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Abstract

Uninorms with continuous underlying t-norm and t-conorm are discussed and prop-
erties of the set of discontinuity points of such a uninorm are shown. This set is proved

to be a subset of the graph of a special symmetric, surjective, non-increasing set-valued
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function. A sufficient condition for a uninorm to have continuous underlying operations
is also given. Several examples are included.
Keywords: uninorm, ordinal sum, continuous t-norm, continuous t-conorm, set-

valued function

1 Introduction

The (left-continuous) t-norms and their dual t-conorms have an indispensable role in many
domains [9, 30, BI]. Generalizations of t-norms and t-conorms that can model bipolar be-

haviour are uninorms (see [7, 22} 32]). The class of uninorms is widely used both in theory
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[18, 28] and in applications [I3], 33]. The complete characterization of uninorms with contin-
uous underlying t-norm and t-conorm has been in the center of the interest for a long time,
however, only partial results were achieved (see [4], 5] [6], 8] [0 15] 16, 17, 19, 20, 211, 27, 29]).

In [23] we have introduced ordinal sum of uninorms and in [24] we have characterized
uninorms that are ordinal sums of representable uninorms. We would like to characterize
all uninorms with continuous underlying functions and obtain a similar representation as in
the case of t-norms and t-conorms. In this paper we will show that underlying operations
of a uninorm U are continuous if and only if U is continuous on [0, 1]? \ R, where R is the
graph of a special symmetric, surjective, non-increasing set-valued function and U is in each
point (z,y) € [0,1]? either left-continuous or right-continuous, or continuous. We will then
continue and in [25, [26] we will show that each uninorm with continuous underlying t-norm
and t-conorm can be decomposed into an ordinal sum of semigroups related to representable
uninorms, continuous Archimedean t-norms and t-conorms, internal uninorms and singleton
semigroups.

In Section 2] we will recall all necessary basic notions and results. We will characterize
uninorms with continuous underlying functions via the properties of their set of discontinuity

points (Section [B)). We give our conclusions in Section Ml

2 Basic notions and results

Let us now recall all necessary basic notions.

A triangular norm is a function T': [0,1]> — [0, 1] which is commutative, associative,
non-decreasing in both variables and 1 is its neutral element. Note that in this paper
we stick to the definition from [II], where a non-decreasing function means an increasing
function that need not to be strictly increasing. Due to the associativity, n-ary form of any
t-norm is uniquely given and thus it can be extended to an aggregation function working

on | J,cy[0, 1]™. Dual functions to t-norms are t-conorms. A triangular conorm is a function



S:[0,1)> — [0, 1] which is commutative, associative, non-decreasing in both variables and
0 is its neutral element. The duality between t-norms and t-conorms is expressed by the fact

that from any t-norm 7" we can obtain its dual t-conorm S by the equation

S(z,y)=1—-T(1 —xz,1—y)

and vice-versa.

Proposition 1 ([11])

Let t: [0,1] — [0,00] (s: [0,1] — [0, 00]) be a continuous strictly decreasing (increasing)
function such that t(1) = 0 (s(0) = 0). Then the operationT': [0,1]* — [0,1] (S: [0,1]* —
[0,1]) given by

T(z,y) =t~ (min(t(0), t(z) + (y)))
S(z,y) = s~ (min(s(1), s(z) + s(y)))

is a continuous t-norm (t-conorm). The function t (s) is called an additive generator of T
(5).

An additive generator of an Archimedean continuous t-norm 7" (t-conorm S) is uniquely
determined up to a positive multiplicative constant. Each continuous t-norm (t-conorm)
is equal to an ordinal sum of continuous Archimedean t-norms (t-conorms). Note that a
continuous t-norm (t-conorm) is Archimedean if and only if it has only trivial idempotent
points 0 and 1. A continuous Archimedean t-norm 7' (t-conorm S) is either strict, i.e.,
strictly increasing on ]0,1)° (on [0,1[%), or nilpotent, i.e., there exists (z,y) € ]0,1[> such
that T'(xz,y) = 0 (S(z,y) = 1). Moreover, each continuous Archimedean t-norm (t-conorm)
has a continuous additive generator. More details on t-norms and t-conorms can be found
in [T, [L1].

A uninorm (introduced in [32]) is a function U: [0,1]> — [0, 1] which is commutative,

associative, non-decreasing in both variables and have a neutral element e € |0, 1] (see also



[7]). If we take a uninorm in a broader sense, i.e., if for a neutral element we have e € [0, 1],
then the class of uninorms covers also the class of t-norms and the class of t-conorms. In
order to stress that we assume a uninorm with e € |0, 1] we will call such a uninorm proper.
For each uninorm the value U(1,0) € {0,1} is the annihilator of U. A uninorm is called
congunctive (disjunctive) if U(1,0) = 0 (U(1,0) = 1). Due to the associativity, we can
uniquely define n-ary form of any uninorm for any n € N and therefore in some proofs we
will use ternary form instead of binary, where suitable.

For each uninorm U with the neutral element e € [0, 1], the restriction of U to [0, e]” is a
t-norm on [0, e]”, i.e., a linear transformation of some t-norm Ty on [0, 1]? and the restriction
of U to [e,1]* is a t-conorm on [e,1]%, i.e., a linear transformation of some t-conorm Sy on
[0, 1]2. Moreover, min(z,y) < U(z,y) < max(x,y) for all (z,y) € [0,¢] X [e,1]U]e, 1] x [0, €] .
We will denote the set of all uninorms U such that T and Sy are continuous by U.

From any pair of a t-norm and a t-conorm we can construct the minimal and the maximal
uninorm with the given underlying functions.

Proposition 2 ([14])
Let T: [0,1]> — [0, 1] be a t-norm and S: [0,1]*> — [0, 1] a t-conorm and assume e € [0, 1].

