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Abstract

Multiple-criteria decision making (MCDM) and evaluation problems dealing with a large number

of objects are very demanding. Particularly when the use of pairwise-comparison (PC) techniques is

required. A major drawback arises when it is not possible to obtain all the PCs, due to time or cost

limitations, or to split the given problem into smaller subproblems. In such cases, two tools are needed to

find acceptable weights of objects: an efficient method for partially filling a pairwise-comparison matrix

(PCM) and a suitable method for deriving weights from this incomplete PCM. This paper presents a

novel interactive algorithm for large-dimensional problems guided by two main ideas: the sequential

optimal choice of the PCs to be performed and the concept of weak consistency. The proposed solution

significantly reduces the number of needed PCs by adding information implied by the weak consistency

after the input of each PC (providing sets of feasible values for all missing PCs). Interval weights of

objects are computed from the resulting incomplete weakly consistent PCM adapting the methodology

for calculating fuzzy weights from fuzzy PCMs. The computed weight intervals thus cover all possible

weakly consistent completions of the incomplete PCM. The algorithm works both with Saaty’s PCMs

and fuzzy preference relations (FPRs). The performance of the algorithm is illustrated by a numerical

example and a real-life case study. The performed simulation demonstrates that the proposed algorithm

is capable of reducing the number of PCs required in PCMs of dimension 15 and greater by more than

60% on average.
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I. I NTRODUCTION

Decision-making methods based on PCs (such as Saaty’s Analytic Hierarchy Process - AHP

or methods using FPRs) are a popular tool in MCDM. Weights of objects (i.e. weights of criteria

or evaluations of alternatives) and information concerning the preference ordering of objects can

be expressed by the decision makers (DMs) by comparing objects pairwise and by expressing

the strength of preferences between them. These methods also usually require means for the

assessment of the consistency of the DMs’ preferences and mechanisms for achieving sufficient

consistency of the information provided by the DMs.

When the methods of the AHP type are confronted with real-life problems where a large

amount, sayn, of objects needs to be mutually compared, then(n − 1)/2 PCs needed to get

a complete PCM are not easy to obtain in sufficient quality. In fact, the more PCs need to

be made, the less reliable the information expressed by the DMs might be (due to fatigue,

due to time constraints and similar factors). In these cases, Saaty suggests (see e.g. [39], [40],

[42]) to split the large problems into several subproblems of smaller dimensions. This may imply

creating supercategories of the objects being compared (or creating the so-called rating categories

for criteria [26], [39]), and usually requires to provide also the mutual comparison of these

supercategories. The objects are then mutually compared only within the defined supercategories

(or in case of rating categories, the objects are not directly compared at all but instead, the more

abstract rating categories are compared). This results in the reduction of the complexity of the

problem and in making the information requirements (the number of PCs needed) feasible.

However we can also observe a slight loss of information (some objects - e.g. from different

supercategories - are not directly mutually compared). This loss of information can be to some

extent compensated for by introducing a strong enough consistency condition on the preferences

expressed by the experts, which provides means of calculating the missing values in the PCM.

For some real-life problems, the above described approach works fine. There are, however,

situations when splitting the problem into several smaller ones renders parts of the problem too

abstract and hence intractable for the experts providing the information on the preferences among

objects. Stoklasa, Jandová and Talǎsov́a [46] provide an up-to-date real-life example of such a
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problem in the area of arts evaluation. Paper [46] refers to the development of the evaluation

model for the Registry of Artistic Performances that has been used in the Czech Republic (CZ)

within the ‘principles and rules of financing public universities’ [34]. This model has been used

since 2012 to provide a basis for the distribution of a part of the subsidy from the state budget

among public universities in the CZ. The mathematical model presented in [46] is designed to

compute evaluations (weights) for different categories of works of art (currently 27 categories)

based on a combination of expert assessment of the significance of the respective work of art

and two more objective criteria (extent and institutional reception). The authors deal with a

27x27 PCM that represents a problem that could not be split into several smaller ones due to

partial dependencies among the evaluation criteria and due to the necessity of providing real-life

examples to all the compared objects for the experts to be able to express their intensities of

preference.

In large-dimensional problems (a large number of objects to be compared pairwise) which

cannot be split into smaller subproblems, the required weights of objects may be obtained from

incomplete PCMs. This however raises issues connected with not providing all the PCs in the

PCM by the DM. Focusing on an appropriate reduction of the number of PCs which have to be

provided by the DM, and obtaining enough information in the incomplete PCM to be able to

compute the weights are of paramount importance. When using incomplete PCMs, we have to

deal with two key tasks adequately: finding a method for efficiently selecting the subset of the

n(n− 1)/2 PCs to be provided by the DM and finding a method for deriving the weight vector

from the incomplete PCM.

Harker [18], [19], [20] and later Harker and Millet [21] were the first authors who dealt

with the problem of reducing the number of PCs. They proposed to perform only a part of

the n(n − 1)/2 PCs by means of an algorithm which iteratively selects the ‘next’ PC to be

submitted to the DM. This selection is made according to the largest modification in the weight

vector. The process of inputting PCs is stopped when the given PC changes the weight vector by

less than a fixed threshold. Wedley, Schoner and Tang [49] focused on the choice of then − 1

PCs, which is the minimum number required for comparingn elements, and they compared and

discussed several methods of entering them. Sanchez and Soyer [43] proposed to use entropy-

based measures of the information content to evaluate judgment accuracy and to state a stopping

rule of the process of filling in PCs. Ra [37] worked withn PCs which form a closed chain.

Fedrizzi and Giove [17] proposed a method which takes into account both the robustness of the
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collected data and the consistency of the expressed preferences.

For what concerns the methods to derive the weight vectorw = (w1, w2, . . . , wn) for the

objects from incomplete PCMs, several different approaches have been proposed; see e.g. [2],

[9], [16], [17], [18], [19], [21], [30], [31], [35], [38], [45], [50], [51]. Some of these methods

are aimed at determining the missing PCs in order to complete the incomplete PCM. Once

the PCM is filled in, one of the known methods for deriving the weights from a complete

PCM can be used. Conversely, other methods compute the weights from the incomplete PCM

directly. Clearly, having first computed the weightsw1, w2, ..., wn, every missing PCs can then

be determined accordingly, thus completing the PCM.

In this paper, we aim to propose an algorithm for obtaining weights of objects for large

incomplete PCMs where the consistency preservation plays a crucial role. The aim of this paper

is to merge into an interactive algorithm the sequencing method for inputting incomplete PCMs

suggested in [17] with the concept of weak consistency (see [27] and [46]) as a minimum

requirement for the consistency of expert’s preferences (expressed either using Saaty’s PCM

or a FPR). Since the weak consistency is defined in [27] for Saaty’s PCMs, we introduce in

this paper the additive version of this condition to be used with FPRs. This way we strive to

contribute to the existing body of research on the use of incomplete FPRs in MCDM (see e.g.

[16], [17], [38], [36], [50]) and group MCDM (see e.g. [10], [23], [24], [32]), by providing tools

to efficiently deal with large incomplete FPRs. We show that combining a sequencing method

for inputting incomplete Saaty’s PCMs and FPRs with the weak consistency can dramatically

reduce the number of PCs needed to provide sufficient information for the ranking of objects

and also to obtain reliable final weights.

The objective of our paper is not simply the reduction of the number of required PCs to

be provided by the DM. It is known that this number could be radically reduced ton − 1,

as proposed in [25] and in other papers. Such choice completely fulfills the requirement of

maximally reducing the number of needed PCs but, in our view, it gives up a fundamental

characterizing property of the PC methods. This property is the ability to use the redundancy

of information contained in a PCM in order to suitably manage the unavoidable inconsistency

of human judgements. Thus, a better accuracy and reliability of the output, by means of the

compensation of possible contradictory elicited judgements [49] is guaranteed.

In the numerical example in section III, it is demonstrated that methods requiring only initial

n−1 PCs do not always result in reliable outcomes. In cases when the DM is capable to provide
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only minimal amount of information, a better choice than relying on a PC-based method and

providing only n − 1 PCs could be the application of a method from a completely different

family. For instance DRSA [44], a method which establishes a set of decision rules from the

given set of criteria and which leads to the classification of objects (e.g. acceptable, uncertain,

non-acceptable), can be used.

