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Abstract

In this paper, a convergence proof for the recently proposed cost function optimization sparse

possibilistic c-means (SPCM) algorithm is provided. Specifically, it is shown that the algorithm

will converge to one of the local minima of its associated cost function. It is also shown that

similar convergence results can be derived for the well-known possibilistic c-means (PCM) algorithm

proposed in [5], if we view it as a special case of SPCM. Note that the convergence results for

PCM are stronger than those established in previous works.

Index Terms

Possibilistic clustering, sparsity, convergence, sparse possibilistic c-means (SPCM)

I. INTRODUCTION

In most of the well-known clustering algorithms that deal with the identification of compact

and hyperellipsoidally shaped clusters, each cluster is represented by a vector called cluster

representative that lie in the same feature space with the data vectors. In order to identify the

underlying clustering structure, such algorithms gradually move the representatives from their

initial (usually randomly selected) locations towards the “center” of each cluster. Apart from

hard clustering philosophy, where each data vector belongs exclusively to a single cluster (e.g.
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k-means [1]) and fuzzy clustering philosophy, where each data vector is shared among the

clusters (e.g. fuzzy c-means (FCM) [2], [3]), an alternative well-known clustering philosophy

that has been developed, in order to deal with this case, is the possibilistic clustering one,

where the degree of compatibility of a data vector with a given cluster is independent of its

degrees of compatibility with any other cluster. Algorithms of this kind, known as possibilistic

c-means algorithms (PCMs), iteratively optimize suitably defined cost functions (e.g. [4], [5],

[6], [7], [8], [9]), aiming at moving the cluster representatives to regions that are dense in

data points. A very well-known PCM algorithm, introduced in [4] and noted as PCM1, is

derived from the minimization of the cost function

JPCM1(U,Θ) =
N∑
i=1

m∑
j=1

uqij‖xi − θj‖2 +
m∑
j=1

γj
N∑
i=1

(1− uij)q, (1)

while an alternative PCM algorithm, presented in [5] and noted as PCM2, is derived from

the minimization of the cost function

JPCM2(U,Θ) =
N∑
i=1

m∑
j=1

uij‖xi − θj‖2 +
m∑
j=1

γj
N∑
i=1

(uij lnuij − uij) (2)

where xi, i = 1, . . . , N denotes the ith out of N l-dimensional data points of the data set

X under study, θj’s, j = 1, . . . ,m denote the representatives of the m clusters (each one

denoted by Cj), which constitute the set Θ. U is the matrix, whose (i, j) element uij stands

for the degree of compatibility of the ith data vector xi with the jth representative θj . Finally,

γj’s are positive parameters, each one associated with a cluster Cj 1.

Convergence results of these algorithms have been presented, utilizing the Zangwill con-

vergence theorem [10]. It is shown that the iterative sequence generated by a PCM converges

to either (a) a local minimizer or a saddle point of the cost function associated with the

algorithm or (b) any of its convergent subsequences converges to either a local minimizer or

a saddle point of the cost function [11]. It is noteworthy that Zangwill’s theorem [10] has

been used to establish convergence properties for the FCM algorithm as well (e.g. [2], [12],

[13])2.

Recently, a novel possibilistic clustering algorithm, called Sparse Possibilistic C-Means

1Note that, in contrast to JPCM2 , JPCM1 involves an additional parameter q, which takes values around 2.
2A different approach for proving the convergence of the FCM to a stationary point of the corresponding cost function

is given in [14]. A relative work is also provided in [15].
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(SPCM) [16], has been proposed, which extends PCM2 by introducing sparsity. More specif-

ically, a suitable sparsity constraint is imposed on the vectors containing the degrees of

compatibility of the data points with the clusters (one vector per point3), such that each data

vector is compatible with only a few or even none clusters. In the present work, an analysis of

the convergence properties of SPCM algorithm is conducted and it is shown that the iterative

sequence generated by SPCM converges to a local minimum of its associated cost function

JSPCM , which is defined explicitly in the next section. A significant source of difficulties

in the convergence analysis of SPCM is the addition of an extra term in the cost function

JPCM2 , as explained in the next section, that is responsible for sparsity imposition, which

gives the main novelty of SPCM. This affects the updating of the degrees of compatibility,

which now are not given in closed form and they are computed via a two-branch expression.

Moreover, it is shown that the above convergence analysis for SPCM is directly applicable

to the PCM2 algorithm ([5]) and the obtained convergence results are much stronger than

those provided in [11].

The rest of the paper is organized as follows. In Section II, a brief description of the SPCM

algorithm is given for reasons of thoroughness and in Section III its convergence proof is

analyzed. In Section IV the convergence results from the previous section are applied for the

case of PCM2. Finally, Section V concludes the paper.

II. THE SPARSE PCM (SPCM) ALGORITHM

Let X = {xi ∈ Rl, i = 1, ..., N} be the data set under study, Θ = {θj ∈ Rl, j = 1, ...,m}

be a set of m vectors that will be used for the representation of the clusters formed in

X (cluster representatives) and U = [uij], i = 1, ..., N, j = 1, ...,m be an N × m matrix

whose (i, j) element stands for the degree of compatibility of xi with the jth cluster. Let

also ui
T = [ui1, ..., uim] be the (row) vector containing the elements of the ith row of U . In

what follows we consider only Euclidean norms, denoted by ‖ · ‖.

As it has been stated earlier, the strategy of a possibilistic algorithm is to move the vectors

θj’s towards regions that are dense in data points of X (clusters). The aim of SPCM is two-

fold: (a) to retain the sparser clusters, provided of course that at least one representative has

3Clearly, these vectors are the rows of the matrix U .
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been initially placed in each one of them and (b) to prevent noisy points from contributing to

the computation of any of the θj’s. This is achieved by suppressing the contribution of data

points that are distant from a representative θj in its updating. More specifically, focusing on

a specific representative θj , this can be achieved by setting uij = 0 for data points xi that are

distant from it. This is tantamount to imposing sparsity on ui, i.e., forcing the corresponding

data point xi to contribute only to its (currently) closest representatives. To this end, the cost

function JPCM2 of eq. (2) is augmented as follows,

JSPCM(U,Θ) =
m∑
j=1

[
N∑
i=1

uij‖xi − θj‖2 + γj
N∑
i=1

(uij lnuij − uij)
]

+ λ
N∑
i=1

‖ui‖pp, uij > 0 4,

(3)

where ‖ui‖p is the `p-norm of vector ui (p ∈ (0, 1)); thus, ‖ui‖pp =
∑m
j=1 u

p
ij . Each γj

indicates the degree of “influence” of Cj around its representative θj; the smaller (greater)

the value of γj , the smaller (greater) the influence of cluster Cj around θj . The last term

in eq. (3) is expected to induce sparsity on each one of the vectors ui and λ (≥ 0) is

a regularization parameter that controls the degree of the imposed sparsity. The algorithm

resulting by the minimization of JSPCM(U,Θ) is called sparse possibilistic c-means (SPCM)

clustering algorithm and it is briefly discussed below (its detailed presentation is given in

[16]).

A. Initialization in SPCM

First, the initialization of θj’s is carried out using the final cluster representatives obtained

from the FCM algorithm, when the latter is executed with m clusters on X .

After the initialization of θj’s, we initialize γj’s as follows:

γj =

∑N
i=1 u

FCM
ij ‖xi − θj‖2∑N
i=1 u

FCM
ij

, j = 1, . . . ,m (4)

where θj’s and uFCMij ’s in eq. (4) are the final parameter estimates obtained by FCM.

