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Abstract—One big challenge that hinders the transition of

brain-computer interfaces (BCIs) from laboratory settings to

real-life applications is the availability of high-performance and

robust learning algorithms that can effectively handle individ-

ual differences, i.e., algorithms that can be applied to a new

subject with zero or very little subject-specific calibration data.

Transfer learning and domain adaptation have been extensively

used for this purpose. However, most previous works focused

on classification problems. This paper considers an important

regression problem in BCI, namely, online driver drowsiness

estimation from EEG signals. By integrating fuzzy sets with do-

main adaptation, we propose a novel online weighted adaptation

regularization for regression (OwARR) algorithm to reduce the

amount of subject-specific calibration data, and also a source

domain selection (SDS) approach to save about half of the

computational cost of OwARR. Using a simulated driving dataset

with 15 subjects, we show that OwARR and OwARR-SDS can

achieve significantly smaller estimation errors than several other

approaches. We also provide comprehensive analyses on the

robustness of OwARR and OwARR-SDS.

Index Terms—Brain-computer interface, domain adaptation,

EEG, ensemble learning, fuzzy sets, transfer learning

I. INTRODUCTION

Brain computer interfaces (BCIs) [18], [28], [32], [45], [53]

have attracted rapidly increasing research interest in the last

decade, thanks to recent advances in neurosciences, wear-

able/mobile biosensors, and analytics. However, there are still

many challenges in their transition from laboratory settings to

real-life applications, including the reliability and convenience

of the sensing hardware [21], and the availability of high-

performance and robust algorithms for signal analysis and

interpretation that can effectively handle individual differences

and non-stationarity [12], [25], [28], [50]. This paper focuses

on the last challenge, more specifically, how to generalize a

BCI algorithm to a new subject, with zero or very little subject-

specific calibration data.

Transfer learning (TL) [34], which improves learning in a

new task by leveraging data or knowledge from other relevant

tasks, represents a promising solution to the above challenge.

Many TL approaches have been proposed for BCI applications

[50], including: 1) feature representation transfer [7], [13],

[39], [41], which encodes the knowledge across different tasks

as features; 2) instance transfer [19], [20], [56], [63], which

uses certain parts of the data from other tasks to help the

learning for the current task; and, 3) classifier transfer, which

includes domain adaptation (DA) [1], [41], [47], ensemble

learning [42], [43], and their combinations [54], [60], [61].

However, most of the above TL approaches consider only

BCI classification problems. Reducing the calibration data re-

quirement in BCI regression problems has been largely under-

studied. One example is online driver drowsiness estimation

from EEG signals, which will be investigated in this paper.

This is a very important problem because drowsy driving is

among the most important causes of road crashes, following

only to alcohol, speeding, and inattention [38]. According

to the National Highway Traffic Safety Administration [44],

2.5% of fatal motor vehicle crashes (on average 886/year in

the U.S.) and 2.5% of fatalities (on average 1,004/year in

the U.S.) between 2005 and 2009 involved drowsy driving.

However, to our best knowledge, there have been only two

works [51], [54] on TL for drowsiness estimation. Wei et al.

[51] showed that selective TL, which selectively turns TL on

or off based the level of session generalizability, can achieve

better estimation performance than approaches that always turn

TL on or off. Wu et al. [54] proposed a domain adaptation with

model fusion (DAMF) approach for drowsiness estimation. By

making use of data from other subjects in a DA framework,

DAMF requires very little subject-specific calibration data,

which significantly increases its real-world applicability.

In this paper, by making use of fuzzy sets (FSs) [67],

we extend our earlier work on online weighted adaptation
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regularization [60] from classification to regression to estimate

driver drowsiness online from EEG signals. We show that

our two proposed algorithms can achieve significantly better

estimation performance than the DAMF and two other baseline

approaches.

The remainder of the paper is organized as follows: Sec-

tion II introduces the details of the proposed online weighted

adaptation regularization for regression (OwARR) algorithm.

Section III further introduces a source domain selection

(SDS) approach to save the computational cost of OwARR.

Section IV presents experimental results and performance

comparisons of OwARR and OwARR-SDS with three other

approaches. Finally, Section V draws conclusions and points

out future research directions.

II. ONLINE WEIGHTED ADAPTATION REGULARIZATION

FOR REGRESSION (OWARR)

In [60] we have defined two types of calibration in BCI:

1) Offline calibration, in which a pool of unlabeled EEG

epochs have been obtained a priori, and a subject or an

oracle is queried to label some of these epochs, which

are then used to train a model to label the remaining

epochs in the pool.

2) Online calibration, in which some labeled EEG epochs

are obtained on-the-fly, and then a model is trained from

them for future (unseen) EEG epochs.

The major different between them is that, for offline calibra-

tion, the unlabeled EEG epochs can be used to help design

the model (e.g., semi-supervised learning), whereas in online

calibration there are no unlabeled EEG epochs. Additionally,

in offline calibration we can query any epoch in the pool for

the label, but in online calibration usually the sequence of the

epochs is pre-determined and the subject or oracle has little

control on which epochs to see next.

We only consider online calibration in this paper. This

section introduces the OwARR algorithm, which extends the

online weighted adaptation regularization algorithm [60] from

classification to regression, by making use of FSs.