Then the two functions Uiy, Unax : [0, 1] — [0, 1] given by

e-T(L,2) if (z,y) € 0,¢]",
Unin(%,4) = § e + (1 —e) - S(22¢,5=5) if (z,y) € [e, 1]*,
min(z, y) otherwise
and .
e T(LY) if (,y) € [0,¢]",

Unax(%,Y) = { e + (1—e)-S(i=, =) if(z,y) € [e, 1]2’

max(z,y) otherwise
\

are uninorms. We will denote the set of all uninorms of the first type by Uni, and of the



second type by Uax-

Similarly as in the case of t-norms and t-conorms we can construct uninorms using
additive generators (see [7]).
Proposition 3 ([7])
Let f:]0,1] — [—o0,00], f(0) = —o0, f(1) = oo be a continuous strictly increasing

function. Then a function U: [0,1]> — [0, 1] given by

Uz,y) = f(f(@) + fy)),

where f~1: [—o00,00] — [0, 1] is an inverse function to f, with the convention oo+ (—oc) =

o0 (or 0o 4 (—o0) = —00), is a uninorm, which will be called a representable uninorm.

Note that if we relax the strict monotonicity of the additive generator then the neutral
element will be lost and by relaxing the condition f(0) = —oo, f(1) = oo the associativity
will be lost (if f(0) < 0 and f(1) > 0). In [28] (see also [22]) we can find the following result.
Proposition 4 ([28])

Let U: [0,1]> — [0,1] be a uninorm continuous everywhere on the unit square except of

the two points (0,1) and (1,0). Then U is representable.

For our examples we will use the following ordinal sum construction introduced by Clif-

ford.
Theorem 1 ([3])

Let A # () be a totally ordered set and (Gy,)aeca With G, = (Xa, *o) be a family of semigroups.
Assume that for all o, € A with o < 3 the sets X, and Xg are either disjoint or that
Xo N Xpg = {xap}, where x, 43 is both the neutral element of G, and the annihilator of G

and where for each v € A with a < v < 8 we have X, = {z,4}. Put X = |J X, and define
a€cA



the binary operation * on X by

p

T,y If (x,y) € Xo X X,
THrY =9z if (z,y) € Xo x X and a < 3,

y if (z,y) € Xo x Xg and a > 5.

Then G = (X, %) is a semigroup. The semigroup G is commutative if and only if for each

a € A the semigroup G, is commutative.

Therefore in our examples the commutativity and the associativity of the corresponding
ordinal sum uninorm will follow from Theorem [II Monotonicity and the neutral element can
be then easily checked by the reader.

Further we will use the following transformation. For any 0 <a <b<c<d <1, v €
b, ], and a uninorm U with the neutral element e € [0,1] let f: [0,1] — [a,b[U{v} U]c,d]
be given by

p

(b—a)-2+a ifzel0e,
f(x)=1qv if v =e, (1)

d— (1—z)(d—c)

otherwise.
L (1—e)

Then f is linear on [0, e[ and on e, 1] and thus it is a piece-wise linear isomorphism of [0, 1]
to ([a,b[ U {v} Ule,d]) and a function U%>4?: ([a,b[ U {v} U]c, d])* — ([a,b] U {v} U]c, d])
given by

Ut ed(a,y) = fOS (@), F 7 (1)) (2)

is an operation on ([a,b[U{v} U]c,d])? which is commutative, associative, non-decreasing in
both variables (with respect to the standard order) and v is its neutral element.

Example 1

Assume U; € Upin and Us € Una, with respective neutral elements eq, es. Then U; is an

ordinal sum of semigroups G, = ([0, e[, 1;,) and G = ([e, 1], Sf,) with a < 3, where T}, =



Utljgey2 and Sf, = Uiy, 4p2- Similarly, Us is an ordinal sum of semigroups Go = ([0, €], T7;,)
and Gg = (Je, 1], Sp;,) with o > . If all underlying operations are continuous then the set
of discontinuity points of U; is equal to the set S; = {e} x Je, 1] U]e, 1] x {e} and the set of
discontinuity points of Us is equal to the set Sy = {e} x [0,¢e[U [0, e[ x {e}. Both uninorms

can be seen on Figure Il

min o max s
* 3 *
17, min 17, max

Figure 1: The uninorm U; (left) and the uninorm U, (right) from Example[ll The bold lines
denote the points of discontinuity of U; and Us.

More detailed discussion on the ordinal sum construction for uninorms can be found in

25].

3 Characterization of uninorms U € U by means of
special set-valued functions

In this section we will show that for a uninorm U we have U € U if and only if U is continuous
on [0, 1]?\ R, where R is the graph of a special symmetric, surjective, non-increasing set-valued
function 7 and U is in each point (z,y) € [0,1]? either left-continuous, or right-continuous,
or continuous. In the first part we will focus on the necessity part, i.e., we will show that
each uninorm U € U is continuous on [0,1]? \ R, where R is the graph of some symmetric,

surjective, non-increasing set-valued function r (Theorem [2)). We will also show that U € U



implies that U is in each point (z,y) € [0, 1]? either left-continuous, or right-continuous, or

continuous (Theorem [3)).

3.1 The necessity part

The following lemmas and propositions are necessary for the proof of Theorem 2] and [3
Lemma 1 ([24])

Each uninorm U: [0,1]> — [0,1], U € U, is continuous in (e, ).

Next we show that for z,y € [0, 1] we have U(z,y) = min(z,y) or U(z,y) = max(z,y) if
x is an idempotent element of U.
Lemma 2
Let U: [0,1]> — [0, 1] be a uninorm and let U € U. If a € [0,1] is an idempotent point of

U then U is internal on {a} x [0,1], i.e., U(a,x) € {x,a} for all x € [0,1].

PROOF: If a = e the result is obvious. Suppose a < e (the case when a > e is analogous).
Since Ty is continuous we have U(a,x) = min(a,x) if x € [0,¢]. Suppose that there exists
y € ]e, 1] such that U(a,y) = ¢ € ]a,y[. Then U(a,c) = Ul(a,a,y) =U(a,y) =cand if c<e
then ¢ = U(a,c) < a what is a contradiction. Thus y > ¢ > e. Then since Sy is continuous

there exists a y; such that U(c,y;) = y. Then, however,

U(CL, y) = U(CL, C, yl) = U(Ca yl) =Y

what is again a contradiction. Thus U is internal on {a} x [0, 1]. O

For a given uninorm U: [0,1]> — [0,1] and each z € [0,1] we define a function
ug: [0,1] — [0, 1] by u,(2) = U(z, 2) for z € [0, 1].
Lemma 3
Let U: [0,1]> — [0,1] be a uninorm, U € U, and assume z € [0,1]. The function u, is

continuous if and only if one of the following conditions:



(i) u.(1) <e,
(ii) us(0) > e,
(iii) e € Ran(uy,)

is satisfied.

