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Abstract

Uninorms with continuous underlying t-norm and t-conorm are discussed and prop-

erties of the set of discontinuity points of such a uninorm are shown. This set is proved

to be a subset of the graph of a special symmetric, surjective, non-increasing set-valued

function. A sufficient condition for a uninorm to have continuous underlying operations

is also given. Several examples are included.

Keywords: uninorm, ordinal sum, continuous t-norm, continuous t-conorm, set-

valued function

1 Introduction

The (left-continuous) t-norms and their dual t-conorms have an indispensable role in many

domains [9, 30, 31]. Generalizations of t-norms and t-conorms that can model bipolar be-

haviour are uninorms (see [7, 22, 32]). The class of uninorms is widely used both in theory
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[18, 28] and in applications [13, 33]. The complete characterization of uninorms with contin-

uous underlying t-norm and t-conorm has been in the center of the interest for a long time,

however, only partial results were achieved (see [4, 5, 6, 8, 10, 15, 16, 17, 19, 20, 21, 27, 29]).

In [23] we have introduced ordinal sum of uninorms and in [24] we have characterized

uninorms that are ordinal sums of representable uninorms. We would like to characterize

all uninorms with continuous underlying functions and obtain a similar representation as in

the case of t-norms and t-conorms. In this paper we will show that underlying operations

of a uninorm U are continuous if and only if U is continuous on [0, 1]2 \ R, where R is the

graph of a special symmetric, surjective, non-increasing set-valued function and U is in each

point (x, y) ∈ [0, 1]2 either left-continuous or right-continuous, or continuous. We will then

continue and in [25, 26] we will show that each uninorm with continuous underlying t-norm

and t-conorm can be decomposed into an ordinal sum of semigroups related to representable

uninorms, continuous Archimedean t-norms and t-conorms, internal uninorms and singleton

semigroups.

In Section 2 we will recall all necessary basic notions and results. We will characterize

uninorms with continuous underlying functions via the properties of their set of discontinuity

points (Section 3). We give our conclusions in Section 4.

2 Basic notions and results

Let us now recall all necessary basic notions.

A triangular norm is a function T : [0, 1]2 −→ [0, 1] which is commutative, associative,

non-decreasing in both variables and 1 is its neutral element. Note that in this paper

we stick to the definition from [11], where a non-decreasing function means an increasing

function that need not to be strictly increasing. Due to the associativity, n-ary form of any

t-norm is uniquely given and thus it can be extended to an aggregation function working

on
⋃

n∈N[0, 1]
n. Dual functions to t-norms are t-conorms. A triangular conorm is a function

2



S : [0, 1]2 −→ [0, 1] which is commutative, associative, non-decreasing in both variables and

0 is its neutral element. The duality between t-norms and t-conorms is expressed by the fact

that from any t-norm T we can obtain its dual t-conorm S by the equation

S(x, y) = 1− T (1− x, 1− y)

and vice-versa.

Proposition 1 ([11])

Let t : [0, 1] −→ [0,∞] (s : [0, 1] −→ [0,∞]) be a continuous strictly decreasing (increasing)

function such that t(1) = 0 (s(0) = 0). Then the operation T : [0, 1]2 −→ [0, 1] ( S : [0, 1]2 −→

[0, 1]) given by

T (x, y) = t−1(min(t(0), t(x) + t(y)))

S(x, y) = s−1(min(s(1), s(x) + s(y)))

is a continuous t-norm (t-conorm). The function t (s) is called an additive generator of T

(S).

An additive generator of an Archimedean continuous t-norm T (t-conorm S) is uniquely

determined up to a positive multiplicative constant. Each continuous t-norm (t-conorm)

is equal to an ordinal sum of continuous Archimedean t-norms (t-conorms). Note that a

continuous t-norm (t-conorm) is Archimedean if and only if it has only trivial idempotent

points 0 and 1. A continuous Archimedean t-norm T (t-conorm S) is either strict, i.e.,

strictly increasing on ]0, 1]2 (on [0, 1[2), or nilpotent, i.e., there exists (x, y) ∈ ]0, 1[2 such

that T (x, y) = 0 (S(x, y) = 1). Moreover, each continuous Archimedean t-norm (t-conorm)

has a continuous additive generator. More details on t-norms and t-conorms can be found

in [1, 11].

A uninorm (introduced in [32]) is a function U : [0, 1]2 −→ [0, 1] which is commutative,

associative, non-decreasing in both variables and have a neutral element e ∈ ]0, 1[ (see also
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[7]). If we take a uninorm in a broader sense, i.e., if for a neutral element we have e ∈ [0, 1],

then the class of uninorms covers also the class of t-norms and the class of t-conorms. In

order to stress that we assume a uninorm with e ∈ ]0, 1[ we will call such a uninorm proper.

For each uninorm the value U(1, 0) ∈ {0, 1} is the annihilator of U. A uninorm is called

conjunctive (disjunctive) if U(1, 0) = 0 (U(1, 0) = 1). Due to the associativity, we can

uniquely define n-ary form of any uninorm for any n ∈ N and therefore in some proofs we

will use ternary form instead of binary, where suitable.

For each uninorm U with the neutral element e ∈ [0, 1], the restriction of U to [0, e]2 is a

t-norm on [0, e]2 , i.e., a linear transformation of some t-norm TU on [0, 1]2 and the restriction

of U to [e, 1]2 is a t-conorm on [e, 1]2 , i.e., a linear transformation of some t-conorm SU on

[0, 1]2. Moreover, min(x, y) ≤ U(x, y) ≤ max(x, y) for all (x, y) ∈ [0, e]× [e, 1]∪ [e, 1]× [0, e] .

We will denote the set of all uninorms U such that TU and SU are continuous by U .

From any pair of a t-norm and a t-conorm we can construct the minimal and the maximal

uninorm with the given underlying functions.

Proposition 2 ([14])

Let T : [0, 1]2 −→ [0, 1] be a t-norm and S : [0, 1]2 −→ [0, 1] a t-conorm and assume e ∈ [0, 1].

Then the two functions Umin, Umax : [0, 1]
2 −→ [0, 1] given by

Umin(x, y) =







e · T (x
e
, y

e
) if (x, y) ∈ [0, e]2 ,

e + (1− e) · S(x−e
1−e

, y−e

1−e
) if (x, y) ∈ [e, 1]2 ,

min(x, y) otherwise

and

Umax(x, y) =







e · T (x
e
, y
e
) if (x, y) ∈ [0, e]2 ,

e + (1− e) · S(x−e
1−e

, y−e

1−e
) if (x, y) ∈ [e, 1]2 ,

max(x, y) otherwise

are uninorms. We will denote the set of all uninorms of the first type by Umin and of the
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second type by Umax.

Similarly as in the case of t-norms and t-conorms we can construct uninorms using

additive generators (see [7]).

