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 

Abstract—In classical data-driven machine learning methods, 

massive amounts of labeled data are required to build a 

high-performance prediction model. However, the amount of 

labeled data in many real-world applications is insufficient, so 

establishing a prediction model is impossible. Transfer learning 

has recently emerged as a solution to this problem. It exploits the 

knowledge accumulated in auxiliary domains to help construct 

prediction models in a target domain with inadequate training 

data. Most existing transfer learning methods solve classification 

tasks; only a few are devoted to regression problems. In addition, 

the current methods ignore the inherent phenomenon of 

information granularity in transfer learning. In this study, 

granular computing techniques are applied to transfer learning. 

Three granular fuzzy regression domain adaptation methods to 

determine the estimated values for a regression target are 

proposed to address three challenging cases in domain adaptation. 

The proposed granular fuzzy regression domain adaptation 

methods change the input and/or output space of the source 

domain’s model using space transformation, so that the fuzzy 

rules are more compatible with the target data. Experiments on 

synthetic and real-world datasets validate the effectiveness of the 

proposed methods. 

 
Index Terms—Machine learning, transfer learning, fuzzy rules, 

granular computing, regression 

 

I. INTRODUCTION 

RADITIONAL machine learning methods use learning 

models to extract knowledge from massive amounts of 

labeled data. They work under a common assumption that the 

training data (in the source domain) and the testing data (in the 

target domain) have the same feature space and the same 

probability distributions. However, if the feature space or the 

distribution of the target data changes, the models built from the 

source data become unsuitable and a new model needs to be 

rebuilt and trained from scratch. Additionally, if there is 

insufficient labeled target data, a new prediction model for the 

target data will be impossible to establish. 
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In recent years, new machine-learning method, called 

transfer learning, has been introduced as a solution to the above 

problem. Transfer learning leverages previously acquired 

knowledge in a similar domain to improve the efficiency and 

accuracy of learning in a target domain [1]. Web document 

classification is a well-known example of where transfer 

learning has been used to address a real-world problem – web 

documents are classified into predefined categories based on 

previously collected data [2, 3].  

Many approaches to transfer learning have been proposed, 

and the related work can be divided into four categories 

according to the problem setting: multi-task learning [4], 

domain adaption [5], cross-domain adaptation [6], and 

heterogeneous learning [7]. Computational intelligence has 

recently been applied to improve the performance of existing 

transfer learning methods and to handle knowledge transfer 

processes in real-world systems. These computational 

intelligence techniques can be divided into three main 

categories [8]: neural network-based transfer learning [9], 

Bayesian transfer learning [10], and fuzzy transfer learning 

[11]. These techniques have a wide range of applications, 

including natural language processing [12], computer vision 

and image processing [13, 14], and biology [15]. 

A significant amount of transfer learning research has been 

undertaken for classification problems, yet studies on 

regression problems are still scarce. In this paper, we focus on 

regression problems using regression domain adaptation 

techniques.  

    Imprecision, approximation, vagueness, and ambiguity of 

information are driven by the variability encountered when 

trying to learn an activity with little information [16]. There is a 

clear co-dependency on the level of certainty in learning an 

activity and the amount of information that is available; 

problems with too little information have a high degree of 

uncertainty. For this reason, very recent studies have applied 

fuzzy techniques to transfer learning [17]. Using fuzzy logic 

allows for more approximation and greater uncertainty within 

the knowledge transfer. Behbood et al. [18] proposed a 

fuzzy-based transductive transfer learning approach to 

long-term bank failure prediction models with differing data 

distributions in the source and target domains. They first 

applied a fuzzy neural network to predict the initial labels for 

data in the target domain, then used fuzzy similarity measures 

to refine the labels. To improve performance, they 

simultaneously took similarity and dissimilarity into account 
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during the refinement process. Using fuzzy techniques in the 

similarity measurement, the authors revealed the advantage of 

fuzzy logic in knowledge transfer when the target domain lacks 

critical information, is vague and involves uncertainty [19, 20]. 

Shell and Coupland [21, 22] introduced a novel framework for 

transfer learning, based on a fuzzy inference system, to address 

cases where only limited unlabeled target data and labeled 

source data are available. They used fuzzy rules from the source 

domain and adapted them to predict labels in the target domain, 

based on Euclidean distance measurements. Deng et al. [23, 24] 

improved knowledge leverage in Takagi-Sugeno-Kang (TSK) 

fuzzy models for inductive transfer learning. Two knowledge 

leverage strategies were proposed to boost learning of the 

antecedent and consequent parameters, and further training data 

in the target domain was applied to help learn the antecedents. 

Given that fuzzy system modeling is an important category of 

modeling with extensive applications [25, 26], and is an 

technique that performs well when addressing transfer learning 

problems, incorporating regression domain adaptation into a 

fuzzy model holds promise.  

Although many approaches have been introduced as possible 

solutions for transfer learning problems, their performance is 

not yet acceptable. One reason is the information granularity 

inherent in many problems. For instance, 128GB of mobile 

storage is considered large today, whereas 32GB was regarded 

as large five years ago. The precise values, 128GB and 32GB, 

both need to be expressed as a granular value, “large”, for 

learning to be effectively transferred from the 5-year-old 

domain to today’s domain. Extracting additional abstract 

knowledge shared between domains should therefore assist 

knowledge transfer. Granular computing (GrC) is an emerging 

information processing paradigm that transforms complex data 

into information granules at different levels of resolution to 

reveal different features and irregularities. GrC’s ability to 

address information at different levels of abstraction could 

improve the performance of transfer learning, and consequently 

we propose several granular fuzzy regression domain 

adaptation methods, GFRDA for short, to address regression 

domain adaptation problems. 

    In the previous paper [27], we proposed a method of 

changing the input space that is specific for the domain 

adaptation problem where the conditions of fuzzy rules in two 

domains are different. In the current paper, forming a natural 

follow-up of the previous paper, we proposed two methods 

other to deal with different cases in domain adaptation, namely 

changing the output space and changing both the input and 

output spaces. These three methods are based on 

Takagi-Sugeno fuzzy models, and each is designed to handle a 

different domain adaptation case: where conditions differ, 

conclusions differ, or both differ between the source and target 

domains. Furthermore, these three methods considered together 

constitute an overall framework that provides a comprehensive 

framework for the domain adaptation-based of fuzzy models.  

    The main contributions of this paper are twofold. First, the 

information granularity inherent in transfer learning is 

considered to effectively improve model performance for the 

target domain. Second, an entire framework is proposed to 

provide guidance for domain adaptation with fuzzy models. 

    The paper is structured as follows. Section II provides some 

definitions related to domain adaptation and GrC, and 

Takagi-Sugeno fuzzy models are introduced. Section III 

defines fuzzy domain adaptation and describes the three 

specific domain adaptation cases using fuzzy rule-based 

models. Section IV presents the corresponding GFRDA 

methods to handle these cases. The results of the experiments 

on synthetic and real-world datasets to analyze and verify the 

proposed GFRDA methods are presented in Sections V and VI. 

The final section concludes the paper and outlines future work. 

II. PRELIMINARIES 

    The definition of transfer learning, and particularly domain 

adaptation, is introduced in this section, followed by the 

Takagi-Sugeno fuzzy model and finally some GrC-related 

knowledge is described. 

A. Definitions 

Definition 1 (Domain) [1]: A domain is denoted by 𝐷 =
{𝐹, 𝑃(𝑋)} , where 𝐹  is a feature space, and 𝑃(𝑋) , 𝑋 =
{𝑥1, ⋯ , 𝑥𝑛}, is the probability distributions of instances. 

Definition 2 (Task) [1]: A task is denoted by 𝑇 = {𝑌, 𝑓(∙)}, 

where 𝑌 ∈ 𝑅  is an output value, and 𝑓(∙)  is an objective 

predictive function. 

Definition 3 (Transfer Learning) [1]: Given a source domain 

𝐷𝑠, a learning task 𝑇𝑠, a target domain 𝐷𝑡  , and a learning task 

𝑇𝑡 , transfer learning aims to improve learning of the target 

predictive function 𝑓𝑡(∙) in 𝐷𝑡  using the knowledge in 𝐷𝑠  and 

𝑇𝑠 where 𝐷𝑠 ≠ 𝐷𝑡 or 𝑇𝑠 ≠ 𝑇𝑡. 