The PC-based methods discussed in this paper assume independent criteria. In case of de-

pendencies among criteria, a different class of methods should be considered, e.g. the Hybrid

Multiple Attribute Decision-Making (MADM) Model [22] which is based on these steps: first

the relationships among criteria are determined by the DEMATEL technique, next the influential

weights are derived through the DANP (DEMATEL-based ANP) and finally objects are ranked

by a modified VIKOR method. The evaluations of alternatives are not obtained by PCs, they are

determined based on their distance from an aspiration level (unlike traditional models, where

the distance from the best alternative of set of considered alternatives is used). These methods

analyse the relationships among criteria and introduce aspiration levels to the MADM context.

We, however, restrict ourselves to the traditional and frequently used basic approach to MCDM

via PCs. This paper strives to find an ideal compromise between requiring as little information

from the DM as possible and still obtaining enough information to calculate weights of objects

that are close to the (hypothetical) full-information case. In our view, there are many real-world

problems where both the reduction of the number of PCs and suitable accuracy of the output

are crucial issues that must be taken into account. This was a central concern that guided the

development of our method.

Our approach differs from the PC-based ones mentioned above since in all steps of our method

the weak consistency of the incomplete PCM is preserved. A similar property is not required

in any other known method. Moreover, the final weights of objects provided by the algorithm

proposed in this paper are computed in such a way that they contain information concerning

the uncertainty which stems from the fact that some PCs are not provided by the DM. The

weights of objects are computed as intervals in order to reflect the missing information in the

incomplete PCM and to provide ranges for the values of the real weights of objects obtainable

for any weakly consistent completion of the incomplete PCM. The range of the interval weights

depends on the amount of information that is missing in the PCM. The formulas for calculating

fuzzy weights from a fuzzy PCM proposed in [28] and applied on a practical example in [29]

are utilized for the computation of these interval weights.

July 22, 2016 DRAFT



IEEE TRANSACTIONS ON FUZZY SYSTEMS 6

The paper is organized as follows. In Section II, preliminary notions on Saaty’s PCMs and

FPRs are provided, the form of the weak-consistency property introduced in [27] is defined

for FPRs, and the iterative algorithm for the optimal choice of the PC performed by the DM

introduced in [17] is recalled. In Section III, a new algorithm for optimal choice of PCs performed

by the DM, based on the combination of the algorithm proposed by Fedrizzi and Giove [17] and

the weak-consistency condition, is introduced. The method of obtaining an incomplete weakly

consistent PCM and deriving the interval weights is also described on an illustrative example.

The same example is solved using the method proposed by Herrera-Viedma et al. in [25] in

order to compare the results and to demonstrate the effectiveness of our method. In Section IV,

a case study of a real-life problem, that might benefit from the use of the proposed algorithm,

is provided. The model for evaluating artistic production in the CZ studied in [46] is described

here, and the numerical results obtained in [46] are compared with the results obtained by the

novel algorithm proposed in this paper. The conclusion with some final remarks and a discussion

of the performance of the proposed algorithm are given in Section V.

II. PRELIMINARIES

A. Pairwise-comparison methods

Let us considern objectsA1, A2, . . . , An which need to be compared or to which weights

need to be assigned. Let us also assume that the PC methods can be applied. These methods

are based on the construction of PCMs which express the preference intensities between pairs

of objects. Saaty’s PCM or FPR can be used.

One of the most frequently used PC methods isSaaty’s Analytic Hierarchy Process(AHP);

see [41]. Saaty’s PCM is represented by a square matrixS = {sij}n
i,j=1 with elementssij from

Saaty’s scale where the meaning ofsij is given by Table I. If an objectAi is preferred overAj,

an appropriate value ofsij is chosen by the DM from Table I. Otherwise, a reciprocal value is

used forsji. Hence, the reciprocity condition for Saaty’s PCM (i.e. multiplicative reciprocity)

is required, i.e.sji = 1
sij

for all i, j = 1, 2, . . . , n. As s consequence, it issii = 1 for all

i = 1, 2, . . . , n.

In order to obtain a useful vector of weights of objects from Saaty’s PCM, the given preference

intensitiessij, i, j = 1, 2, . . . , n, must be entered by the DM inS in a reasonable way. This

means that Saaty’s PCM should be close to consistency. The consistency condition in Saaty’s
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TABLE I: Elements of Saaty’s scale and corresponding linguistic labels

Preference Linguistic labels

intensitysij

1 objectAi is equally preferred as objectAj

3 objectAi is moderately preferred over objectAj

5 objectAi is strongly preferred over objectAj

7 objectAi is very strongly preferred over objectAj

9 objectAi is extremely preferred over objectAj

2,4,6,8 Intermediate values between the two adjacent judgements

sense (i.e. multiplicative consistency) means that for alli, j, k = 1, 2, . . . , n the following must

hold:

sijsjk = sik. (1)

The elements ofS express the relation between multiplicative weightswi andwj in the form of

sij = wi

wj
for all i, j = 1, 2, . . . , n. There are several methods for deriving the weights of objects

A1, A2, . . . , An from Saaty’s PCMS = {sij}n
i,j=1 that can be used; see e.g. [7] for an overview.

Saaty suggests to derive the weight vectorw = (w1, w2, . . . , wn) as the principal eigenvector of

S associated with the principal eigenvalueλmax, i.e. Sw = λmaxw. Another commonly used

method for computing the weights of objects fromS is the geometric mean method, where the

weightswi are computed as

wi = n

√√
√
√

n∏

j=1

sij (2)

for all i = 1, 2, . . . , n. If required, the normalization of the weight vectorw is performed dividing

each weight byα =
∑n

i=1 wi, which, in the case when the geometric mean method is used to

compute weights, translates intoα =
∑n

i=1(
∏n

j=1 sij)
1/n.

Another option to compare objects pairwise is to use FPRs; see e.g. [36], [48]. Given a

non-empty finite set of objectsX = {A1, A2, ..., An}, a fuzzy (binary) preference relation on

X is determined by a fuzzy set on the Cartesian productX × X, that is, by a membership

function μR : X ×X → [0, 1] over the setX ×X. A FPR can be represented by a square PCM

R = {rij}n
i,j=1 whererij = μR(Ai, Aj), i, j = 1, 2, . . . , n. The meaning ofrij is given by Table

II.

Similarly to Saaty’s PCM, a reciprocity condition for FPRs (i.e. additive reciprocity) is

required,rij + rji = 1 for all i, j = 1, 2, . . . , n. As a consequence, it isrii = 0.5, i = 1, 2, . . . , n.
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TABLE II: Elements of a FPR and corresponding linguistic labels

Preference Linguistic labels

intensityrij

1 objectAi is extremely preferred over objectAj

rij ∈ (0.5, 1) objectAi is preferred over objectAj

0.5 objectAi is equally preferred as objectAj

rij ∈ (0, 0.5) objectAj is preferred over objectAi

0 objectAj is extremely preferred over objectAi

The consistency condition for FPRs (i.e. additive consistency) was defined such that for all

i, j, k = 1, 2, . . . , n it holds

rij = rik + rkj − 0.5. (3)

The elements ofR express the relation between additive weightswR
i andwR

j in the form of

rij = 0.5 + 0.5 (wR
i −wR

j ) for all i, j = 1, 2, . . . , n; see Tanino [48]. Then, obviouslyrij − rji =

wR
i − wR

j for all i, j = 1, 2, . . . , n. This way, if rij = 0.5 (which corresponds with the DM’s

indifference between objectsAi andAj), then the weights of these two objects must be identical,

i.e. wR
i = wR

j . If rij = 0.7, then rji = 0.3 and the difference of the respective weights, that is

wR
i − wR

j , is equal to the difference of the preference intensitiesrij − rji = 0.4.

The weight vectorwR = (wR
1 , wR

2 , . . . , wR
n ) corresponding to an additively consistent FPRR

is unique up to addition of a constant. If required, normalization of such a weight vector is then

performed by adding a constantβ to this vector. Fedrizzi and Brunelli, for example, suggest

in [15] that β = −min{wR
1 , wR

2 , . . . , wR
n }. The additive weightswR

1 , wR
2 , . . . , wR

n of the objects

A1, A2, . . . , An can be derived from a FPRR = {rij}n
i,j=1 using the formula

wR
i =

2

n

n∑

j=1

rij (4)

for all i = 1, 2, . . . , n; see [14].