PROOF: If e € Ran(u,) then there exists a y € [0, 1] such that U(x,y) = e. Since U is
monotone continuity of u, is equivalent with the equality Ran(u,) = [a,b] for some a =
U(0,z) and b = U(1,x). Assume ¢ € [0,1]. Then U(z,y,c) = c and for z = U(y, ¢) we have
uz(z) = ¢, i.e., Ran(u,) = [0,1]. If u,(1) = v < e (the case when u,(0) > e can be shown
similarly) then due to the monotonicity the continuity of w, is equivalent with the equality
Ran(u,) = [0,v]. Assume w € [0,v]. Since Ty is continuous there exists a ¢ € [0, e] such
that U(v,q) = w, i.e., U(x,1,q) = w and then u,(U(1,q)) = w. Therefore Ran(u,) = [0, v].

Vice-versa, if u, is continuous and u,(0) < e < u,(1) then evidently e € Ran(u,).

Example 2

For a representable uninorm U the function u, is continuous for all x € |0,1[. If U is
conjunctive (disjunctive) then wug (uq) is continuous and wu; (ug) is non-continuous in 0 (1).
For a uninorm U € Upayx (U € Unin) . is continuous for all = € [e, 1] (z € [0, ¢]) and u, is

non-continuous in e for all x € [0, e[ (x € e, 1]).

Now we recall a result [12, Proposition 1] which shows a connection between continuity
on cuts and joint continuity of a monotone function.
Proposition 5
Let f(x,y) be a real valued function defined on an open set G in the plane. Suppose that
f(z,y) is continuous in x and y separately and is monotone in x for each y. Then f(x,y) is

(jointly) continuous on the set G.

The following result shows that if U(a,b) = e then U is continuous in the point (a,b).

First, however, we introduce two useful lemmas.



Lemma 4
Let U: [0,1]> — [0, 1] be a uninorm with the neutral element e € [0, 1]. Then if U(a,b) = e,

for some a,b € [0, 1], there is either a = b = e, or a and b are not idempotent elements of U.

PROOF: If a is an idempotent point (similarly for b) then

e=U(a,b) =U(a,U(a,b)) =U(a,e) = a,

and

e="U(a,b) =U(e,b) =,
ie,a=b=e. O
Lemma 5

Let U: [0,1]* — [0, 1] be a uninorm with the neutral element e € [0, 1]. Then if U(a,b) = e,

for some a,b € [0, 1], there is either a =b=e, ora <e,b>e,ora>e, b<e.

PROOF: If a = e then evidently also b = e. If a < e then b # e and we have

e="U(a,b) <U(e,b) =,

i.e., e < b. Finally, if a > e then b # e and we have

e="U(a,b) > U(e,b) = b,

ie,e>b. O

10



Proposition 6
Let U: [0,1]> — [0,1] be a uninorm, U € U. If U(a,b) = e for some a,b € [0,1], a < e, then

U is continuous on [0,1]*\ ([0, a[ U b, 1])2.

PROOF: Since a < e Lemma M implies that a and b are not idempotent elements of U
and Lemma [ implies that b > e. From Lemma B8] we know that u, and wu, are continuous
functions. Next we will show that for all f € Ja,b| there exists a v/ € [0,1] such that
U(f,v') = e. Assume f € Ja,e] (for f € [e, b] the proof is analogous). Since Ty is continuous

and U(a, f) < a, U(f,e) = f there exists an a/ € [0, ] such that U(f,a’) = a. Then

e=Ul(a,b) =U(f,a,b)

and if v/ = U(a’,b) then U(f,v’) = e. Summarising, we get that for all x € [a,b] the
function wu, is continuous. Now since a and b are not idempotents we have U(a,a) = p < a,
U(b,b) = q > b and U(a,a,b,b) = e. Thus also all u, for x € [p, q] are continuous and then

Proposition [fl implies the result. O

Remark 1
If U € U then either U(x,y) = e implies x = y = e, or there exists an = # e such that
U(z,y) = e for some y € [0, 1]. We will focus on the second case. Then Lemma B implies that

either z < e,y > e, or x > e, y < e. We will suppose that < e and y > e (as the other case

is analogous). Then associativity implies U(z, ..., z,y,...,y) = e for all n € N and similarly
—— —
n-times n-times

as in the proof of Proposition [@ we can show that for all z € |U(x,...,x),U(y,...,y)
—— —

n-times n-times

there exists a ¢ € [0, 1] such that U(z,q) = e. Further, if U(b,c) = e for some b,c € [0, 1],

b # e, then by Lemma [ the points b and ¢ are not idempotents. Therefore, in this case,

11



U(z,y) = e for some y € [0, 1] if and only if x € |a, d[, where

a= lim U(z,...,x)
N300 e

n-times

and

d= lim U(y,...,y).
D00 N

n-times
Note that a and d are idempotent elements of U which follows from the continuity of the
underlying functions of U. Further, the monotonicity of U implies that a < e < d. The
commutativity of U then implies that if U(z,y) = e for some x,y € [0,1] then z,y € |a,d|.
Vice versa, for all € Ja, d[ there exists a y € |a, d[ such that U(z,y) = e. Due to Proposition
we see that U is continuous on {z} x [0,1] for all z € Ja,d[. If we take the union over
all z € |a,d| then the commutativity of U and Proposition [ implies that U is continuous
on |a,d[ x [0,1] U [0,1] X ]a,d[. In order to include also the case when U(x,y) = e implies
x =y = e, we can generally say that for an = € [0,1] there exists a y € [0, 1] such that
U(z,y) = e if and only if = € Ja,d[ U {e}. Note that in the case when U(x,y) = e implies

r =1y =c¢e, we take a = e = d.

Example 3
Assume two representable uninorms Uy, Uy : [0, 1] — [0, 1] with respective neutral elements

e1, e2. Let U be a transformation of Uy to ([0, & [U{v}U] 2, 1])? given by (@), where v =

—
<
I

Wl |~

—
[\

win

2) if U, is conjunctive (disjunctive), and let U; be a linear transformation of Us to [

=

Then the ordinal sum of semigroups G, = ([0, % [U{U}U} %, 1} UY), Gg = ([é, %} ,US), wit

+

a < f3, is a semigroup ([0, 1], U), where U is a uninorm with the neutral element e = 2. We

3
can find the structure of U on Figure 2l All points of discontinuity of U except (0,1), (0, 1)
correspond to the transformation of the points (x,y) € [0, 1]? such that U;(z,y) = e;. For
simplicity, we will assume that Uy(z,1 —z) = e; = % for all x € )0, 1[. Moreover, for every
a € H, %[ there exists a b € H, %[ such that U(a,b) = e. The previous result then implies
that U is continuous in every point from |1, 2[ x [0,1] and from [0,1] x |1, 2].