Definition 4 (Domain Adaptation) [1]: Domain adaptation is a 

category of inductive transfer learning in which 𝐹𝑡 = 𝐹𝑠, but 

𝑃𝑡(𝑋) ≠ 𝑃𝑠(𝑋). 

B. Takagi-Sugeno Fuzzy Models 

The Takagi-Sugeno fuzzy model is an effective way to 

represent a fuzzy model in a nonlinear dynamic system. A 

Takagi-Sugeno model, composed of 𝑐 fuzzy rules, is formally 

represented as:  

 

If 𝒙 is 𝐴𝑖(𝒙, 𝒗𝑖), then 𝑦 is 𝐿𝑖(𝒙, 𝒂𝑖)       𝑖 = 1,… , 𝑐 (1) 

 

Each fuzzy rule comprises one condition, which is described 

by the prototype 𝒗𝑖 , and one conclusion, which is typically 

governed by the coefficients of the linear function 𝐿𝑖  of the 

input variables 𝒂𝑖. When the input of the Takagi-Sugeno fuzzy 

model is 𝒙, the output 𝑦 is represented as:  

 

𝑦 =  ∑ 𝐴𝑖(𝒙, 𝒗𝑖)
𝑐
𝑖=1 𝐿𝑖(𝒙, 𝒂𝑖) (2) 

 

The construction of this fuzzy rule-based model uses 𝑺 =
{(𝒙1, 𝑦1), … , (𝒙𝑁 , 𝑦𝑁)} to formulate condition 𝐴𝑖 and optimize 

the parameters of 𝐿𝑖. The design procedure can be summarized 

in two steps [28]: 

Step 1: Form the conditions 𝐴1, … , 𝐴𝑐 through fuzzy clustering. 

Typically, a Fuzzy C-Means (FCM) is used to construct the 
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clusters and calculate the prototypes 𝒗𝑖. An FCM partitions 𝑁 

data 𝒙1, … , 𝒙𝑁 into 𝑐 clusters, where 1 < 𝑐 < 𝑁. As a result, a 

collection of 𝑐  prototypes 𝒗1, … , 𝒗𝑐  is formed and the 

membership of instance 𝒙  belonging to each cluster is 

calculated in the form: 

 

𝐴𝑖(𝒙, 𝒗𝑖) =  1/∑ (
‖𝒙 − 𝒗𝑖‖

‖𝒙− 𝒗𝑗‖
)

2

𝑚−1𝑐
𝑗=1            𝑖 = 1,… , 𝑐 (3) 

 

where 𝑚 (𝑚 > 1) is a fuzzification coefficient that affects both 

the shape and overlap of the resulting membership functions. 

Step 2: Optimize the parameters of the linear functions 

𝐿𝑖(𝒙, 𝒂𝑖). 

    Given an input, the output of a Takagi-Sugeno fuzzy model 

is parameter 𝒂’s linear function, so the optimal parameter 𝒂 can 

be calculated using the given dataset 𝑺 and represented as: 

 

𝒂 =  (𝑭𝑇𝑭)−1𝑭𝑇𝒚 (4) 

 

where 𝒂 = [𝒂1  ⋯ 𝒂𝑐]
𝑻, 𝑭 = [𝒇(𝒙1)

𝑇  ⋯ 𝒇(𝒙𝑁)𝑇]𝑻, 𝒇(𝒙𝑘)
𝑇 =

 [
𝐴1(𝒙𝑘 , 𝒗1) … 𝐴𝑐(𝒙𝑘 , 𝒗𝑐)

𝐴1(𝒙𝑘, 𝒗1)𝒙𝑘 … 𝐴𝑐(𝒙𝑘 , 𝒗𝑐)𝒙𝑘
] , 𝑘 = 1,⋯ ,𝑁 , and 𝒚 =

 [𝑦1  ⋯ 𝑦𝑁]𝑻. 

    Therefore, the fuzzy rule’s conclusion can be calculated 

based on the derived 𝒂:  

 

𝐿𝑖(𝒙, 𝒂𝑖) = 𝑎𝑖0 + 𝑎𝑖1𝑥1 + ⋯ + 𝑎𝑖𝑛𝑥𝑛            𝑖 = 1,… , 𝑐 (5) 

 

where 𝒙 = [𝑥1  ⋯ 𝑥𝑛]𝑇, 𝒂𝑖 = [𝑎𝑖0 𝑎𝑖1  ⋯ 𝑎𝑖𝑛]. 

C. Granular Computing 

    Granular computing is an emerging information processing 

paradigm that transforms complex data into information 

granules at different solution levels. Information granules can 

be perceived as a collection of elements drawn together by their 

closeness (resemblance, proximity, functionality, etc.) and 

articulated in terms of useful spatial, temporal, or functional 

relationships. Granular computing (GrC) represents, constructs, 

and processes information granules.  

    Information granules are formalized in many different ways. 

Depending on the problem, different formalisms to represent 

the information granules have been applied, such as interval 

sets, fuzzy sets, rough sets, and shadowed sets. The level of 

granularity determines the level of detail used to classify the 

data. Different types of knowledge can be captured or learned 

by representing data with information granules at different 

levels  [29]. Features and regularities in the data can emerge, 

while the detail is deliberately hidden [30]. For example, 

interesting cloud patterns representing a cyclone may be 

noticable in a low-resolution satellite image, while in a 

higher-resolution image, this large-scale atmospheric 

phenomenon might be missed. High resolution images are more 

useful for observing small-scale phenomenon, such as an 

interesting street pattern in Manhattan. 

    The most significant perspective we introduce with regard to 

GrC is that it is possible to obtain different levels of knowledge 

when dealing with data represented by information granules 

that have different levels of granularity. The higher the level of 

granularity, the more abstract the knowledge obtained. 

III. KNOWLEDGE TRANSFER IN TAKAGI-SUGENO FUZZY 

MODELS 

    This section consists of two subsections. The first subsection 

defines fuzzy domain adaptation, as distinct from the original 

definition of domain adaptation. The second subsection 

describes domain adaptation in fuzzy rule-based systems, 

analyzes transfer learning problems from the perspective of 

GrC, and proposes methods that address three cases that occur 

fuzzy domain adaptation.  

A. Definitions of Fuzzy Domain Adaptation 

    In the original definition of transfer learning, the source 

domain and the target domain are distinguished by the feature 

space, the probability distribution in the domain, and by the 

task, usually represented by a prediction function. In domain 

adaptation, which is a category of inductive transfer learning, 

the source domain and the target domain have the same feature 

space but a different distribution [1]. Most works in the 

computational intelligence area on domain adaptation are based 

on this definition and apply neural or Bayes networks as the 

basic learning model. 

    We use a Takagi-Sugeno fuzzy model as the basic model for 

our learning tasks. Since the characteristics of this fuzzy 

rule-based model are not the same as a neural or Bayesian 

networks, domain adaptation must be redefined for fuzzy 

systems as follows: 

Definition 5 (Fuzzy Domain Adaptation): In a Takagi-Sugeno 

fuzzy model, a source domain and a target domain are 

represented as: 

Source domain:     𝐷𝑠 = {𝐹𝑠 = (𝐹1, ⋯ , 𝐹𝑛), 𝐺𝑠(𝒙) =

(𝐺𝑠1(𝒙),⋯ , 𝐺𝑠𝑐(𝒙)), 𝐿𝑠 = {𝐿𝑠1, ⋯ , 𝐿𝑠𝑐}} 
Target domain:     𝐷𝑡 = {𝐹𝑡 = (𝐹1, ⋯ , 𝐹𝑛), 𝐺𝑡(𝒙) =

(𝐺𝑡1(𝒙),⋯ , 𝐺𝑡𝑐(𝒙)), 𝐿𝑡 = {𝐿𝑡1, ⋯ , 𝐿𝑡𝑐}} 
where 𝐹𝑠  and 𝐹𝑡  are the feature spaces in two domains. 