FPRs are also often calledadditive preference relationsand the terms are often used as

synonyms (which is the view adopted in this paper), although some authors prefer to distinguish

between these terms. Other authors, as De Baets et al. [12], prefer to use the termreciprocal

relation. Different types of consistency have also been studied. For a more deep insight into this

topic, the interested reader can refer to [7], [8] and [12].
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Approaches based on Saaty’s PCMs and on FPRs are equivalent as was demonstrated in [13];

Saaty’s PCMS = {sij}n
i,j=1 can be transformed into a FPRR = {rij}n

i,j=1 using the following

formula for all i, j = 1, 2, . . . , n:

rij =
1

2
(1 + log9 sij) . (5)

Analogously, a FPRR can be transformed into Saaty’s PCMS using the inverse function for

all i, j = 1, 2, . . . , n:

sij = 92rij−1. (6)

Because the approaches based on Saaty’s PCMs and on FPRs are equivalent (using transfor-

mation formulas (5) and (6)), this means that the matricesS andR carry analogous information.

Moreover, ifR is additively reciprocal or additively consistent, thenS is multiplicatively recip-

rocal or multiplicatively consistent as well, and vice versa. There is also an apparent relationship

between weights obtained from a FPR and from Saaty’s PCM computed using formulas (2) and

(4):

wR
i =

2

n

n∑

j=1

rij =
2

n

n∑

j=1

1

2
(1 + log9 sij) = 1 +

1

n

n∑

j=1

log9 sij = 1 + log9
n

√√
√
√

n∏

j=1

sij = 1 + log9 wi

for all i = 1, 2, . . . , n; analogouslywi = 9wR
i −1 for all i = 1, 2, . . . , n.

B. Weak consistency

In both Saaty’s PCM approach and FPR approach, maintaining consistency represented by

(1) and (3), respectively, can be problematic. These consistency conditions are not achievable in

many real situations because the evaluation scales defined in Tables I and II are restricted.

Let us consider three objectsA, B and C and focus on Saaty’s PCM case where Saaty’s

scale is restricted from1
9

to 9. If sAB = 5 and sBC = 7, then from the consistency condition

(1) it should follow thatsAC = 35. HoweversAC can take maximally the value9 which means

that the requirement (1) is not achievable in this situation. Since some level of violation of

the consistency condition (1) is to be expected (and low levels of inconsistency might not

prevent us from determining useful weights fromS), Saaty [41] proposed theconsistency index

CI = λmax−n
n−1

to measure the level of inconsistency for the PCM of typen × n. This index

is compared with therandom indexRI which is the average consistency index of randomly

generated Saaty’s PCMs of the dimensionn. The PCMS is considered consistent enough ifCI
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reaches at most10% of RI, i.e. S is consistent enough ifCR = CI
RI

≤ 0.1; CR is called the

consistency ratio.

Beside Saaty also various other authors tried to construct alternative consistency measures.

Alonso and Lamata [1] and Lamata and Pelaez [33] suggested an alternative consistency measure

in the way similar to Saaty. They created a coefficient which is computed after Saaty’s PCM is

completed and it is compared with a given number. Therefore, it is not possible to verify the

satisfaction of this kind of consistency during the process of entering the preference intensities.

If fully completed Saaty’s PCM is not consistent, the DM has to create a new one. And this

might be a significant setback when the PCM is large.

Basile and D’Apuzzo [5] suggested aweak-consistency conditionas a more suitable alternative

to the classic consistency in Saaty’s sense, particularly when qualitative criteria (attributes) are

considered. Their condition is based on the idea that ifA is preferred overB andB is preferred

over C, then the preference intensity ofA over B must be greater than both, the preference

intensity ofA overB and the preference intensity ofB overC. This condition can be controlled

during the process of filling in the preference intensities, nevertheless, it is not achievable in

certain situations. If one of the considered preference intensities ofA over B or B over C is

equal to9, then the preference intensity ofA over C cannot be greater than number9 which is

the maximal value of Saaty’s scale.

Stoklasa et al. [46] and Jandová and Talǎsov́a [27] proposed their own version of theweak-

consistency conditionfor Saaty’s PCM (although the name is the same, the concepts and their

use are different in [5] and [27]); it was introduced with the intention of specifying a minimum

consistency requirement for Saaty’s PCM. Their approach is similar to the consistency condition

of Basile and D’Apuzzo (see e.g. [3], [4]), however, it is not that strict and it is defined in

the way which is easily achievable in real situations. The idea of the weak consistency as

introduced in [27] is to require the preference intensitysAC to be at least the maximal value of

preference intensitiessAB andsBC if A is preferred overB andB is preferred overC. Again,

this requirement can be checked during the process of filling the preference intensities in Saaty’s

PCM. Moreover, if the categories are ordered according to the preference, there is even no need

for a software solution to check its fulfillment; see [27] for more details. The weak consistency

according to Jandová and Talǎsov́a [27] is defined for Saaty’s PCM in the following way.

Definition 1: Let S = {sij}n
i,j=1 be Saaty’s PCM where the elementssij, i, j = 1, 2, . . . , n,

are given by the scale described in Table I. We say thatS is weakly consistentif the following
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holds for all i, j, k ∈ {1, 2, . . . , n}:

sij > 1 ∧ sjk > 1 =⇒ sik ≥ max{sij , sjk}, (7)

(sij = 1 ∧ sjk ≥ 1) ∨ (sij ≥ 1 ∧ sjk = 1) =⇒ sik = max{sij , sjk}. (8)

The form of the weak-consistency condition for a FPR will be introduced in this paper as

an analogy to its form for Saaty’s PCM. Since the weak consistency defined by (7) and (8)

found its use with Saaty’s PCMs, reformulation of this condition for FPR and presentation of

its properties is a reasonable step.

Definition 2: Let R = {rij}n
i,j=1 be a FPR where the elementsrij, i, j = 1, 2, . . . , n, are given

by the scale described in Table II. We say thatR is weakly consistentif the following holds for

all i, j, k ∈ {1, 2, . . . , n}:

rij > 0.5 ∧ rjk > 0.5 =⇒ rik ≥ max{rij , rjk}, (9)

(rij = 0.5 ∧ rjk ≥ 0.5) ∨ (rij ≥ 0.5 ∧ rjk = 0.5) =⇒ rik = max{rij , rjk}. (10)

Applying the transformation formulas (5) and (6), it is obvious that the weak-consistency

condition for Saaty’s PCM (represented by (7) and (8)) and the weak-consistency condition for

a FPR (represented by (9) and (10)) are equivalent. It can be demonstrated that every FPR

consistent according to (3) is also weakly consistent and that the weak-consistency condition

keeps the transitivity of the preferences; see [27]. If we order the categories from the most

preferred one to the least preferred one, it is very easy to control the fulfillment of the weak

consistency. Then the upper triangle of the PCMR contains only numbers greater than or equal

to 0.5. In such a PCM, the weak consistency means that the sequence of numbers must be

non-decreasing in every row of the upper triangle and non-increasing in every column of the

upper triangle ofR. Moreover, if rij = 1, i 6= j, then the rowsi and j must be identical, and

the same holds for columnsi and j, i, j ∈ {1, 2, . . . , n}. The proofs of these properties for a

FPR are analogous to the proofs for Saaty’s PCM demonstrated in [27].

In the weakly consistent FPRR = {rij}n
i,j, the following properties hold (again this can be

proven analogously to the proof for Saaty’s PCM presented in [27]):

1) If rij ≤ 0.5 andrjk ≤ 0.5 for i, j, k ∈ {1, 2, . . . , n}, then

rij < 0.5 ∧ rjk < 0.5 =⇒ rik ≤ min{rij , rjk}, (11)

(rij = 0.5 ∧ rjk ≤ 0.5) ∨ (rij ≤ 0.5 ∧ rjk = 0.5) =⇒ rik = min{rij , rjk}. (12)
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2) If rij > 0.5 andrjk < 0.5 for i, j, k ∈ {1, 2, . . . , n}, then

0.5 < rik ≤ rij , if rij > 1 − rjk = rkj , (13)

0.5 > rik ≥ rjk, if rij < rkj , (14)

rji ≤ rik ≤ rij , if rij = rkj . (15)

3) If rij < 0.5 andrjk > 0.5 for i, j ∈ {1, 2, . . . , n}, then

0.5 < rik ≤ rjk, if rjk > 1 − rij = rji, (16)

rij ≤ rik < 0.5, if rjk < rji, (17)

rkj ≤ rik ≤ rjk, if rjk = rji. (18)

The application of these rules for keeping the weak consistency can be seen in the following

example:

1) If rAB = 0.3 andrBC = 0.2, then from (11) followsrAC ∈ [0, 0.2].

2) If rAB = 0.8 andrBC = 0.3, then from (13) followsrAC ∈ (0.5, 0.8].