Proposition 3 ([7])

Let f : [0, 1] −→ [−∞,∞] , f(0) = −∞, f(1) = ∞ be a continuous strictly increasing

function. Then a function U : [0, 1]2 −→ [0, 1] given by

U(x, y) = f−1(f(x) + f(y)),

where f−1 : [−∞,∞] −→ [0, 1] is an inverse function to f, with the convention ∞+(−∞) =

∞ (or ∞+ (−∞) = −∞), is a uninorm, which will be called a representable uninorm.

Note that if we relax the strict monotonicity of the additive generator then the neutral

element will be lost and by relaxing the condition f(0) = −∞, f(1) = ∞ the associativity

will be lost (if f(0) < 0 and f(1) > 0). In [28] (see also [22]) we can find the following result.

Proposition 4 ([28])

Let U : [0, 1]2 −→ [0, 1] be a uninorm continuous everywhere on the unit square except of

the two points (0, 1) and (1, 0). Then U is representable.

For our examples we will use the following ordinal sum construction introduced by Clif-

ford.

Theorem 1 ([3])

Let A 6= ∅ be a totally ordered set and (Gα)α∈A withGα = (Xα, ∗α) be a family of semigroups.

Assume that for all α, β ∈ A with α < β the sets Xα and Xβ are either disjoint or that

Xα ∩Xβ = {xα,β}, where xα,β is both the neutral element of Gα and the annihilator of Gβ

and where for each γ ∈ A with α < γ < β we have Xγ = {xα,β}. Put X =
⋃

α∈A

Xα and define
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the binary operation ∗ on X by

x ∗ y =







x ∗α y if (x, y) ∈ Xα ×Xα,

x if (x, y) ∈ Xα ×Xβ and α < β,

y if (x, y) ∈ Xα ×Xβ and α > β.

Then G = (X, ∗) is a semigroup. The semigroup G is commutative if and only if for each

α ∈ A the semigroup Gα is commutative.

Therefore in our examples the commutativity and the associativity of the corresponding

ordinal sum uninorm will follow from Theorem 1. Monotonicity and the neutral element can

be then easily checked by the reader.

Further we will use the following transformation. For any 0 ≤ a < b ≤ c < d ≤ 1, v ∈

[b, c] , and a uninorm U with the neutral element e ∈ [0, 1] let f : [0, 1] −→ [a, b[∪ {v}∪ ]c, d]

be given by

f(x) =







(b− a) · x
e
+ a if x ∈ [0, e[ ,

v if x = e,

d− (1−x)(d−c)
(1−e)

otherwise.

(1)

Then f is linear on [0, e[ and on ]e, 1] and thus it is a piece-wise linear isomorphism of [0, 1]

to ([a, b[ ∪ {v} ∪ ]c, d]) and a function Ua,b,c,d
v : ([a, b[ ∪ {v} ∪ ]c, d])2 −→ ([a, b[ ∪ {v} ∪ ]c, d])

given by

Ua,b,c,d
v (x, y) = f(U(f−1(x), f−1(y))) (2)

is an operation on ([a, b[∪{v}∪ ]c, d])2 which is commutative, associative, non-decreasing in

both variables (with respect to the standard order) and v is its neutral element.

Example 1

Assume U1 ∈ Umin and U2 ∈ Umax with respective neutral elements e1, e2. Then U1 is an

ordinal sum of semigroups Gα = ([0, e[ , T ∗

U1
) and Gβ = ([e, 1] , S∗

U1
) with α < β, where T ∗

U1
=
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U1|[0,e1]2 and S∗

U1
= U1|[e1,1]2 . Similarly, U2 is an ordinal sum of semigroups Gα = ([0, e] , T ∗

U2
)

and Gβ = (]e, 1] , S∗

U2
) with α > β. If all underlying operations are continuous then the set

of discontinuity points of U1 is equal to the set S1 = {e} × ]e, 1] ∪ ]e, 1]× {e} and the set of

discontinuity points of U2 is equal to the set S2 = {e} × [0, e[ ∪ [0, e[× {e}. Both uninorms

can be seen on Figure 1.

❝

T ∗

U1

S∗

U1

min

min

❝

T ∗

U2

S∗

U2

max

max

Figure 1: The uninorm U1 (left) and the uninorm U2 (right) from Example 1. The bold lines
denote the points of discontinuity of U1 and U2.

More detailed discussion on the ordinal sum construction for uninorms can be found in

[25].

3 Characterization of uninorms U ∈ U by means of

special set-valued functions

In this section we will show that for a uninorm U we have U ∈ U if and only if U is continuous

on [0, 1]2\R, where R is the graph of a special symmetric, surjective, non-increasing set-valued

function r and U is in each point (x, y) ∈ [0, 1]2 either left-continuous, or right-continuous,

or continuous. In the first part we will focus on the necessity part, i.e., we will show that

each uninorm U ∈ U is continuous on [0, 1]2 \ R, where R is the graph of some symmetric,

surjective, non-increasing set-valued function r (Theorem 2). We will also show that U ∈ U
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implies that U is in each point (x, y) ∈ [0, 1]2 either left-continuous, or right-continuous, or

continuous (Theorem 3).

3.1 The necessity part

The following lemmas and propositions are necessary for the proof of Theorem 2 and 3.

Lemma 1 ([24])

Each uninorm U : [0, 1]2 −→ [0, 1], U ∈ U , is continuous in (e, e).

Next we show that for x, y ∈ [0, 1] we have U(x, y) = min(x, y) or U(x, y) = max(x, y) if

x is an idempotent element of U.

Lemma 2

Let U : [0, 1]2 −→ [0, 1] be a uninorm and let U ∈ U . If a ∈ [0, 1] is an idempotent point of

U then U is internal on {a} × [0, 1], i.e., U(a, x) ∈ {x, a} for all x ∈ [0, 1].

proof: If a = e the result is obvious. Suppose a < e (the case when a > e is analogous).

Since TU is continuous we have U(a, x) = min(a, x) if x ∈ [0, e] . Suppose that there exists

y ∈ ]e, 1] such that U(a, y) = c ∈ ]a, y[ . Then U(a, c) = U(a, a, y) = U(a, y) = c and if c ≤ e

then c = U(a, c) ≤ a what is a contradiction. Thus y > c > e. Then since SU is continuous

there exists a y1 such that U(c, y1) = y. Then, however,

U(a, y) = U(a, c, y1) = U(c, y1) = y

what is again a contradiction. Thus U is internal on {a} × [0, 1]. ✷

For a given uninorm U : [0, 1]2 −→ [0, 1] and each x ∈ [0, 1] we define a function

ux : [0, 1] −→ [0, 1] by ux(z) = U(x, z) for z ∈ [0, 1].