Finally, we select the parameter λ as follows:

λ = K
γ̄

p(1− p)e2−p , (5)

4This is a prerequisite in order for the lnuij to be well-defined. However, in the sequel, when refering to lnuij for
uij = 0, we mean lim

uij→0+
uij . Also, we use the fact that lim

uij→0+
uij lnuij = 0.
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where γ̄ = min
j=1,...,m

γj and K is a user-defined constant, which is set equal to K = 0.9 for

p = 0.5 (see also [16]). The rationale behind this choice is further enlightened in subsection

III-A, where, in addition, appropriate bounds on the values of K are given in terms of p.

B. Updating of θj’s and uij’s in SPCM

Minimizing JSPCM(U,Θ) with respect to θj leads to the following equation,

θj =

∑N
i=1 uijxi∑N
i=1 uij

(6)

The derivative of JSPCM with respect to uij is f(uij) = dij + γj lnuij + λpup−1
ij , where

dij = ‖xi − θj‖2. In [16] it is proved that (a) f(uij) is strictly positive outside [0, 1], (b)

f(uij) has a unique minimum at ûij = [ λ
γj
p(1 − p)]

1
1−p and (c) f(uij) = 0 has at most

two solutions. More specifically, if f(ûij) < 0 , then f(uij) = 0 has exactly two solutions

u
{1}
ij , u

{2}
ij ∈ (0, 1), with u{1}ij < u

{2}
ij , the largest of which corresponds to a local minimum of

JSPCM with respect to uij . In [16] it is shown that JSPCM(U,Θ) exhibits its global minimum

at u∗ij , where:

u∗ij =


u
{2}
ij , if f(ûij) < 0 and u{2}ij ≥

(
λ(1−p)
γj

)1/(1−p)
(≡ umin)

0, otherwise
5 (7)

Clearly, if f(uij) = 0 has no solutions, then f(uij) will be positive for all valid values of uij

(see Fig. 1c). Thus JSPCM will be strictly increasing and it will be minimized at 0. Thus,

we set u∗ij = 0. Note that the right-most inequality in the first branch of eq. (7) turns out to

be equivalent to JSPCM(θj, u
{2}
ij ) ≤ JSPCM(θj, 0) = 0, where JSPCM(θj, uij) contains the

terms of JSPCM(U,Θ) that involve only θj and uij ([16]). All the above possible cases are

depicted in Fig. 1.

To determine u∗ij , we solve f(uij) = 0 as follows. First, we determine ûij and check

whether f(ûij) > 0. If this is the case, then f(uij) has no roots in [0, 1]. Note that, in this

case, it is f(uij) > 0 for all uij ∈ (0, 1], since f(ûij) > 0 (see Fig. 1c). Thus, JSPCM is

increasing with respect to uij in (0, 1] (see Fig. 1d). Consequently, in this case we set u∗ij = 0,

5In its original version, the second inequality in the first branch was strict. Here, we change it to “less than or equal
to”. Although this slight modification has no implications to the behavior of the algorithm in practice, it turns out to be
important for the establishment of the theoretical results given below.
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ûij

(d) J(uij)

0 0.2 0.4 0.6 0.8 1

−10

0

10

20

30

40

50

60

f(
u ij)

u
ij

umin

u
{2}
ij < umin
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Fig. 1: In all plots the dashed parts of the graphs correspond to the interval (0, umin), which is not
accessible by the algorithm (see eq. (7)). (a) The shape of function f(uij), when f(ûij) < 0 and the
right-most condition of eq. (7) is satisfied and (b) the corresponding shape of the cost function J(uij).
(c) The shape of function f(uij), when f(ûij) > 0 and (d) the corresponding shape of J(uij). (e) The
shape of function f(uij), when f(ûij) < 0 and the right-most condition of eq. (7) is not satisfied and (f)
the corresponding shape of J(uij).
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imposing sparsity. In the rare case, where f(ûij) = 0, we set u∗ij = 0, as ûij is the unique

root of f(uij) = 0 and f(uij) > 0 for uij ∈ (0, ûij) ∪ (ûij, 1]. If f(ûij) < 0, then f(uij) = 0

has exactly two solutions that both lie in [0, 1] (see Figs. 1a, 1e). In order to determine the

largest of the solutions (u{2}ij ), we apply the bisection method (see e.g. [17]) in the range

(ûij, 1], as u{2}ij is greater than ûij . The bisection method is known to converge very rapidly

to the optimum uij , that is, in our case, to the largest of the two solutions of f(uij) = 0. If

the obtained solution u{2}ij satisfies the rightmost condition in the first branch of eq. (7), then

we set u∗ij = u
{2}
ij (see Fig. 1b), as is shown in [16]. Otherwise, u∗ij is set to 0 (see Fig. 1f).

A vital observation is that, as long as uij is given by the first branch of eq. (7), its values

are bounded as follows

umin ≤ uij ≤ umax (8)

where umax is obtained by solving the equation f(uij) = 0, for dij = 0; that is the equation

γj lnuij + λpup−1
ij = 0. Note that both umin and umax depend exclusively on λ, γj and p.

Before we proceed, we will give an alternative expression for eq. (7), which will be

extensively exploited in the convergence proof below. More specifically, we will express

the condition of the first branch of (7) in terms of θj . To this end, we consider the case

where u{2}ij = umin. This implies that f(u
{2}
ij ) = 0 or f(umin) = 0. Substituting umin by its

equal given in eq. (7) and after some straightforward algebraic manipulations, it follows that

f(uminij ) = 0 is equivalent to

||xi − θj||2 =

R2
j︷ ︸︸ ︷

γj
1− p

(
− ln

λ(1− p)
γj

− p
)

(9)

The above is the equation of a hypersphere, denoted by Cij , centered at xi and having radius

Rj (note that Rj depends exclusively on the parameters γj , p, λ and not on the data points

xi or on θj’s and uij’s). Clearly, its interior int(Cij) (which in the subsequent analysis is

assumed to contain Cij itself) contains all the positions of θj which give uij > 0, while all

the points in its exterior ext(Cij) corresponds to positions of θj that give uij = 0. In order

to ensure that Cij is properly defined, we should ensure that Rj is positive. This holds true

if K is chosen so that K < pe2(1−p) (see Proposition A1 in Appendix). In the light of the
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above result, eq. (7) can be rewritten as follows

u∗ij =


u
{2}
ij , if ||xi − θj||2 ≤ R2

j

0, otherwise
(10)

Note that the expressions for u∗ij given by eqs. (7) and (10) are equivalent and will be used

interchangeably in the subsequent analysis.

C. The SPCM algorithm

Taking into account the previous short description of its main features, the SPCM algorithm

is summarized as follows.

Algorithm 1 [Θ, Γ, U ] = SPCM(X , m)
Input: X , m

1: t = 0

� Initialization of θj’s part

2: Initialize: θj(t) via FCM algorithm

� Initialization of γj’s part

3: Set: γj =
∑N

i=1
uFCMij ‖xi−θj(t)‖2∑N

i=1
uFCMij

, j = 1, ...,m

4: Set: λ = K γ̄
p(1−p)e2−p , where γ̄ = min

j=1,...,m
γj

5: repeat

� Update U part

6: Update U(t) via eq. (7), as described in the text

� Update Θ part

7: θj(t+ 1) =
N∑
i=1

uij(t)xi

/
N∑
i=1

uij(t) , j = 1, ...,m

8: t = t+ 1

9: until the change in θj’s between two successive iterations becomes sufficiently small

10: return Θ, Γ = {γ1, . . . , γm}, U

It is noted that after the termination of the algorithm an additional step is required, in

order to identify and remove possibly duplicated clusters.

The worst case computational complexity of (the main body of) SPCM is O((ε+ 2)Nm ·

iter), where ε is the number of iterations in the bisection method (which have very light
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computational complexity6) and iter is the number of iterations performed by the algorithm.

Note, however, that the actual complexity is much less since at each iteration the bisection

method is activated only for a small fraction of uij’s. As it is shown experimentally in [16]

the computational complexity of SPCM is slightly increased compared to that of PCM. This

is the price to pay for the better quality results of SPCM compared to PCM.