𝐺𝑠1, ⋯ , 𝐺𝑠𝑐  and 𝐺𝑡1, ⋯ , 𝐺𝑡𝑐  are the constructed fuzzy sets in 

two domains, and 𝐺𝑠1(𝒙),⋯ , 𝐺𝑠𝑐(𝒙)  and 𝐺𝑡1(𝒙),⋯ , 𝐺𝑡𝑐(𝒙) 

form the membership functions, which determine the condition 

parts of the fuzzy rules. 𝑙𝑠 and 𝑙𝑡 are the linear functions that 

govern the conclusion parts of the fuzzy rules. 𝐹𝑠 = 𝐹𝑡 , 

𝐺𝑠(𝒙) ≠ 𝐺𝑡(𝒙), and/or 𝐿𝑠 ≠ 𝐿𝑡 .  

    In fuzzy domain adaptation, the feature spaces in the two 

domains are the same, 𝐹𝑠 = 𝐹𝑡, but either the fuzzy sets or the 

linear functions or both are different across the two domains, 

giving 𝐺𝑠(𝒙) ≠ 𝐺𝑡(𝒙), and/or 𝐿𝑠 ≠ 𝐿𝑡. In general, we consider 

that 𝐺𝑠(𝒙) = 𝐺𝑡(𝒙) means 𝐺𝑠𝑖(𝒙) =  𝐺𝑡𝑖(𝒙) , 𝑖 = 1,⋯ , 𝑐 , and 

𝐺𝑠𝑖(𝒙) ≠ 𝐺𝑡𝑖(𝒙)  means 𝐺𝑠𝑖(𝒙) ≠ 𝐺𝑡𝑖(𝒙) , 𝑖 = 1,⋯ , 𝑐 . 

Similarly, 𝐿𝑠 = 𝐿𝑡  indicates 𝐿𝑠𝑖 = 𝐿𝑡𝑖 , 𝑖 = 1,⋯ , 𝑐 , and 𝐿𝑠 ≠
𝐿𝑡 indicates 𝐿𝑠𝑖 ≠ 𝐿𝑡𝑖, 𝑖 = 1,⋯ , 𝑐. 

B. Knowledge Transfer Learning in Granular Fuzzy Models 

    According to the fuzzy domain adaptation model defined 

above, the discrepancies between the source domain and the 

target domain can be summarized according to one of three 
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cases: having different conditions, different conclusions, or 

both. To emphasize the difference, the source domain’s model 

is fixed, and the target domain’s model is varied according to 

these three cases. 

Suppose fuzzy model 𝑀 in the source domain, described in 

the form of the fuzzy rules, is:  

    Model 𝑀: 

if 𝒙 is 𝐴𝑖(𝒙, 𝒗𝑖), then 𝑦 is 𝐿𝑖(𝒙, 𝒂𝑖)              𝑖 = 1,… , 𝑐 (6) 

 

    The fuzzy models in the target domain that correspond to the 

three cases in fuzzy domain adaptation, described in the form of 

the fuzzy rules, are: 

Model 𝑀̃1: 

if 𝒙′ is 𝐴𝑖(𝒙
′, 𝒗𝑖

′), then 𝑦′ is 𝐿𝑖(𝒙
′, 𝒂𝑖)          𝑖 = 1,… , 𝑐 (7) 

 

Model 𝑀̃2: 

if 𝒙′ is 𝐴𝑖(𝒙
′, 𝒗𝑖), then 𝑦′ is 𝐿𝑖(𝒙

′, 𝒂𝑖
′)          𝑖 = 1,… , 𝑐 (8) 

 

Model 𝑀̃3: 

if 𝒙′ is 𝐴𝑖(𝒙
′, 𝒗𝑖

′), then 𝑦′ is 𝐿𝑖(𝒙
′, 𝒂𝑖

′)           𝑖 = 1,… , 𝑐 (9) 

 

In the first case, comparing models 𝑀 and 𝑀̃1, the conditions 

of the fuzzy rules in the two domains are different, but the 

conclusions are the same. In the second case, comparing 

models 𝑀 and 𝑀̃2 , the conditions of the fuzzy rules are the 

same, but the conclusions are totally different. In the third case, 

comparing models 𝑀 and 𝑀̃3, the conditions and conclusions 

of the fuzzy rules in both the source and target domains are 

different. 

    There are now massive amounts of labeled data in the source 

domain and a well-performing model 𝑀 can be built. In the 

target domain, there is a large amount of unlabeled data and 

little labeled data, so establishing a prediction model is 

impossible. Because the fuzzy rules in the two domains are 

different, the model for the source domain 𝑀 is not suited to 

regression tasks in the target domain.  

    Next, domain adaptation problems are analyzed from the 

perspective of GrC. The knowledge contained in both the 

source and target domains can be treated as information 

granules. Since the information granules in each domain have 

different levels of granularity, a model based solely on 

knowledge from the source domain could not directly solve 

tasks in the target domain. For example, RAM is an important 

index for predicting the price of a computer. Thirty years ago, 

computers typically had 256kb of RAM, whereas now 8G is 

fairly standard. These two values, 256kb and 8G, can both be 

treated as information granules, but with different granularity 

levels as their unit of measurement are different. Therefore, the 

knowledge gleaned from data based on 256kb is not suitable for 

tasks relevant to the 8G information. 

    The higher the granularity level in GrC, the more abstract the 

knowledge extracted. Based on the existing knowledge 

(information granules) in the source domain, our idea is to 

extract and construct information granules at a higher level of 

granularity so that knowledge can be appropriately shared 

between the two domains. However, the knowledge contained 

in the new information granules cannot be directly used to solve 

tasks in the target domain since the required level of granularity 

is different. An additional procedure is needed to transform the 

new information granules to a lower level, so they can be 

applied to help solve the target tasks. The essence of this 

process is shown in Fig. 1.  

 
Fig. 1.  Knowledge transfer from a GrC perspective 

 

    The process has two steps. A granular model is built by 

transforming the information granules from a lower level to a 

higher level, and the granularity level of the new granules is 

reduced to suit the target domain. 

    Continuing the example of the computer’s internal storage, 

our aim is to use a more abstract representation to describe a 

computer’s RAM 30 years ago. For instance “large capacity” 

instead of a numerical value: 256kb. We can still say a 

computer of today has “large capacity” if its RAM meets or 

exceeds 8G. In this example, “large capacity” is treated as an 

information granule with a higher granularity level that builds a 

bridge to connect two granules of lower level. 

Instead of conducting the two steps in Fig. 1 separately, we 

implement them simultaneously. Because the results of the first 

step significantly impact the performance of the following 

procedure, merging the two steps benefits the method’s 

execution. A nonlinear space transformation is used to achieve 

these two steps, and an optimization process makes the 

resulting model more compatible with the tasks in the target 

domain. 

    Different strategies are applied in the three domain 

adaptation cases to implement the above process. Where the 

conditions of the fuzzy rules in two domains are different, the 

conditions are changed using a space transformation so that the 

transformed fuzzy rules approximate the expected model in the 

target domain. Where the conclusions of the fuzzy rules are 

different, the conclusions are changed using mapping to ensure 

the newly constructed model is as close as possible to the 

expected target model. Where both the conditions and the 

conclusions are different, a method that modifies both the 

conditions and conclusions is used so that the transformed 

fuzzy rules approximate the expected fuzzy rules and are more 

compatible with the target domain.  

    Since the conditions of fuzzy rules are governed by the input 

data, the method that changes the conditions can be regarded as 

transforming the input space. The conclusions determine the 

output of the fuzzy rules, so this method transforms the output 

space. Similarly, the last method transforms both the input and 

output spaces. 
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    A simple example with one-dimensional input data is shown 

in Fig. 2 to illustrate space transformation in our prosed model. 

 
Fig. 2.  An example of conditions of fuzzy rules under space transformation 

 

The left section of Fig. 2 shows the membership functions of 

the fuzzy sets constructed with FCM. Using the space 

transformation Φ, the input variable 𝒙 becomes Φ(𝒙). More 

importantly, the membership functions in the new space have 

been changed, as shown on the right. 

IV. THE THREE GRFDA METHODS 

This section describes the specific procedures of the 

proposed GFRDA methods, followed by the performance index 

used to evaluate the constructed models. 