Lemma 3

Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈ U , and assume x ∈ [0, 1]. The function ux is

continuous if and only if one of the following conditions:
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(i) ux(1) < e,

(ii) ux(0) > e,

(iii) e ∈ Ran(ux)

is satisfied.

proof: If e ∈ Ran(ux) then there exists a y ∈ [0, 1] such that U(x, y) = e. Since U is

monotone continuity of ux is equivalent with the equality Ran(ux) = [a, b] for some a =

U(0, x) and b = U(1, x). Assume c ∈ [0, 1]. Then U(x, y, c) = c and for z = U(y, c) we have

ux(z) = c, i.e., Ran(ux) = [0, 1]. If ux(1) = v < e (the case when ux(0) > e can be shown

similarly) then due to the monotonicity the continuity of ux is equivalent with the equality

Ran(ux) = [0, v] . Assume w ∈ [0, v] . Since TU is continuous there exists a q ∈ [0, e] such

that U(v, q) = w, i.e., U(x, 1, q) = w and then ux(U(1, q)) = w. Therefore Ran(ux) = [0, v] .

Vice-versa, if ux is continuous and ux(0) ≤ e ≤ ux(1) then evidently e ∈ Ran(ux).

✷

Example 2

For a representable uninorm U the function ux is continuous for all x ∈ ]0, 1[ . If U is

conjunctive (disjunctive) then u0 (u1) is continuous and u1 (u0) is non-continuous in 0 (1).

For a uninorm U ∈ Umax (U ∈ Umin) ux is continuous for all x ∈ [e, 1] (x ∈ [0, e]) and ux is

non-continuous in e for all x ∈ [0, e[ (x ∈ ]e, 1]).

Now we recall a result [12, Proposition 1] which shows a connection between continuity

on cuts and joint continuity of a monotone function.

Proposition 5

Let f(x, y) be a real valued function defined on an open set G in the plane. Suppose that

f(x, y) is continuous in x and y separately and is monotone in x for each y. Then f(x, y) is

(jointly) continuous on the set G.

The following result shows that if U(a, b) = e then U is continuous in the point (a, b).

First, however, we introduce two useful lemmas.

9



Lemma 4

Let U : [0, 1]2 −→ [0, 1] be a uninorm with the neutral element e ∈ [0, 1]. Then if U(a, b) = e,

for some a, b ∈ [0, 1], there is either a = b = e, or a and b are not idempotent elements of U.

proof: If a is an idempotent point (similarly for b) then

e = U(a, b) = U(a, U(a, b)) = U(a, e) = a,

and

e = U(a, b) = U(e, b) = b,

i.e., a = b = e. ✷

Lemma 5

Let U : [0, 1]2 −→ [0, 1] be a uninorm with the neutral element e ∈ [0, 1]. Then if U(a, b) = e,

for some a, b ∈ [0, 1], there is either a = b = e, or a < e, b > e, or a > e, b < e.

proof: If a = e then evidently also b = e. If a < e then b 6= e and we have

e = U(a, b) ≤ U(e, b) = b,

i.e., e < b. Finally, if a > e then b 6= e and we have

e = U(a, b) ≥ U(e, b) = b,

i.e., e > b. ✷
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Proposition 6

Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈ U . If U(a, b) = e for some a, b ∈ [0, 1], a < e, then

U is continuous on [0, 1]2 \ ([0, a[ ∪ ]b, 1])2.

proof: Since a < e Lemma 4 implies that a and b are not idempotent elements of U

and Lemma 5 implies that b > e. From Lemma 3 we know that ua and ub are continuous

functions. Next we will show that for all f ∈ ]a, b[ there exists a vf ∈ [0, 1] such that

U(f, vf) = e. Assume f ∈ ]a, e] (for f ∈ [e, b[ the proof is analogous). Since TU is continuous

and U(a, f) ≤ a, U(f, e) = f there exists an af ∈ [0, e] such that U(f, af ) = a. Then

e = U(a, b) = U(f, af , b)

and if vf = U(af , b) then U(f, vf ) = e. Summarising, we get that for all x ∈ [a, b] the

function ux is continuous. Now since a and b are not idempotents we have U(a, a) = p < a,

U(b, b) = q > b and U(a, a, b, b) = e. Thus also all ux for x ∈ [p, q] are continuous and then

Proposition 5 implies the result. ✷

Remark 1

If U ∈ U then either U(x, y) = e implies x = y = e, or there exists an x 6= e such that

U(x, y) = e for some y ∈ [0, 1]. We will focus on the second case. Then Lemma 5 implies that

either x < e, y > e, or x > e, y < e. We will suppose that x < e and y > e (as the other case

is analogous). Then associativity implies U(x, . . . , x
︸ ︷︷ ︸

n-times

, y, . . . , y
︸ ︷︷ ︸

n-times

) = e for all n ∈ N and similarly

as in the proof of Proposition 6 we can show that for all z ∈



U(x, . . . , x
︸ ︷︷ ︸

n-times

), U(y, . . . , y
︸ ︷︷ ︸

n-times

)





there exists a q ∈ [0, 1] such that U(z, q) = e. Further, if U(b, c) = e for some b, c ∈ [0, 1],

b 6= e, then by Lemma 4 the points b and c are not idempotents. Therefore, in this case,
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U(x, y) = e for some y ∈ [0, 1] if and only if x ∈ ]a, d[ , where

a = lim
n−→∞

U(x, . . . , x
︸ ︷︷ ︸

n-times

)

and

d = lim
n−→∞

U(y, . . . , y
︸ ︷︷ ︸

n-times

).

Note that a and d are idempotent elements of U which follows from the continuity of the

underlying functions of U. Further, the monotonicity of U implies that a < e < d. The

commutativity of U then implies that if U(x, y) = e for some x, y ∈ [0, 1] then x, y ∈ ]a, d[ .

Vice versa, for all x ∈ ]a, d[ there exists a y ∈ ]a, d[ such that U(x, y) = e. Due to Proposition

6 we see that U is continuous on {x} × [0, 1] for all x ∈ ]a, d[ . If we take the union over

all x ∈ ]a, d[ then the commutativity of U and Proposition 5 implies that U is continuous

on ]a, d[ × [0, 1] ∪ [0, 1] × ]a, d[ . In order to include also the case when U(x, y) = e implies

x = y = e, we can generally say that for an x ∈ [0, 1] there exists a y ∈ [0, 1] such that

U(x, y) = e if and only if x ∈ ]a, d[ ∪ {e}. Note that in the case when U(x, y) = e implies

x = y = e, we take a = e = d.

Example 3

Assume two representable uninorms U1, U2 : [0, 1]
2 −→ [0, 1] with respective neutral elements

e1, e2. Let U
∗

1 be a transformation of U1 to (
[
0, 1

3

[
∪{v}∪

]
2
3
, 1
]
)2 given by (2), where v = 1

3
(v =

2
3
) if U2 is conjunctive (disjunctive), and let U∗

2 be a linear transformation of U2 to
[
1
3
, 2
3

]2
.