III. CONVERGENCE PROOF OF THE SPCM

In the sequel, a proof of the convergence of the SPCM is provided. Note that, in principle,

the proof holds for any choice of (fixed) γj’s, not only for the one given in eq. (4).

Before we proceed, we note that the cost function associated with SPCM (eq. (3)) can be

recasted as

JSPCM(U,Θ) =
m∑
j=1

Jj(uj,θj) ≡
m∑
j=1


N∑
i=1

h(uij ,θj)︷ ︸︸ ︷
uij‖xi − θj‖2 + γj

N∑
i=1

(uij lnuij − uij) + λupij


(11)

where uj = [u1j, . . . , uNj]
T . Since (a) uij’s, j = 1, . . . ,m, are not interrelated to each other,

for a specific xi, (b) uij’s, i = 1, . . . , N are related exclusively with θj and vice versa and

(c) θj’s are not interrelated to each other, minimization of JSPCM(U,Θ) can be considered

as the minimization of m independent cost functions Jj’s, j = 1, . . . ,m. Thus, in the sequel,

we focus on the minimization of a specific Jj(uj,θj) and, for the ease of notation, we drop

the index j, i.e., when we write J(u,θ), u = [u1, . . . , uN ]T , we refer to a Jj(uj,θj).

The proof is given under the very mild assumption that for each one cluster at least one

equation f(ui) = 0, i = 1, . . . , N has two solutions at each iteration of SPCM (Assumption

1). This is a rational assumption, since if this does not hold at a certain iteration, the algorithm

cannot identify new locations for θ at the next iteration. In subsection III-A, it is shown how

this assumption can always be fulfilled.

Some definitions are now in order. Let M be the set containing all the N × 1 vectors u

whose elements lie in the union {0} ∪ [umin, umax], i.e. M = ({0} ∪ [umin, umax])
N . Also,

let Rl be the space where the vector θ lives. The SPCM algorithm produces a sequence

(u(t),θ(t))|∞t=0, which will be examined in terms of its convergence properties.

6In our case ε is fixed to 30, which implies an accuracy of 10−10.

August 6, 2018 DRAFT



10

Let

G :M→Rl, with G(u) = θ

where G is calculated via the following equation

θ =

∑N
i=1 uixi∑N
i=1 ui

(12)

and

F : Rl →M, with F (θ) = u

where F is calculated via eq. (10). Then, the SPCM operator T : M×Rl → M×Rl is

defined as

T = T2 ◦ T1 (13)

where

T1 :M×Rl →M, T1(u,θ) = F (θ) (14)

and

T2 :M→M×Rl, T2(u) = (u, G(u)) (15)

For operator T we have that

T (u,θ) = (T2 ◦ T1)(u,θ) = T2(T1(u,θ)) = T2(F (θ)) =

(F (θ), G(F (θ))) = (F (θ), (G ◦ F )(θ))

Thus, the iteration of SPCM can be expressed in terms of T as

(u(t),θ(t)) = T (u(t−1),θ(t−1)) = (F (θ(t−1)), (G ◦ F )(θ(t−1)))

The above decomposition of T to T1 and T2 will facilitate the subsequent convergence

analysis, since certain properties for T can be proved relying on T1 and T2 (and, ultimately,

on F and G).

Remark 1: Note that F (and as a consequence T1) are, in general, not continuous (actually

they are piecewise continuous).
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In the sequel some required definitions are given. Let Z : X → X (X ⊂ Rp) be a point-

to-point map that gives rise to an iterative algorithm z(t) = Z(z(t − 1)), which generates

a sequence z(t)|∞t=0, for a given z(0). A fixed point z∗ of Z is a point for which Z(z∗) =

z∗. Also, we say that Z is strictly monotonic with respect to a (continuous) function g if

g(Z(z)) < g(z), whenever z is not a fixed point of Z. Having said the above, we can now

state the following theorem that will be proved useful in the sequel:

Theorem 1 [18] 7 : Let Z : X → X (X ∈ Rp) be a point-to-point map that gives rise to

an iterative algorithm z(t) = Z(z(t − 1)), which generates a sequence z(t)|∞t=0, for a given

z(0). Supposing that:

(i) Z is strictly monotonic with respect to a continuous function g : X → R,

(ii) Z is continuous on X ,

(iii) the set of all points z(t)|∞t=0 is bounded and

(iv) the number of fixed points having any given value of g is finite

then

the algorithm corresponding to Z will converge to a fixed point of Z regardless where it

is initialized in X 8.

In the SPCM case, Z is the mapping T (SPCM operator) defined by eq. (13) and g is the

cost function J . Due to the fact that SPCM has been resulted from the minimization of J ,

it turns out that its fixed points (u∗,θ∗) satisfy ∇J |(u,θ) = 0.

Although the general strategy to prove convergence for an algorithm is to show that it fulfills

the requirements of the convergence theorem, this cannot be adopted in this straightforward

manner in this framework. The reason is that Theorem 1 requires continuity of T , which is

not guaranteed in the SPCM case due to T2 (F ) (see eq. (10)), which is not continuous in

its domain (which is the convex hull of X , CH(X))9. However, it is continuous on certain

subsets of CH(X). This fact will allow the use of Theorem 1 for certain small regions where

continuity is preserved.

7This is a direct combination of Theorem 3.1 and Corollary 3.2 in [18].
8Actually, this theorem has been stated for the more general case where Z is a one-to-many mapping [18]. The present

form of the theorem is for the special case where Z is a one-to-one mapping, which is the case for SPCM.
9Due to its updating (eq. (6)), θ will always lie in CH(X), provided that its initial position lies in at least one hypersphere

of radius R centered at a data point.

August 6, 2018 DRAFT



12

Some additional definitions are now in order. Without loss of generality, let I = (∩ki=1int(Ci));

that is I is the (nonempty) intersection of the interiors of the hyperspheres of radius R (eq.

(9)) that correspond to xi’s, i = 1, . . . , k (see Fig. 2)10. Note that for θ ∈ I the above k

points will have ui > 0. The set of all data points that have ui > 0 form the so-called

active set, while the points themselves are called active points. In addition, an active set Xq

is called valid if its corresponding intersection of hyperspheres Iq is nonempty. Finally, the

points with ui = 0 are called inactive.
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Fig. 2: An active set of k = 3 points in cases when (a) ΘI ⊂ I and (b) ΘI 6⊂ I

Let also

UI = {u = [u1, . . . , uk] : u = F (θ), for θ ∈ I} (16)

be the set containing all possible values of the degrees of compatibility, ui, of θ with the k

active xi’s. Clearly, ui’s are computed via the first branch of eq. (10) and F is continuous

in this specific case (as it will be explicitly shown later). Also, let

ΘI = {θ : θ = G(u), for u ∈ UI} (17)

(see Fig. 2 for the possible scenarios for ΘI). Three observations are now in order:

10Clearly, by reordering the data points we can take all the possible corresponding I intersections.
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• First, due to the fact that ui’s are independent from each other, UI can also be expressed

as

UI = Πk
i=1[umin, umaxi ] (18)

where Π denotes the Cartesian product and umaxi is the maximum possible value ui can

take, provided that θ ∈ I (clearly umaxi ≤ umax).

• If at a certain iteration t of SPCM, θ(t) ∈ I , ΘI contains all possible positions of

θ(t+ 1).

• ΘI always lies in the convex hull of the associated active set.

In the sequel, we proceed by showing the following facts, that are preliminary for the

establishment of the final convergence result. Specifically, we will show that

• (A) J(u,θ) decreases at each iteration of the SPCM operator T

• (B) T is continuous on every region UI × I that corresponds to a valid active set.

• (C) The sequence produced by the algorithm is bounded

• (D) The fixed points corresponding to a certain valid active set (if they exist) are strict

local minima of J and they are finite.