303 303

12



*
Uj i}
max U
U :
1
min Us max
: Uy
Uf min
*
Ui

Figure 2: The uninorm U from Example [3l The oblique lines denote the points of disconti-
nuity of U.

In the following results we will continue to investigate properties of the function u,.

Proposition 7
Let U: [0,1]* — [0,1] be a uninorm, U € U. Then for each = € [0,1] there is at most one
point of discontinuity of u,. Further, if u, is non-continuous in y € [0, 1] then U(z,z) < e

for all z <y and U(x,z) > e for all z > y.

PROOF: If u, is non-continuous then Lemma [ implies e ¢ Ran(u,), u,(0) < e and

uz(1) > e. We will denote

f=sup{U(z,y) |y € [0,1,U(z,y) < e}

and

g =f{U(z,y) [y €[0,1],U(z,y) = e}.

Note that the inequality u,(0) < e (u,(1) > e) implies that f is the supremum (g is the
infimum) of a non-empty set. Fix arbitrary f; < f. Then there exist an s > 0 and y; such
that f1 < f —s < U(x,yr) < f < e because f is the supremum. Since U(U(z,ys),0) = 0,
U(U(z,ys),e) = U(x,yy) and Ty is continuous, there exists an f; such that U(U(z,y¢), f3) =
fi. Therefore U(z,U(yy, f3)) = f1 and f1 € Ran(u,).

13



Similarly, for each g; > g there is g; € Ran(u,). Therefore [0, 1]\ Ran(u, ) is a connected set.
Since u, is monotone it has only one point of discontinuity. Also, if u, is non-continuous in

y € [0,1] then U(x, z) < e for all z <y and U(zx,z) > e for all z > y. O

Proposition 8
Let U: [0,1]> — [0, 1] be a uninorm, U € U. Then for all x € [0,1] the function u, is either

left-continuous or right-continuous.

PROOF: Assume z € [0,1]. From Proposition [7l we know that u, is non-continuous in at
most one point, and thus we will suppose that u, is non-continuous in the point p € [0, 1].
Further, from the proof of the same proposition we know that [0, 1] \ Ran(u,) is a connected
set, i.e., an interval I, and u,(p) is an end point of the interval I. Then it is evident that
if uy(p) = inf I then w, is left-continuous and u,(p) < e, and if u,(p) = sup ! then wu, is

right-continuous and u,(p) > e. 0

Remark 2
From the proof of Proposition B we see that if u,(p) < e for some p € [0,1] then u, is

left-continuous on [0, p] and if u,(p) > e then u, is right-continuous on [p, 1].

Next we will show that the points of discontinuity of u, are non-increasing with respect
toz € [0, 1].
Proposition 9
Let U: [0,1]> — [0, 1] be a uninorm, U € U. Suppose that for x,r, € [0,1], x; < x, the

functions u, and u,, are non-continuous in points y and y;, respectively. Then y; > y.

PROOF: From the proof of Proposition [1l we see that if u, is non-continuous in y then
U(z,z) < eforall z<yand U(z,z) > e for all z > y. If u,, is non-continuous in y; then

the monotonicity implies U(z1, 2) < e for z < y and thus y; > y. 0

Corollary 1
Let U: [0,1]*> — [0,1] be a uninorm, U € U. If u,, is non-continuous in y and u, is

non-continuous in y for some x1 < x5 then u, is non-continuous in y for all x € [z, xs].

14



PROOF: Assume z € |zy,xs[. Since u,, is non-continuous in y we have U(xq,z) > e for
all z > y and the monotonicity gives U(z, z) > e for all z > y. Since u,, is non-continuous
in y we have U(xq, z) < e for all z < y and the monotonicity gives U(zx, z) < e for all z < y.
Thus u, is either non-continuous in y or U(z,y) = e. Assume that U(z,y) =e. lfz =y =c¢
then r1 < e < x5 and we get

e<U(xy,x2) <e

what is a contradiction. Therefore by Lemma M the points x and y are not idempotent
elements of U and x # e, y # e.

Suppose that y > e. Then U(z,x,y,y) = e with U(zy,y,y) > e implies U(z,z) < 27 < x
and by Proposition B U is continuous on [0, 1]*\ ([0, U(z,x)[U]U(y, y), 1])*. Then, however,
U,, 1S continuous, what is a contradiction.

In the case when y < e then U(z,z,y,y) = e with U(z2,y,y) < e implies z < x5 < U(z,x)
and using Proposition [l again we obtain that u,, is continuous, what is a contradiction.

Therefore in both cases U(x,y) # e and thus u, is non-continuous in y. a

Example 4

Assume a representable uninorm U;: [0,1]> — [0, 1] with the neutral element e; and a
uninorm U € U with the neutral element e, = % Let U be a transformation of U; to
([O, %[U [%, 1})2 given by (2)), and let U; be a linear transformation of Us to [%, %}2 Then
the ordinal sum of semigroups G, = ([O, % [ U [%, 1} UY), G = ([%, %} ,Uy), with oo < 3, is
a semigroup ([0, 1],U), where U is a uninorm. We can find the structure of U on Figure B
Here u; is continuous and ug (uy) is continuous if U; is conjunctive (disjunctive). In all other
cases U, is non-continuous. Further, u 1 is non-continuous in e = % and u 2 is non-continuous
1

mn 3-

Now we will show how can be a point of discontinuity of a uninorm U related to the

non-continuity of corresponding functions u,.
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Uj i}
max Uy
U*
1
*
) max U
min max
Us | max
. Uy
Uf min
*
Ui

Figure 3: The uninorm U from Example dl The oblique and bold lines denote the points of
discontinuity of U.