A. Problem Definition

A domain [23], [34] D in TL consists of a d-dimensional

feature space X and a marginal probability distribution P (x),
i.e., D = {X , P (x)}, where x ∈ X . Two domains Dz and Dt

are different if X z 6= X t, and/or P z(x) 6= P t(x).
A task [23], [34] T in TL consists of an output space Y

and a conditional probability distribution Q(y|x). Two tasks

T z and T t are different if Yz 6= Yt, or Qz(y|x) 6= Qt(y|x).
Given the zth source domain Dz with nz samples (xz

i , y
z
i ),

i = 1, ..., nz, and a target domain Dt with m calibration

samples (xt
j , y

t
j), j = 1, ...,m, DA aims to learn a target

prediction function f(x) : x 7→ y with low expected error

on Dt, under the assumptions that X z = X t, Yz = Yt,

P z(x) 6= P t(x), and Qz(y|x) 6= Qt(y|x).
In driver drowsiness estimation from EEG signals, EEG

signals from a new subject are in the target domain, while

EEG signals from the zth existing subject are in the zth source

domain. A single data sample consists of the feature vector for

a single EEG epoch in either domain. Though the features in

source and target domains are extracted in the same way, gen-

erally their marginal and conditional probability distributions

are different, i.e., P z(x) 6= P t(x) and Qz(y|x) 6= Qt(y|x),
because different subjects usually have similar but distinct

drowsy neural responses. As a result, data from a source

domain cannot represent data in the target domain accurately,

and must be integrated with some target domain data to induce

the target domain regression function.

B. The Learning Framework

Because

f(x) = Q(y|x) = P (x, y)

P (x)
=

Q(x|y)P (y)

P (x)
, (1)

to use the data in the zth source domain in the target domain,

we need to minimize the distance between the marginal and

conditional probability distributions in the two domains by

ensuring that1 P z(x) is close to P t(x), and Qz(x|y) is also

close to Qt(x|y).
Assume both the output and each dimension of the input

vector have zero mean. Then, the regression function can be

written as

f(x) = α
T
x (2)

where α is the regression parameter vector to be found. The

learning framework of OwARR is then formulated as:

f =argmin
f

n
∑

i=1

(yi − f(xi))
2 + wt

n+m
∑

i=n+1

(yi − f(xi))
2

+ λ[d(P z , P t) + d(Qz, Qt)]− γr̃2(y, f(x)) (3)

where λ and γ are non-negative regularization parameters, and

wt is the overall weight for target domain samples, which

should be larger than 1 so that more emphasis is given to

target domain samples than source domain samples.

Briefly speaking, the first two terms in (3) minimize the

sum of squared errors in the source domain and target domain,

respectively. The 3rd term minimizes the distance between the

marginal and conditional probability distributions in the two

domains. The last term maximizes the approximate sample

Pearson correlation coefficient between y and f(x), which

helps avoid the undesirable situation that the regression output

is (nearly) a constant.

In the next subsections we will explain how to compute the

individual terms in (3).

C. Sum of Squared Error Minimization

Let

X = [x1, ...,xn+m]T (4)

y = [y1, ..., yn+m]T (5)

where the first n xi and yi are the column input vectors and

the corresponding outputs in the source domain, the next m

1Strictly speaking, we should also make sure P z(y) is close to P t(y). In
this paper we assume P z(y) and P t(y) are close. Our future research will
consider the general case that P z(y) and P t(y) are different.
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xi and yi are the column input vectors and the corresponding

outputs in the target domain, and T is the matrix transpose

operation.

Define E ∈ R(n+m)×(n+m) as a diagonal matrix with

Eii =

{

1, 1 ≤ i ≤ n
wt, n+ 1 ≤ i ≤ n+m

(6)

Then, the first two terms in (3) can be rewritten as

n
∑

i=1

(yi − f(xi))
2 + wt

n+m
∑

i=n+1

(yi − f(xi))
2

=
n+m
∑

i=1

Eii(yi −α
T
xi)

2

=(yT −α
TXT )E(y −Xα) (7)

The optimal selection of wt is very important to the perfor-

mance of the OwARR algorithm. In this paper we use

wt = max(2, σ · n/m) (8)

where σ is a positive adjustable parameter, based on the

following heuristics: 1) when m is small, each target domain

sample should have a large weight so that the target domain is

not overwhelmed by the source domain; 2) as m increases, the

weight on the target domain samples should decrease gradually

so that the source domain is not overwhelmed by the target

domain; and, 3) the target domain samples should always

have larger weights than the source domain samples because

eventually the regression model will be applied to the target

domain.

D. Marginal Probability Distribution Adaptation

As in [23], [36], [60], [61], we compute d(P z, P t) using

the maximum mean discrepancy (MMD):

d(P z , P t) =

[

1

n

n
∑

i=1

f(xi)−
1

m

n+m
∑

i=n+1

f(xi)

]2

= α
TXMPXα (9)

where MP ∈ R(n+m)×(n+m) is the MMD matrix:

(MP )ij =















1
n2 , 1 ≤ i ≤ n, 1 ≤ j ≤ n
1
m2 , n+ 1 ≤ i ≤ n+m,

n+ 1 ≤ j ≤ n+m
−1
nm

, otherwise

(10)

E. Conditional Probability Distribution Adaptation

In [23], [60], [61] a classification problem is considered, and

it is more straightforward to perform conditional probability

distribution adaptation. In this subsection we first briefly intro-

duce the technique used there, and then describe in detail how

we can perform conditional probability distribution adaptation

in regression in a similar way, with the help of FSs [16], [67],

which have been widely used in EEG feature extraction [5],

[15], [24] and pattern recognition [11], [22], [33].