1) Proof of item (A): To achieve this goal, we prove first the following two lemmas

Lemma 1: Let φ : M → R, φ(u) = J(u,θ), where θ is fixed. Then u∗ is the global

minimum solution of φ if and only if u∗ = F (θ), where F is defined as in eq. (7).

Proof: We proceed by showing that

(a) the unique point u∗ that satisfies the KKT conditions for the minimization problem

minφ(u)

subject to ui ≥ 0, i = 1, . . . , N

and 1− ui ≥ 0, i = 1, . . . , N

(19)

is the one determined by eq. (7) and

(b) this point is a minimizer of J , which implies (due to the uniqueness) that it is the global

minimizer.

Let u∗ = [u∗i ] be a point that satisfies the KKT conditions for (19). Then we have

(i) u∗i ≥ 0, (ii) 1− u∗i ≥ 0 (20)
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(i) ∃ κi ≥ 0 : κiu
∗
i = 0, (ii) ∃ τi ≥ 0 : τi(1− u∗i ) = 0 (21)

and
∂L(u)

∂ui
|u=u∗ = 0 (22)

where L(u) is the Lagrangian function defined as

L(u) = φ(u)−
N∑
i=1

κiui −
N∑
i=1

τi(1− ui) (23)

Recalling eq. (3), φ(u) can be written as

φ(u) =
N∑
i=1

h(ui;θ)︷ ︸︸ ︷
[ui||xi − θ||2 + γ(ui lnui − ui) + λupi ] (24)

where h(ui;θ) is a function of ui for a fixed value of θ. Noting that all ui’s are computed

independently from each other, for fixed θ, it is easy to verify that, for a specific ui it is

∂φ(u)

∂ui
=
∂h(ui;θ)

∂ui
= ||xi − θ||2 + γ lnui + λpup−1

i ≡ f(ui)

As a consequence, eq. (22) gives

||xi − θ||2 + γ lnu∗i + λpu∗p−1
i − κi + τi = 0 (25)

We will prove next that κi = 0 and τi = 0, for i = 1, . . . , N ; that is, the constraints on ui’s

are inactive, i.e., the optimum of φ(u) lies always in the region defined by the constraints.

Assume, on the contrary, that there exists κs > 0. From eq. (21-(i)) it follows that u∗s = 0 and

from eq. (21-(ii)) that τs = 0. Taking into account that limu∗s→0+ (γ lnu∗s + λpu∗ p−1
s ) = +∞

11 and applying eq. (25) for u∗s we have

||xs − θ||2 +∞ = κs or κs = +∞ (26)

which contradicts the fact that κs is finite.

Assume next that there exists τs > 0. From eq. (21-(ii)) it follows that u∗s = 1 and from

11Utilization of the L’ Hospital rule gives that limx→0+ x1−p lnx = 0 (p < 1). Then limx→0+(lnx + β 1
x1−p ) =

limx→0+
x1−p ln x+β

x1−p = +∞, for β > 0. Setting x = u∗s , β = λp
γ

, the claim follows.

August 6, 2018 DRAFT



15

eq. (21-(i)), it is κs = 0. Applying eq. (25) for u∗s and substituting the above we have

||xs − θ||2 + γ ln 1 + λp1p−1 + τs = 0 or τs = −||xs − θ||2 − λp < 0 (27)

which contradicts the fact that τs > 0. Thus τs = 0.

Since κi = τi = 0, for all i, eq. (25) becomes

||xi − θ||2 + γ lnu∗i + λpu∗ p−1
i ≡ f(u∗i ) = 0, i = 1, . . . , N (28)

Note that the algorithm relies on eq. (28) in order to derive the updating formula of eq. (7)

(thus step (a) has been shown). We proceed now to show that the point corresponding to

eq. (7) (derived through eq. (28)) minimizes J . We consider the following two cases:

• u∗i is given by the first branch of eq. ((7)). This implies that f(ui) = 0 has two solutions

u
{1}
i and u

{2}
i (u{1}i < u

{2}
i ) and u

{2}
i >

(
λ(1−p)
γj

) 1
1−p (= umin) (figures 1a, 1d). Taking into

account the definition of h(ui;θ) in eq. (24), it can be shown (Proposition 5, [16]) that the

maximum of the two solutions u{1}i , u{2}i (u{1}i < u
{2}
i ) is the one that minimizes h(ui;θ)

and, as a consequence, φ(u) also (which equals to J(u,θ)) with θ fixed.

• u∗i is given by the second branch of eq. (7). In this case we have that either (i) f(ui)

is strictly positive, which implies that J(u,θ) is strictly increasing with respect to ui (case

shown in figures 1b, 1e) or (ii) h(u
{2}
i ,θ) ≥ h(0,θ) = 0 (case shown in figures 1c, 1f). In

both (i) and (ii) cases, J(u,θ) is minimized with respect to ui only for ui = 0 (the second

branch of eq. (7)).

From the above, it follows that u∗ is the global minimum solution of φ if and only if u∗

is given by eq. (7). Q.E.D.

Lemma 2: Let ψ : Rl → R, with ψ(θ) = J(u,θ), with u ∈ UI being fixed. Then, θ∗

(∈ ΘI) is the unique global minimum of ψ if and only if θ∗ = G(u), where G is calculated

as in eq. (12).

Proof: In contrast to the situation in Lemma 1, the minimization of ψ(θ) with respect to

θ is an unconstrained optimization problem. The stationary points of ψ(θ) are obtained as

the solutions of the equations

∂ψ

∂θ
=

∂

∂θ

[
N∑
i=1

(
ui||xi − θ||2 + γ(ui lnui − ui) + λupi

)]
= 2

N∑
i=1

ui(θ − xi) = 0, (29)
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which, after some manipulations, give

θ∗ =

∑N
i=1 uixi∑N
i=1 ui

. (30)

Also, it is

Hψ ≡
∂2ψ

∂θ2 =

b︷ ︸︸ ︷
2

N∑
i=1

ui I
l (31)

where I l is the l × l identity matrix. Under Assumption 1, stating that at least one ui is

computed by the first branch of eq. (7), it is b > 0. Therefore, ψ is a convex function over

Rl, with a unique stationary point, given by eq. (30), which is the unique global minimum

of ψ(θ). Q.E.D.

Combining now the previous two lemmas, we are in a position to prove the following

lemma.

Lemma 3: Consider a valid active set, whose corresponding hyperspheres intersection is

denoted by I . Let

S = {(u,θ) = ([u1, . . . , uk],θ) ∈ UI × I : ∇J |(u,θ) = 0 with ui being the

largest of the two solutions of fθ(ui) = 0, i = 1, . . . , k} 12 (32)

Then J is continuous over UI × I and

J(T (u,θ)) < J(u,θ), if (u,θ) /∈ S

Proof: Since {y → ||y||2}, {y → ln y}, {y → yp} are continuous and J is a sum of

products of such functions, it follows that J is continuous on UI × I . Let (u,θ) /∈ S.

Recalling that

T (u,θ) = (F (θ), (G ◦ F )(θ)) = (F (θ), G(F (θ)))

we have

J(T (u,θ)) = J((F (θ), G(F (θ)))) (33)

12In the sequel, we insert θ as subscript in the notation of f in order to show explicitly the dependence of ui from θ.
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Applying Lemma 1 for fixed θ, we have that F (θ) is the unique global minimizer of J .

Thus,

J(F (θ),θ) < J(u,θ) (34)

Applying Lemma 2 for fixed F (θ), we have that G(F (θ)) is the unique global minimizer

of J . Thus, it is

J(F (θ), G(F (θ))) < J(F (θ),θ) (35)

From eqs. (33), (34) and (35), it follows that

J(T (u,θ)) < J(u,θ), for (u,θ) /∈ S

Q.E.D.