Proposition 10
Let U: [0,1]> — [0, 1] be a uninorm, U € U. Then U is non-continuous in (zg, yo) € [0, 1}%,
(x0,%0) # (e, e), if and only if one of the following is satisfied
(i) uy, is non-continuous in yo,
(ii) w,, is non-continuous in x,
(iii) there exist €1 > 0 and €5 > 0 such that u, is non-continuous in xo and w, Iis non-
continuous in yq either for all z € |y, yo + 1], v € |z, o + €3] , or forall z € [yo — €1, yo|,

v € [zg — €2, 0|

PROOF: Suppose that U is non-continuous in (zq, yo) € [0, 1]?. Then due to Proposition [
Ul(zo,v0) # e. Since Ty and Sy are continuous we have (xo, yo) € [0,¢] X [e, 1]U[e, 1] x [0, €] .
We will assume (zo, 7o) € [0,€] x [e, 1] (the other case is analogous). From Proposition [ it
follows that if U is non-continuous in (g, yo) € [0, 1]? then for all §; > 0 and all d5 > 0 there
exist x € |xg — 61, x9 + 1] and y € Jyo — 02, yo + 2| such that either u, is non-continuous in
y or u, is non-continuous in x. Thus U on [xg — 01,20 + 01] X [yo — 2, Yo + 2] attain values
smaller than e and bigger than e as well. Let W be a subset of [0,1]? such that (x,y) € W
if U(zy,y1) < e forall x; < x,y1 < y and U(za,y2) > e for all x9 > x,y2 > y. Then the

set [xg — d1, 20 + 01] X [yo — 2, Yo + d2) N W is non-empty for all 4; > 0 and all 5 > 0. Thus
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(z0,%0) € W.

If u,, is continuous in yo then there exists an ; > 0 such that either u,,(z) < e for all
Z2 € [yo — €1, Yo + €1] Or Uy, (2) > e for all z € [yg — €1, Y0 + 1] . Similarly, if u,, is continuous
in xy then there exists an e > 0 such that either u,,(v) < e for all v € [xg — €2, ¢ + €2
or uy,(v) > e for all v € [xg — €3, 29 + 2] . Since we cannot have both U(zo,y0) < e and
U(xo,y0) > e we have either u, (v) < e and u, (2) < e for all z € [yo —€1,y0 + 1] and
all v € [xg — 2,20 + €2], o uy(v) > € and wu,,(2) > e for all z € [yo —e1,yo + €1] and all

v E [xg — €2, T0 + 2] . As these two cases are analogous we will assume

Uy, (V) < e and uy(2) < e forall z € [yg —e1,yo + 1] and all v € [xy — 2, 79 + 2] .

Then U(xg,y) < e for y € [yo —e1,y0 + 1] and U(z,yo) < e for x € [xg— &9, 0 + &3] .
However, since (xg,y0) € W, U(f,g) > e for all f > xg, g > yo. Thus wu, is non-continuous in
xo and u, is non-continuous in yo for all z € |yo, yo + 1], v € |zo, To + €3] -

Vice versa, if u,, is non-continuous in yp, or if u,, is non-continuous in o, then evidently
U is non-continuous in (g, ¥o). Suppose that there exist €1 > 0 and 5 > 0 such that
u, is non-continuous in xy and w, is non-continuous in yq either for all z € |yg, yo + €1,
v € |xg,mo + €9, or for all z € [yo—e1,y0], v € [xg— 2, 20[. Then (xg,7y0) € W and
either U(xg,yo) = €, or U is non-continuous in (zg, yo). However, if U(zg,yo) = e then since
(x0,%0) # (e,e) Lemma M implies that xy and yo are not idempotents and Proposition
implies that U is continuous on [0, 1]%\ ([0, U(xo, z0)[ U U (0, v0), 1])* if 29 < e < yo and on
0,112\ ([0, U(yo, yo)[U]U (z0, 20), 1])% if 29 > € > yo. In both cases we obtain a contradiction
with the non-continuity of u, and w,. Therefore U(xq,y9) # e and thus U is non-continuous

in (zg, yo)- O

Example 5

Assume two t-norms T3, Th: [0,1]2 — [0, 1], such that T, has no zero divisors, and a t-
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conorm S: (0,12 — [0,1]. Let 77 (7%) be a linear transformation of Ty (T3) to [0, %]2

([3 %}2), and let S3 be a linear transformation of S, to [Z, 1}2. Then the ordinal sum of
semigroups Go = ([0,3].77), G5 = ([3.2] .7%), G, = (]3,1],55), with a < v < 3, is
a semigroup ([0,1],U), where U is a uninorm (see Figure Hl). If we define an operation

V:[0,1]2 —> [0,1] by

(

Y € [%71}7

W=

min(z,y) ifr =

Wi
—_
[ER—

V = qmin(z,y) ify= tre|

U(z,y)  otherwise,

\

then V is also a uninorm. Here V' is non-continuous in the point (%, %), however, both v
3

and vy are continuous. Note that ([0,1],V) is an ordinal sum of semigroups G,,G. and

Gg = (], 2],13), Gs = ({3}, T3), where e < 6 <y < 3*.

max S*

min

15 max

Figure 4: The uninorm U from Example 5l The bold lines denote the points of discontinuity
of U.

The following two results show that the set of discontinuity points of a uninorm U € U
from the set [0,¢] x [e, 1] ([e, 1] x [0, ¢]) is connected.
Proposition 11
Let U: [0,1]> — [0,1] be a uninorm, U € U. Let u,, be non-continuous in y; and u,, be
non-continuous in ys for r1 < xy < e (e < xy < x9). Then for all y € [ya,y1| either there

exists x* € [xy, xo] such that u,~ is non-continuous in y or there is an interval [c,d|, where
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y € [c,d] C [0,1], and p € [x1, x5] such that u, is non-continuous in p for all z € [c,d] .