Then the ordinal sum of semigroups Gα = (
[
0, 1

3

[
∪{v}∪

]
2
3
, 1
]
, U∗

1 ), Gβ = (
[
1
3
, 2
3

]
, U∗

2 ), with

α < β, is a semigroup ([0, 1], U), where U is a uninorm with the neutral element e = e2+1
3

. We

can find the structure of U on Figure 2. All points of discontinuity of U except (0, 1), (0, 1)

correspond to the transformation of the points (x, y) ∈ [0, 1]2 such that U1(x, y) = e1. For

simplicity, we will assume that U1(x, 1 − x) = e1 = 1
2
for all x ∈ ]0, 1[ . Moreover, for every

a ∈
]
1
3
, 2
3

[
there exists a b ∈

]
1
3
, 2
3

[
such that U(a, b) = e. The previous result then implies

that U is continuous in every point from
]
1
3
, 2
3

[
× [0, 1] and from [0, 1]×

]
1
3
, 2
3

[
.
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❅
❅
❅
❅
❅

❅
❅
❅
❅
❅

U∗

2

U∗

1

U∗

1max

max

min

min

U∗

1

U∗

1

U∗

1

U∗

1

Figure 2: The uninorm U from Example 3. The oblique lines denote the points of disconti-
nuity of U.

In the following results we will continue to investigate properties of the function ux.

Proposition 7

Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈ U . Then for each x ∈ [0, 1] there is at most one

point of discontinuity of ux. Further, if ux is non-continuous in y ∈ [0, 1] then U(x, z) < e

for all z < y and U(x, z) > e for all z > y.

proof: If ux is non-continuous then Lemma 3 implies e /∈ Ran(ux), ux(0) < e and

ux(1) > e. We will denote

f = sup{U(x, y) | y ∈ [0, 1], U(x, y) ≤ e}

and

g = inf{U(x, y) | y ∈ [0, 1], U(x, y) ≥ e}.

Note that the inequality ux(0) < e (ux(1) > e) implies that f is the supremum (g is the

infimum) of a non-empty set. Fix arbitrary f1 < f. Then there exist an s > 0 and yf such

that f1 ≤ f − s ≤ U(x, yf ) ≤ f < e because f is the supremum. Since U(U(x, yf ), 0) = 0,

U(U(x, yf ), e) = U(x, yf ) and TU is continuous, there exists an f3 such that U(U(x, yf ), f3) =

f1. Therefore U(x, U(yf , f3)) = f1 and f1 ∈ Ran(ux).
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Similarly, for each g1 > g there is g1 ∈ Ran(ux). Therefore [0, 1]\Ran(ux) is a connected set.

Since ux is monotone it has only one point of discontinuity. Also, if ux is non-continuous in

y ∈ [0, 1] then U(x, z) < e for all z < y and U(x, z) > e for all z > y. ✷

Proposition 8

Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈ U . Then for all x ∈ [0, 1] the function ux is either

left-continuous or right-continuous.

proof: Assume x ∈ [0, 1]. From Proposition 7 we know that ux is non-continuous in at

most one point, and thus we will suppose that ux is non-continuous in the point p ∈ [0, 1].

Further, from the proof of the same proposition we know that [0, 1] \Ran(ux) is a connected

set, i.e., an interval I, and ux(p) is an end point of the interval I. Then it is evident that

if ux(p) = inf I then ux is left-continuous and ux(p) < e, and if ux(p) = sup I then ux is

right-continuous and ux(p) > e. ✷

Remark 2

From the proof of Proposition 8 we see that if ux(p) < e for some p ∈ [0, 1] then ux is

left-continuous on [0, p] and if ux(p) > e then ux is right-continuous on [p, 1] .

Next we will show that the points of discontinuity of ux are non-increasing with respect

to x ∈ [0, 1].

Proposition 9

Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈ U . Suppose that for x, x1 ∈ [0, 1], x1 < x, the

functions ux and ux1
are non-continuous in points y and y1, respectively. Then y1 ≥ y.

proof: From the proof of Proposition 7 we see that if ux is non-continuous in y then

U(x, z) < e for all z < y and U(x, z) > e for all z > y. If ux1
is non-continuous in y1 then

the monotonicity implies U(x1, z) < e for z < y and thus y1 ≥ y. ✷

Corollary 1

Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈ U . If ux1
is non-continuous in y and ux2

is

non-continuous in y for some x1 < x2 then ux is non-continuous in y for all x ∈ [x1, x2] .
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proof: Assume x ∈ ]x1, x2[ . Since ux1
is non-continuous in y we have U(x1, z) > e for

all z > y and the monotonicity gives U(x, z) > e for all z > y. Since ux2
is non-continuous

in y we have U(x2, z) < e for all z < y and the monotonicity gives U(x, z) < e for all z < y.

Thus ux is either non-continuous in y or U(x, y) = e. Assume that U(x, y) = e. If x = y = e

then x1 < e < x2 and we get

e < U(x1, x2) < e

what is a contradiction. Therefore by Lemma 4 the points x and y are not idempotent

elements of U and x 6= e, y 6= e.

Suppose that y > e. Then U(x, x, y, y) = e with U(x1, y, y) > e implies U(x, x) < x1 < x

and by Proposition 6 U is continuous on [0, 1]2 \ ([0, U(x, x)[∪ ]U(y, y), 1])2. Then, however,

ux1
is continuous, what is a contradiction.

In the case when y < e then U(x, x, y, y) = e with U(x2, y, y) < e implies x < x2 < U(x, x)

and using Proposition 6 again we obtain that ux2
is continuous, what is a contradiction.

Therefore in both cases U(x, y) 6= e and thus ux is non-continuous in y. ✷

Example 4

Assume a representable uninorm U1 : [0, 1]
2 −→ [0, 1] with the neutral element e1 and a

uninorm U2 ∈ Umax with the neutral element e2 = 1
2
. Let U∗

1 be a transformation of U1 to

(
[
0, 1

3

[
∪
[
2
3
, 1
]
)2 given by (2), and let U∗

2 be a linear transformation of U2 to
[
1
3
, 2
3

]2
. Then

the ordinal sum of semigroups Gα = (
[
0, 1

3

[
∪
[
2
3
, 1
]
, U∗

1 ), Gβ = (
[
1
3
, 2
3

]
, U∗

2 ), with α < β, is

a semigroup ([0, 1], U), where U is a uninorm. We can find the structure of U on Figure 3.

Here u 1

2

is continuous and u0 (u1) is continuous if U1 is conjunctive (disjunctive). In all other

cases ux is non-continuous. Further, u 1

3

is non-continuous in e = 1
2
and u 2

3

is non-continuous

in 1
3
.

Now we will show how can be a point of discontinuity of a uninorm U related to the

non-continuity of corresponding functions ux.
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1

U∗

1

U∗

1

Figure 3: The uninorm U from Example 4. The oblique and bold lines denote the points of
discontinuity of U.

Proposition 10

Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈ U . Then U is non-continuous in (x0, y0) ∈ [0, 1]2,

(x0, y0) 6= (e, e), if and only if one of the following is satisfied

(i) ux0
is non-continuous in y0,

(ii) uy0 is non-continuous in x0,

(iii) there exist ε1 > 0 and ε2 > 0 such that uz is non-continuous in x0 and uv is non-

continuous in y0 either for all z ∈ ]y0, y0 + ε1] , v ∈ ]x0, x0 + ε2] , or for all z ∈ [y0 − ε1, y0[ ,

v ∈ [x0 − ε2, x0[ .

proof: Suppose that U is non-continuous in (x0, y0) ∈ [0, 1]2. Then due to Proposition 6

U(x0, y0) 6= e. Since TU and SU are continuous we have (x0, y0) ∈ [0, e]× [e, 1]∪ [e, 1]× [0, e] .