A. The Three GRFDA Methods 

In this paper, the assumption is that there is a mass of labeled 

data in the source domain, and only a few labeled data and 

many unlabeled data in the target domain. Suppose the dataset 

in the source domain is 𝑺 = {(𝒙1, 𝑦1),⋯ , (𝒙𝑁 , 𝑦𝑁)}, and the 

dataset in the target domain is 𝑯 = {𝑯𝐿 , 𝑯𝑈} =

{(𝒙1
′ , 𝑦1

′),⋯ , (𝒙
𝑁𝑡

′
′ , 𝑦

𝑁𝑡
′

′ ) , 𝒙
𝑁𝑡

′+1
′ , ⋯ , 𝒙𝑁′

′ }, where the data in 𝑯𝐿  

has labels (called estimated values in regression problems), and 

data in  𝑯𝑈 has no labels. The number of data in 𝑺 is 𝑁, the 

total number of data in 𝑯 is 𝑁′, the number of data in 𝑯𝐿  is 𝑁𝑡
′, 

the number of data in 𝑯𝑈 is 𝑁′ − 𝑁𝑡
′, and 𝑁𝑡

′ satisfies 𝑁𝑡
′ ≪ 𝑁 

and 𝑁𝑡
′ ≪ 𝑁′. 

In the proposed GFRDA methods, the process of transferring 

knowledge from the source domain to the target domain has 

two steps. First a Takagi-Sugeno fuzzy model based on source 

data is constructed; second, a new fuzzy model for the target 

domain is built by modifying the input and/or output space of 

the existing model (fuzzy rules). The first step is the same for 

all three methods, while the second step differs depending on 

the method. This process is shown in Fig. 3. 

 
Fig. 3.  The granular fuzzy domain adaptation process 

The procedure for Step 1, building a fuzzy model for the 

source domain, follows. 

 

Step 1: Construct a Takagi-Sugeno fuzzy model 𝑀 based on 

source data. 

    A Takagi-Sugeno fuzzy model 𝑀 is constructed using source 

data 𝑺.  

    Model 𝑀 

if 𝒙𝑘 is 𝐴𝑖(𝒙𝑘, 𝒗𝑖), then 𝑦𝑘  is 𝐿𝑖(𝒙𝑘 , 𝒂𝑖)      𝑖 = 1,… , 𝑐 (10) 

 

The main blocks of fuzzy rules are the conditions and 

conclusions, which are dominated by prototypes of the data and 

linear functions, respectively. Model 𝑀  is therefore 

constructed by calculating the data prototypes and the linear 

functions through the procedures described in Section II.A. 

Thus, we have the prototypes 𝒗1, ⋯ , 𝒗𝒄 , and the linear 

functions 𝐿1(∙, 𝒂1),⋯ , 𝐿𝑐(∙, 𝒂𝑐). 

    We now take some data from the dataset 𝑯 in the target 

domain; however, model 𝑀 does not perform well on dataset 

𝑯, since these data follow a different fuzzy model and  different 

fuzzy rules to those of model 𝑀. The number of labelled data in 

dataset 𝑯𝐿  is not sufficiently large to build a good model for the 

target domain, so the proposed methods apply knowledge from 

the source domain to help the target domain build a new model. 

    In the second step, the input and/or output space of model 𝑀 

obtained in Step 1 is modified through mappings using the 

labeled target data 𝑯𝐿  to build a new fuzzy model for the target 

domain. 

 

Step 2: Modify the existing fuzzy rules to build a new fuzzy 

regression model for the target domain. 

The three different domain adaptation cases, shown in (7) – 

(9), are considered, and the steps for the corresponding GFRDA 

method are explained below. 

 

Step 2a) Method 1: change the input space 

    To handle the cases where the fuzzy rules’ conditions in the 

source and target domains are not identical, we apply the 

method proposed in our previous paper [27]. The target 

domain’s ideal model is described in (7). Since the way of 

constructing the space transformation is the same in these three 

methods, we detail it in this method and not repeat in the other 

two methods. 

    Since there is insufficient labeled data to train the fuzzy 

model 𝑀̃1, the learned knowledge (fuzzy rules) in the existing 

model 𝑀 is used to help the target domain construct a new 

fuzzy model. In this method, the input space is changed by 

optimizing a continuous mapping for each input variable. 

Through mapping Φ, the input space is transformed to Φ(𝒙′), 

and the new fuzzy model 𝑀1
′  for the target domain is 

constructed using the fuzzy rules from model 𝑀. This process 

and resulting architecture are shown in Fig. 4. 
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Fig. 4.  Method 1: changing the input space 

 

Model 𝑀1
′ , described in the form of fuzzy rules, is:  

 

if 𝒙′ is 𝐴𝑖(Φ(𝒙′), Φ(𝒗𝑖)), then 𝑔′ is 𝐿𝑖(Φ(𝒙′), 𝒂𝑖) 

𝑖 = 1,… , 𝑐 (11) 

 

    Because mapping Φ is a transformation of the input space, 

the changes are reflected in the input data and the prototypes 

(the centers of the clusters) with the forms  Φ(𝒙′) and Φ(𝒗𝑖). 

    Therefore the output of model 𝑀1
′  is:  

 

𝑔′ =  ∑ 𝐴𝑖(Φ(𝒙′), Φ(𝒗𝑖))
𝑐
𝑖=1  𝐿𝑖(Φ(𝒙′), 𝒂𝑖) (12) 

 

Our aim is to find a Φ such that 𝑀1
′ ≈ 𝑀̃1, i.e.,  

 

∑ 𝑔𝑘
′𝑁𝑡

′

𝑘=1  ≈  ∑ 𝑦𝑘
′𝑁𝑡

′

𝑘=1  (13) 

 

i.e.  

 

∑ ∑ 𝐴𝑖(Φ(𝒙′), Φ(𝒗𝑖))
𝑐
𝑖=1

𝑁𝑡
′

𝑘=1 𝐿𝑖(Φ(𝒙′), 𝒂𝑖)  ≈  ∑ 𝑦𝑘
′𝑁𝑡

′

𝑘=1  (14) 

 

    The parameters of Φ  are optimized by minimizing the 

objective function as follows: 

 

𝑄1
′ = √

1

𝑁𝑡
′  ∑ (∑ 𝐴𝑖(Φ(𝒙′),Φ(𝒗𝑖)𝐿𝑖(Φ(𝒙′), 𝒂𝑖) −𝑐

𝑖=1 𝑦𝑘
′ )2𝑁𝑡

′

𝑘=1
 +  

𝜆

2
 𝑤𝑇𝑤 (15) 

 

    The first term in (15) is the approximation error that aims to 

minimize the gap between the output of model 𝑀1
′  and the 

target data’s real output. The second term introduces a 

structural risk term into the objective function. The parameter 𝜆 

indicates the tradeoff between the quality of an approximation 

and the complexity of the approximation function; 𝑤  is the 

vector of all the parameters optimized. 

    The mapping is the key element in each of our GFRDA 

methods. We use nonlinear continuous functions, composed of 

sigmoid functions, to construct the mappings of Φ . Fig. 5 

shows the 𝑗th input variable of data 𝒙𝑘
′  as an example of the 

structure of the mapping for each input variable. 

 
Fig. 5.  Architecture of nonlinear mapping 

 

The mapping is composed of 𝑃 nodes in the hidden layer and 

a single node at the output layer that constructs the network. 

The two parametric sigmoid functions are applied to the hidden 

nodes, where the 𝑝th sigmoid function for the 𝑗th input variable 

of 𝒙𝑘
′  is: 

 

𝑧𝑘𝑗𝑝 = 
1

1+𝑒
−𝛼𝑗𝑝(𝑥𝑘𝑗

′ −𝛽𝑗𝑝)
 (16) 

 

𝑗 = 1,… , 𝑛, 𝑝 = 1,… , 𝑃, 𝛼𝑗𝑝 > 0. 