PROOF: If u,, is non-continuous in y; and u,, is non-continuous in ys for 1 < xs < e (the
case when e < x; < x5 is analogous) then U(xq, z) < e for all z < y, and U(xzy, 2) > e for all
z > 1, and the monotonicity implies that for all x € [z, z5] the function u, is non-continuous
in some point z € [y, y1]. Note that e ¢ Ran(u,) since otherwise by Proposition [@ either
Uy, OT Uy, would be continuous. Assume the function g: [z1,25] — [y, y1] which assigns
to v € [z, 22 a point w € [ys, y1] such that u, is non-continuous in w. Then by Proposition
the function g is non-increasing. If ¢ € [y2,41] \ Ran(g) then by the monotonicity there
exists a p € [x1, 23] such that g(d) > ¢ if d < p and g(d) < q if d > p. Further, since g
is monotone there exists an interval [c,d], such that ¢ € [¢,d] C [y2,v1] \ Ran(g). Then for
z € [¢,d] we have U(z,v) < e for all v < p and U(z,v) > e for all v > p thus u, has a point

of discontinuity in p. O

Lemma 6
Let U: [0,1*> — [0,1] be a uninorm, U € U. Let u, be non-continuous in y; and w,, be
non-continuous in x for some y; # yo. Then for all y € Jy1,ya] (y € [y2, y1[) the function u,

1S non-continuous In .

PROOF: We will assume y; < y, (the case when y; > ys is analogous). Then U(z,y) > e
for all y > y; and U(z,y) < U(z,y9) < e for all z < z, y < yo. Then since U(z,y) # e the

function u, is non-continuous in z. O

In the following result we show that the set of discontinuity points of a uninorm U € U
has a non-empty intersection with the border of the unit square.
Lemma 7
Let U: [0,1]> — [0,1] be a uninorm, U € U. Assume x < e (v > e) such that u, is
continuous on [0, 1] and let u, be non-continuous in x. Then for all ¢ € [y, 1] (¢ € [0,y]) the

function u, is non-continuous in x.
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PROOF: We will assume z < e (the case for z > e is analogous). If U(z, z) = e for some
z € [0, 1] then by Lemma [ the points z, z are not idempotents and Proposition [6] implies
that U is continuous on [0, 1]\ ([0, a[ U]b,1])? for some a < x and b > z. Therefore for all
y € [0, 1] the function w, is continuous in z. Since x < e by Lemma Bl we have u,(1) < e,
ie., Uz, z) <e forall z € |0,1]. If u, is non-continuous in = then U(p,y) > e for all p > =
and U(p,y) < e for all p < x. Assume any ¢q € [y,1]. Then U(p,q) < U(z,q) < eif p <z

and U(p,q) > U(p,y) > e if p > x, i.e.,u, is non-continuous in z. O

Next we define a set-valued function.

Definition 1
A mapping p: [0, 1] — P([0, 1]) is called a set-valued function on [0, 1] if to every « € [0, 1] it
assigns a subset of [0, 1], i.e., p(x) C [0, 1]. Assuming the standard order on [0, 1], a set-valued
function p is called

(i) non-increasing if for all x1, x5 € [0,1], 1 < 3, we have y; > y, for all y; € p(z1) and

all yo € p(x2) and thus the cardinality Card(p(z1) Np(z2)) < 1,

(ii) symmetric if y € p(x) if and only if = € p(y).

The graph of a set-valued function p will be denoted by G(p), i.e., (z,y) € G(p) if and only

if y € p(x).

The following is evident.
Lemma 8
A symmetric set-valued function p: [0,1] — P([0,1]) is surjective, i.e., for all y € [0,1]

there exists an x € [0, 1] such that y € p(x), if and only if we have p(x) # () for all x € [0, 1].

The graph of a symmetric, surjective, non-increasing set-valued function p: [0,1] —
P([0,1]) is a connected line (i.e., a connected set with no interior) containing points (0, 1)
and (1,0). Indeed, the monotonicity of such a set-valued function ensures that the graph
of p has no interior. Further, since p is surjective, monotone and symmetric the graph of

p contains points (0,1) and (1,0). If G(p) is not a connected set then either p(x) is not a
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connected set for some z € [0, 1], which, however, due to the monotonicity implies that p is

not surjective, or due to the monotonicity there exists an x € [0, 1] such that either

or

which, however, due to the symmetry implies that p is not surjective.
The previous results can be summarized in the following theorem. First, however, we

introduce one remark.

Remark 3

For any uninorm U: [0,1]*> — [0,1], U € U denote A = inf{x | U(z,0) > 0}, B = sup{z |
U(xz,1) < 1} and let a,d € [0,1] be such that U(z,y) = e for some y € [0, 1] if and only if
x € la,d[U{e} (see Remark[). If U is conjunctive, i.e., U(0,1) = 0, then A is the infimum
of an empty set on [0, 1], i.e., A = 1. If U is disjunctive, i.e., U(0,1) = 1, then B is the
supremum of an empty set on [0, 1], i.e., B = 0. Therefore we have either A =1, B # 0, or
A#1,B=0,0or A=1,B =0. Further, U(z,0) < e for some z € [0, 1] implies

0="U(e,0) > U(z,0,0) =U(z,0)

and thus for all x € [0, 1] either U(x,0) = 0 or U(z,0) > e. Therefore U is non-continuous

in (0, A) if A+ 1. Similarly, U(z,1) > e for some x € [0, 1] implies

1=U(e,1) <U(z,1,1) =U(z,1)

and thus for all x € [0, 1] either U(x,1) =1 or U(z, 1) < e. Therefore U is non-continuous

n (B,1) if B # 0. Finally, if A =1,B = 0 then U(2,0) =0 for all z < 1 and U(z,1) =1
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for all # > 0 and therefore U is non-continuous in (0, 1).
Due to Remark [[] either a« = d = e, or U is continuous on ]a,d[ x [0,1] U [0,1] x |a,d| and

therefore we have 0 < B<a<e<d< A< 1.

Theorem 2
Let U: [0,1)> — [0,1] be a uninorm, U € U. Then there exists a symmetric, surjective,
non-increasing set-valued function r on [0, 1] such that U is continuous on [0,1]? \ R, where

R = G(r). Note that U need not to be non-continuous in all points from R.

PROOF: We will define the set R* = {(x,y) € [0,1]? | U is non-continuous in (z,y)}.
Then due to the commutativity of U the set R* is symmetric, i.e., (z,y) € R* if and only if

(y,z) € R*. If we define a set-valued function r: [0, 1] — P([0, 1]) by

{1} if z €10, B[,
{0} if z € A, 1],
0, B] if v =1,
r(z) = (3)
[A, 1] if v =0,

{y|U(z,y) =ep ifacla,dU{e},

{y | (z,y) € R*} otherwise

then r is a symmetric set-valued function (see Remark [3)). Since u, is continuous if and only
if x € [0, B[U]a,d[U {e} U]A, 1] (which follows from Lemma [B] and Proposition [f]) Lemma
[l implies that r is surjective. Moreover, it is evident that if U is non-continuous in (g, 3o)
then g € r(yo).