3) If rAB = 0.3 andrBC = 0.6, then from (17) followsrAC ∈ [0.3, 0.5).

4) If rAB = 0.4 andrBC = 0.6, then from (18) followsrAC ∈ [0.4, 0.6].

C. Algorithm of Fedrizzi and Giove for the optimal choice of PCs in large PCMs

In this section, we summarize the algorithm for the optimal choice of PCs as it was described

in [17]. Let us considern objectsA1, A2, . . . , An. To fully complete the PCM in order to derive

weights, we require the DM to providen(n−1)/2 PCs. Whenn is large, providing all these PCs

is time demanding and their consistency might fluctuate. In these situations, methods focusing on

the reduction of the number of PCs needed can be applied to make the input phase manageable

for the DM and even to manage the consistency of the preferences provided by the DM.

One of these methods for reducing number of PCs needed in large FPRs was introduced by

Fedrizzi and Giove [17]. The authors proposed an algorithm for determining which element (that

has not yet been provided by the DM) of the incomplete FPR should be filled in by the DM in

each step. In the following, we describe briefly the proposed method. The interested reader may

refer to [17] for a more detailed description.

The algorithm proposed in [17] uses a selection rule based on two criteria. The first criterion,

quantified byzij, is used to achieve enough indirect PCs for missing elements of the PCM.
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The second criterion, quantified bypij, is used to reduce the inconsistency of judgements (or

to be more specific to resolve possible consistency issues). A scoring functionF is defined to

determine the usefulness of selecting a particular pair of not yet mutually compared objects

{Ai, Aj}, i, j ∈ {1, 2, . . . n}. A high value of the scoring function indicates high necessity to

compareAi with Aj, i, j ∈ {1, 2, . . . n}. Thus, at each step, the pair of objects with the maximal

value ofF is selected. The scoring function is defined as

F (zij , pij) = λzij + (1 − λ)pij , (19)

whereλ ∈ [0, 1] is the parameter quantifying the importance of the first criterionzij over the

second criterionpij. If we use the notationf(i, j) := F (zij , pij) to refer to the indices of the

objects, the selection rule is defined as

(i, j) = arg max
(k,l)∈Ω\Q

f(k, l), (20)

where Q is the set of PCs that were already performed during the questioning process and

Ω = {{Ai, Aj}; i < j; i, j = 1, 2, . . . , n} is the set of all PCs between then objects. The criteria

used in the scoring function (19) are defined by the following formulas:

zij = 1 −
|qi| + |qj|
2(n − 2)

, (21)

pij =
ϕij

|qi ∩ qj| + 1

1

3
=

3

|qi ∩ qj| + 1
ϕij . (22)

Let us consider the first expression (21), whereqi = {k; {Ai, Ak} ∈ Q}. Then|qi|+ |qj| is the

number of PCs involving objectAi or Aj. Maximum value of|qi| is n− 2, since{Ai, Aj} were

not yet compared and{Ai, Ai} is excluded. Thus, maximum value of|qi|+ |qj| is 2(n− 2), and
|qi|+|qj |
2(n−2)

represents the normalized number of PCs involvingAi andAj. Criterion zij is defined

by (21) in order to have a scoring functionF increasing in both variables. The criterionzij

determines the lack of PCs suffered by objectsAi andAj.

Let us consider the second expression (22), whereϕij is the mean inconsistency of indirect

PCs of objectsAi andAj. First, let us define the variableμij which expresses the mean value

of all indirect PCs ofAi andAj, which is based on additive consistency condition (3):

μij =






0 if qi ∩ qj = Ø,

1
|qi∩qj |

∑

k∈qi∩qj

(rik + rkj − 0.5) if qi ∩ qj 6= Ø.
(23)
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Because indirect PCs ofAi andAj are usually not completely consistent, the mean inconsistency

ϕij of indirect PCs ofAi andAj is defined as

ϕij =






0 if qi ∩ qj = Ø,

1
|qi∩qj |

∑

k∈qi∩qj

(rik + rkj − 0.5 − μij)
2 if qi ∩ qj 6= Ø.

(24)

Note that forqi ∩ qj 6= Ø, ϕij is the variance of(rih + rhj − 0.5), and it holds thatϕij = 0 if

and only if all the indirect PCs ofAi andAj are additively consistent.

The maximum achievable reductionΔϕij of ϕij is obtained if the direct PC isrij = μij and

it holds Δϕij = ϕij

|qi∩qj |+1
. In the formula (22),Δϕij is normalized, i.e. it is divided by1

3
as it

is the maximum achievable value ofΔϕij; see [17]. The criterionpij expresses the normalized

maximum achievable reduction of the inconsistencyϕij which can be reached by means of the

direct PCs ofAi andAj.

The algorithm of Fedrizzi and Giove for selecting the PCs to fill in the FPR consists of the

following steps:

1) At the beginning, no PCs are performed andQ = Ø. Thus,zij = 1, pij = 0 andf(i, j) = λ

for all i, j = 1, 2, . . . , n. Instead of a random selection, recommended initial PCs are

{(2i − 1, 2i); i = 1, 2, . . . , n/2} if n is even and{(2i − 1, 2i); i = 1, 2, . . . , (n − 1)/2} if

n is odd.

2) In each step of the selection process, the value of the scoring functionf is quantified for

each missing PC by using the formula (19). According to (20), the suitable PC(i, j) is

selected. In case of equal values off(i, j), indexes(i∗, j∗) such thati∗ + j∗ minimizes

i+ j are selected. In case of equal values ofi+ j, the pair containing the minimum index

is selected.

3) The selection is stopped when the value of scoring function becomes lower than the

thresholdδ ∈ [0, 1] which is subjectively defined by the DM, i.e.

max
{i,j}∈Ω\Q

f(i, j) ≤ δ. (25)

III. PROPOSED ALGORITHM

A. Description of the method

In this section, we propose an algorithm for inputting preferences in large PCMs and for

computing interval weights from incomplete PCMs. The algorithm utilizes the concept of weak
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consistency (7)–(10) as well as the PC selection process proposed in [17]. The proposed interac-

tive algorithm guides the DM through the PCs input phase by identifying which pair of objects

should be compared next. This way, the information increase, added by the PC, is maximized

and the compliance with the weak-consistency condition in each step of the algorithm is ensured.

This results in a weakly consistent incomplete PCM after each input. Moreover, information on

all feasible values of a given element of a PCM (that is such values, that would not violate the

weak consistency when put in the PCM) is available in each step of the algorithm. Values that

are unambiguous are input automatically and the DM is not bothered to provide these. This way,

the amount of information contained in the PCM can increase after each step without the effort

of the DM. When enough information is provided by the DM, the algorithm stops asking the

DM for inputs and determines the preference ordering of the objects and their weights, that are

in this case in the form of intervals. It is shown on a practical example, that the interval weights

are computed in such a way, that the crisp weights, which would be obtained if the DM filled

in all the necessaryn(n − 1)/2 PCs, lie in the respective interval weights.

Let us consider objectsA1, A2, . . . , An to which weights need to be assigned. The PC of a

pair of objectsAi andAj will be denoted as(Ai, Aj), and where no ambiguity is possible, we

will allow a simpler notation(i, j), i, j ∈ {1, 2, . . . , n}. Considering Saaty’s PCM approach and

the FPR approach are equivalent (transformation of one representation into the other can be done

using formulas (5) and (6)), the DM can express the preference intensities either with Saaty’s

PCM or a FPR. For the sake of the algorithm presentation, we will assume that the DM chose to

input preference intensities in Saaty’s PCM. We do so also because the practical application of

large PCMs discussed in Section IV was done using Saaty’s PCM. We want to be able to confront

the outputs of our algorithm with the practical result of a method using PCMs and full information

directly. Since Saaty’s PCM can be easily transformed into a FPR, there is no loss of information

in presenting the algorithm for Saaty’s PCM. The derived weights of the objects should be

expressed in the form corresponding to the scale which was used by the DM for data input. For

the purpose of computations in this algorithm, we will use Saaty’s PCM representation. Saaty’s

PCM will be denotedS = {sij}n
i,j=1, wheresij ∈ {1

9
, 1

8
, . . . , 1

2
, 1, 2, . . . , 8, 9}, i, j = 1, 2, . . . , n,

with the meanings described in Table I.

