, C4.5 AND C4.5-CS 

 Algorithm 
Friedman 

Rank 

Iman and Davenport  

p-value 
Hypothesis 

 IT2-PAES-RCS 2.1364 

0.3E-9 Rejected 

 FURIA 2.5909 

 PAES-RCS 2.8182 

 PAES-RCS-SD 3.5448 

 C4.5-CS 5.0909 

 FARC-HD 5.1818 

 C4.5 6.6364 

Holm post-hoc Procedure 

i Algorithm z-value p-value alpha/i Hypothesis 

6 C4.5 4.88 1.00E-6 0.0015 Rejected 

5 FARC-HD 3.30 9.46E-4 0.003 Rejected 

4 C4.5-CS 3.20 1.13E-3 0.006 Rejected 

3 PAES-RCS-SD 1.52 1.26E-1 0.0125 Not Rejected 

2 PAES-RCS 0.74 4.59E-1 0.025 Not Rejected 

1 FURIA 0.49 6.21E-1 0.05 Not Rejected 
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As regards the interpretability of the rules, Fig. 9 shows the 

rule base of the classifier whose data base is shown in Fig. 8. 

Here, we do not show the “don’t care” conditions since they do 

not contribute to the inference process and penalize the 

interpretability of the rule base. The expert can deduce 

interesting knowledge from the rules of the classifier. Indeed, 

he/she can, for instance, discover that intermediate values of C-

P (C-P is M) lead to conclude that the class is Arbitrage 

Opportunity. On the other hand, very high values of Futures 

(Futures is VH) allow inferring that the class is non Arbitrage 

Opportunity. 

 

TABLE VI  
RESULTS OF THE NON-PARAMETRIC STATISTICAL TESTS ON THE TRL AMONG 

THE CLASSIFIERS WITH THE HIGHEST AUC ON THE TRAINING SET GENERATED 

BY IT2-PAES-RCS, PAES-RCS AND PAES-RCS-SD, AND THE CLASSIFIERS 

GENERATED BY FARC-HD, FURIA, C4.5 AND C4.5-CS 

 Algorithm 
Friedman 

Rank 

Iman and Davenport  

p-value 
Hypothesis 

 IT2-PAES-RCS 2.0000 

0.17E-9 Rejected 

 FURIA 2.6364 

 PAES-RCS 2.7273 

 PAES-RCS-SD 3.6364 

 C4.5-CS 5.1818 

 FARC-HD 5.3636 

 C4.5 6.6364 

Holm post-hoc Procedure 

i Algorithm z-value p-value alpha/i Hypothesis 

6 C4.5 4.83 0.1E-5 0.0015 Rejected 

5 FARC-HD 3.65 2.1E-4 0.003 Rejected 

4 C4.5-CS 3.45 5.1E-4 0.006 Rejected 

3 PAES-RCS-SD 1.77 7.6E-3 0.0125 Rejected 

2 PAES-RCS 0.78 4.29E-1 0.025 Not Rejected 

1 FURIA 0.69 4.89E-1 0.05 Not Rejected 

 

The non-parametric statistical tests for multiple comparisons 

have shown that the classifiers generated by IT2-PAES-RCS, 

PAES-RCS and PAES-RCS-SD achieve similar AUC on the 

test set and have similar complexity, at least in terms of 

number of rules. We observe however that IT2-PAES-RCS is 

characterized by the minimum Friedman rank in both Table V 

and Table VI. Thus, we decided to perform a statistical analysis 

between IT2-PAES-RCS and each of the other two approaches 

separately. We applied the Wilcoxon signed-rank test for 

pairwise comparison [68], considering IT2-PAES-RCS as 

control algorithm, to the distributions of AUCs calculated on 

the test set, average number of rules and average TRL.  

 
TABLE VII  

MEANING OF THE ATTRIBUTES OF THE ARB DATASET 

Name Description 

MoneyNess Strike Price/Underlying Index Level 

Basis % (x10000) Futures price minus spot index level, divided by 

futures price, multiplied by 10,000 

Und (x10) Spot index level divided by futures price, multiplied 

by 10 

Interest Ask % The LIBOR ask rate for the maturity closest to the 

maturity of futures contract, multiplied by 100 

Futures (T-t) The nave trigger, profit after transaction costs, 

divided by futures price, multiplied by 1,000,000 

C-P % (x100) The difference between the call and the put prices, 

divided by futures price 

Profit after TC (x 

1,000,000) 

The nave trigger, profit after transaction costs, 

divided by futures price, multiplied by 1,000,000 

 

Table VIII shows the results of the test. The null hypothesis 

is not rejected for the AUC computed on the test set, but is 

rejected for the average number of rules and average TRL. We 

can conclude that IT2-PAES-RCS generated classifiers that 

achieve the same accuracy in terms of AUC as PAES-RCS and 

PAES-RCS-SD, but with a lower number of rules and a lower 

TRL. Thus, the classifiers generated by IT2-PAES-RCS result 

to be less complex and therefore more interpretable. 