Remark 2: It is noted that although the above proof has been focused on the k (active)

points, its generalization that takes also into account the rest data points is straightforward

since ui = 0, for i = k+ 1, . . . , N and the corresponding terms h(ui,θ) that contribute to J

are 0.

Remark 3: Taking into account that SPCM has been resulted from the minimization of J

(∇J |(u,θ) = 0) on a UI × I corresponding to an active set, it follows that S contains all the

fixed points of T , which (as will be shown later) are local minima of the cost function J (of

course, J may have additional local minima than those belong to S which are not accessible

by the algorithm).

Now we proceed by showing that T decreases J , in the whole domain ({0}∪[umin, umax])N×

CH(X).

Lemma 4: The strict monotonically decreasing property of T with respect to J remains

valid in the domain ({0}∪ [umin, umax])N ×CH(X) excluding the fixed points of T of each

valid active set.

Proof: Let (ū, θ̄) be the outcome of SPCM at a specific iteration, û = F (θ̄) be the u for

the next iteration and θ̂ = G(û) be the subsequent θ. Recall that the ordering of the updating

is

ū→ θ̄ → û→ θ̂ (36)
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We define

Γ̄ = {i : ūi is computed via the second branch of eq. (7)}

and

Γ̂ = {i : ûi is computed via the second branch of eq. (7)}

Recalling that h(ui;θ) = ui||xi − θ||2 + γ(ui lnui − ui) + λupi , we can write

J(ū, θ̄) =

Ā1︷ ︸︸ ︷∑
i∈Γ̄∩Γ̂

h(ūi; θ̄) +

Ā2︷ ︸︸ ︷∑
i∈ ˜ Γ̄∩Γ̂

h(ūi; θ̄) +

Ā3︷ ︸︸ ︷∑
i∈ ˜ Γ̂

h(ūi; θ̄) (37)

and

J(û, θ̄) =

Â1︷ ︸︸ ︷∑
i∈Γ̄∩Γ̂

h(ûi; θ̄) +

Â2︷ ︸︸ ︷∑
i∈ ˜ Γ̄∩Γ̂

h(ûi; θ̄) +

Â3︷ ︸︸ ︷∑
i∈ ˜ Γ̂

h(ûi; θ̄) (38)

where˜Γ denotes the complement of Γ.

Focusing on Ā1 and Â1, we have that h(ūi; θ̄) = h(ûi; θ̄) = 0, since i ∈ Γ̄ ∩ Γ̂. Thus

Â1 = Ā1 = 0 (39)

Considering Ā2 and Â2, since i ∈ Γ̂, we have ûi = 0. Thus, taking into account the order

of updating (eq. (36)) and Lemma 1, we have (0 =) h(ûi; θ̄) < h(ūi; θ̄). Thus, it follows

that

Â2 < Ā2 (40)

Finally, focusing on Ā3 and Â3, since i ∈ ˜Γ̂, the argumentation of Lemma 1 implies that

the global minimum of h(ui; θ̄) is met at ûi = u
{2}
i . Thus, taking also into account the order

of updating in eq. (36), it is h(ûi; θ̄) < h(ūi; θ̄). Therefore, it is

Â3 < Ā3 (41)

Combining eqs. (39), (40) and (41) it follows that

J(û, θ̄) < J(ū, θ̄) (42)
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Also, lemma 2 gives

J(û, θ̂) < J(û, θ̄) 13 (43)

Combining eqs. (42), (43), we have that

J(û, θ̂) < J(ū, θ̄)

Q.E.D.

2) Proof of item (B): In the sequel, we give two useful Propositions concerning the

continuity of the F and G mappings. In both Propositions, without loss of generality, we

consider a valid active set, having xi, i = 1, . . . , k as active points, whose corresponding

hypersphere intersection is denoted by I and UI , ΘI are defined via eqs. (16), (17).

Proposition 1: The mapping G is continuous on UI × {0}N−k.

Proof: To prove that G is continuous in the N variables ui, note that G is a vector field

with the resolution by (l) scalar fields, written as

G = (G1, . . . , Gl) : UI × {0}N−k → Rl

where Gq : UI × {0}N−k → R is defined as:

Gq(u) =

∑N
i=1 uixi∑N
i=1 ui

≡ θq, q = 1, . . . , l (44)

Since {ui → uixi} is a continuous function and the sum of continuous functions is also

continuous, Gq is also continuous as the quotient of two continuous functions. Under the

assumption that
∑N
i=1 ui > 0, the denominator in eq. (44) never vanishes. Thus, Gq is well-

defined in all cases and it is also continuous. Therefore, G is continuous in its entire domain.

Q.E.D.

Proposition 2: The mapping F is continuous over I .

13Considering a valid active set with corresponding hypersphere intersection Ī and ΘĪ defined as in eqs. (16), (17), it is
noted that although θ̄ ∈ Ī , this does not necessarily hold for θ̂, as Fig. 2b indicates, since θ̂ ∈ ΘĪ , with ΘĪ 6⊂ Ī .
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Proof: It suffices to show that F is continuous on the l variables θq. F is a vector field

with the resolution by (N ) scalar fields, i.e.,

F = (F1, . . . , FN) : I → UI

where Fq is given by eq. (10).

The mapping {θ → ||xi−θ||2(≡ di)} is continuous. Let us focus on the ui’s, i = 1, . . . , k,

for which int(Ci) contributes to the formation of I; that is, on ui’s given by the first branch

of (10). The mapping {di → ui} is continuous. To see this, note that (since γ is constant), the

graph of f(ui) (which is continuous), viewed as a function of di, is simply shifted upwards

or downwards as di varies (see fig. 3). Focusing on the rightmost point, u{2}i , where the graph

intersects the horizontal axis, it is clear that small variations of di cause small variations to

u
{2}
i , which implies the continuity of {di → ui} in this case.

Let us focus next on the ui’s, i = k+ 1, . . . , N , for which int(Ci) do not contribute to the

formation of I; in this case ui is given by the second branch of (10) and the claim follows

trivially. Q.E.D.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

f(
u ij)

u
ij

δd
ij

δu
ij
{2}

Fig. 3: Graphical presentation of the continuity of the mapping {dij → uij}. Small

variations in dij cause small variations in uij.

As a direct consequence of Propositions 1 and 2, we have the following lemma.

Lemma 5: T is continuous on UI × I .

Proof: Recall that T = T2◦T1 and T2 and T1 are defined in terms of G and F , respectively
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(eqs. (14), (15)). G is continuous on UI , as a consequence of Proposition 1, while F is

continuous on I from Proposition 2. Thus, T is continuous on UI × I as composition of two

continuous functions. Q.E.D.

3) Proof of item (C): We proceed now to prove that the sequence (u(t),θ(t))|∞t=0 produced

by the SPCM falls in a bounded set.

Lemma 6: Let (F (θ(0)),θ(0)) be the starting point of the iteration with the SPCM operator

T , with θ(0) ∈ CH(X) and u(0) = F (θ(0)). Then

(u(t),θ(t)) ≡ T t(u(0),θ(0)) ∈ [0, 1]N × CH(X)

Proof: For a given θ(0) ∈ CH(X), u(0) = F (θ(0)) ∈ [0, 1]N , since u(0)
i ∈ [0, 1] (see eq.

(7) and the argumentation in [16]). Also, θ(1) = G(u(0)) is computed by eq. (12), which can

be recasted as

θ(1) =
N∑
i=1

u
(0)
i∑N

i=1 u
(0)
i

xi

Since u
(0)
i ∈ [0, 1], it easily follows that 0 ≤ u

(0)
i∑N

i=1
u

(0)
i

≤ 1 and
∑N
i=1

u
(0)
i∑N

i=1
u

(0)
i

= 1. Thus

θ(1) ∈ CH(X). Continuing recursively we have u(1) = F (θ(1)) ∈ [0, 1]N by eq. (7) and

θ(2) = G(u(1)) ∈ CH(X), using the same argumentation as above. Thus, inductively, we

conclude that

(u(t),θ(t)) ≡ T t(u(0),θ(0)) ∈ [0, 1]N × CH(X)

Q.E.D.