Since Saaty’s PCMS is reciprocal, only the PCs in the upper triangle have to be put in by the

DM. Hence, the setΩ of all PCs required to complete the PCM isΩ = {(Ai, Aj); i < j, i, j =

1, 2. . . . , n}, the cardinality ofΩ beingCard(Ω) = n(n− 1)/2. The objective of this algorithm
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is to find such a set̄Ω ⊂ Ω that its cardinality (i.e. the number of the PCs required from the DM)

allows for the computation of all the weights of the objects and to propose a way of generating

the elements of this set in such order that minimizes the cardinality ofΩ̄.

The set of all PCs already performed will be denoted byQ, and the set of PCs not yet entered in

the PCM will be denotedΩ\Q. For each(i, j) ∈ Ω\Q, the setFVij ⊆ {1
9
, 1

8
, . . . , 1

2
, 1, 2, . . . , 8, 9}

of feasible values which corresponds to the weak-consistency requirement will be always given.

For simplicity and in the figures, the notation[min FVij , max FVij ] will be used where there

is no risk of ambiguity. The notation[min FVij , max FVij ] represents a range of the values

from Saaty’s scale frommin FVij to max FVij for a given(i, j) ∈ Ω \ Q. For example, the set

{6, 7, 8, 9} will be denoted as[6, 9] and interpreted as a range of values of Saaty’s scale from 6

to 9. Incomplete Saaty’s PCM will be denoted̃S = {s̃ij}n
i,j=1, where

s̃ij =






[sL
ij , s

U
ij ] for (i, j) ∈ Ω \ Q,

sij for (i, j) ∈ Q.

It is obvious that[sL
ij , s

U
ij ] = [min FVij , max FVij ] for each(i, j) ∈ Ω \ Q.

The process of guided input of preferences and computation of weights of then compared

objects can be briefly summarized in the following steps:

1) The DM chooses which PCM will be used to express the preference intensities (we consider

Saaty’s PCM for the purpose of the description of the algorithm). The diagonal elements

(i, i) of Saaty’s PCMS̃ = {s̃ij}n
i,j=1 are set, i.e.̃sii = 1 for all i = 1, 2, . . . , n. The sets

of feasible values (FV sets)FVij are established for(i, j) ∈ Ω \ Q. At the beginning,

FVij = [1
9
, 9] for (i, j) ∈ Ω.

2) The DM provides initial PCs. In this algorithm, the setting from [17] is used, i.e. the initial

PCs(2i−1, 2i), i = 1, 2, . . . , bn/2c, wherebn/2c is the integer value ofn/2, are required

from the DM. However, also a different initial PCs can be selected. The only restriction

is that these initial PCs cannot violate the weak consistency.

The following steps 3 - 5 are repeated until the stopping criterion is met:

3) Based on the algorithm of Fedrizzi & Giove [17], we determine which(i, j) ∈ Ω \ Q is

to be provided next by the DM. The PC(i, j) that maximizes the scoring function (19) is

selected, and the DM is asked to provide the corresponding preference intensity into the

PCM. The DM selects the value of the PC(i, j) from its FV setFVij.
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4) Based on the weak-consistency requirement, the FV setFVij is recalculated for each

element(i, j) ∈ Ω\Q that is still missing. The form of the rules (9)–(18) for Saaty’s PCM

as introduced in [27] is now used in order to determine[min FVij , max FVij ].

Obviously, the FV set is restricted only when an indirect PC exists. That is when for

a PC (i, j) not yet entered in the PCM there exists at least one object with an index

k, k 6= i, j, such that(i, k) and (k, j) are already entered in the PCM or a restricted FV

set is determined for them.

5) The elements(i, j) ∈ Ω \ Q, for which FVij contains just a single element, are entered

in the PCM automatically. Obviously, the occurrence of such single-elementFVij sets is

far more frequent when a discrete scale is used for making PCs of objects. In real-life

applications, the requirement of a discrete scale rather than a continuous scale is not a

constraint of the decision-making problem. That is because in real-life applications discrete

scales of numbers with assigned linguistic terms expressing the intensities of preference

are used far more frequently than continuous scales. Discrete scales are more natural for

DMs as they provide the required simplifying granularity for continuous universes similar

to the common language. The algorithm, however, remains valid also for continuous scales.

The choice of the scale is out of the scope of this paper and is left with the users of the

algorithm; a discrete scale is assumed for the description of the algorithm. The setsFVij

are recalculated (step 4 is performed) after each such input and step 5 is performed again.

Steps 4 and 5 are repeated until there are no elements of the PCM that could be entered

automatically this way.

6) Stopping criterion: For every missing PC in the PCM, there exists at least one indirect PC.

This condition requires us to be able to determine for each missing(i, j) the set of feasible

intensities of preference (restricted) which can be entered in order to preserve the weak

consistency of the PCM. Once the stopping criterion is met, we know for each element

(i, j) of the PCM either its value or its FV setFVij restricted by the weak consistency if

the PC(i, j) was not entered in yet.

This stopping criterion varies from the stopping criterion proposed by Fedrizzi & Giove

[17]. Since our scope is to be able to compute interval weights of the objects, we require

that for every missing PC in the PCM there exists at least one indirect PC. It means that,

for any missing PC in the PCM, we are able to determine a (restricted) setFVij of feasible

intensities of preference which can be entered in order to preserve the weak consistency.
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7) The so-calledreciprocal FV setsare identified, i.e. suchFVij, (i, j) ∈ V ⊆ Ω \ Q,

that contain at least one of the values of the respective scale along with its reciprocal

value. As an example, a set containing the two numbers3 and 1
3

is a reciprocal FV set.

From a reciprocal FV setFVij, it is not possible to derive which object from the pair

(i, j) is preferred over the other one automatically. This ambiguity is not desired. Thus,

all reciprocal FV sets need to be replaced by a specific value provided by the DM or

restrected by a non-reciprocal FV set (as a consequence of filling in a value from another

reciprocal FV set), so thatV = Ø. The DM is asked to provide a PC(k, l) ∈ V such that

(k, l) = arg max
(i,j)∈V

Card(FVij). In case that there are more pairs of objects with the same

maximal cardinality of their reciprocal FV set, one of them is chosen randomly. After

inputting a value instead of the reciprocal FV set by the DM,FVij, (i, j) ∈ Ω \ Q, are

recalculated using steps 4 and 5. This step is repeated until there are no reciprocal FV sets

left.

Described technique enables us to reduce the amount of information required from the

DM as much as possible since providing the PC of the pair of objects with the maximal

cardinality of the problematic set adds the most information to the PCM.

8) The preference ordering of objects from the incomplete PCM is derived. For each object

(represented by the corresponding row of the PCM), we determine the number of elements

that are present in the PCM and are greater than or equal to the indifference value or for

which the elements of the FV set are all greater than or equal to the indifference value,

which is 1 for Saaty’s PCM̃S. Based on this information, the objectsA1, A2, . . . , An can

be ordered from the most preferred one to the least preferred one, i.e.A(1) � A(2) �

∙ ∙ ∙ � A(n). The respectively reordered PCM with rows and columns ordered from the

most preferred object to the least preferred one will be denotedS̃O.

9) In order to obtain the weights of the objects from the PCM, the setsFVij of feasible

intensities of preference for all missing PCs are considered to be intervals given by the

minimal and the maximal value in the set (for example, the set{2, 3, 4, 5} is now considered

to represent the interval[2, 5]). This allows us to obtain the weights of the objects in the

form of intervals. The weights can be obtained either from preference ordered PCMS̃O or

non-preference-ordered PCM̃S. For simplicity, the formulas for calculating weights will

be given for the initial ordering of objects without the permutation of indices. To obtain

the weights of objects, the formulas for the fuzzified geometric mean method proposed in

July 22, 2016 DRAFT



IEEE TRANSACTIONS ON FUZZY SYSTEMS 19

[28] are used here. Specifically, the formulas for obtaining the lower and the upper value

of a triangular fuzzy weight are applied in order to obtain the lower and the upper value

of an interval weight. According to [28], the formulas for computing the lower and the

upper valuewL
i , wU

i of an interval weightw̃i =
[
wL

i , wU
i

]
, i = 1, 2, . . . , n, for incomplete

Saaty’s PCMS̃ are given as

wL
i =

n

√
n∏

j=1
sL

ij

p

√
n∏

j=1
sL

ij + max






n∑

k=1
k 6=i

n

√√
√
√
√sU

ki

k−1∏

l=1
l 6=i

1

slk

n∏

l=k+1
l 6=i

skl ;

skl ∈
[
sL

kl, s
U
kl

]
,

k, l = 1, 2, . . . , n,

k, l 6= i, k < l






,

(26)

wU
i =

n

√
n∏

j=1
sU

ij

n

√
n∏

j=1
sU

ij + min






n∑

k=1
k 6=i

n

√√
√
√
√sL

ki

k−1∏

l=1
l 6=i

1

slk

n∏

l=k+1
l 6=i

skl ;

skl ∈
[
sL

kl, s
U
kl

]
,

k, l = 1, 2, . . . , n,

k, l 6= i, k < l






.