Therefore, the transformation of input variable 𝑥𝑘𝑗
′  under 

mapping Φ𝑗 is: 

 

Φ𝑗(𝑥𝑘𝑗
′ ) =  ∑ 𝑤𝑗𝑝 ∗ 𝑧𝑘𝑗𝑝

𝑃
𝑝=1  (17) 

 

where 𝑤𝑗𝑝 represents the weight of the 𝑝th sigmoid function of 

the output variable, and satisfies ∑ 𝑤𝑗𝑝
𝑃
𝑝=1 = max {𝑥1𝑗

′ ,∙∙∙

, 𝑥𝑁′𝑗
′ } . 𝑧𝑘𝑗𝑝 is calculated through Eq. (16). 

Φ = [Φ1 Φ2  ⋯ Φ𝑛], where Φ𝑗 is constructed following the 

procedure described above. Thus the input data 𝒙𝑘
′  becomes 

Φ(𝒙𝑘
′ ): 

 

Φ(𝒙𝑘
′ ) =  [

Φ1(𝑥𝑘1
′ )

Φ2(𝑥𝑘2
′ )

…
Φ𝑛(𝑥𝑘𝑛

′ )

] =  

[
 
 
 
 
 ∑ 𝑤1𝑝  

1

1+𝑒
−𝛼1𝑝(𝑥𝑘1

′ −𝛽1𝑝)

𝑃
𝑝=1

∑ 𝑤2𝑝  
1

1+𝑒
−𝛼2𝑝(𝑥𝑘2

′ −𝛽2𝑝)

𝑃
𝑝=1

∙∙∙

∑ 𝑤𝑛𝑝  
1

1+𝑒
−𝛼𝑛𝑝(𝑥𝑘𝑛

′ −𝛽𝑛𝑝)

𝑃
𝑝=1 ]

 
 
 
 
 

 (18) 

 

Taking advantage of the nonlinear mappings, 

transformations are made to the input space so that the new 

input variables become more compatible with the data in the 

target domain. The parameters of Φ are derived through an 

optimization process by minimizing (17) using the labeled 

dataset 𝑯𝐿 . The dataset 𝑯𝑈  is used to test the performance of 

the model after its construction. 

 

Step 2b) Method 2: change the output space 

    This method handles cases where the conclusions of the 

fuzzy rules in the two domains are different. The target 

domain’s ideal model is described in (8). 

Again, there are sufficient data to train the fuzzy model 𝑀̃2 
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for the target domain. Since the conclusions are different to 

those in the source domain, we introduce a method to modify 

the output space by optimizing a continuous mapping for each 

output. The output space is modified by mapping Ψ, and a new 

fuzzy model 𝑀2
′  for the target domain is constructed based on 

the fuzzy rules in model 𝑀 . The process and resulting 

architecture is shown in Fig. 6. 

 
Fig. 6.  Method 2: changing the output space 

 

Model 𝑀2
′ , described in the form of fuzzy rules, is: 

 

if 𝒙′ is 𝐴𝑖(𝒙
′, 𝒗𝑖), , then 𝑔′ is Ψ𝑖(𝐿𝑖(𝒙

′, 𝒂𝑖))     𝑖 = 1,… , 𝑐 (19) 

 

Therefore, the output of model 𝑀2
′  is: 

 

𝑔′ =  ∑ 𝐴𝑖(𝒙
′, 𝒗𝑖)

𝑐
𝑖=1  Ψ𝑖(𝐿𝑖(𝒙

′, 𝒂𝑖)) (20) 

 

Our aim is to find a Ψ such that 𝑀2
′ ≈  𝑀̃2, i.e.,  

 

∑ 𝑔𝑘
′𝑁𝑡

′

𝑘=1  ≈  ∑ 𝑦𝑘
′𝑁𝑡

′

𝑘=1                                                           (21) 

 

i.e. 

 

∑ ∑ 𝐴𝑖(𝒙
′, 𝒗𝑖)

𝑐
𝑖=1

𝑁𝑡
′

𝑘=1 Ψ𝑖(𝐿𝑖(𝒙
′, 𝒂𝑖))  ≈  ∑ 𝑦𝑘

′𝑁𝑡
′

𝑘=1  (22) 

 

The parameters of Ψ  are optimized by minimizing the 

objective function as follows:  

 

𝑄2
′ = √

1

𝑁𝑡
′  ∑ (∑ 𝐴𝑖(𝒙

′, 𝒗𝑖)Ψ𝑖(𝐿𝑖(𝒙
′, 𝒂𝑖)) −𝑐

𝑖=1 𝑦𝑘
′ )2𝑁𝑡

′

𝑘=1
 + 

𝜆

2
 𝑤𝑇𝑤 (23) 

 

    The construction of mapping Ψ is similar to the construction 

of mapping Φ  in Method 1. Ψ = [Ψ1 Ψ2  ⋯ Ψ𝑐] , and the 

parameters are obtained by minimizing (23) using the labeled 

dataset 𝑯𝐿 ; 𝑤  represents the vector of all the parameters 

optimized. 

 

Step 2c) Method 3: changing both the input and output spaces 

    In this case, both the conditions and the conclusions of the 

fuzzy rules in the two domains are different. The target 

domain’s ideal model is described in (9). 

This method is a combination of the first two and uses the 

mappings to modify the input and output spaces. The input 

space is transformed to Φ(𝒙′) by mapping Φ, the output space 

is transformed by mapping Ψ, and the new fuzzy model 𝑀3
′  for 

the target domain is constructed based on the fuzzy rules in 

model 𝑀. The process and resulting architecture is shown in 

Fig. 7. 

 
Fig. 7.  Method 3: changing both the input and output spaces 

 

Model 𝑀3
′ , described in the form of fuzzy rules, is: 

 

if 𝒙′ is 𝐴𝑖(Φ(𝒙′), Φ(𝒗𝑖)), then 𝑔′ is Ψ𝑖(𝐿𝑖(𝒙
′, 𝒂𝑖)  

𝑖 = 1,… , 𝑐 (24) 

 

Therefore, the output of model 𝑀3
′  is: 

 

𝑔′ =  ∑ 𝐴𝑖(Φ(𝒙′), Φ(𝒗𝑖))
𝑐
𝑖=1  Ψ𝑖(𝐿𝑖(Φ(𝒙′), 𝒂𝑖)) (25) 

 

Our aim is to find a Φ and Ψ such that 𝑀3
′ ≈ 𝑀̃3, i.e., 

 

∑ 𝑔𝑘
′𝑁𝑡

′

𝑘=1  ≈  ∑ 𝑦𝑘
′𝑁𝑡

′

𝑘=1  (26) 

 

i.e. 

 

∑ ∑ 𝐴𝑖(Φ(𝒙′), Φ(𝒗𝑖))
𝑐
𝑖=1  Ψ𝑖(𝐿𝑖(Φ(𝒙′), 𝒂𝑖))

𝑁𝑡
′

𝑘=1 ≈  ∑ 𝑦𝑘
′𝑁𝑡

′

𝑘=1 (27) 

 

The parameters of Φ and Ψ are optimized by minimizing the 

objective function as follows:  

 

𝑄3
′ = √

1

𝑁𝑡
′  ∑ (∑ 𝐴𝑖(Φ(𝒙′),Φ(𝒗𝑖)Ψ(𝐿𝑖(Φ(𝒙′), 𝒂𝑖)) −𝑐

𝑖=1 𝑦𝑘
′ )2𝑁𝑡

′

𝑘=1
 +  

𝜆

2
 𝑤𝑇𝑤(28) 

 

The construction of mappings Φ and Ψ is exactly the same 

as that in Methods 1 and 2, and the parameters of Φ and Ψ are 

optimized by minimizing (28) using the labeled dataset 𝑯𝐿 . 

Similarly, the objective function includes two terms: the 

approximation error and the structural risk. 

B. Performance Index 

Another model is also trained using insufficient data in the 

target domain. Although there is only a small amount of labeled 

data in the target domain, they can still be used to train a model. 

Proving that a model does not perform as well when trained 

with less data in the target domain supports our assumption. As 

a result, three models are constructed: the first is built using the 

source data for the source domain (model 𝑀); the second is 

built using the insufficient target data for the target domain 

(model 𝑀̅); and the third is built using the proposed granular 

fuzzy domain adaptation methods (models 𝑀1
′ , 𝑀2

′ , 𝑀3
′ , 

corresponding to three cases). 