1) Conditional Probability Distribution Adaptation for

Classification: Let Dz
c = {xi|xi ∈ Dz ∧ yi = c} be the set

of samples in Class c (c = 1, ..., C) of the zth source domain,

Dt
c = {xi|xi ∈ Dt ∧ yi = c} be the set of samples in Class

c of the target domain, nc = |Dz
c |, and mc = |Dt

c|. Then,

the distance between the conditional probability distributions

in source and target domains is computed as the sum of

the Euclidian distances between the class means in the two

domains [23], [60], [61], i.e.,

d(Qz , Qt) =

C
∑

c=1





1

nc

∑

xi∈Dz
c

f(xi)−
1

mc

∑

xi∈Dt
c

f(xi)





2

(11)

2) Conditional Probability Distribution Adaptation for Re-

gression: With the help of FSs (background materials are

given in Appendix), we can transform the regression problem

into a “classification” problem and hence perform conditional

probability distribution adaptation using (11). First, for the nz

outputs, {yzi }i=1,...,n, in the zth source domain, we find their

5, 50 and 95 percentile2 values, pz5, pz50 and pz95, respectively,

and define three triangular FSs3, Smallz, Mediumz and

Largez, based on them, as shown in Fig. 1(a). In this way,

we can “classify” the outputs in the zth source domain

into three fuzzy classes, Smallz, Mediumz and Largez,

corresponding to the different classes in a traditional crisp

classification problem. However, note that in the traditional

crisp classification problem a sample can only belong to one

class. For the fuzzy classes here, a sample can belong to more

than one class simultaneously, at different degrees.

0 x

1

µ(x)
Smallz

(Class 1)

Mediumz

(Class 2)

Largez

(Class 3)

5

zp 50

zp
95

zp

(a)

0 x

1

µ(x)
Smallt

(Class 1)

Mediumt

(Class 2)

Larget

(Class 3)

5

zp
50

zp 95

zp

(b)

Fig. 1. The three FSs in (a) the zth source domain, and, (b) the target domain.

Denote Class Smallz as Class 1, Class Mediumz as Class

2, Class Largez as Class 3, and the membership degree of yzi
in Class c as µz

ic. We then normalize each µz
ic according to its

class, i.e.,

µ̄z
ic =

µz
ic

∑n

i=1 µ
z
ic

, i = 1, ..., n; c = 1, 2, 3 (12)

Similarly, we also find pt5, pt50 and pt95 from the m target

domain outputs {yti}i=n+1,...,n+m, define three FSs, Smallt,

2There is a popular regression analysis method called quantile regression
[17] in statistics and econometrics, which estimates either the conditional
median or other quantiles of the response variable. The percentiles used in
this paper are found directly from the data, and they should not be confused
with quantile regression.

3There can be other ways to define these FSs, e.g., we could use Gaussian
FSs instead of triangular FSs, use pz

10
, pz

50
and pz

90
instead of pz

5
, pz

50
and

pz
95

, use other than three FSs in each domain, or use type-2 FSs [30] instead
of type-1. Three type-1 triangular FSs are used here for simplicity. More
discussions on the sensitivity of the OwARR algorithm to the number of
type-1 triangular FSs are given in Section IV-H.
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Mediumt and Larget, as shown in Fig. 1(b), and compute the

corresponding normalized µ̄t
ic, i = n+1, ..., n+m, c = 1, 2, 3.

Finally, similar to (11), the distance between the conditional

probability distributions in the target domain and the zth

source domain is computed as:

d(Qz , Qt) =
3

∑

c=1





∑

xi∈Dz

µ̄z
icf(xi)−

∑

xi∈Dt

µ̄t
icf(xi)





2

(13)

Substituting (2) into (13), it follows that

d(Qz, Qt) =

3
∑

c=1





∑

xi∈Dz

µ̄z
icα

T
xi −

∑

xi∈Dt

µ̄t
icα

T
xi





2

=

3
∑

c=1

α
TXMcXα = α

TXMQXα (14)

where

MQ = M1 +M2 +M3 (15)

in which M1, M2 and M3 are MMD matrices computed as:

(Mc)ij =























µ̄z
icµ̄

z
jc, xi, xj ∈ Dz

c

µ̄t
icµ̄

t
jc, xi, xj ∈ Dt

c

−µ̄z
icµ̄

t
jc, xi ∈ Dz

c , xj ∈ Dt
c

−µ̄t
icµ̄

z
jc, xi ∈ Dt

c, xj ∈ Dz
c

0, otherwise

(16)

F. Maximize the Approximate Sample Pearson Correlation

Coefficient

The sample Pearson correlation coefficient r(y, f(x)) is

defined as [48]:

r(y, f(x)) =
y
TXα

‖ y ‖ · ‖ Xα ‖

=
y
TXα

√

yTy ·
√
α

TXTXα

(17)

and hence

r2(y, f(x)) =
α

TXT
yy

TXα

yTy · αTXTXα

(18)

Note that r2(y, f(x)) has α in the denominator, so it

is very challenging to find a closed-form solution to max-

imize it. However, observe that r2(y, f(x)) increases as

α
TXT

yy
TXα increases, and decreases as α

TXTXα in-

creases. So, instead of maximizing r2(y, f(x)) directly, in this

paper we try to maximize the following function:

r̃2(y, f(x)) =
α

TXT
yy

TXα−α
TXTXα

yTy

=
α

TXT (yyT − I)Xα

yTy
(19)

where I ∈ R(n+m)×(n+m) is an identity matrix. r̃2(y, f(x))
has the same property as r2(y, f(x)), i.e., r̃2(y, f(x))
increases as α

TXT
yy

TXα increases, and decreases as

α
TXTXα increases.

G. The Closed-Form Solution

Substituting (7), (9), (14) and (19) into (3), we can rewrite

it as

α =argmin
α

(yT −α
TXT )E(y −Xα)

+ λαTXT (MP +MQ)Xα

+ γ
α

TXT (I − yy
T )Xα

yTy
(20)

Setting the derivative of the objective function above to 0 leads

to

α =

[

XT

(

E + λMP + λMQ + γ
I − yy

T

yTy

)

X

]−1

XTEy

(21)

H. The Complete OwARR Algorithm

The pseudo-code for the complete OwARR algorithm is

described in Algorithm 1. We first perform OwARR for

each source domain separately, and then construct the final

regression model as a weighted average of these base models,

where the weight is the inverse of the training accuracy of the

corresponding base model. The final regression model will

then be applied to future unlabeled data.