Remark 4: Note that it is possible to have θ(0) outside CH(X), yet in a position where

at least one ui is positive. However, computing u(0) = F (θ(0)) by eq. (7), the latter will

lie in M and, as a consequence, θ(1) = G(u(0)) will lie in CH(X) as it follows by the

argumentation given in the proof of Lemma 5.

4) Proof of item (D): In the sequel, we will prove that the elements of the set S (eq. 32),

for a given valid active set with hyperspheres intersection I (if they exist) are strict local

minima of the cost function J and thus the cardinality of S is finite.
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The elements of S are the solutions z∗ = (u∗,θ∗) ≡ (u∗1, . . . , u
∗
k, θ
∗
1, . . . , θ

∗
l )

14 of∇J |(u,θ) =

0 with u∗i being the largest of the two solutions of fθ(ui) = 0, i = 1, . . . , k. They should

satisfy the following equations

2
k∑
i=1

u∗i (θ
∗
q − xiq) = 0, q = 1, . . . , l (45)

and

||xi − θ∗||2 + γ lnu∗i + λpu∗
p−1

i = 0, i = 1, . . . , k (46)

Then, we have the following lemma.

Lemma 7: The points z∗ that satisfy eqs. (45) and (46) (if they exist) are strict local minima

of J in the domain UI × I . Moreover, their number is finite.

Proof:

In order to prove that z∗ are local minima we need to prove that the Hessian matrix of J

computed at z∗, Hz∗ , is positive definite over a small region around z∗. It is

Hz∗ =



g∗1 0 0 2(θ∗1 − x11) 2(θ∗2 − x12) 2(θ∗l − x1l)

0 g∗2 0 2(θ∗1 − x21) 2(θ∗2 − x22) 2(θ∗l − x2l)

...
... . . . ...

...
... . . . ...

0 0 g∗k 2(θ∗1 − xk1) 2(θ∗2 − xk2) 2(θ∗l − xkl)

2(θ∗1 − x11) 2(θ∗1 − x21) 2(θ∗1 − xk1) 2
∑k
i=1 u

∗
i 0 0

2(θ∗2 − x12) 2(θ∗2 − x22) 2(θ∗2 − xk2) 0 2
∑k
i=1 u

∗
i 0

...
... . . . ...

...
... . . . ...

2(θ∗l − x1l) 2(θ∗l − x2l) . . . 2(θ∗l − xkl) 0 0 . . . 2
∑k
i=1 u

∗
i


(47)

where

g∗i = γu∗
−1

i − λp(1− p)u∗p−2

i , i = 1, . . . , k (48)

Let z′ = (u′,θ′) ≡ (u′1, . . . , u
′
k, θ
′
1, . . . , θ

′
`) be a point in UI × I that is close to z∗. More

14Without loss of generality, we assume that the xi’s, i = 1, . . . , k are the active points of the valid active set under
study.
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specifically, let u′1, . . . , u
′
k be close to u∗1, . . . , u

∗
k, respectively, so that

||θ∗ −
∑k
i=1 u

′
ixi∑k

i=1 u
′
i

|| < ε (49)

After some straightforward algebraic operations it follows that

z′THz∗z
′ = 2||θ′||2

k∑
i=1

u∗i + 4
k∑
i=1

u′iθ
′T (θ∗ − xi) +

k∑
i=1

u′2i g
∗
i (50)

It is easy to verify that
∑k
i=1 u

′
iθ
′T (θ∗−xi) =

∑k
i=1 u

′
iθ
′T (θ∗−

∑k

i=1
u′ixi∑k

i=1
u′i

) ≥ −∑k
i=1 u

′
i||θ′||ε.

Utilizing the fact that ui > umin ≡ (λ(1−p)
γ

)1/(1−p), i = 1, . . . , k, for the second appearance

of u∗i in the right hand side of (48), it turns out that g∗i ≥
(1−p)γ
u∗i

.

Combining the last two inequalities with eq. (50), it follows that

z′THz∗z
′ ≥ 2

k∑
i=1

u∗i ||θ′||2 − 4
k∑
i=1

u′i||θ′||ε+ (1− p)γ
k∑
i=1

u′2i
u∗i
≡ φ(||θ′||) (51)

Since
∑k
i=1 u

∗
i > 0, the second degree polynomial φ(||θ′||) becomes positive if and only if

its discriminant

∆ = 8[2ε2(
k∑
i=1

u′i)
2 − (1− p)γ

k∑
i=1

u∗i

k∑
i=1

u′2i
u∗i

] (52)

is negative. But, from Proposition A2 in Appendix, it is

(
k∑
i=1

u′i)
2 ≤

k∑
i=1

u∗i

k∑
i=1

u′2i
u∗i

Also, choosing ε < 1
2

√
(1−p)γ

2
, we have that ∆ is negative. As a consequence and due to the

continuity of J in UI × I , ε defines a region around z∗, for which z′THz∗z
′ > 0. Thus z∗ is

a strict local minimum.

In addition, since the domain UI × I is bounded, it easily follows that the number of strict

local minima is finite. Q.E.D.

Remark 5: It can be shown that in the specific case where (a) γ
γ̄
< 1

p
e(1−p)2/2 and (b) K in

eq. (5) is chosen in the range [γ
γ̄
pe2− (1+p)2

2 , pe2(1−p)], then the set Sq (eq. (32)) that corresponds

to each valid active set Xq has one element at the most. The proof of this fact follows the

line of proof of lemma 7, with the difference that ε in eqs. (49), (51) and (52) is replaced by

R (since the maximum possible distance between two points in the (nonempty) intersection

of hyperspheres of distance R, is equal to R). Then, the conditions (a) and (b) above follow
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from the requirement to have 2R2 < (1 − p)γ, in order to have negative discriminant ∆.

Utilizing eq. (5) in the previous requirement it follows that K > γ
γ̄
pe2− (1+p)2

2 . Taking into

account that K < pe2(1−p) (Proposition A1), condition (a) results from the requirement to

have γ
γ̄
pe2− (1+p)2

2 < pe2(1−p).

In the sequel we denote by Yz∗ a region around a point z∗ in the set Sq corresponding to

a valid active set Xq, where J is convex. Yz∗ will be called as a valley around z∗ (such a

region always exists, as shown in proposition A3).

Having completed the proof of the prerequisites (A)-(D) and before we proceed any further,

some remarks are in order.

Remark 6: Although J is well defined in [0, 1]N × Rl, there are several regions in the

landscape of J(u,θ) that are not accessible by the algorithm. For example, some positions

(u,θ) where ui < umin and those where θ is expressed through eq. (6) with coefficients ui

less that umin, are not accessible by the algorithm.

Remark 7: It is highlighted again the fact that a certain set of active points Xq, with

corresponding (nonempty) union of hyperspheres Iq and UIq , ΘIq as defined by eqs. (16)

and (17), respectively, may have no local minima of J in UIq × Iq that are accessible by

T . Equivalently, this means that the solution set Sq (see Lemma 3) corresponding to Xq is

empty.
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Fig. 4: (a) An active set of k = 3 points where (I ∩ (∩i: ui=0ext(Ci))) 6≡ I and (b) an

active set of k = 4 points where (I ∩ (∩i: ui=0ext(Ci))) ≡ I
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We prove next the following lemma.

Lemma 8: There exists at least one valid active set Xq (with Iq 6= ∅) for which there exists

at least one local minimum (u∗qr ,θ
∗
qr), with θ∗qr ∈ Iq ∩ (∩i: ui=0ext(Ci)) 15.