We will assume (x0, y0) ∈ [0, e]× [e, 1] (the other case is analogous). From Proposition 5 it

follows that if U is non-continuous in (x0, y0) ∈ [0, 1]2 then for all δ1 > 0 and all δ2 > 0 there

exist x ∈ ]x0 − δ1, x0 + δ1[ and y ∈ ]y0 − δ2, y0 + δ2[ such that either ux is non-continuous in

y or uy is non-continuous in x. Thus U on [x0 − δ1, x0 + δ1]× [y0 − δ2, y0 + δ2] attain values

smaller than e and bigger than e as well. Let W be a subset of [0, 1]2 such that (x, y) ∈ W

if U(x1, y1) < e for all x1 < x, y1 < y and U(x2, y2) > e for all x2 > x, y2 > y. Then the

set [x0 − δ1, x0 + δ1]× [y0 − δ2, y0 + δ2]∩W is non-empty for all δ1 > 0 and all δ2 > 0. Thus
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(x0, y0) ∈ W.

If ux0
is continuous in y0 then there exists an ε1 > 0 such that either ux0

(z) < e for all

z ∈ [y0 − ε1, y0 + ε1] or ux0
(z) > e for all z ∈ [y0 − ε1, y0 + ε1] . Similarly, if uy0 is continuous

in x0 then there exists an ε2 > 0 such that either uy0(v) < e for all v ∈ [x0 − ε2, x0 + ε2]

or uy0(v) > e for all v ∈ [x0 − ε2, x0 + ε2] . Since we cannot have both U(x0, y0) < e and

U(x0, y0) > e we have either uy0(v) < e and ux0
(z) < e for all z ∈ [y0 − ε1, y0 + ε1] and

all v ∈ [x0 − ε2, x0 + ε2] , or uy0(v) > e and ux0
(z) > e for all z ∈ [y0 − ε1, y0 + ε1] and all

v ∈ [x0 − ε2, x0 + ε2] . As these two cases are analogous we will assume

uy0(v) < e and ux0
(z) < e for all z ∈ [y0 − ε1, y0 + ε1] and all v ∈ [x0 − ε2, x0 + ε2] .

Then U(x0, y) < e for y ∈ [y0 − ε1, y0 + ε1] and U(x, y0) < e for x ∈ [x0 − ε2, x0 + ε2] .

However, since (x0, y0) ∈ W, U(f, g) > e for all f > x0, g > y0. Thus uz is non-continuous in

x0 and uv is non-continuous in y0 for all z ∈ ]y0, y0 + ε1] , v ∈ ]x0, x0 + ε2] .

Vice versa, if ux0
is non-continuous in y0, or if uy0 is non-continuous in x0, then evidently

U is non-continuous in (x0, y0). Suppose that there exist ε1 > 0 and ε2 > 0 such that

uz is non-continuous in x0 and uv is non-continuous in y0 either for all z ∈ ]y0, y0 + ε1] ,

v ∈ ]x0, x0 + ε2] , or for all z ∈ [y0 − ε1, y0[ , v ∈ [x0 − ε2, x0[ . Then (x0, y0) ∈ W and

either U(x0, y0) = e, or U is non-continuous in (x0, y0). However, if U(x0, y0) = e then since

(x0, y0) 6= (e, e) Lemma 4 implies that x0 and y0 are not idempotents and Proposition 6

implies that U is continuous on [0, 1]2 \ ([0, U(x0, x0)[ ∪ ]U(y0, y0), 1])
2 if x0 < e < y0 and on

[0, 1]2 \ ([0, U(y0, y0)[∪ ]U(x0, x0), 1])
2 if x0 > e > y0. In both cases we obtain a contradiction

with the non-continuity of uz and uv. Therefore U(x0, y0) 6= e and thus U is non-continuous

in (x0, y0). ✷

Example 5

Assume two t-norms T1, T2 : [0, 1]
2 −→ [0, 1], such that T2 has no zero divisors, and a t-
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conorm S : [0, 1]2 −→ [0, 1]. Let T ∗

1 (T ∗

2 ) be a linear transformation of T1 (T2) to
[
0, 1

3

]2

(
[
1
3
, 2
3

]2
), and let S∗

2 be a linear transformation of S2 to
[
2
3
, 1
]2
. Then the ordinal sum of

semigroups Gα = (
[
0, 1

3

]
, T ∗

1 ), Gβ = (
[
1
3
, 2
3

]
, T ∗

2 ), Gγ = (
]
2
3
, 1
]
, S∗

2), with α < γ < β, is

a semigroup ([0, 1], U), where U is a uninorm (see Figure 4). If we define an operation

V : [0, 1]2 −→ [0, 1] by

V =







min(x, y) if x = 1
3
, y ∈

[
2
3
, 1
]
,

min(x, y) if y = 1
3
, x ∈

[
2
3
, 1
]
,

U(x, y) otherwise,

then V is also a uninorm. Here V is non-continuous in the point (1
3
, 2
3
), however, both v 1

3

and v 2

3

are continuous. Note that ([0, 1], V ) is an ordinal sum of semigroups Gα, Gγ and

Gβ∗ = (
]
1
3
, 2
3

]
, T ∗

2 ), Gδ = ({1
3
}, T ∗

2 ), where α < δ < γ < β∗.

T ∗

1

min

min

max

maxT ∗

2

S∗

❝

Figure 4: The uninorm U from Example 5. The bold lines denote the points of discontinuity
of U.

The following two results show that the set of discontinuity points of a uninorm U ∈ U

from the set [0, e]× [e, 1] ([e, 1]× [0, e]) is connected.

Proposition 11

Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈ U . Let ux1
be non-continuous in y1 and ux2

be

non-continuous in y2 for x1 < x2 ≤ e (e ≤ x1 < x2). Then for all y ∈ [y2, y1] either there

exists x∗ ∈ [x1, x2] such that ux∗ is non-continuous in y or there is an interval [c, d] , where
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y ∈ [c, d] ⊂ [0, 1], and p ∈ [x1, x2] such that uz is non-continuous in p for all z ∈ [c, d] .

proof: If ux1
is non-continuous in y1 and ux2

is non-continuous in y2 for x1 < x2 ≤ e (the

case when e ≤ x1 < x2 is analogous) then U(x2, z) < e for all z < y2 and U(x1, z) > e for all

z > y1 and the monotonicity implies that for all x ∈ [x1, x2] the function ux is non-continuous

in some point z ∈ [y2, y1] . Note that e /∈ Ran(ux) since otherwise by Proposition 6 either

ux1
or ux2

would be continuous. Assume the function g : [x1, x2] −→ [y2, y1] which assigns

to v ∈ [x1, x2] a point w ∈ [y2, y1] such that uv is non-continuous in w. Then by Proposition