Algorithm 1: The OwARR algorithm.

Input: Z source domains, where the zth (z = 1, ..., Z)

domain has nz samples {xz
i , y

z
i }i=1,...,nz

;

m target domain samples, {xt
j , y

t
j}j=1,...,m;

Parameters λ, γ, and σ in (8).

Output: The OwARR regression model.

for z = 1, 2, ..., Z do
Construct X in (4), y in (5), E in (6), MP in (10),

and MQ in (15);

Compute α by (21) and record it as α
z ;

Use α
z to estimate the outputs for the nz +m

samples from both domains and record the root

mean squared error as az;

Assign the zth regression model a weight wz = 1/az;

end

Return f(x) =
∑

Z

z=1
wz(αz)Tx

∑
Z

z=1
wz

.

III. OWARR-SDS

A SDS procedure for online classification problems has

been proposed in [60]. In this paper it is extended to regression

problems by using the fuzzy classes again defined in Fig. 1.

The primary goal of SDS is to reduce the computational

cost of OwARR, because when there is a large number of

source domains, performing OwARR for each source domain

and then aggregating the base models would be very time-

consuming.

Assume there are Z different source domains. For the zth

source domain, we first compute m
z
c (c = 1, 2, 3), the mean

vector of each fuzzy class. Then, we also compute m
t
c, the
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mean vector of each fuzzy class in the target domain, from the

m labeled samples. The distance between the two domains is:

d(z, t) =

3
∑

c=1

||mz
c −m

t
c|| (22)

We next cluster the Z numbers, {d(z, t)}z=1,...,Z, by k-means

clustering, and finally choose the cluster that has the smallest

centroid, i.e., the source domains that are closest to the target

domain. In this way, on average we only need to perform

OwARR for Z/k source domains. We used k = 2 in this

paper.

The pseudo-code for the complete OwARR-SDS algorithm

is described in Algorithm 2. We first use SDS to select the

Z ′ closest source domains, and then perform DA for each

selected source domain separately. The final regression model

is a weighted average of these base models, with the weight

being the inverse of the training accuracy of the corresponding

base model.

Algorithm 2: The OwARR-SDS algorithm.

Input: Z source domains, where the zth (z = 1, ..., Z)

domain has nz samples {xz
i , y

z
i }i=1,...,nz

;

m target domain samples, {xt
j , y

t
j}j=1,...,m;

λ, γ, σ in (8), and k in k-means clustering.

Output: The OwARR-SDS regression model.

// SDS starts

if m == 0 then

Select all Z source domains;

Go to OwARR.
else

for z = 1, 2, ..., Z do

Compute d(z, t), the distance between the target

domain and the zth source domain, by (22).
end

Cluster {d(z, t)}z=1,...,Z by k-means clustering;

Select the Z ′ source domains that belong to the

cluster with the smallest centroid.
end

// SDS ends; OwARR starts

for z = 1, 2, ..., Z ′ do
Construct X in (4), y in (5), E in (6), MP in (10),

and MQ in (15);

Compute α by (21) and record it as α
z;

Use α
z to estimate the outputs for the nz +m

samples from both domains and record the root

mean squared error as az;

Assign the zth regression model a weight wz = 1/az;

end

// OwARR ends

Return f(x) =
∑

Z
′

z=1
wz(αz)Tx

∑
Z′

z=1
wz

.

IV. EXPERIMENTS AND DISCUSSIONS

Experimental results on driver drowsiness estimation from

EEG signals are presented in this section to demonstrate the

performance of OwARR and OwARR-SDS.

A. Experiment Setup

We reused the experiment setup and data in [54]. 16 healthy

subjects with normal or corrected to normal vision were

recruited to participate in a sustained-attention driving experi-

ment [3], [4], which consisted of a real vehicle mounted on a

motion platform with 6 degrees of freedom immersed in a 360-

degree virtual-reality scene. Each participant read and signed

an informed consent form before the experiment began. Each

experiment lasted for about 60-90 minutes and was conducted

in the afternoon when the circadian rhythm of sleepiness

reached its peak. To induce drowsiness during driving, the

virtual-reality scenes simulated monotonous driving at a fixed

100 km/h speed on a straight and empty highway. During

the experiment, lane-departure events were randomly applied

every 5-10 seconds, and participants were instructed to steer

the vehicle to compensate for these perturbations as quickly

as possible. Subjects’ cognitive states and driving performance

were monitored via a surveillance video camera and the

vehicle trajectory throughout the experiment. The response

time in response to the perturbation was recorded and later

converted to drowsiness index. Meanwhile, participants’ scalp

EEG signals were recorded using a 32-channel (30-channel

EEGs plus 2-channel earlobes) 500 Hz Neuroscan NuAmps

Express system (Compumedics Ltd., VIC, Australia).

The Institutional Review Board of the Taipei Veterans

General Hospital approved the experimental protocol.

B. Evaluation Process and Performance Measures

The complete procedure for the application of OwARR for

driver drowsiness estimation is shown in Algorithm 3. Com-

pared with Algorithm 1 on OwARR for a generic application,

here we also include detailed EEG data pre-processing and

feature extraction steps. Observe that although the feature

extraction methods for different auxiliary subjects have the

same steps, their parameters (channels removed, principal

components used, ranges used in normalization) may be dif-

ferent, so we need to record them for each auxiliary subject

so that the features in the individual regression models can be

computed correctly.

From the experiments we already knew the drowsiness

indices for all ∼1200 epochs. To evaluate the performances

of different algorithms, for each subject, we used up to 100

epochs in a randomly chosen continuous block for calibration,

and the rest ∼1100 epochs for testing. Every time when five

epochs were acquired, we computed the testing performance to

show how the performance of the regression models changed

over time. We ran this evaluation process 30 times, each time

with a randomly chosen 100-epoch calibration block, to obtain

statistically meaningful results. Finally, we repeated this entire

process 15 times so that each subject had a chance to be the

“15th” subject.