Proof: Suppose on the contrary that for all possible active sets Xq, there is no local

minimum (u∗qr ,θ
∗
qr) with θ∗qr ∈ Iq ∩ (∩Ni: ui=0ext(Ci)) (see fig. 4). Equivalently, this means

that the solution sets Sq for all valid active sets are empty. Then from lemma 3 we have that

if at a certain iteration t1, θ(t1) belongs to the intersection Iq of a certain active set Xq, the

algorithm may move θ(t) (t > t1) to other positions in Iq that always strictly decrease the

value of J . Since J is bounded below (due to the fact that u ∈ [0, 1]N and θ ∈ CH(X)) it

follows that θ will leave Iq at a certain iteration. In addition, lemma 4 secures the decrease

of the value of J as we move from one hypersphere intersection to another (or, equivalently,

from one active set to another). Thus, the algorithm will always move (u(t),θ(t)) from one

position to another in the domain [0, 1]N ×CH(X), without converging to any one of them,

while, at the same time the value of J decreases from iteration to iteration.

Assuming that at a specific iteration t′, θ(t′) belongs to a certain Iq, then, due to the

continuity of J in Iq, there exists a region V (t′) around (u(t′),θ(t′)), for which J(u,θ) >

J(u(t′ + 1),θ(t′ + 1)), for (u,θ) ∈ V (t′).

From the previous argumentation, it follows that, since the domain where (u(t),θ(t))

moves is bounded, the regions V (t) (defined as above) will cover the regions of the whole

domain that are accessible by T . Thus there exists an iteration t′′ at which the algorithm will

visit a point in the region V (t′), where t′ is a position the algorithm visited before (t′ < t′′).

Then, due to the strict decrease of J as SPCM evolves we have that J(u(t′′),θ(t′′)) <

J(u(t′ + 1),θ(t′ + 1)) < J(u(t′),θ(t′)). However, since (u(t′′),θ(t′′)) ∈ V (t′), it follows

that J(u(t′′),θ(t′′)) > J(u(t′+1),θ(t′+1)), which leads to a contradiction. Therefore, there

exists at least one active set Xq for which there exists at least one local minimum (u∗qr ,θ
∗
qr),

with θ∗qr ∈ Iq ∩ (∩Ni: ui=0ext(Ci)). Q.E.D.

Now we are in the position to state the general theorem concerning the convergence of

SPCM.

15Note that θ∗qr ∈ ΘIq due to the definition of the latter set from eq. (17).
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Theorem 2: Suppose that a data set X = {xi ∈ Rl, i = 1, . . . , N} is given. Let J(u,θ)

be defined as in eq. (11) for m = 1, where (u,θ) ∈ M× CH(X). If T :M× CH(X)→

M×CH(X) is the operator corresponding to SPCM algorithm, then for any (u(0),θ(0)) ∈

M× CH(X) the SPCM converges to one of the points of the set Sq that corresponds to a

valid active set Xq, zqr
∗ = (u∗qr ,θ

∗
qr), provided that θ∗qr ∈ Iq ∩ (∩i: ui=0ext(Ci)).

Proof: Following a reasoning similar to that of lemma 8 we have that the regions of the

whole space that are accessible by T will eventually be covered by regions V (t′) defined as

in the proof of lemma 8. Then the algorithm

(i) either will visit a valley Yzqr∗ in UI× Iq around a (strict) local minimum (u∗qr ,θ
∗
qr) of a

certain active set Xq and, as a consequence of theorem 1 (due to (a) the local convexity of J

in Yzqr∗ , (b) the monotonic decrease of J with T , (c) the continuity of T in the corresponding

UI × I and (d) the uniqueness of the minimum in this valley) it will converge to it,

(ii) or it will never visit the valley of such a local minimum. This means that the algorithm

starts from a (u(0),θ(0)), whose J(u(0),θ(0)) is less than the values of J at all local minima.

However, this case can be rejected following exactly the same reasoning with that in the proof

of lemma 8.

Therefore, the algorithm will converge to a local minimum θ∗qr that corresponds to one of

the possible active sets Xq (with Iq 6= ∅) provided that θ∗qr ∈ Iq ∩ (∩i: ui=0ext(Ci)). Q.E.D.

A. Fulfilling the Assumption 1

Next, we show how the Assumption 1 requiring that at each iteration of SPCM at least

one equation f(ui) = 0, i = 1, . . . , N for each cluster Cj , j = 1, . . . ,m has two solutions,

can always be kept valid. In other words, we show that each cluster has at least one data

point xi, i = 1, . . . , N with ui > 0 at each iteration. To this end, we will prove that (a)

the Assumption 1 is fulfilled at the initial step of SPCM (base case) and (b) this inductively

holds also for each subsequent iteration of the algorithm (induction step).

(a) Base case: Taking into account that the initialization of SPCM is defined by the

FCM algorithm and in particular eq. (4), it is obvious that initially each cluster Cj with

representative θj has at least one data point with ‖xi − θj‖2 ≤ γj . Focusing on a certain

cluster Cj , let xq be the closest to θj data point, where θj denotes the initial (FCM)

estimate of the representative of Cj . Then, in general, ‖xq − θj‖2 << γj . According to
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Proposition A4 (see Appendix), this data point has uqj > 0, if K ≤ γj
γ̄
pe(2−µj)(1−p), where

here µj = ‖xq−θj‖2
γj

(<< 1). In order to fulfill the Assumption 1 for each cluster, K should

be chosen such that K ≤ min
j=1,...,m

[
γj
γ̄
pe(2−µj)(1−p)

]
. Also, it is min

j=1,...,m

[
γj
γ̄
pe(2−µj)(1−p)

]
≥

γ̄
γ̄
pe(2−µmax)(1−p) ≡ pe(2−µmax)(1−p), where we recall that γ̄ = min

j=1,...,m
γj . Thus, if K is chosen

so that K ≤ pe(2−µmax)(1−p) ≡ B(p), where µmax = max
j=1,...,m

µj(<< 1), the Assumption 1 is

satisfied. Note also that B(p) ≤ pe2(1−p), thus the condition of Proposition A1 is valid.

In Fig. 5, the upper bound B(p) of K is illustrated with respect to parameter p for different

values of µmax, so that each initial cluster has at least one data point with u > 0. Note that

K = 0.9 is an appropriate value for p = 0.5 that ensures that the Assumption 1 is fulfilled

at the initial step of SPCM (this is the choice made for K in [16]).
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Fig. 5: The upper bound B(p) of K with respect to parameter p for different values of

µmax, so that each initial cluster has at least one data point with u > 0.

(b) Induction step: Let us focus on a specific cluster C 16. Assume that at iteration t, its

represenative is θ(t) and it has a certain set of active points X t 17 with its correspond-

ing nonempty intersection of hyperspheres, denoted by I t. Obviously, it is CH(X t) ⊆

(∪i:ui>0int(Ci)). Taking into consideration that all possible positions of θ(t + 1) lie inside

16For notational convenience, we drop the cluster index j for the rest of this subsection.
17We drop the index q, in order to lighten the notation. Index t shows the time dependence of the active set corresponding

to C, as it evolves in time.
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CH(X t), we have that θ(t+ 1) will lie inside ∪i:ui>0int(Ci). As a consequence, there exists

at least one data point of X t that will remain active at the next iteration of the algorithm.

As a result, each cluster will have at least one data point xi, i = 1, . . . , N with ui > 0 at

each iteration of SPCM.

IV. ON THE CONVERGENCE OF THE PCM2 ALGORITHM

In [11] it is proved that the sequence T t(U (0),Θ(0)) produced by PCM2 terminates to (i)

either a local minimum or a saddle point of J , or (ii) every convergent subsequence of the

above sequence terminates to a local minimum or a saddle point of J . This result follows as

a direct application of the Zangwill’s convergence theorem ([10]). However, viewing PCM2

as a special case of SPCM, we can utilize the convergence results of the latter to establish

stronger results for PCM2, compared to those given in [11].