The datasets in the source domain and the target domain are 

𝑺  and 𝑯 , as described in the above subsection. When 

constructing the above models, we used a five-fold cross 

validation procedure, which is commonly used to validate 

models in machine learning. Dataset 𝑺 is split into a training set 

𝑺1(80%) and a testing set 𝑺2(20%). The number of data in 𝑺, 𝑺1 

and 𝑺2 are 𝑁, 𝑁1, and 𝑁2, respectively. Similarly, the labeled 
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data in 𝑯𝐿  are split into a training set 𝑯𝐿1 (80%) with 𝑁𝑡1
′  data 

and a testing set 𝑯𝐿2 (20%) with 𝑁𝑡2
′  data. 

Symbolic representations of the models’ performance 

follow. 

Model’s performance in the source domain is represented by 

𝑄, which is the root mean square error of the expected value 

and the output from model 𝑀. 

 

𝑄 =  √
1

𝑁2
 ∑ (𝑑𝑘 − 𝑦𝑘)

2𝑁2
𝑘=1  (29) 

 

where 𝑑𝑘 is the output of model 𝑀 when its input is 𝒙𝑘, 𝒙𝑘 ∈
𝑺2. 

For consistency, dataset 𝑯𝑈  is used to test the model’s 

performance in the target domain in the following discussion. 

The performance of model 𝑀 in the target domain is denoted 

by 𝑄1, which indicates the ability of the source domain’s model 

to address tasks in the target domain. 

 

𝑄1 = √
1

𝑁′−𝑁𝑡
′ ∑ (ℎ𝑘

′ − 𝑦𝑘
′ )2𝑁′

𝑘=𝑁𝑡
′+1

 (30) 

 

where ℎ𝑘
′  is the output of model 𝑀 when the input is 𝒙𝑘

′ , 𝒙𝑘
′ ∈

𝑯𝑈, and 𝑦𝑘
′  is the expected output to input 𝒙𝑘

′ . 

The insufficient labeled data in the target domain 𝑯𝐿  are 

used to train a model 𝑀̅ for the target domain using the same 

construction procedures as model 𝑀  for the source domain. 

The performance of model 𝑀̅ in the target domain is denoted as 

𝑄2:  

 

𝑄2 =  √
1

𝑁′−𝑁𝑡
′ ∑ (𝑠𝑘

′ − 𝑦𝑘
′ )2𝑁′

𝑘=𝑁𝑡
′+1

 (31) 

 

where 𝑠𝑘
′  is the output of model 𝑀̅ when its input is 𝒙𝑘

′ , 𝒙𝑘
′ ∈

𝑯𝑈, and 𝑦𝑘
′  is the expected output to input 𝒙𝑘

′ . 

The model 𝑀′(𝑀1
′ , 𝑀2

′ , 𝑀3
′), constructed using our GFRDA 

methods, is also tested on the target dataset 𝑯𝑈, and the result is 

denoted as 𝑄3: 

 

𝑄3 =  √
1

𝑁′−𝑁𝑡
′ ∑ (𝑡𝑘

′ − 𝑦𝑘
′ )2𝑁′

𝑘=𝑁𝑡
′+1

 (32) 

 

where 𝑡𝑘
′  is the output of model 𝑀′ when the input is 𝒙𝑘

′ , 𝒙𝑘
′ , ∈

𝑯𝑈, 𝑦𝑘
′  is the expected output to input 𝒙𝑘

′ . 

When constructing the model 𝑀′  for the target domain, a 

differential evolution (DE) optimization algorithm is used to 

optimize the parameters of the mappings and build the new 

GFRDA models for the target domain. DE is a computational 

method that determines an optimal solution by iteratively 

navigating a population of solutions, which minimizes a certain 

predetermined objective function. Such methods are commonly 

known as metaheuristics, as they make few or no assumptions 

about the problem being optimized and can search very large 

spaces of candidate solutions [31, 32]. Particle swarm 

optimization (PSO) is another famous evolutionary algorithm. 

Based on the experimental results from our previous paper [27], 

the algorithmic stability of DE is superior to PSO, so DE was 

selected as the optimization algorithm for the models’ 

construction. In DE, there are two parameters that largely 

influence optimization performance: the differential weight 𝐹 

and the crossover probability 𝐶𝑅. The value range of 𝐹 is [0,2], 
and the value range of 𝐶𝑅  is [0,1] . In addition, due to the 

problem’s complexity, the same initialization strategy is used in 

all the experiments below: 200 candidate solutions are 

generated, and the maximum number of iterations is set to 200.  

The values of 𝑄1, 𝑄2 and 𝑄3 are compared in the following 

experiments. The desired outcome is that 𝑄3 should be smaller 

than both 𝑄1  and 𝑄2 . 𝑄3 < 𝑄1  demonstrates that the 

performance of the new constructed model 𝑀′  on the target 

domain is superior to the existing model 𝑀 , and 𝑄3 < 𝑄2 

shows that the model 𝑀̅ trained using a few labeled data has 

poor performance compared to model 𝑀′.  

V. EXPERIMENTS ON SYNTHETIC DATA 

Both synthetic and real-world datasets were used to evaluate 

the proposed GFRDA methods and their algorithms. These 

datasets are described in this and the following section.  

    This section consists of three experiments to discuss and 

analyze the effectiveness of the proposed GFRDA methods. 

The first experiment validates the presented methods and 

analyzes the impact of an important parameter in the 

performance of the constructed models – the trade-off 

parameter 𝜆. The second experiment explores the effect on the 

results when the number of the labeled target data changes. The 

third experiment compares the outcomes of the three methods 

when dealing with different cases in domain adaptation 

problems. 

The datasets used in these three experiments contain some 

repetition, so all the datasets are described first, followed by the 

details of their application.  

    The datasets are generated by the input data and the linear 

functions. As described in Section II, the conditions of the 

fuzzy rules are governed by the centers of the clusters, which 

decide the membership functions of the constructed fuzzy sets. 

Since FCM is used to build the clusters and the fuzzy sets, the 

cluster centers are significantly affected by the distribution of 

the input data. Therefore, to obtain the source and target data 

with different cluster centers, the input data in the source and 

target domains should be generated with different distributions.  

Two groups of input data with different distributions are 

shown in Table I, and similarly two groups of linear functions 

with disparate parameters are displayed in Table II. 

Table I contains two groups of input data, input data 1 and 

input data 2; the method used to generate the data was the same 

for both groups. To obtain more than one fuzzy rule and 

differentiate between the cluster centers, we generated three 

sub-datasets by varying the distribution and combining them to 

construct the whole dataset. The first sub-dataset was generated 

using normalized distribution 𝑁(𝝁1, 𝝈1), and the other two 

sub-datasets were built in the same way. 
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Table II, lists the two groups of linear functions with 

different parameters. There are three linear functions in each 

group that correspond to the input data in Table I. 
 

TABLE I 
THE DISTRIBUTIONS OF INPUT DATA 1 AND DATA 2 

Input data 1 Input data 2 

Mean values Covariance 

matrixes 

Mean 

 values 

Covariance 

matrixes 

𝝁1 = [1 1] 𝝈1

= [0.52 0
0 0.52] 

𝝁1
′ = [2.5 1.5]  𝝈1

′

= [0.42 0.1
0.1 0.42] 

𝝁2 = [2 1] 𝝈2

= [0.52 0
0 0.52] 

𝝁2
′ = [2 1.5]  𝝈2

′

= [0.52 0.1
0.1 0.52] 

𝝁2 = [1.5 2] 𝝈3

= [0.52 0
0 0.52] 

𝝁3
′ = [2.5 2]  𝝈3

′

= [0.52 0.1
0.1 0.52] 

 
TABLE II 

COEFFICIENTS OF LINEAR FUNCTIONS IN THE TWO DIFFERENT GROUPS 

Linear functions 1 Linear functions 2 

𝐿1(𝑎1) 𝑎1 = [1 1 1] 𝐿1(𝑎1
′ ) 𝑎1

′ = [2 0.5 1.5] 

𝐿2(𝑎2) 𝑎2 = [2 2 1] 𝐿2(𝑎2
′ ) 𝑎2

′ = [1 2 0.5] 