The primary performance measured used in this paper is

the root mean squared error (RMSE) between the ∼1100 true

drowsiness indices and the corresponding estimates for the

testing epochs, which is optimized in the object functions

of all algorithms. The secondary performance measure is
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Algorithm 3: OwARR for driver drowsiness estimation.

Input: EEG data and the corresponding RTs;

λ, γ, and σ in OwARR (Algorithm 2);

tmax, the duration of the calibration period;

∆t, the time interval (in second) between two

successive epochs in calibration.

Output: The OwARR regression model.

Set t = 0, and start the calibration;

while t < tmax do

if t ≥ 30 then

Compute the drowsiness index y in (5);

// Pre-processing

Extract 30s EEG data in [t− 30, t];
Band-pass filter the EEG signals to [0, 50] Hz;

Down-sample to 250Hz;

Re-reference to averaged earlobes;

Compute the PSD in the [4, 7.5] Hz theta band

for each channel;

Convert the PSDs to dB for each channel;

end

Wait until t = t+∆t;
end

// OwARR

for z = 1, 2, ..., Z do

// Feature extraction

Concatenate each channel of the powers of the zth

subject with the corresponding powers of the new

subject;

Remove channels which have at least one power

larger than a certain threshold;

Normalize the powers of each remaining channel to

mean 0 and std 1;

Put all the powers in a matrix, whose rows represent

different EEG channels;

Extract a few leading principal components of the

power matrix that account for 95% of the variance;

Find the corresponding scores of the leading

principal components;

Normalize each dimension of the scores to [0, 1];
Collect the scores for each epoch as features;

Record the parameters of the feature extraction

method (channels removed, principal components

used, ranges used in normalization) as FEz;

// OwARR training

Construct X in (4), y in (5), E in (6), MP in (10),

and MQ in (15);

Compute α by (21) and record it as α
z;

Use α
z to estimate the outputs for all known samples

and record the root mean squared error as az ;

Assign the zth regression model a weight wz = 1/az;

end

Return The OwARR regression model

f(x) =
∑

Z

z=1
wz(αz)Tx

z

∑
Z

z=1
wz

, where x
z is the feature vector

extracted using FEz .

the correlation coefficient (CC) between the true drowsiness

indices and the estimates.

C. Preprocessing and Feature Extraction

The 16 subjects had different lengths of experiment, because

the disturbances were presented randomly every 5-10 seconds.

Data from one subject was not correctly recorded, so we used

only 15 subjects. To ensure fair comparison, we used only the

first 3,600 seconds data for each subject.

We defined a function [51], [54] to map the response time

τ to a drowsiness index y ∈ [0, 1]:

y = max

{

0,
1− e−(τ−τ0)

1 + e−(τ−τ0)

}

(23)

τ0 = 1 was used in this paper, as in [54]. The drowsiness

indices were then smoothed using a 90-second square moving-

average window to reduce variations. This does not reduce the

sensitivity of the drowsiness index because the cycle lengths

of drowsiness fluctuations are longer than 4 minutes [26]. The

smoothed drowsiness indices for the 15 subjects are shown in

Fig. 2. Observe that each subject had some drowsiness indices

at or close to 1, indicating drowsy driving.
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Fig. 2. Drowsiness indices of the 15 subjects.

We used EEGLAB [6] for EEG signal preprocessing. A

band-pass filter (1-50 Hz) was applied to remove high-

frequency muscle artifacts, line-noise contamination and DC

drift. Next the EEG data were downsampled from 500 Hz to

250 Hz and re-referenced to averaged earlobes.

We tried to predict the drowsiness index for each subject

every three seconds. All 30 EEG channels were used in feature

extraction. We epoched 30-second EEG signals right before

each sample point, and computed the average power spectral

density (PSD) in the theta band (4-7.5 Hz) for each channel us-

ing Welch’s method [52], as research [27] has shown that theta

band spectrum is a strong indicator of drowsiness. The theta

band powers for three selected channels and the corresponding

drowsiness index for Subject 1 are shown in Fig. 3(a). Observe

that drowsiness index has strong correlations with the theta

band powers.

Next, we converted the 30 theta band powers to dBs. To

remove noises or bad channel readings, we removed channels
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Fig. 3. EEG features and the corresponding drowsiness indices for Subject 1.
(a) Theta band powers for three selected channels; (b) The top three principal
component (PC) features.

whose maximum dBs were larger than 20. We then normal-

ized the dBs of each remaining channel to mean zero and

standard deviation one, and extracted a few (usually around

10) leading principal components, which accounted for 95%

of the variance. The projections of the theta band powers

onto these principal components were then normalized to [0, 1]
and used as our features. Three such features for Subject

1 are shown in Fig. 3(b). Observe that the score on the

first principal component has obvious correlation with the

drowsiness index, suggesting that estimating the drowsiness

index from the scores on the principal components is possible.

D. Algorithms

We compared the performances of OwARR and OwARR-

SDS with three other algorithms introduced in [54]:

1) Baseline 1 (BL1), which combines data from all 14

existing subjects, builds a ridge regression model [10],

and applies it to the new subject. That is, BL1 tries

to build a subject-independent regression model and

ignores data from the new subject completely.

2) Baseline 2 (BL2), which builds a ridge regression model

using only subject-specific calibration samples from the

new subject. That is, BL2 ignores data from existing

subjects completely.

3) DAMF, which builds 14 ridge regression models by

combining data from each auxiliary subject with data

from the new subject, respectively, and then uses a

weighted average to obtain the final regression model.

The weights are also the inverse of the training RMSEs,

as in Algorithms 1 and 2.