We will further define the set

P = {(z,y) € [0,1]* | u, is continuous in y and u, is continuous in z}.

Assume 1 < x9 and y; € r(x1), y2 € r(x2).
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Case 1: If (z1,v1), (z2,92) € R\ P then Proposition [@ implies y; > s.

Case 2: Assume (z1,y1) € PN R, (z2,y2) € R\ P. Then Proposition [I0 implies that either
(x3,y1) € R\ P for some z3 € [0,1], 21 < x3 < x2, or (x1,y3) € R\ P for some ys3, y3 < y;.
Now since (z2,92) € R\ P the case when (z3,y;) € R\ P implies by Proposition @ y; > ys.
In the case when (z1,y3) € R\ P we have y; > y3 > 1.

Case 3: Assume (22,y2) € PN R and (x1,y1) € R\ P. This case can be shown similarly as
the Case 2.

Case 4: Assume (x1,y1), (z2,y2) € PN R. Then Proposition [0 implies that either (z4,y2) €
R\ P for some z4 € [0,1], 23 < 4y < 29 (11 < x4 < Tg), Or (x2,y4) € R\ P for some yy,
ys > yo. If (z3,41) € R\ P and (x4,y2) € R\ P we have y; > yo. If (23,1) € R\ P and
(x9,y4) € R\ P we have y; > ys > yo. If (z1,y3) € R\ P and (x4,y2) € R\ P we have

y1 > y3z > yo. If (1,y3) € R\ P and (23,y4) € R\ P we have y; > y3 > y4 > 1po.

Therefore in all cases y; > y» and thus we have shown that r is non-increasing on [B,a] U
[d, A] . Since r is evidently non-increasing also on [0, B[U]a, d[U {e} U]A, 1] we see that r is

non-increasing.

Remark 4

U need not to be non-continuous in all points of R. From the previous proof we see that U is
continuous in all points from {x} x [0, 1] for all z € [0, B[U]a, d[U{e}U]A, 1]. The symmetric
non-increasing set-valued function from the previous theorem need not to be unique. The
differences can appear on |a, d[2 . However, if we require additionally that U(z,y) = e implies
(z,y) € R for all (z,y) € [0, 1]?, such a set-valued function is uniquely given and we will call

such a set-valued function the characterizing set-valued function of a uninorm U for U € U.

Example 6

Assume a representable uninorm U; : [0, 1> — [0, 1] and a continuous t-norm 7': [0, 1] —
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[0,1] and a continuous t-conorm S [0,1]> — [0, 1]. For simplicity we will assume that 3 is
the neutral element of U; and that Uy(z,1 — x) = 4 for all € ]0,1[. Let U; be a linear
transformation of U; to [%, %} 2 , let T be a linear transformation of 7" to [0, %} ? and let S* be
a linear transformation of S to [%, 1] ?  Then the ordinal sum of semigroups G, = ( [O, %] 1),
Gp = ([%, %] UY), Gy = ([%, 1} ,S*), with v < a < 3, is a semigroup ([0, 1], U), where U is

a uninorm, U € U. On Figure bl we can see the characterizing set-valued function r of U as

well as its set of discontinuity points.

max S* max S*
Ui
. . )
min Uy min [
1
max max
T* min T* min

Figure 5: The uninorm U from Example [0l Left: the bold lines denote the points of discon-
tinuity of U. Right: the oblique and bold lines denote the characterizing set-valued function
of U.

Remark 5

It is easy to see that for U € U its characterizing set-valued function r divides the uninorm
U into two parts: U on points below the characterizing set-valued function attains values
smaller than e, and U on points above the characterizing set-valued function attains values
bigger than e.

Proposition 12

Let U: [0,1]*> — [0,1] be a uninorm, U € U. Then in each point (zg,yo) € [0,1)* the

uninorm U is either left-continuous or right continuous.

PROOF: From Proposition 8 we know that for all = € [0, 1] the function u, is either left-

continuous or right continuous. If (zg,y) is the point of continuity of U the claim is trivial.
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Thus suppose that (zg,yo) belongs to the graph of the characterizing set-valued function r
of U. If U(xg,y0) = e then by Proposition [ the uninorm U is continuous in (zq, %) and
thus either U(xg,y0) < e or U(xg,yo) > e. If U(xg,y0) < e then for all z < zg, y < yo also
U(z,y) < e and thus u, is left-continuous in y and u,, is left-continuous in x (see Remark [2)).
Now for any ¢ > 0 there exists d; > 0 such that [U(z¢ — 61,%0) — U(wo, y0)| < 5. Since also
Ugo—s, 18 left-continuous in yo there exists do > 0 such that |U(zo—0d1, yo—02)—U(xo—0d1,%0)| <

5- The monotonicity of U then implies that

0 < Ul(zg,y0) — Ulxg — 61,90 — 02) =

U(.fl}'o, yO) - U(ZII’O - 517 yO) + U('TO - 617 yO) - U('TO - 51790 - 52) <E&.

Taking § = min(dy, d2), by the monotonicity of U we have shown that for each £ > 0 there
exists a d > 0 such that if z € [zg — J,x0) and y € [yo — I, yo| we have |U(x,y)—U(zo, yo)| < ¢,
i.e., that U is left-continuous in (xg, yo). Similarly, if U(zg, y9) > e then U is right-continuous

in (o, yo). 0

The previous proposition and the construction of the characterizing set-valued function
r of a uninorm U implies the following.
Corollary 2
Let U: [0,1)> — [0,1] be a uninorm, U € U. Then there exists a symmetric, surjective,
non-increasing set-valued function r on [0, 1] such that U is continuous on [0,1]? \ R, where
R = G(r) and if U(z,y) = e then (z,y) € R. Moreover, in each point (x,y) € [0,1]* the

uninorm U is either left-continuous or right-continuous.

3.2 The sufficiency part

In this part we will show that if for a uninorm U there exists a symmetric, surjective, non-
increasing set-valued function r on [0, 1] such that U is continuous on [0,1]? \ R, where

R = G(r), and U(z,y) = e implies (z,y) € R, then U € U if and only if in each point

25



(z,y) € [0,1]* the uninorm U is either left-continuous or right-continuous.