𝐿3(𝑎3) 𝑎3 = [−1 1 3] 𝐿3(𝑎3
′ ) 𝑎3

′ = [−1.5 2 4.5] 

 

Various combinations of the input data in Table I and the 

linear functions in Table II result in different datasets. Thus, 

three datasets were constructed, as shown in Table III, to 

represent the three different cases in domain adaptation 

described in Section III. 
TABLE III 

THREE DATASETS THAT REPRESENT THREE DIFFERENT CASES IN DOMAIN 

ADAPTATION 

 Source domain  Target domain 

Datasets 1 Input data 1+ 

 Linear functions 1 

Input data 2 + 

 Linear functions 1 

Datasets 2 Input data 1+ 

 Linear functions 1 

Input data 1 + 

 Linear functions 2 

Datasets 3 Input data 1 + 

 Linear functions 1 

Input data 2 + 

 Linear functions 2 

 

    From Table III, we can see that the dataset in the source 

domain is fixed, and the varying dataset in the target domains 

lead to three different cases. Constructing the target data using 

input data 2 and linear function 1 reflects cases where the input 

data differs between the two domains. Using input data 1 and 

linear function 2, reflects cases where the conclusion of the 

fuzzy rules are not the same, and using input data 2 and linear 

function 2 reflects differences in both the conditions and 

conclusions.  

A. Verifying the Proposed GFRDA Methods 

    The purpose of this subsection is to verify the ability of the 

proposed methods to solve three cases in domain adaptation, 

and further explore the impact of the parameter λ  on the 

performance of the models. 

Three experiments were conducted to test the methods’ 

performance in the different domain adaption cases using the 

three datasets in Table III.  Additionally, comparing the 

models’ performance with varying parameter 𝜆  was used to 

determine the optimal 𝜆. There are 1500 labeled data in the 

source domain, and 15 labeled and 585 unlabeled data in the 

target domain. 

The results and analysis of these three experiments are 

discussed in detail below. 

a) Method 1: change the input space 

    This experiment changed the input space using Dataset 1 

from Table III to deal with domain adaptation cases where the 

fuzzy rule conditions differ. Moreover, comparing model 

performance with different values for parameter 𝜆 was used to 

determine the optimal 𝜆. The results are shown in Table IV.  

 
TABLE IV 

THE EXPERIMENTAL RESULTS OF THE FIRST METHOD BY VARYING 𝜆 

 Q 𝑄1 𝑄2 𝑄3 

0 0.08 ± 0.01 1.88 ± 0.01 77730.09 ± 

163972.14 

1.13 ± 0.22 

0.1 1.06 ± 0.07 

0.2 1.04 ± 0.06 

0.3 1.04 ± 0.05 

0.4 1.04 ± 0.04 

0.5 1.05 ± 0.04 

0.6 1.06 ± 0.03 

1 1.15 ± 0.04 

2 3.41 ± 0.38 

 

Because five-fold cross validation was used, all the values 

for 𝑄 , 𝑄1 , 𝑄2  and 𝑄3  are written in the form of “mean ± 

standard deviation”. Since changing 𝜆  only impacts the 

construction of model 𝑀1
′ , the values of 𝑄, 𝑄1 and 𝑄2 that are 

related to model 𝑀  and 𝑀̅  are constant under different 𝜆 

values. From Table IV we can see that the mean value of 𝑄1 is 

1.88, which indicates that the model of the source domain does 

not fit the target data very well. The number of labeled target 

data is small, resulting in a very large mean value of 77730.09 

and a large standard deviation of 163972.14 for 𝑄2  , to 

represent model 𝑀′ ’s performance. However, when 𝜆  is not 

bigger than 1, the mean values for 𝑄3 are smaller than those of 

𝑄1 and 𝑄2. This indicates that the model built using our method 

is superior to the source domain’s model and the model 

constructed using the target data. When 𝜆 is greater than 0.4, 

the values of 𝑄3 appear to have a growth trend and is lowest 

when 𝜆 is equal to 0.4.  

b) Method 2: change the output space 

𝜆 
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Dataset 2 was used to simulate cases where the conclusions 

of the fuzzy rules differ by changing the output space. The 

results are shown in Table V. 

 
TABLE V 

THE EXPERIMENTAL RESULTS OF THE SECOND METHOD BY VARYING 𝜆 

 Q 𝑄1 𝑄2 𝑄3 

0 0.50 ± 0.02 3.37± 0.00 62496.40± 

122924.89 

1.84 ± 0.28 

0.01 1.85 ± 0.24 

0.02 1.89 ± 0.26 

0.05 2.06 ± 0.30 

0.1 3.06 ± 0.29 

1 8.90 ± 0.08 

 

    Compared to the last experiment, the values of 𝑄3  are 

sensitive to changes in 𝜆, and tends to increase with an increase 

in 𝜆. When 𝜆 is smaller than 0.1, the mean values of 𝑄3 are no 

greater than the mean values of 𝑄1 and 𝑄2, which shows the 

superiority of our proposed method. Model 𝑀1
′  shows the best 

performance when 𝜆 is set to 0. 

c) Method 3: change the input and output spaces 

    Dataset 3 was used to test cases where both the conditions 

and conclusions of the fuzzy rules differ; therefore, both the 

input and output spaces were transformed. The results are 

shown in Table VI. 

 
TABLE VI 

THE EXPERIMENTAL RESULTS OF THE THIRD METHOD BY VARYING 𝜆 

 Q 𝑄1 𝑄2 𝑄3   

0 0.08± 0.01 3.28± 0.02 62496.40± 

122924.89 

2.32± 0.37 

0.01 2.85± 0.10 

0.02 2.92± 0.29 

0.05 3.448± 0.30 

0.1 4.05± 0.19 

1 9.00± 0.07 

 

From Table VI, we can see that similar to the last experiment, 

a tiny change in 𝜆 results in and increase in 𝑄3. When 𝜆 is not 

smaller than 0.05, the mean value of 𝑄3 is greater than that of 

𝑄1, which means the model using the proposed method is not 

better than the source domain model. However, the proposed 

method works well when the value of 𝜆 is small. 

B. Exploring the Impact of the Number of Labeled Target 

Data 

    In the above experiments, the number of labeled target data 

was fixed at 15. Since the optimization of the models 

𝑀1
′ , 𝑀2

′ , and 𝑀3
′  is totally based on labeled target data, they play 

an important role in the ability of the constructed model to 

fulfill the target tasks.  

    This experiment was designed to analyze the performance of 

the constructed model with different numbers of labeled target 

data. The total number of data in the target domain is 1500, but 

the number of labeled data varies. 

Here, we only transform the input space, as an example and 

list the results in Table VII. 

 
TABLE VII 

THE VALUES OF 𝑄, 𝑄1, 𝑄2 AND 𝑄3 WITH DIFFERENT NUMBERS OF LABELED 

TARGET DATA 

𝑁𝑡
′ 𝑄 𝑄1 𝑄2 𝑄3 

10 0.08 

± 0.01 

1.88  

± 0.01 

507710.47  

± 940131.29 

1.07  

± 0.07 

15 1.88  

± 0.01 

77730.09  

± 163972.14 

1.04  

± 0.05 

20 1.89  

± 0.01 

17.23 

 ± 33.47 

1.04  

± 0.04 

25 1.88  

± 0.01 

0.85 

± 0.54 

1.01 

± 0.03 

30 1.89  

± 0.01 

0.76 

 ± 0.12 

1.02  

± 0.03 

 

    As 𝑄 represents the performance of the source model on the 

source data, changing the number of labeled target data  𝑁𝑡
′ has 

no impact; the value of 𝑄 is constant at different 𝑁𝑡
′. The values 

of 𝑄1 . which represents the performance of source model on 

unlabeled target data with number 𝑁′ − 𝑁𝑡
′, have tiny 

fluctuations, which indicates that changes in 𝑁𝑡
′ only slightly 

influence 𝑄1 . The mean value and standard deviation of 𝑄2 

decrease with a greater amount of labeled target data. This is 

because more training data is available in the target data, and 

model 𝑀̅  is able to achieve better generalization of the 

unlabeled target data. Even though few labeled target data are 

available, the values for 𝑄3 are smaller than that of 𝑄1 and  𝑄2, 

which indicates that our proposed method works well in this 

domain adaptation problem. When the number of labeled target 

data is beyond 25, the proposed method does not show 

superiority. However, given our central assumption that the 

labeled target data are insufficient to construct a good model, 

the results obtained are reasonable. 