The ridge parameter σ = 0.01 was used in the above three

algorithms, as in [54]. For OwARR and OwARR-SDS, we

used σ = 0.2, λ = 10, and γ = 0.5. However, as will be

shown in Section IV-H, OwARR and OwARR-SDS are robust

to these three parameters.

E. Regression Performance Comparison

The average RMSEs and CCs for the five algorithms across

the 15 subjects are shown in Fig. 4, and the RMSEs and

CCs for the individual subjects are shown in Fig. 5. Observe

that DAMF, OwARR and OwARR-SDS had very similar CCs,

and all of them were better than the CCs of BL1 and BL2.

Additionally:
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Fig. 4. Average performances of the five algorithms across the 15 subjects.
(a) RMSE; (b) CC.

1) Except for BL1, whose model does not depend on m,

all the other four algorithms gave smaller RMSEs as m
increased, which is intuitive.

2) BL1 had the smallest RMSE when m = 0. However,

as m increased, DAMF, OwARR and OwARR-SDS

quickly outperformed BL1. This suggests that there

is large individual difference among the subjects, and

hence a subject-independent model is not desirable.

3) Because BL2 used only subject-specific calibration data,

it cannot build a model when m = 0, i.e., when there

was no subject-specific calibration data at all. However,

all the other four methods can, because they can make

use of data from other subjects. BL2’s performance

was the worst, because it cannot get enough training

when there is only a small number of subject-specific

calibration samples.

4) OwARR and OwARR-SDS had almost identical average

RMSEs, which were smaller than those of BL1, BL2

and DAMF. More importantly, the RMSEs of OwARR

and OwARR-SDS almost converged as soon as the first

batch of subject-specific samples were added, suggesting

that they only need very few subject-specific samples to

train, which is very desirable in practical calibration.

In summary, the three DA based approaches generally had bet-

ter performance than BL1, which does not use subject-specific

data at all, and also BL2, which does not use auxiliary data at

all. This suggests that DA is indeed beneficial. Moreover, our

proposed OwARR and OwARR-SDS achieved the best overall

performances among the five algorithms.

We also performed two-way Analysis of Variance (ANOVA)

for each m to check if the RMSE differences among the five

algorithms were statistically significant, by setting the subjects

as a random effect. Two-way ANOVA showed statistically

significant differences among them (p < 0.01) for all m.

Then, non-parametric multiple comparison tests using Dunn’s

procedure [8], [9] were used to determine if the difference

between any pair of algorithms was statistically significant,

with a p-value correction using the False Discovery Rate

method [2]. The p-values are shown in Table I, where the

statistically significant ones are marked in bold. Observe

that the differences between OwARR and the other three

algorithms (BL1, BL2, and DAMF) were always statistically

significant when m > 0, so were the differences between

OwARR-SDS and the two baseline algorithms. The difference

between OwARR-SDS and DAMF was statistically significant
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Fig. 5. Average performances of the five algorithms for each individual subject. Horizontal axis: m, the number of subject-specific calibration samples. (a)
RMSE; (b) CC.
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for m ∈ [5, 75]. There was no statistically significant differ-

ence between OwARR and OwARR-SDS.

Finally, we can conclude that given the same amount

of subject-specific calibration data, OwARR and OwARR-

SDS can achieve significantly better estimation performance

than the other three approaches. Or, in other words, given

a desired RMSE, OwARR and OwARR-SDS require signifi-

cantly less subject-specific calibration data than the other three

approaches. For example, in Fig. 4(a), the average RMSE

for BL2 when m = 100 was 0.2988, whereas OwARR and

OwARR-SDS can achieve even smaller RMSEs without using

any subject-specific calibration samples. The average RMSEs

for OwARR and OwARR-SDS when m = 5 were 0.2347
and 0.2348, respectively, whereas DAMF needed at least 45

subject-specific samples to achieve these RMSEs, and BL2

needed at least 100 samples.

F. Computational Cost

In this subsection we compare the computational cost of

the five algorithms, particularly, OwARR and OwARR-SDS,

because the primary goal of SDS is to down-select the number

of auxiliary subjects and hence to reduce the computational

cost of OwARR.

Fig. 6 shows the average number of similar subjects selected

by SDS for the 15 subjects. Observe that most of the time

fewer than seven subjects (half of the number of auxiliary

subjects) were selected.
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Fig. 6. Average number of similar subjects selected by SDS.

To quantify the computational cost of the five algorithms, we

show in Fig. 7 the training times for different m, averaged over

10 runs and across the 15 subjects. The platform was a Dell

XPS 13 notebook, with Intel Core i7-5500M CPU@2.40GHz,

8GB memory, and 256GB solid state drive. The software was

Matlab R2015b running in 64-bit Windows 10 Pro. Each algo-

rithm was optimized to the best ability of the authors. Observe

that the training time of BL1, BL2, and DAMF was almost

constant, whereas the training time of OwARR increased

monotonically as m increased. Interestingly, the training time

of OwARR-SDS decreased slightly as m increased, because

Fig. 6 shows that generally the average number of similar

subjects selected by SDS decreased as m increased.

The computational costs of OwARR and OwARR-SDS

were much higher than DAMF, because they used more

sophisticated DA approaches. However, except for m = 0, at

which point OwARR and OwARR-SDS had identical training

time, the training time of OwARR-SDS was on average only

about 49% of OwARR. This 51% computation time saving is

very worthwhile when the number of source domains is very

large and hence computing OwARR for all the source domains

is too slow.
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Fig. 7. Average training time of the five algorithms. Note that BL1 overlaps
with DAMF.
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Fig. 8. Scalability of OwARR with respect to (a) the number of source
domains (each domain had about 1,200 samples); (b) the number of samples
in each source domain (14 source domains were used).