(27)

The computed interval weights contain all the weights that would be computed for any

particular selection of real values from the setsFVij corresponding to the missing values

in S̃ (that is if S̃ was completed) preserving the weak-consistency condition. This means

that if the DM provided all the missing PCs preserving the weak consistency, the real

weights computed from such a PCM would lie within the computed interval weights.

The interval weights obtained from the PCM̃SO by formulas (26) and (27) have the

following property. From the weak consistency and particularly from the property of non-

decreasing sequence of numbers in every row and non-increasing sequence of numbers in

every column of an ordered PCM, it follows, that any two interval weightsw̃i, w̃j , i, j ∈

{1, 2, . . . , n} , obtained by formulas (26) and (27) can be ordered according to the standard

partial order≤ on intervals;[a, b] ≤ [c, d] if a ≤ c, b ≤ d. Therefore, on the set of all

interval weightsw̃i, i = 1, 2, . . . , n, ≤ is a total order. According to step 8, the preference

ordering of objects is derived immediately from the preference information inS̃O without

the need of computing the interval weights. Moreover, for any two objectsAi, Aj such
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thatAi � Aj, it holds thatw̃i > w̃j; for the case whenAi � Aj andAj � Ai it holds that

w̃i = w̃j.

To evaluate the benefit of the proposed method from the point of view of sparing the number

of PCs required from the DM, the following simulations were performed. One hundred weakly

consistent Saaty’s PCMs were randomly generated for each fixed dimensionn = 5, 10, . . . , 30.

The proposed algorithm was applied to each of them, and the average number of PCs which the

DM did not have to fill in the PCM was calculated for each dimension; see Table III. According

to the obtained results, the percentage of the spared PCs increases on average with the dimension

of the PCM, and for PCMs of dimension 15 and greater, more than60% of PCs are spared on

average.

TABLE III: Average number of spared PCs needed from the DM

n = 5 n = 10 n = 15 n = 20 n = 25 n = 30

number of PCs required in the full-information case 10 45 105 190 300 435

average number of spared PCs 4 24 64 123 207 312

average% of spared PCs 42% 53% 61% 65% 69% 72%

B. Illustrative example

For better understanding, the algorithm is demonstrated step-by-step on a simple illustrative

example of weakly consistent Saaty’s PCM for seven objects. Obviously, applying our algorithm

to a PCM of just several (in our case seven) objects has only limited significance as such a PCM

does not require many PCs provided by the DM in the first place. However, for better visual

illustration of each step of the proposed algorithm, an example with just several objects is more

suitable.

Let A1, A2, . . . , A7 be objects which need to be compared andw̃1, w̃2, . . . , w̃7 be the weights

of the respective objects that the DM needs to determine. The preferences will be entered in

Saaty’s PCM form. Let us also consider that Fig. 1 presents Saaty’s PCM as it would look

like if the DM provided all the PCs. For the sake of simplicity, only the elements above the

main diagonal are given since the elements below the main diagonal are the reciprocals of

the corresponding elements above the main diagonal. The weightsw1, w2, . . . , w7 of objects

A1, A2, . . . , A7 that would be computed from Saaty’s PCMS by the geometric mean method

are given in the second column of Tab. IV. For better illustration, easier understanding and an
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easy check of the compliance with the weak-consistency condition, the objects in Saaty’s PCM

in Fig. 1 are ordered from the most preferred one to the least preferred one.

Fig. 1: Saaty’s PCM with all the preference intensities provided by the DM

The method proposed in this paper is designed to be applicable on the most general PC

problems with no information about the preference ordering of the objects which are to be

compared pairwise, i.e. we suppose that the ordering of the objects from the most preferred

one to the least preferred one is not known. It means that the method can be applied on any

random initial ordering of objects in Saaty’s PCM. Let us therefore assume that the preference

ordering of objects was not known in advance and instead the objects were ordered in random

order (we can assume that Saaty’s PCM, presented in Fig. 2 without any PCs entered, was the

initial starting point).

At the beginning, the diagonal elements are set to the value 1 as in step 1 of the pro-

posed algorithm. Then the DM has to provide initial PCs{(2i − 1, 2i) ; i = 1, 2, . . . , b7/2c} =

{(1, 2), (3, 4), (5, 6)} as is required in step 2. Any values from Saaty’s scale can be chosen in

this step. It means that FV sets for all missing elements are[1
9
, 9]. For easier orientation in the

figures, the initial FV sets[1
9
, 9] are replaced by empty fields. Only FV sets calculated from

indirect PCs in the following steps will be entered in Saaty’s PCM.F

Next, the steps from 3 to 5 are repeated until the stopping criterion is met. In step 3, we

apply the algorithm based on searching for a missing PC(i, j) with the maximum value of the

scoring function (19) to select the next PC(i, j) which is to be given by the DM. Let us remark

here thati and j in (i, j) are the coordinates of the element in the PCM, not actual indices of

objects. The same scoring function is used as in the method proposed by Fedrizzi & Giove in

[17]. In this illustrative example, both criteria of the scoring function (19) are considered to have

the same importance, therefore the parameterλ = 0.5 is set.
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As was already mentioned in the previous section, in contrast to the method proposed by

Fedrizzi & Giove [17], we require Saaty’s PCM to be weakly consistent; it has to satisfy the

equivalent of properties of (9)–(18) for Saaty’s PCM as introduced in [27]. According to this

requirement, in step 4, we are able to restrict the setsFVij of feasible intensities of preference

for some missing PCs in order to preserve the weak consistency. If any setFVij consists of only

one value, then this value is entered in Saaty’s PCM as is suggested in step 5.

Fig. 2 demonstrates incomplete Saaty’s PCMS̃ after the initial PCs(1, 2) = 1, (3, 4) = 1
9

and

(5, 6) = 9 and after the first iteration of the algorithm. The first PC chosen in the first iteration

and provided by the DM is(1, 7) = 8. As can be seen from Saaty’s PCM, the PC(2, 7) = 8

was filled in automatically according to the weak consistency since(1, 2) = 1 and (1, 7) = 8.

The legend explaining the notation in the figures is provided in Fig. 3.

Fig. 2: Incomplete Saaty’s PCM after the first iteration

Fig. 3: Legend

Fig. 4 shows incomplete Saaty’s PCM̃S after two iterations of the algorithm. The PC(2, 3) = 8

was provided by the DM, and according to the weak consistency, one missing PC and ranges

for other three missing PCs were added automatically. For example, the range[1/9, 1/2] for

the missing PC(1, 4) was derived from the PCs(1, 3) = 8 and (3, 4) = 1/9 according to the
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property (13). The DM continues providing the missing PCs until the stopping criterion is met.

Fig. 5 represents incomplete Saaty’ PCM obtained so far.

Fig. 4: Incomplete Saaty’s PCM after the second iteration

Fig. 5: Incomplete Saaty’s PCM after the stopping criterion is met

In our Saaty’s PCMS̃, two reciprocal FV sets are present; see the PCs(3, 5) = [ 1
9
, 9] and

(3, 7) = [ 1
8
, 8] in Fig. 5. It means that for these pairs of objects we are not even able to decide

which one is preferred over the other; the information obtained from indirect PCs is too vague.

Therefore, according to step 7, we have to ask the DM to determine the intensities of preference

for these pairs of objects.

First the DM is asked to provide the value(3, 5) = 1
9
, its reciprocal FV set having the biggest

cardinality 17. In this case, no restriction of the other FV sets occurs. Then the DM provides

the value(3, 7) = 7, and as a consequence, the FV set of(6, 7) is reduced from[2, 8] to [7, 8] .

Fig. 6 shows incomplete Saaty’s PCM after step 7.