9 the function g is non-increasing. If q ∈ [y2, y1] \ Ran(g) then by the monotonicity there

exists a p ∈ [x1, x2] such that g(d) > q if d < p and g(d) < q if d > p. Further, since g

is monotone there exists an interval [c, d] , such that q ∈ [c, d] ⊂ [y2, y1] \ Ran(g). Then for

z ∈ [c, d] we have U(z, v) < e for all v < p and U(z, v) > e for all v > p thus uz has a point

of discontinuity in p. ✷

Lemma 6

Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈ U . Let ux be non-continuous in y1 and uy2 be

non-continuous in x for some y1 6= y2. Then for all y ∈ ]y1, y2] (y ∈ [y2, y1[) the function uy

is non-continuous in x.

proof: We will assume y1 < y2 (the case when y1 > y2 is analogous). Then U(x, y) > e

for all y > y1 and U(z, y) ≤ U(z, y2) < e for all z < x, y ≤ y2. Then since U(x, y) 6= e the

function uy is non-continuous in x. ✷

In the following result we show that the set of discontinuity points of a uninorm U ∈ U

has a non-empty intersection with the border of the unit square.

Lemma 7

Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈ U . Assume x < e (x > e) such that ux is

continuous on [0, 1] and let uy be non-continuous in x. Then for all q ∈ [y, 1] (q ∈ [0, y]) the

function uq is non-continuous in x.
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proof: We will assume x < e (the case for x > e is analogous). If U(x, z) = e for some

z ∈ [0, 1] then by Lemma 4 the points x, z are not idempotents and Proposition 6 implies

that U is continuous on [0, 1]2 \ ([0, a[ ∪ ]b, 1])2 for some a < x and b > z. Therefore for all

y ∈ [0, 1] the function uy is continuous in x. Since x < e by Lemma 3 we have ux(1) < e,

i.e., U(x, z) < e for all z ∈ [0, 1]. If uy is non-continuous in x then U(p, y) > e for all p > x

and U(p, y) < e for all p < x. Assume any q ∈ [y, 1] . Then U(p, q) ≤ U(x, q) < e if p < x

and U(p, q) ≥ U(p, y) > e if p > x, i.e.,uq is non-continuous in x. ✷

Next we define a set-valued function.

Definition 1

A mapping p : [0, 1] −→ P([0, 1]) is called a set-valued function on [0, 1] if to every x ∈ [0, 1] it

assigns a subset of [0, 1], i.e., p(x) ⊆ [0, 1]. Assuming the standard order on [0, 1], a set-valued

function p is called

(i) non-increasing if for all x1, x2 ∈ [0, 1], x1 < x2, we have y1 ≥ y2 for all y1 ∈ p(x1) and

all y2 ∈ p(x2) and thus the cardinality Card(p(x1) ∩ p(x2)) ≤ 1,

(ii) symmetric if y ∈ p(x) if and only if x ∈ p(y).

The graph of a set-valued function p will be denoted by G(p), i.e., (x, y) ∈ G(p) if and only

if y ∈ p(x).

The following is evident.

Lemma 8

A symmetric set-valued function p : [0, 1] −→ P([0, 1]) is surjective, i.e., for all y ∈ [0, 1]

there exists an x ∈ [0, 1] such that y ∈ p(x), if and only if we have p(x) 6= ∅ for all x ∈ [0, 1].

The graph of a symmetric, surjective, non-increasing set-valued function p : [0, 1] −→

P([0, 1]) is a connected line (i.e., a connected set with no interior) containing points (0, 1)

and (1, 0). Indeed, the monotonicity of such a set-valued function ensures that the graph

of p has no interior. Further, since p is surjective, monotone and symmetric the graph of

p contains points (0, 1) and (1, 0). If G(p) is not a connected set then either p(x) is not a
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connected set for some x ∈ [0, 1], which, however, due to the monotonicity implies that p is

not surjective, or due to the monotonicity there exists an x ∈ [0, 1] such that either

inf(
⋃

q<x

p(q)) > sup(p(x)),

or

sup(
⋃

q>x

p(q)) < inf(p(x)),

which, however, due to the symmetry implies that p is not surjective.

The previous results can be summarized in the following theorem. First, however, we

introduce one remark.

Remark 3

For any uninorm U : [0, 1]2 −→ [0, 1], U ∈ U denote A = inf{x | U(x, 0) > 0}, B = sup{x |

U(x, 1) < 1} and let a, d ∈ [0, 1] be such that U(x, y) = e for some y ∈ [0, 1] if and only if

x ∈ ]a, d[ ∪ {e} (see Remark 1). If U is conjunctive, i.e., U(0, 1) = 0, then A is the infimum

of an empty set on [0, 1], i.e., A = 1. If U is disjunctive, i.e., U(0, 1) = 1, then B is the

supremum of an empty set on [0, 1], i.e., B = 0. Therefore we have either A = 1, B 6= 0, or

A 6= 1, B = 0, or A = 1, B = 0. Further, U(x, 0) ≤ e for some x ∈ [0, 1] implies

0 = U(e, 0) ≥ U(x, 0, 0) = U(x, 0)

and thus for all x ∈ [0, 1] either U(x, 0) = 0 or U(x, 0) > e. Therefore U is non-continuous

in (0, A) if A 6= 1. Similarly, U(x, 1) ≥ e for some x ∈ [0, 1] implies

1 = U(e, 1) ≤ U(x, 1, 1) = U(x, 1)

and thus for all x ∈ [0, 1] either U(x, 1) = 1 or U(x, 1) < e. Therefore U is non-continuous

in (B, 1) if B 6= 0. Finally, if A = 1, B = 0 then U(x, 0) = 0 for all x < 1 and U(x, 1) = 1
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for all x > 0 and therefore U is non-continuous in (0, 1).

Due to Remark 1 either a = d = e, or U is continuous on ]a, d[ × [0, 1] ∪ [0, 1] × ]a, d[ and

therefore we have 0 ≤ B ≤ a ≤ e ≤ d ≤ A ≤ 1.

Theorem 2

Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈ U . Then there exists a symmetric, surjective,

non-increasing set-valued function r on [0, 1] such that U is continuous on [0, 1]2 \R, where

R = G(r). Note that U need not to be non-continuous in all points from R.

proof: We will define the set R∗ = {(x, y) ∈ [0, 1]2 | U is non-continuous in (x, y)}.

Then due to the commutativity of U the set R∗ is symmetric, i.e., (x, y) ∈ R∗ if and only if

(y, x) ∈ R∗. If we define a set-valued function r : [0, 1] −→ P([0, 1]) by

r(x) =







{1} if x ∈ ]0, B[ ,

{0} if x ∈ ]A, 1[ ,

[0, B] if x = 1,

[A, 1] if x = 0,

{y | U(x, y) = e} if x ∈ ]a, d[ ∪ {e},

{y | (x, y) ∈ R∗} otherwise

(3)

then r is a symmetric set-valued function (see Remark 3). Since ux is continuous if and only

if x ∈ [0, B[ ∪ ]a, d[ ∪ {e} ∪ ]A, 1] (which follows from Lemma 3 and Proposition 6) Lemma

8 implies that r is surjective. Moreover, it is evident that if U is non-continuous in (x0, y0)

then x0 ∈ r(y0).