Let us be more specific. We focus again to a single θ and its corresponding u = [u1, . . . , uN ]T

vector. Note that JPCM2 results directly from JSPCM , for λ = 0. In this case, the radius R

(eq. (9)) becomes infinite for any (finite) value of p. This means that the convex hull of X ,

CH(X), lies entirely in the intersection of the hyperspheres centered at the data points of X .

As a consequence, ui > 0, for i = 1, . . . , N . This implies that the whole X is the active set.

Also, note that for λ = 0, f(ui) = 0 gives a single positive solution, i.e. ui = exp(− ||xi−θ||
2

γ
).

Let us define the solution set S for PCM2 as

SPCM2 = {(u,θ) ∈ [0, 1]N × CH(X) : ∇J |(u,θ) = 0}

The requirements for (i) the decreasing of JPCM2 , (ii) the continuity of TPCM2 (the operator

that corresponds to PCM2, defined in a fashion similar to T ) and (iii) the boundness of

the sequence produced by PCM2 can be viewed as special cases of Lemmas 3, 5 and 6,

respectively, where UI × I is replaced by [0, 1]N × CH(X) 18. Then Theorem A1 (see

Appendix) guarantees that there exist fixed points for TPCM2 and lemma 7 proves that these

are strict local minima of JPCM2
19. Finally, in correspondance with SPCM, the following

theorem can be established for PCM2.

18The only slight difference compared to SPCM concerns the establishment of requirement (i). Specifically, in the proof
of Lemma 1 in (eq. (26)), it turns out that for PCM2, it is κs = −∞, which still contradicts the fact that κs is finite. Also,
in (27) in the same proof it results that τs ≤ 0, which gives also a contradiction.

19The only thing that is differentiated in the PCM2 case is that g∗i = γ
u∗
i

. As a consequence, ε is chosen as ε < 1
2

√
γ
2

.
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Theorem 3: Suppose that a data set X = {xi ∈ Rl, i = 1, . . . , N} is given. Let

JPCM2(u,θ) be defined by eq. (2) for m = 1, where (u,θ) ∈ [0, 1]N × CH(X). If

TPCM2 : [0, 1]N ×CH(X)→ [0, 1]N ×CH(X) is the operator corresponding to the PCM2

algorithm, then for any (u(0),θ(0)) ∈ [0, 1]N ×CH(X), the PCM2 algorithm converges to a

fixed point of T (which is a local minimum of JPCM2).

V. CONCLUSION

In this paper, a convergence proof for the recently proposed sparse possibilistic c-means

(SPCM) algorithm is conducted. The main source of difficulty in the provided SPCM con-

vergence analysis, compared to those given for previous possibilistic algorithms, relies on

the updating of the degrees of compatibility, which are not given in closed form and are

computed via a two-branch expression. In the present paper, it is shown that the iterative

sequence generated by SPCM coverges to a local minimum (fixed point) of its accosiated

cost function JSPCM . Finally, the above analysis for SPCM has been applied to the case of

PCM2 ([5]) and gave much stronger convergence results compared to those provided in [11].

APPENDIX

Proposition A1: If K < pe2(1−p), then Rj > 0.

Proof: Substituting λ from eq. (5) into the definition of R2
j from eq. (9) and after some

manipulations, we have

R2
j =

γj
1− p

(
− ln

γ̄

γj
− ln

K

e2−p − p
)

or, since γ̄
γj
< 1

R2
j ≥

γj
1− p

(
− ln

K

e2−p − p
)

Straightforward operations show that the positivity of the quantity in parenthesis is equivalent

to the hypothesis condition K < pe2(1−p). Q.E.D.

Proposition A2: It is (
∑k
i=1 u

′
i)

2 ≤ ∑k
i=1 ui

∑k
i=1

u′2i
ui

, for ui, u′i > 0, i = 1, . . . , k.

Proof: It is

(
k∑
i=1

u′i)
2 ≤

k∑
i=1

ui
k∑
i=1

u′2i
ui
⇔

k∑
i=1

u′2i + 2
k∑
i=1

k∑
j=i+1

u′iu
′
j ≤

k∑
i=1

u′2i +
k∑
i=1

k∑
j=1

ui
uj
u′2j ⇔
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k∑
i=1

k∑
j=i+1

(
ui
uj
u′2j +

uj
ui
u′2i − 2u′iu

′
j) ≥ 0⇔

k∑
i=1

k∑
j=i+1

(uiu
′
j − uju′i)2

uiuj
≥ 0

which obviously holds. Q.E.D.

Proposition A3: Let z∗ = (u∗,θ∗) ∈ Sq corresponding to a certain active set Xq. Let also

Yz∗ = Yu × Yθ be a set of (u,θ), such that Yu = {u ∈ M : ||θ∗ −
∑k

i=1
uixi∑k

i=1
ui
|| < ε} where

ε < 1
2

√
(1−p)γ

2
and Yθ = {θ : θ =

∑k

i=1
uixi∑k

i=1
ui
,u ∈ Yu}. Then (a) Yz∗ is a convex set and (b) J

is a convex function over Yz∗ .

Proof: (a) Since the domain Yu of u is a cartesian product of closed one-dimensional

intervals, it is convex. In addition, the set Yθ is also convex by its definition. Thus Yz∗ is

convex.

(b) We prove that for any z ∈ Y , it is z′THzz
′ > 0, ∀z′ ∈ Y . Following a reasoning similar

to that in Lemma 7, we end up with the following inequality (with corresponds to eq. (51))

z′THzz
′ ≥ 2

k∑
i=1

ui||θ′||2 − 4
k∑
i=1

u′i||θ′||(2ε) + (1− p)γ
k∑
i=1

u′2i
ui
≡ φ(||θ′||) (53)

Note that the factor 2ε in the right hand side of the above inequality, results from the fact

that this is the maximum possible difference between two elements in Yθ. The discriminant

of φ(||θ′||) is

∆ = 8[8ε2(
k∑
i=1

u′i)
2 − (1− p)γ

k∑
i=1

u∗i

k∑
i=1

u′2i
u∗i

] (54)

Proposition A2 and the choice of ε guarantee that ∆ is negative, which implies that z′THzz
′ >

0 and as a consequence J is convex over Yz∗ . Q.E.D.

Proposition A4: A data point x has u > 0 with respect to a cluster C with representative

θ and parameter γ or, equivalently, f(u) = 0 has solution(s), if K ≤ γ
γ̄
pe(2−µ)(1−p), where

µ = ‖x−θ‖2
γ

.

Proof: According to eq. (9), a data point x has u > 0 if and only if ‖x − θ‖2 ≤ R2 ⇔

‖x− θ‖2 ≤ γ
1−p

(
− ln λ(1−p)

γ
− p

)
⇔ µ ≤ 1

1−p

(
− ln λ(1−p)

γ
− p

)
, which, using eq. (5), gives

µ ≤ 1
1−p

(
− ln Kγ̄

pe2−pγ
− p

)
⇔ µ(1 − p) ≤ − ln Kγ̄

pγ
+ 2 − 2p ⇔ (2 − µ)(1 − p) ≥ ln Kγ̄

pγ
⇔

e(2−µ)(1−p) ≥ K
p
γ̄
γ
⇔ K ≤ γ

γ̄
pe(2−µ)(1−p). Q.E.D.

Theorem A1 (Leray-Schauder-Tychonoff Fixed point theorem, e.g. [19]): If X ⊂ Rp is
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nonempty, convex and compact and if Z : X → X is a continuous function, there exists

x∗ ∈ X , such that Z(x∗) = x∗ (fixed point).
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