Once the reciprocal FV sets are removed, we are able to order the compared objects from

the most preferred one to the least preferred one according to step 8 and reorder the whole

incomplete PCM accordingly. Fig. 7 demonstrates ordered incomplete Saaty’s PCM which is
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Fig. 6: Incomplete Saaty’s PCM without reciprocal FV sets

weakly consistent.The resulting PCM is incomplete Saaty’s PCM with FV sets for every missing

PC such that by choosing an arbitrary element from FV set of an arbitrary missing PC the weak

consistency is not violated. If the DM wanted only information about preference ordering of the

objects, then the process would be stopped here. Otherwise, from such Saaty’s PCM, the interval

weights of objects are obtained using the formulas presented in the step 9 of the algorithm. The

computed interval weights are summarized in Tab. IV along with the weights computed from

the full Saaty’s PCM.

Fig. 7: Final incomplete Saaty’s PCM

To summarize the results of this illustrative example, to have complete information, the DM

woud have to fill 21 PCs in Saaty’s PCM. Using the algorithm proposed in this paper for

incomplete PCMs, the DM provided 10 PCs (approx. 48%), 7 PCs (approx. 33%) were added

automatically from the properties of the weak consistency and 4 PCs (approx. 19%) left empty

having the FV set which will not violate the weak consistency of Saaty’s PCM. The calculated

interval weights are very narrow and contain the original weights; see Tab. IV.

To emphasize the advantage and the significant contribution of the method proposed in this
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TABLE IV: Weights of the objects

Objects Real weights Interval weights Weights computed

according to [25]

A1 0.5083 [0.4840, 0.5102] 0.2377

A2 0.1765 [0.1765, 0.2594] 0.1128

A3 0.1166 [0.0896, 0.1170] 0.2284

A4 0.1166 [0.0896, 0.1170] 0.2284

A5 0.0463 [0.0363, 0.0472] 0.0535

A6 0.0228 [0.0213, 0.0273] 0.1128

A7 0.0128 [0.0122, 0.0131] 0.0264

paper to the decision-making theory, we will compare this method with another known method

for incomplete Saaty’s PCMs. Particularly, the method proposed by Herrera-Viedma et al. in [25]

will be applied on this illustrative example for the comparison (paper [25] has been cited over

560-times which suggests wide recognition of the method). In [25], onlyn−1 PCs above the main

diagonal, i.e.{(i, i + 1); i = 1, 2, . . . , n − 1} , are required from the DM. After, the missing PCs

are completed automatically so that resulting Saaty’s PCMA = {aij}
n
i,j=1 is consistent according

to (1). Clearly, in most of the cases, the missing PCs completed by this procedure exceed Saaty’s

scale
[

1
9
, 9
]
. That is why it is suggested in [25] to transform obtained Saaty’s PCMA given on

scale
[

1
c
, c
]
, c > 9, to Saaty’s PCMB = {bij}

n
i,j=1 given on scale

[
1
9
, 9
]

by using transformation

formula

bij = a
1/ log9 c
ij , i, j = 1, 2, . . . , n. (28)

In Fig. 8, completed, transformed and ordered Saaty’s PCMB after providing the 6 initial

PCs above the main diagonal is given. The 6 PCs provided by the DM are highlighted in bold.

Obviously, unlike Saaty’s PCM in Fig. 7, Saaty’s PCM in Fig. 8 differs substantially from

original Saaty’s PCM in Fig. 1. Thus, also the weights obtained from this Saaty’s PCM that are

given in the fourth column of Tab. IV vary essentially from the original weights given in the

second column. Even the ranking of the objects based on these weights varies.

To demonstrate how far Saaty’s PCM in Fig. 8 obtained by the method proposed in [25] is

from original Saaty’s PCM in comparison to Saaty’s PCM obtained by the method proposed in

this paper, we will measure their distances. We will apply the distance for Saaty’s PCMs defined

in [11]. Since Saaty’s PCM in Fig. 7 contains intervals, we need to generalize the distance from

[11] to interval Saaty’s PCMs. For two interval Saaty’s PCMsA = {aij}
n
i,j=1 , a =

[
aL

ij , a
U
ij

]
, B =
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Fig. 8: The PCM obtained by Herrera’s approach

{
bij

}n

i,j=1
, b =

[
bL
ij , b

U
ij

]
, the interval distance based on the distance defined by [11] is given as

D(A, B) =
[
dL, dU

]
:

dL = min
aij∈[aL

ij ,aU
ij]

bij∈[bL
ij ,bU

ij]

n−1∑

i=1

n∑

j=i+1

| ln(aij/bij)| =
n−1∑

i=1

n∑

j=i+1

min
aij∈[aL

ij ,aU
ij]

bij∈[bL
ij ,bU

ij]

| ln(aij/bij)|, (29)

dU = max
aij∈[aL

ij ,aU
ij]

bij∈[bL
ij ,bU

ij]

n−1∑

i=1

n∑

j=i+1

| ln(aij/bij)| =
n−1∑

i=1

n∑

j=i+1

max
aij∈[aL

ij ,aU
ij]

bij∈[bL
ij ,bU

ij]

| ln(aij/bij)|. (30)

For crisp Saaty’ PCMs, the interval distance (29), (30) is identical to the distance defined in [11].

By applying the formulas (29) and (30), the distance of Saaty’s PCM obtained by the method

proposed in [25] given in Fig. 8 and original Saaty’s PCM given in Tab. 1 isD = 22.8941.

The interval distance of interval Saaty’s PCM in Fig. 7 from original Saaty’s PCM in Fig. 1

is D = [0, 4.3934]. Clearly, D = [0, 4.3934] is significantly smaller thanD = 22.8941, which

demonstrates better performance of the method proposed in this paper.

Notice that the lower boundary valuedL of the distance of any Saaty’s PCM with intervals

obtained by the method proposed in this paper from original complete Saaty’s PCM is always

0. This follows from the fact that the original PCM is contained in the interval PCM, which is

the substance and the main advantage of the method.

IV. CASE STUDY OF EVALUATING ARTISTIC PERFORMANCE IN THECZ

A. Description of the problem

As a real-life case study of the proposed interactive algorithm, we will use the Registry

of Artistic Performances from the CZ and the data gathered for the determination of scores
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for various categories of artistic production; see [46]. The outputs of artistic performance are

currently evaluated in the CZ against the following three criteria, for each of which there are

three levels distinguished (denoted by capital letters that are then used for the description of

categories):

Criterion 1 - Relevance or significance of the piece of art

A - a new piece of art or a performance of crucial significance;

B - a new piece of art or a performance containing numerous important innovations;

C - a new piece of art or a performance pushing forward modern trends.

This is an expertly assessed criterion that brings a peer-review element into the evaluation.

Each segment of art provided a general linguistic specification for each level of this criterion to

be made available for the expert evaluators, real-life (historical) examples for levels A, B and C

are also available.

Criterion 2 - Extent of the piece of art

K - a piece of art or a performance of large extent;

L - a piece of art or a performance of medium extent;

M - a piece of art or a performance of limited extent.

The levels of this criterion are again specified linguistically. This criterion was however

intended to be measurable for each segment on such a level of accuracy that most of the ambiguity

in categorizing works of art according to this criterion is removed.

Criterion 3 - Institutional and media reception/impact of the piece of art

X - international reception/impact;

Y - national reception/impact;

Z - regional reception/impact.

For this criterion, lists of institutions corresponding to level X, Y and Z are provided. Hence,

there is no subjectivity in evaluation against this criterion in the process.

By combining the letters representing various levels of the three criteria, 27 categories of

works of art can be defined. These categories are represented by triplets of capital letters in the

model (e.g. AKY, BLZ, or CMZ). Each of these 27 categories needs to be assigned a score.

The original idea was to obtain all PCs of the well represented (that is represented by real-life

examples) 27 categories of works of art (351 PCs in total) using Saaty’s scale (see Table I), and

based on these, to compute the score for each category using Saaty’s approach in AHP.

As AHP was not intended for PCMs of large dimensions, Saaty proposed to approach these
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problems by splitting them into problems of a lower dimension - that is to determine the weights

of each criterion and the weights of each level within each criterion and based on these to

calculate the evaluations (weights) of the categories. This approach was however not applicable

in this case for the following reasons: a) there are some dependencies among the criteria which

are not easy to describe or capture, b) to compare various levels of one criterion - for example

big, medium and small - without any real-life representatives (good representatives for such

broad categories proved to be difficult to find) is not easy for the experts, c) the experts were

not able to express their preferences between the criteria (these too proved to be too abstract to

provide enough representation for the experts to be able to express their preferences). For these

reasons, all 27 categories were compared pairwise. To adapt Saaty’s method for this dimension

of Saaty’s PCM and to facilitate the process for the experts, the consistency condition in Saaty’s

sense that is almost impossible to achieve with large Saaty’s PCMs, was replaced by the much

more relaxed weak-consistency condition. The weak consistency was considered as a minimum

requirement on the consistency of Saaty’s PCM.