We also investigated the scalability of OwARR with respect

to Z , the number of source domains, and n, the number of

samples in each source domain. Because we only had 14

source domains in this dataset, we bootstrapped them to create

additional domains when Z ≥ 14. The results are shown in

Fig. 8. Observe from Fig. 8(a) that the computational cost

of OwARR increased linearly with the number of source

domains, which is intuitive, because OwARR performs DA for

each source domain separately and then aggregates the results.

However, Fig. 8(b) shows that the computational cost of

OwARR increased superlinearly with the number of samples

in the source domains. Least-squares curve fitting found that

the computation time was about 0.0000021 · n1.8 + 0.035
seconds, i.e., the computational cost is O(n1.8) for 14 source

domains.

Finally, it is important to note that the above analyses are

only for the training of the algorithms. Once the training is

done, the resulting OwARR and OwARR-SDS models can be

executed much faster.

G. Robustness to Noises

It is also important to study the robustness of the five

algorithms to noises. According to [68], there are two types of

noises: class noise, which is the noise on the model outputs,

and attribute noise, which is the noise on the model inputs.

In this subsection we focus on the attribute noise.

As in [68], for each model input, we randomly replaced

q% (q = 0, 10, ..., 50) of all epochs from the new subject

with a uniform noise between its minimum and maximum

values. After this was done for both the training and testing

data, we trained the five algorithms on the corrupted training

data and then tested their performances on the corrupted

testing data. The RMSEs for three different m (the number of

labeled subject-specific samples), averaged across 15 subjects
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TABLE I
p-VALUES OF NON-PARAMETRIC MULTIPLE COMPARISONS.

OwARR OwARR OwARR OwARR-SDS OwARR-SDS OwARR-SDS OwARR-SDS
m vs BL1 vs BL2 vs DAMF vs BL1 vs BL2 vs DAMF vs OwARR

0 .0007 N/A .4073 .0011 N/A .5091 .5000
5 .0000 .0000 .0000 .0000 .0000 .0000 .4813

10 .0000 .0000 .0000 .0000 .0000 .0000 .3888
15 .0000 .0000 .0000 .0000 .0000 .0000 .4075
20 .0000 .0000 .0000 .0000 .0000 .0000 .4795
25 .0000 .0000 .0000 .0000 .0000 .0000 .4658
30 .0000 .0000 .0000 .0000 .0000 .0000 .4153
35 .0000 .0000 .0001 .0000 .0000 .0001 .4364
40 .0000 .0000 .0002 .0000 .0000 .0004 .3956
45 .0000 .0000 .0004 .0000 .0000 .0006 .4378
50 .0000 .0000 .0005 .0000 .0000 .0013 .3766
55 .0000 .0000 .0007 .0000 .0000 .0035 .2898
60 .0000 .0000 .0011 .0000 .0000 .0108 .2132
65 .0000 .0000 .0015 .0000 .0000 .0097 .2573
70 .0000 .0000 .0024 .0000 .0000 .0143 .2527
75 .0000 .0000 .0038 .0000 .0000 .0133 .3122
80 .0000 .0000 .0047 .0000 .0000 .0294 .2304
85 .0000 .0000 .0058 .0000 .0000 .0513 .1785
90 .0000 .0000 .0071 .0000 .0000 .0383 .2387
95 .0000 .0000 .0086 .0000 .0000 .1091 .1205
100 .0000 .0000 .0117 .0000 .0000 .1179 .1352

with five runs per subject, are shown in Fig. 9. Observe

that as the noise level q increased, generally all algorithms

had worse RMSEs. OwARR and OwARR-SDS still had the

smallest RMSEs among the five when q was small. However,

when q increased, DAMF became the best. This suggests

that OwARR and OwARR-SDS may not be as robust as

DAMF with respect to attribute noises, but when the noise

level is low, the performance improvement achieved from

the sophisticated optimizations in OwARR and OwARR-SDS

dominates, and hence they are still the best algorithms among

the five. When the noise level is high, we may need some

noise handling approaches, e.g., noise correction [68], before

applying OwARR and OwARR-SDS.
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Fig. 9. Average RMSEs of the five algorithms with respect to different
attribute noise levels.

H. Parameter Sensitivity Analysis

The OwARR algorithm has three adjustable parameters:

σ, which determines the weight wt for the target domain

samples; λ, which is a regularization parameter minimizing

the distances between the marginal and conditional probability

distributions in the source and target domains; and γ, which

maximizes the approximate Pearson correlation coefficient

between the true and estimated outputs. It is interesting to

study whether all of them are necessary.

For this purpose, we constructed three modified versions

of the OwARR algorithms by setting σ, λ and γ to zero,

respectively, and compared their average RMSEs with that

of the original OwARR. The results are shown in Fig. 10.

Observe that the original OwARR had better performance than

all three modified versions, suggesting that all three parameters

in OwARR contributed to its superior performance.
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Fig. 10. Average RMSEs of OwARR when different regularization terms are
removed.

Next we studied the sensitivity of OwARR to the three

adjustable parameters, σ, λ and γ. The results are shown in

Fig. 11(a)-(c). Observe that OwARR is robust to σ in the range

of [0.1, 0.4], to λ in the range of [1, 20], and to γ in the range

of [0.01, 1].
Additionally, three type-1 triangular FSs have been used in

conditional probability distribution adaptation (Section II-E)

in this paper for simplicity. It is also interesting to study the

sensitivity of the OwARR algorithm to the number of FSs. The

results are shown in Fig. 11(d). Observe that OwARR gives the

optimal performance when the number of FSs is between 2 and

5, but its performance gradually deteriorates when the number

of FSs further increases. This is intuitive, because the target

domain has a limited number of labeled training samples, so

as the number of FSs increases, the number of target domain
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Fig. 11. Average RMSEs of OwARR across the 15 subjects for different
parameter values. (a) σ in wt; (b) λ; (c) γ; (d) number of FSs in conditional
probability distribution adaptation.

samples that fall into each fuzzy class decreases, and hence

the computed fuzzy class means are less reliable. As a result,

the distance between the conditional probability distributions

[see (14)] cannot be reliably computed.