 

 

Figure 8. An example of partitions generated by IT2-PAES-RCS for one of the classifiers with the highest AUC on the training set for the dataset ARB. 
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R1: IF C-P is VL and ProfitAfterTC is VL THEN Class Y is Non Arbitrage Opportunity  

R2: IF Basis is M and InterestAsk is L and Futures is L and ProfitAfterTC is L THEN Class Y is Non Arbitrage Opportunity  

R3: IF Basis is H and C-P is L THEN Class Y is Non Arbitrage Opportunity  

R4: IF InterestAsk is M and Futures is L THEN Class Y is Non Arbitrage Opportunity  

R5: IF Futures is VH THEN Class Y is Non Arbitrage Opportunity  

R6: IF ProfitAfterTC is L THEN Class Y is Non Arbitrage Opportunity  

R7: IF Basis is M and Futures is VL THEN Class Y is Arbitrage Opportunity  

R8: IF InterestAsk is M and Futures is L and C-P is L and ProfitAfterTC is VL THEN Class Y is Arbitrage Opportunity 

R9: IF Futures is L and C-P is M THEN Class Y is Arbitrage Opportunity  

R10: IF MoneyNess is L and C-P is M THEN Class Y is Arbitrage Opportunity  

R11: IF MoneyNess is M and Futures is L and C-P is M and ProfitAfterTC is VL THEN Class Y is Arbitrage Opportunity  

Figure 9. The rule base of the classifier whose data base is shown in Fig. 8. 

 
TABLE VIII  

RESULTS OF THE WILCOXON SIGNED-RANK TEST ON  AUC, TRL AND NUMBER 

OF RULES AMONG THE CLASSIFIERS WITH THE HIGHEST AUC ON THE TRAINING 

SET GENERATED BY IT2-PAES-RCS, PAES-RCS AND PAES-RCS-SD 

AUCTs R+ R- p-value 
Hypothesis 

(alpha=0.05) 

IT2-PAES-RCS vs. PAES-RCS  46.0 20.0 0.230 Not Rejected 

IT2-PAES-RCS vs. PAES-RCS-SD 15.5 39.5 1 Not Rejected 
     

TRL R+ R- p-value 
Hypothesis 

(alpha=0.05) 

IT2-PAES-RCS vs. PAES-RCS  58.0 8.0 0.023 Rejected 

IT2-PAES-RCS vs. PAES-RCS-SD 63.0  3.0 0.006 Rejected 
     

#Rules R+ R- p-value 
Hypothesis 

(alpha=0.05) 

IT2-PAES-RCS vs. PAES-RCS  58.0 8.0 0.023 Rejected 

IT2-PAES-RCS vs. PAES-RCS-SD 63.0 3.0 0.006 Rejected 

V. CONCLUSIONS  

Financial data are often strongly unbalanced and 

characterized by a high level of uncertainty. In this paper, we 

have proposed to deal with financial data classification by 

adopting rule-based classifiers generated by a multi-objective 

evolutionary algorithm (MOEA). These classifiers have 

proved to be very effective in terms of accuracy. Further, they 

are generally characterized by a low number of rules and total 

rule length, and a good integrity of the partitions, thus making 

them very interpretable. Interpretability is considered essential 

in the financial context since the comprehension of how inputs 

and output are related to each other is crucial to take both 

operative and strategic decisions.  

We have extended PAES-RCS, an MOEA-based approach 

to learn concurrently the rule and data bases of fuzzy rule-

based classifiers. In order to cope with unbalanced datasets, we 

have split the accuracy into two objectives, namely True 

Positive Rate and False Positive Rate, and we have used an 

approach denoted as scaled dominance to give minority classes 

a fair chance when competing with a majority class. Further, 

we have coped with uncertainty by adopting IT2 fuzzy sets 

rather than type-1 fuzzy sets. This has required using a 

different inference mechanism. We have tested the three 

improvements on eleven financial datasets and compared the 

results with the ones obtained by the fuzzy rule-based 

classifiers FARC-HD and FURIA, the classical C4.5 decision 

tree algorithm and its version cost-sensitive. Using non-

parametric statistical tests, we have shown that the three 

improvements allow generating classifiers, which outperform 

the comparison approaches both in terms of accuracy, 

computed as area under the curve, and complexity, computed 

as number of rules. Finally, the extension of PAES-RCS, 

which integrates the three improvements, has proved to 

achieve high accuracy with, on average, the lowest number of 

rules and total rule length. 
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