We will further define the set

P = {(x, y) ∈ [0, 1]2 | ux is continuous in y and uy is continuous in x}.

Assume x1 < x2 and y1 ∈ r(x1), y2 ∈ r(x2).
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Case 1: If (x1, y1), (x2, y2) ∈ R \ P then Proposition 9 implies y1 ≥ y2.

Case 2: Assume (x1, y1) ∈ P ∩R, (x2, y2) ∈ R \ P. Then Proposition 10 implies that either

(x3, y1) ∈ R \ P for some x3 ∈ [0, 1], x1 < x3 < x2, or (x1, y3) ∈ R \ P for some y3, y3 < y1.

Now since (x2, y2) ∈ R \ P the case when (x3, y1) ∈ R \ P implies by Proposition 9 y1 ≥ y2.

In the case when (x1, y3) ∈ R \ P we have y1 > y3 ≥ y2.

Case 3: Assume (x2, y2) ∈ P ∩R and (x1, y1) ∈ R \ P. This case can be shown similarly as

the Case 2.

Case 4: Assume (x1, y1), (x2, y2) ∈ P ∩R. Then Proposition 10 implies that either (x4, y2) ∈

R \ P for some x4 ∈ [0, 1], x3 < x4 < x2 (x1 < x4 < x2), or (x2, y4) ∈ R \ P for some y4,

y4 > y2. If (x3, y1) ∈ R \ P and (x4, y2) ∈ R \ P we have y1 ≥ y2. If (x3, y1) ∈ R \ P and

(x2, y4) ∈ R \ P we have y1 ≥ y4 > y2. If (x1, y3) ∈ R \ P and (x4, y2) ∈ R \ P we have

y1 > y3 ≥ y2. If (x1, y3) ∈ R \ P and (x2, y4) ∈ R \ P we have y1 > y3 ≥ y4 > y2.

Therefore in all cases y1 ≥ y2 and thus we have shown that r is non-increasing on [B, a] ∪

[d, A] . Since r is evidently non-increasing also on [0, B[∪ ]a, d[∪ {e} ∪ ]A, 1] we see that r is

non-increasing.

✷

Remark 4

U need not to be non-continuous in all points of R. From the previous proof we see that U is

continuous in all points from {x}× [0, 1] for all x ∈ [0, B[∪ ]a, d[∪{e}∪ ]A, 1] . The symmetric

non-increasing set-valued function from the previous theorem need not to be unique. The

differences can appear on ]a, d[2 . However, if we require additionally that U(x, y) = e implies

(x, y) ∈ R for all (x, y) ∈ [0, 1]2, such a set-valued function is uniquely given and we will call

such a set-valued function the characterizing set-valued function of a uninorm U for U ∈ U .

Example 6

Assume a representable uninorm U1 : [0, 1]
2 −→ [0, 1] and a continuous t-norm T : [0, 1]2 −→
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[0, 1] and a continuous t-conorm S : [0, 1]2 −→ [0, 1]. For simplicity we will assume that 1
2
is

the neutral element of U1 and that U1(x, 1 − x) = 1
2
for all x ∈ ]0, 1[ . Let U∗

1 be a linear

transformation of U1 to
[
1
3
, 2
3

]2
, let T ∗ be a linear transformation of T to

[
0, 1

3

]2
and let S∗ be

a linear transformation of S to
[
2
3
, 1
]2
. Then the ordinal sum of semigroups Gα = (

[
0, 1

3

]
, T ∗),

Gβ = (
[
1
3
, 2
3

]
, U∗

1 ), Gγ = (
[
2
3
, 1
]
, S∗), with γ < α < β, is a semigroup ([0, 1], U), where U is

a uninorm, U ∈ U . On Figure 5 we can see the characterizing set-valued function r of U as

well as its set of discontinuity points.

U∗

1

T ∗

S∗max

max

min

min

❅
❅
❅
❅
❅

U∗

1

U∗

1

T ∗

S∗max

max

min

min

Figure 5: The uninorm U from Example 6. Left: the bold lines denote the points of discon-
tinuity of U. Right: the oblique and bold lines denote the characterizing set-valued function
of U.

Remark 5

It is easy to see that for U ∈ U its characterizing set-valued function r divides the uninorm

U into two parts: U on points below the characterizing set-valued function attains values

smaller than e, and U on points above the characterizing set-valued function attains values

bigger than e.

Proposition 12

Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈ U . Then in each point (x0, y0) ∈ [0, 1]2 the

uninorm U is either left-continuous or right continuous.

proof: From Proposition 8 we know that for all x ∈ [0, 1] the function ux is either left-

continuous or right continuous. If (x0, y0) is the point of continuity of U the claim is trivial.
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Thus suppose that (x0, y0) belongs to the graph of the characterizing set-valued function r

of U. If U(x0, y0) = e then by Proposition 6 the uninorm U is continuous in (x0, y0) and

thus either U(x0, y0) < e or U(x0, y0) > e. If U(x0, y0) < e then for all x ≤ x0, y ≤ y0 also

U(x, y) < e and thus ux is left-continuous in y and uy is left-continuous in x (see Remark 2).

Now for any ε > 0 there exists δ1 > 0 such that |U(x0 − δ1, y0)− U(x0, y0)| <
ε
2
. Since also

ux0−δ1 is left-continuous in y0 there exists δ2 > 0 such that |U(x0−δ1, y0−δ2)−U(x0−δ1, y0)| <

ε
2
. The monotonicity of U then implies that

0 ≤ U(x0, y0)− U(x0 − δ1, y0 − δ2) =

U(x0, y0)− U(x0 − δ1, y0) + U(x0 − δ1, y0)− U(x0 − δ1, y0 − δ2) < ε.

Taking δ = min(δ1, δ2), by the monotonicity of U we have shown that for each ε > 0 there

exists a δ > 0 such that if x ∈ [x0 − δ, x0] and y ∈ [y0 − δ, y0] we have |U(x, y)−U(x0, y0)| < ε,

i.e., that U is left-continuous in (x0, y0). Similarly, if U(x0, y0) > e then U is right-continuous

in (x0, y0). ✷

The previous proposition and the construction of the characterizing set-valued function

r of a uninorm U implies the following.

Corollary 2

Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈ U . Then there exists a symmetric, surjective,

non-increasing set-valued function r on [0, 1] such that U is continuous on [0, 1]2 \R, where

R = G(r) and if U(x, y) = e then (x, y) ∈ R. Moreover, in each point (x, y) ∈ [0, 1]2 the

uninorm U is either left-continuous or right-continuous.

3.2 The sufficiency part

In this part we will show that if for a uninorm U there exists a symmetric, surjective, non-

increasing set-valued function r on [0, 1] such that U is continuous on [0, 1]2 \ R, where

R = G(r), and U(x, y) = e implies (x, y) ∈ R, then U ∈ U if and only if in each point
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(x, y) ∈ [0, 1]2 the uninorm U is either left-continuous or right-continuous.