Another interesting questions is: what would be the perfor-

mance of OwARR if no FSs are used at all, i.e., conditional

probability distribution adaptation is disabled? This is corre-

sponding to the left-most slice in Fig. 11(d), where the number

of FSs is zero. Observe that this results in worse RMSEs

than the case that two to five FSs are used in conditional

probability distribution adaptation, suggesting the FS approach

is beneficial.

I. Effectiveness of the Ensemble Fusion Strategy

From Algorithm 1 (Algorithm 2) it is clear that the final

step of OwARR (OwARR-SDS) uses ensemble learning: the

base DA models are aggregated using a weighted average to

obtain the final regression model, and the weight is inversely

proportional to the training RMSE of the corresponding base

DA model. In this subsection we study whether this fusion

strategy is effective. The performances of the 14 base DA

models and the final aggregation model for a typical subject

are shown in Fig. 12. Observe that the aggregated model

is better than most base DA models, and is also close to

the best base DA model (which is unknown in practice),

suggesting that the fusion strategy is effective. However, it

may be possible that a better fusion strategy can make the

final model outperform all base DA models. This will be one

of our future research directions.

V. CONCLUSIONS AND FUTURE RESEARCH

Transfer learning, which improves learning performance in a

new task by leveraging data or knowledge from other relevant

tasks, represents a promising solution for handling individual

differences in BCI. Previously we have proposed a weighted
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Fig. 12. Performances of the 14 base DA models (solid curves) and the final
regression model (dashed blue curve) for a typical subject.

adaptation regularization (wAR) algorithm [59], [61] for of-

fline BCI classification problems, an online weighted adap-

tation regularization (OwAR) algorithm [60] for online BCI

classification problems, and a SDS approach [60], [61] to re-

duce the computational cost of wAR and OwAR. In this paper

we have proposed an OwARR algorithm to extend the OwAR

algorithm from classification to regression, and validated its

performance on online estimation of driver drowsiness from

EEG signals. Meanwhile, we have also extended the SDS

algorithm for classification in [60] to regression problems, and

verified that OwARR-SDS can achieve similar performance to

OwARR, but save about half of the computation time. Both

OwARR and OwARR-SDS use fuzzy sets to perform part

of the adaptation regularization, and OwARR-SDS also uses

fuzzy sets to select the closest source domains.

Though OwARR and OwARR-SDS have demonstrated out-

standing performance, they can be enhanced in a number

of ways, which will be considered in our future research.

First, Fig. 5(a) shows that OwARR and OwARR-SDS had

worse RMSEs than BL1 for some subjects. This indicates that

they still have room for improvement: we could develop a

mechanism to switch between BL1 and OwARR (OwARR-

SDS) so that a more appropriate method is chosen according to

the characteristics of the new subject, similar to the idea of se-

lective TL [51]. Second, we will extend OwARR and OwARR-

SDS to offline calibration, where the goal is to automatically

label some initially unlabeled subject-specific samples with a

small number of queries [61]. Semi-supervised learning can

be used here to enhance the learning performance. Third,

in this paper we combine the base learners using a simple

weighted average, where the weights of the base learners are

inversely proportional to their corresponding training RMSEs.

This may not be optimal because what really matter here are

the testing RMSEs. In online calibration it is not easy to

estimate the testing RMSEs because we do not know what

samples will be encountered in the future; however, in offline

calibration we can better estimate the testing performances of

the base learners using a spectral meta-learner approach [58],

and hence a better model fusion strategy could be developed.

Fourth, similar to offline classification problems [29], [55],

[59], in offline regression problems we can also integrate

DA with active learning [40], [57] to further reduce the

offline calibration effort. Finally, we will apply the online and

offline DA algorithms to other regression problems in BCI and

beyond to cope with individual differences, e.g., estimating

the continuous values of arousal, valence and dominance from
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speech signals [64] in affective computing.
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APPENDIX

FUZZY SETS (FSS)

FS theory was first introduced by Zadeh [67] in 1965 and

has been successfully used in many areas, including modeling

and control [49], [65], data mining [35], [62], [66], time-series

prediction [14], [46], decision making [30], [31], [37], etc.

A FS X is comprised of a universe of discourse DX of

real numbers together with a membership function (MF) µ
X
:

DX → [0, 1], i.e.,

X =

∫

DX

µ
X
(x)/x (24)

Here
∫

denotes the collection of all points x ∈ DX with

associated membership degree µ
X
(x). An example of a FS is

shown in Fig. 13. The membership degrees are µX(1) = 0,

µX(3) = 0.5, µX(5) = 1, µX(6) = 0.8, and µX(10) = 0.

Observe that this is different from traditional (binary) sets,

where each element can only belong to a set completely (i.e.,

with membership degree 1), or does not belong to it at all (i.e.,

with membership degree 0); there is nothing in between (i.e.,

with membership degree 0.5).

FSs are frequently used in modeling concepts in natural

language, which may not have clear boundary. For example,

we may define a hot day as temperature equal to or above

30◦C, but is 29◦C hot? If we represent hot as a binary set

{x|x ≥ 30}, then 29◦C is not hot, because it does not belong

to the binary set hot. However, this does not completely agree

with people’s intuition: 29◦C is very close to 30◦C, and hence

it is somewhat hot. If we represent hot as a FS, we may say

29◦C is hot with a membership degree of 0.9, which sounds

more reasonable.

0 1 105 63 x

1

��(x)
X

0.8

0.5

Fig. 13. An example of a FS.
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