C. Comparing the Performance of the Proposed Methods 

    Experiments 1 and 2 show that each of the proposed methods 

are effective solutions to their respective domain adaptation 

problems. However, we were also curious about each method’s 

ability to solve the other two cases and designed an experiment 

to compare the performance of all three methods in all three 

cases.  

    We must highlight that the purpose of this experiment is not 

to determine the best method for each case. First, the 

performance of these methods depends heavily on the datasets, 

so results from one dataset do not prove the validity of these 

methods in the given case. Second, we have already proven that 

each case is well-handled by its specifically designed method. 

𝜆 

𝜆 
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However, if the either of the other two methods are also 

effective, they can be treated as ‘assistant’ methods. 

The three methods are used to solve the three cases in domain 

adaptation problems, and the results are displayed in Table 

VIII. 
TABLE VIII 

COMPARISON OF THE THREE METHODS USED IN SELECTED ADAPTATION 

CASES 

 Case 1 Case 2 Case 3 

Q 0.08 ± 0.01 0.50 ± 0.02 0.08 ± 0.01 

Q1 1.88 ± 0.01 3.37 ± 0.00 3.28 ± 0.02 

Q2 

77730.09 ± 

163972.14 

62496.40 ± 

122924.89 

62496.40 ± 

122924.89 

Q3(method 1) 1.04 ± 0.05 4.00 ± 0.17 3.07 ± 0.14 

Q3(method 2) 1.01 ± 0.18 1.84 ± 0.28 1.85 ± 0.13 

Q3(method 3) 1.22 ± 0.32 1.88 ± 0.16 2.32 ± 0.37 

  

    From the results shown in Table VIII, we can see that all 

three methods perform well in the first case. In the second case, 

changing the output space or changing both the input and 

output spaces can also solve this domain adaptation problem. 

Similarly, all three methods are also valid for the third case, just 

not as well as the other two.  

    Based on the results, we conclude that the specific method 

designed for each case show superior performance; furthermore, 

the other methods can be used as alternatives. 

VI. EXPERIMENTS ON REAL-WORLD DATASETS 

    Three real-world datasets from the UCI Machine Learning 

Repository were used to validate the effectiveness of the 

proposed GFRDA methods. However, information about which 

case each datasets reflects is not readily available, so we use the 

three methods to solve this problem and discover which method 

was the most effective. 

    The “concrete compressive strength” dataset contains eight 

input features to predict the concrete compressive strength 

output feature. The dataset was revised in two ways to make it 

appropriate for use in a transfer learning problem. First, the 

dataset was split into a source domain and a target domain  

based on the input feature “age”: instances with an age smaller 

than 100 fell into the source domain, and the remaining 

instances were treated as data in the target domain. Second, the 

input features “blast furnace slag”, “fly ash”, and 

“superplasticizer” were perturbed with random numbers using 

the normal distributions 𝑁(0.1, 0.1)  in the source data and 

𝑁(5,1) for the target data. There are 900 labeled instances in 

the source domain, and 30 labeled and 80 unlabeled instances in 

the target domain. 

    The “housing dataset” aims to predict the “MEDV” using six 

input attributes. The data was normalized and split into two 

datasets using the attribute “TAX”, which represents the 

full-value property-tax rate per $10,000. Instances of “TAX” 

smaller than 0.5 were used to form the source dataset, and 

instances of “TAX” larger than 0.5 were used as the target 

dataset. The attributes “RM”, “AGE”, and “B” of the source 

data were perturbed by random numbers coming from 

𝑁(0.1, 0.1) , while those attributes in the target data were 

perturbed by normal random numbers using the distributions 

𝑁(7,1) , 𝑁(5,1)  and 𝑁(8,1) , respectively. There are 360 

labeled instances in the source domain and 130 instances in the 

target data with 15 labeled. 

    The “Istanbul stock exchange” dataset aims to predict the 

“MSCI emerging markets index” using the attributes “stock 

exchange returns” and “Istanbul stock exchange national 100 

index”. The data was normalized and split into two datasets. 

The first 300 instances were used to form the source domain, 

and the next 120 instances were chosen as the target domain. 

Further, the two attributes were perturbed with random 

numbers using the normal distributions 𝑁(0.1, 0.1)  in the 

source data and 𝑁(5,1) for the target data. 

    The last dataset concerns “air quality”. From the provided 

attributes, we selected two attributes, “temperature” and 

“relative humidity”, as the input data, and chose “absolute 

humidity” as the output. All the attributes were normalized, and 

the dataset was split into two domains based on “relative 

humidity”. The data with a “relative humidity” of greater than 

0.5 were chosen as the source domain, and the remaining data 

were used to form the target domain. Further, the two attributes 

in the source data were all perturbed by random numbers 

following a normal distribution 𝑁(0.1, 0.1) , and the two 

attributes in the target data were perturbed by the normal 

random numbers following 𝑁(7,1)  and 𝑁(5,1)  respectively. 

There are 3600 labeled instances in the source domain and 1200 

instances in the target data with 15 labeled. 

Five-fold cross validation was used for all experiments, and 

the results are shown in Table IX. 

 
TABLE IX 

EXPERIMENTAL RESULTS FROM THE REAL-WORLD DATASETS 

 Concrete 

compressive 

strength 

Housing Istanbul stock 

exchange 

Air quality 

Q 0.11±0.02 0.11±0.01 0.09±0.04 0.13 ± 0.02 

Q1 1.07±0.16 2.35±0.51 3.05±0.70 6.41 ± 0.35 

Q2 

6488.52 

±4938.04 

5.94±6.29 76627.04 

±170157.35 

7.27 ± 15.75 

Q3 

(method 1) 

0.18±0.06 0.60±0.79 0.12±0.00 0.15 ± 0.00 

Q3 

(method 2) 

0.15±0.01 0.18±0.06 0.13±0.00 0.15 ± 0.01 

Q3 

(method 3) 

0.91±1.57 0.19±0.10 0.15±0.01 0.15 ± 0.00 

 

    From the results, we can see that the mean values of 𝑄3 in all 

three methods are all smaller than the mean values for 𝑄1 and 

𝑄2 . This indicates that the models constructed using the 

proposed methods are better than both the existing source 

domain model and the model built using few labeled target 

data. The first and second methods build well-performing 

models for the target domain using the “concrete compressive 

strength” dataset. Compared to the first method, the second and 
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third methods did a good job transferring the knowledge from 

the source domain to the target domain in the “housing” dataset. 

All the three methods work well in the “Istanbul stock 

exchange” dataset, and the first method showed a slight lead. 

On the “air quality” dataset, the three methods showed similar 

results and all worked well in addressing this domain 

adaptation problem. 

VII. CONCLUSIONS AND FUTURE WORK 

    In this study, we propose three granular fuzzy regression 

domain adaptation methods to address three challenging cases 

in fuzzy domain adaptation: where the conditions, conclusions, 

or both the conditions and conclusions of the fuzzy rules in the 

source and targets domains differ. These methods modify the 

input and/or output of the data space through mappings to make 

the fuzzy rules of the existing model more compatible for 

solving tasks in the target domain. Our methods effectively 

solve regression problems in the target domain even when only 

a small amount of labeled data is available. Experimental 

results show that the proposed methods greatly improve over 

the performance of existing models in estimating the values of 

the target data. 

Our future studies will focus on cross-domain adaptation 

problems. These are more complicated than domain adaptation 

problems, where the input spaces of two domains have the same 

dimensionality. Cross-domain adaptation studies knowledge 

transfer in two domains that have different feature spaces, and a 

dissimilar number of fuzzy rules. This paper is an initial step in 

using the knowledge of GrC to improve the performance of 

prediction models for the target domain. More ideas and 

methods that use GrC will be applied to facilitate knowledge 

transfer in our further studies. 
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