We will denote the set of all uninorms U: [0,1]*> — [0,1] such that U is continuous
on [0,1]? \ R, where R = G(r) and r is a symmetric, surjective, non-increasing set-valued
function such that U(x,y) = e implies (z,y) € R, by UR. First we will show that there

exists a uninorm U € UR such that U ¢ U.

Example 7
Let U: [0,1]> — [0, 1] be given by

0 if max(z,y) < e,
x if y =e,

Ulz,y) =
Y it z =e,
max(x,y) otherwise.

\

Then Proposition 2 implies that U € Uyax is a uninorm, where the underlying t-norm
is the drastic product and the underlying t-conorm is the maximum. This uninorm is non-
continuous in points from {e} x [0, e]U]0, €] x {e}. Thus the corresponding set-valued function
is given by (see Figure [6)

le,1] ifz =0,

e if z €10, ¢],

[0,e] ifx=ce,

0 otherwise.

Since U(z,y) = e implies z = y = e we see that U is continuous on [0, 1]*\ R, where R = G(r)
and 7 is a symmetric, surjective, non-increasing set-valued function such that U(z,y) = e

implies (z,y) € R. However, the drastic product t-norm is not continuous and thus U ¢ U.

Assume U € UR. Then for the corresponding characterizing set-valued function r we
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max max

0 max

Figure 6: The uninorm U from Example [l The bold lines denote the characterizing set-
valued function r of U.

have (e, e) € G(r). Denote
D ={e} x[0,1]U[0,1] x {e}.

We have two possibilities: either G(r) N D = {(e,e)}, or Card(G(r) N D) > 1. First we will
assume the case when G(r) N D = {(e,e)}. Then Ty (Sy) is continuous in all points from
[0, €]” (e, 1]?) except possibly the point (e,e) and we have the following result.

Lemma 9

Let T:[0,1]> — [0,1] be a t-norm which is continuous on [0,1]* \ {(1,1)}. Then T is

continuous on [0, 1]%.

PROOF: Assume that 7T is not continuous in (1, 1). Then there exist two sequences {ay, }nen,

a, €10, 1] and {b, }nen, by € ]0,1[ such that lim a, = lim b, =1and lim T(an,b,) < 1.
n—>oo n—>o0 n—:o0

Since T'(an,b,) > T(min(ay, b,), min(a,, b,)) we see that there exists a sequence {c, }nen,

¢, €10,1[, lim ¢, = 1 such that lim T'(c,,c,) =1 —0 < 1, for some § > 0. Since T is

n—auoo n—aoo

a t-norm we have T'(1 — 2,1) = 1 — & and necessarily 7'(1 — 2,1 — 2) < 1 — 4. Since T is

continuous on [0,1]*\ {(1,1)} there exists an £ > 0 such that (1 — §,1—¢) =1 — 2 and
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the monotonicity of T" implies € < g. Thus

2
1_;:T(1_g,1—5)gT(l—a,l—a)gl—(S,

what is a contradiction. O

By duality between t-norms and t-conorms we get the following.
Lemma 10
Let S:[0,1]> — [0,1] be a t-conorm which is continuous on [0,1]* \ {(0,0)}. Then S is

continuous on [0, 1]%.

From the two previous results we see that if U € UR and G(r)ND = {(e,e)} then U € U.
Further we will suppose that Card(G(r) N D) > 1. Then we obtain the following result.
Lemma 11
Let U: [0,1]> — [0,1] be a uninorm, U € UR, U ¢ U. Then there exists a point (z,y) €

0, 1]% such that U is neither left-continuous, nor right-continuous in (z,y).

PROOF: Since U ¢ U Lemmas [0 and [I0limply that Card(G(r)N D) > 1. Then there exists
an x1 € [0,1], 1 # e such that (z1,e) € G(r). We will suppose that z; < e (the case when

x1 > e is analogous). Let
xo =inf{z € [0,¢] | (z,e) € G(r)}.

Then the monotonicity of  implies that Sy is continuous and ]z, €] x {e} C G(r). Moreover,
U(xz,y) = e implies = y = e for all z,y € [0, 1]. Since U is continuous on |xg,e] x Je, 1] U
le, 1] x ]zo, €] we see that U(x,y) > e for all z € Jzg,e], y € ]e,1]. On the other hand,
the neutral element e and the monotonicity of U implies U(x,y) € [z,y] for all x € |xg,¢€],
y € le, 1] . Thus for all z € ]z, e[ we have sli:f)t}3+ U(x,s) = e. Therefore on |z, e[ the uninorm

U is not right-continuous. Since U ¢ U and Ty is continuous on [0,1[> we see that U is

not left-continuous in some point (x,e) for x € [z, €] . Now similarly as in Lemma [0 we can
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show that U is not left-continuous in some point (z,e) for x € [xg,e[. Finally, the neutral
element and the monotonicity of U imply that U is not left-continuous in some point (z, e)
for x € ]xg,e[. Summarising, there exists a point (z,y) € [0,1]? such that U is neither

left-continuous, nor right-continuous in (x,y). O

All previous results can be compiled into the following theorem.
Theorem 3
Let U: [0,1> — [0,1] be a uninorm, U € UR. Then U € U if and only if in each point
(z,y) € [0,1]* the uninorm U is either left-continuous or right-continuous.
Corollary 3
Let U: [0,1]> — [0, 1] be a uninorm. Then U € U if and only if U € UR and in each point

(z,y) € [0,1)* the uninorm U is either left-continuous or right-continuous.

4 Conclusions

We have shown that a uninorm with continuous underlying t-norm and t-conorm is con-
tinuous on [0,1]* \ R, where R is the graph of some symmetric, surjective, non-increasing
set-valued function. On the other hand, we have shown also a sufficient condition for a
uninorm to have continuous underlying operations. In the follow up papers [25, 26] we
will employ these results and using the characterizing set-valued function of a uninorm we
will show that each uninorm with continuous underlying t-norm and t-conorm can be de-
composed into an ordinal sum of semigroups related to representable uninorms, continuous
Archimedean t-norms, continuous Archimedean t-conorms, internal uninorms and singleton
semigroups. Thus these three papers together offer a complete characterization of uninorms
from U, i.e., of uninorms with continuous underlying t-norm and t-conorm. The applications

of these results are expected in all domains where uninorms are used.
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