We will denote the set of all uninorms U : [0, 1]2 −→ [0, 1] such that U is continuous

on [0, 1]2 \ R, where R = G(r) and r is a symmetric, surjective, non-increasing set-valued

function such that U(x, y) = e implies (x, y) ∈ R, by UR. First we will show that there

exists a uninorm U ∈ UR such that U /∈ U .

Example 7

Let U : [0, 1]2 −→ [0, 1] be given by

U(x, y) =







0 if max(x, y) < e,

x if y = e,

y if x = e,

max(x, y) otherwise.

Then Proposition 2 implies that U ∈ Umax is a uninorm, where the underlying t-norm

is the drastic product and the underlying t-conorm is the maximum. This uninorm is non-

continuous in points from {e}×[0, e]∪[0, e]×{e}. Thus the corresponding set-valued function

is given by (see Figure 6)

r(x) =







[e, 1] if x = 0,

e if x ∈ ]0, e[ ,

[0, e] if x = e,

0 otherwise.

Since U(x, y) = e implies x = y = e we see that U is continuous on [0, 1]2\R, where R = G(r)

and r is a symmetric, surjective, non-increasing set-valued function such that U(x, y) = e

implies (x, y) ∈ R. However, the drastic product t-norm is not continuous and thus U /∈ U .

Assume U ∈ UR. Then for the corresponding characterizing set-valued function r we
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0

max

max

max

Figure 6: The uninorm U from Example 7. The bold lines denote the characterizing set-
valued function r of U.

have (e, e) ∈ G(r). Denote

D = {e} × [0, 1] ∪ [0, 1]× {e}.

We have two possibilities: either G(r) ∩D = {(e, e)}, or Card(G(r) ∩D) > 1. First we will

assume the case when G(r) ∩ D = {(e, e)}. Then TU (SU) is continuous in all points from

[0, e]2 ([e, 1]2) except possibly the point (e, e) and we have the following result.

Lemma 9

Let T : [0, 1]2 −→ [0, 1] be a t-norm which is continuous on [0, 1]2 \ {(1, 1)}. Then T is

continuous on [0, 1]2.

proof: Assume that T is not continuous in (1, 1). Then there exist two sequences {an}n∈N,

an ∈ ]0, 1[ and {bn}n∈N, bn ∈ ]0, 1[ such that lim
n−→∞

an = lim
n−→∞

bn = 1 and lim
n−→∞

T (an, bn) < 1.

Since T (an, bn) ≥ T (min(an, bn),min(an, bn)) we see that there exists a sequence {cn}n∈N,

cn ∈ ]0, 1[ , lim
n−→∞

cn = 1 such that lim
n−→∞

T (cn, cn) = 1 − δ < 1, for some δ > 0. Since T is

a t-norm we have T (1 − δ
2
, 1) = 1 − δ

2
and necessarily T (1 − δ

2
, 1 − δ

2
) ≤ 1 − δ. Since T is

continuous on [0, 1]2 \ {(1, 1)} there exists an ε > 0 such that T (1 − δ
2
, 1 − ε) = 1 − 2δ

3
and
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the monotonicity of T implies ε < δ
2
. Thus

1−
2δ

3
= T (1−

δ

2
, 1− ε) ≤ T (1− ε, 1− ε) ≤ 1− δ,

what is a contradiction. ✷

By duality between t-norms and t-conorms we get the following.

Lemma 10

Let S : [0, 1]2 −→ [0, 1] be a t-conorm which is continuous on [0, 1]2 \ {(0, 0)}. Then S is

continuous on [0, 1]2.

From the two previous results we see that if U ∈ UR and G(r)∩D = {(e, e)} then U ∈ U .

Further we will suppose that Card(G(r) ∩D) > 1. Then we obtain the following result.

Lemma 11

Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈ UR, U /∈ U . Then there exists a point (x, y) ∈

[0, 1]2 such that U is neither left-continuous, nor right-continuous in (x, y).

proof: Since U /∈ U Lemmas 9 and 10 imply that Card(G(r)∩D) > 1. Then there exists

an x1 ∈ [0, 1], x1 6= e such that (x1, e) ∈ G(r). We will suppose that x1 < e (the case when

x1 > e is analogous). Let

x0 = inf{x ∈ [0, e] | (x, e) ∈ G(r)}.

Then the monotonicity of r implies that SU is continuous and ]x0, e]×{e} ⊂ G(r). Moreover,

U(x, y) = e implies x = y = e for all x, y ∈ [0, 1]. Since U is continuous on ]x0, e] × ]e, 1] ∪

]e, 1] × ]x0, e] we see that U(x, y) > e for all x ∈ ]x0, e] , y ∈ ]e, 1] . On the other hand,

the neutral element e and the monotonicity of U implies U(x, y) ∈ [x, y] for all x ∈ ]x0, e] ,

y ∈ ]e, 1] . Thus for all x ∈ ]x0, e[ we have lim
s−→e+

U(x, s) = e. Therefore on ]x0, e[ the uninorm

U is not right-continuous. Since U /∈ U and TU is continuous on [0, 1[2 we see that U is

not left-continuous in some point (x, e) for x ∈ [x0, e] . Now similarly as in Lemma 9 we can
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show that U is not left-continuous in some point (x, e) for x ∈ [x0, e[ . Finally, the neutral

element and the monotonicity of U imply that U is not left-continuous in some point (x, e)

for x ∈ ]x0, e[ . Summarising, there exists a point (x, y) ∈ [0, 1]2 such that U is neither

left-continuous, nor right-continuous in (x, y). ✷

All previous results can be compiled into the following theorem.

Theorem 3

Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈ UR. Then U ∈ U if and only if in each point

(x, y) ∈ [0, 1]2 the uninorm U is either left-continuous or right-continuous.

Corollary 3

Let U : [0, 1]2 −→ [0, 1] be a uninorm. Then U ∈ U if and only if U ∈ UR and in each point

(x, y) ∈ [0, 1]2 the uninorm U is either left-continuous or right-continuous.

4 Conclusions

We have shown that a uninorm with continuous underlying t-norm and t-conorm is con-

tinuous on [0, 1]2 \ R, where R is the graph of some symmetric, surjective, non-increasing

set-valued function. On the other hand, we have shown also a sufficient condition for a

uninorm to have continuous underlying operations. In the follow up papers [25, 26] we

will employ these results and using the characterizing set-valued function of a uninorm we

will show that each uninorm with continuous underlying t-norm and t-conorm can be de-

composed into an ordinal sum of semigroups related to representable uninorms, continuous

Archimedean t-norms, continuous Archimedean t-conorms, internal uninorms and singleton

semigroups. Thus these three papers together offer a complete characterization of uninorms

from U , i.e., of uninorms with continuous underlying t-norm and t-conorm. The applications

of these results are expected in all domains where uninorms are used.
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