As the weak-consistency condition is easy to check within the process of inputting preferences,

and even more so when the rows and columns of Saaty’s PCM are ordered in accordance with

the preference ordering of the categories (from the most preferred to the least preferred one),

the 27 categories were preference ordered first using the PC method; see [46] for more details.

After two years of using the described mathematical model and the resulting evaluations, minor

adjustments to the evaluation methodology proved to be necessary. Adding one more level to

one of the criteria and changing the initial preference ordering of the categories were considered

[47]. All such changes would result in the need of inputting large Saaty’s PCM again (and in the

case of adding one level of one of the criteria the dimension of Saaty’s PCM would increase, thus

dramatically increasing the number of PCs needed). Generally, we should be prepared that any

model based on large PCMs might need to be adapted to meet new requirements in the future.

If such an adaptation results in the need of doing all the PCs again (or even in doing more of

them), functioning algorithms that are capable of reducing the number of PCs that need to be

provided, and thus reducing the time consumption for the experts (this all without substantial

loss of information), are most needed. The algorithm proposed in this paper aims to provide an

assistance and a solution to these types of problems.
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B. Numerical results

In this section, we approach the large-dimensional problem of evaluating outcomes of artistic

performance in the CZ solved in [46]. The method for the construction of incomplete Saaty’s

PCM and obtaining interval weights of the categories of artistic production introduced in Section

III-A is applied, and the outcome is compared with the outcome in [46]. Again, we draw from the

knowledge of complete Saaty’s PCM and conduct a numerical experiment - we start with empty

Saaty’s PCM, utilize the algorithm proposed in this paper and, whenever a preference intensity

is required from the DM, we find the appropriate value in complete Saaty’s PCM presented in

[46, p. 75].

We assume the randomly generated initial order of the categories (i.e. categories are not

ordered according to their preference but randomly) given in the heading of Fig. 9 and start with

the execution of the algorithm. First, the DM was asked to provide 13 initial PCs{(2i − 1, 2i) ;

i = 1, 2, . . . , 13}. Subsequently, the algorithm for selecting the missing PCs(i, j) , i < j, i, j ∈

{1, 2, . . . , 27} which are to be provided by the DM was applied. The parameterλ = 0.5 was

used in the scoring function (19) as both its criteria were considered having the same importance.

The algorithm was stopped after just 109 PCs provided by the DM. Because missing PCs with

reciprocal FV sets were present in Saaty’s PCM, it was not possible to order the categories

from the most preferred one to the least preferred one immediately. First, all reciprocal FV

setsFVij needed to be removed. This was done one by one, and after the replacement of each

single reciprocal FV setFVij by the value specified by the DM or by a non-reciprocal FV

set, all the remaining missing elements were recalculated (23 inputs were required from the

DM in the process). Obtained incomplete Saaty’s PCM is given in Fig. 9. Finally, categories

creating incomplete PCM were ordered from the most preferred category to the least preferred

one. Preference ordered weakly consistent incomplete Saaty’s PCM is given in Fig. 10.

Overall, from the total number of 351 PCs, the DM provided 145 PCs (approx. 41%), 153 PCs

(approx. 44%) were added automatically according to the weak consistency, and for remaining

53 PCs (approx. 15%), sets of feasible intensities of preference were derived from the weak-

consistency properties. These FV sets were relatively narrow containing at most 4 values.

From Saaty’s PCM in Fig. 10, interval weights of the categories were obtained using the

formulas (26) and (27). The interval weights together with the weights of the categories, obtained

from complete Saaty’s PCM in [46] by the geometric mean method, are given in Tab. V. The
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Fig. 9: Saaty’s PCM after filling in the PCs by the DM
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Fig. 10: Saaty’s PCM ordered according to the preferences

resulting weights are rounded to four decimal places. Obviously, the weights of the categories

lie in the intervals delimited by the interval weights. This result is natural since FV sets for

missing PCs in the incomplete PCM obtain all feasible intensities of preference which preserve

the weak consistency. Therefore, actual complete Saaty’s PCM from [46] can be obtained from

incomplete weakly consistent Saaty’s PCM in Fig. 10 by a particular combination of the values

from the FV sets.

Using the algorithm proposed in this paper, we obtained the interval weights of the categories

which represent very well the actual weights obtained from complete Saaty’s PCM (compare the

results in Tab. V). In contrast to the original method, however, the DM provided only 145 PCs

instead of 351. It means that the amount of the information required from the DM was reduced

to just over 40% of the information required in [46]. This is a very significant reduction of the

information required from the DM that reduces considerably the time demands and raises the

quality of the information provided.

V. CONCLUSION

The presented paper contributes to the current pool of knowledge on MCDM with FPRs

and Saaty’s PCMs. It presents a novel approach to dealing with large incomplete PCMs (both

represented by Saaty’s PCMs or FPRs) that strives to identify the tradeoff between decreasing the
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TABLE V: Interval weights of the categories

Categories Real weights Interval weights

1 AKX 0.1357 [0.1314, 0.1370]

2 AKY 0.1132 [0.1126, 0.1166]

3 AKZ 0.0967 [0.0917, 0.0995]

4 ALX 0.0862 [0.0829, 0.0895]

5 ALY 0.0761 [0.0687, 0.0799]

6 ALZ 0.0612 [0.0593, 0.0660]

7 AMX 0.0552 [0.0542, 0.0573]

8 AMY 0.0498 [0.0495, 0.0509]

9 AMZ 0.0418 [0.0415, 0.0423]

10 BKX 0.0385 [0.0382, 0.0390]

11 BKY 0.0335 [0.0333, 0.0340]

12 BKZ 0.0292 [0.0280, 0.0296]

13 BLX 0.0269 [0.0258, 0.0273]

14 BLY 0.0222 [0.0211, 0.0249]

Categories Real weights Interval weights

15 BLZ 0.0204 [0.0194, 0.0215]

16 BMX 0.0184 [0.0176, 0.0192]

17 BMY 0.0167 [0.0160, 0.0175]

18 BMZ 0.0134 [0.0133, 0.0140]

19 CKX 0.0117 [0.0114, 0.0125]

20 CKY 0.0106 [0.0102, 0.0112]

21 CKZ 0.0088 [0.0088, 0.0092]

22 CLX 0.0080 [0.0077, 0.0082]

23 CLY 0.0072 [0.0067, 0.0074]

24 CLZ 0.0057 [0.0053, 0.0066]

25 CMX 0.0047 [0.0045, 0.0051]

26 CMY 0.0042 [0.0040, 0.0045]

27 CMZ 0.0038 [0.0035, 0.0040]

number of PCs required from the DM and obtainig sufficient amount of information to compute

relevant weights of objects. The algorithm is suggested as a possible solution to large-dimensional

problems where the complete information (all PCs) is either costly, too time consuming or

infeasible to obtain or where the preference intensities in the large PCMs require (frequent)

revisions.

The algorithm is based on the combination of the weak-consistency conditions (7)–(10),

introduced in this paper for FPRs, with the modified version of the optimal PC selection algorithm

[17]. The weak consistency of the incomplete PCM is required during the whole process as a

minimal consistency requirement. As a consequence, certain PCs are added automatically on

the base of PCs previously filled in by the DM. The resulting algorithm provides 1) means of

effectively inputting large incomplete weakly consistent PCMs, 2) means of computing interval

weights from these incomplete PCMs whose range depends on the amount of the missing

information and that include the real weights of objects obtainable for any weakly consistent

completion of the incomplete PCM.

The numerical results of performed simulations demonstrate that the application of the pro-

posed algorithm can significantly reduce the number of PCs required and thus results in signif-

icant resource savings. At the same time, a high accuracy of the output is guaranteed by the
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algorithm as the resulting interval weights contain the weights that would be obtained from a

complete PCM. For randomly generated Saaty’s PCMs of dimensionn ≥ 15, even more than

60% of PCs needed (with respect to the full-information case) were spared on average. The

numerical example of a small 7x7 PCM exhibited a reduction of ca. 50% in the number of PCs

required (from 21 to 10). In the real-life case study of a works-of-art evaluation model utilising a

27x27 PCM, the requirement on the number of PCs obtained from the DMs was reduced by ca.

60% (from 351 PCs only 145 were required). The obtained interval weights of the 27 categories

of works of art contained the real-number weights that would be obtained from a complete PCM

and were reasonably narrow.
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