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A New Fuzzy Modelling Framework for Integrated

Risk Prognosis and Therapy of Bladder Cancer

Patients

Olusayo Obajemu, Mahdi Mahfouf and James W. F. Catto

Abstract

This paper presents a new fuzzy modelling approach for analysing censored survival data and finding risk groups

of patients diagnosed with bladder cancer. The proposed framework involves a new procedure for integrating the

frameworks of interval type-2 fuzzy logic and Cox modelling intrinsically. The output of this synergistic framework

is a score/prognostics index which is indicative of the patient’s level of mortality risk. A threshold value is selected

whereby patients with risk scores that are greater than this threshold are classed as high risk patients and vice versa.

Unlike in the case of black-box type modelling approaches, the paper shows that interpretability and transparency

are maintained using the proposed fuzzy modelling framework.

Two data sets are used to test the modelling accuracy of the elicited models. The first is an artificial data

set which has similar characteristics as in a typical survival data. The second relates to real-life bladder cancer

data from which one requires a model that identifies the low risk and high risk patients and then recommends

risk management decisions based on, predicted risk level, patient history and characteristics, disease pathology and

event times. The performance of the proposed framework is compared with the traditional Cox model, logistic

regression as well as a non-linear survival data modelling technique based on neural networks.

This is the first time an attempt has been made to exploit the transparency advantages of fuzzy models

and the principled statistical framework of the Cox model in order to identify risk groups and recommend risk

management decisions from complex survival data sets. In both the artificial data and real data, the proposed

modelling framework, although minimalistic, shows better generalisation performances than the previously reported

models against which the results were compared.
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I. INTRODUCTION

W
HEN a patient is diagnosed with bladder cancer (BCa), clinicians often require an estimate of

the risk of death/relapse from the disease which may assist in answering pertinent questions

such as: is this patient of a low or a high risk? What is the expected survival time if no treatment is

administered? What treatment intervention could be performed to minimise this risk? Such estimates

may be quantitative, possibly obtained from data modelling methods, or qualitative often obtained from

knowledge experts. Obtaining quantitative estimates often requires collating and analysing the time of

events (such as duration of time from being diagnosed with BCa to dying from BCa [BCa being the

event]). More often than not, however, obtaining such estimates poses a great challenge because of the

problem of censored1 observations. Analysing censored time-to-event data is the mainstay of a branch of

statistics called survival analysis of which the Cox proportional hazards model [1] (henceforth called the

Cox model) is by far the most popular technique. The wide adoption of the Cox model is due to the fact

that it is easy to use, it is highly interpretable and is also supported by a plethora of software packages

which facilitates easy estimation and interpretation [2]. Additionally, its analysis can be carried-out without

the need to specify the baseline hazard function by using the partial likelihood method thereby keeping

assumptions to the minimum.

In the Cox technique, the hazard function (see Section II-B), which provides estimates of the mortality

risk of an individual, is modelled directly and is assumed to be a product of a baseline hazard (a strict

function of time) and a linear function of the individual’s parameters. Consequently, the Cox model

assumes that the effects of the input variables are obtained through a linear combination of variables and

parameters (α⊺x) usually called a link function, the exponent of which is usually called the relative hazard

[3]. However, for many applications, the assumption of linearly related covariates may not always be

tenable. For this reason, several other techniques have been proposed such as those using neural network-

based models [4] [5], splines [6], Gaussian processes [7] in order to take advantage of the statistically

principled Cox modelling framework and the high interpolation abilities of these non-linear models. These

approaches have resulted in more accurate models as discussed in [4], however, their usage in practice

1Only right censored observations are investigated in this study. Right censoring is a special type of missing data problem. This occurs

when the response variable (time of dying from BCa, for example.) is known to be greater than a particular value but is not observed exactly.
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has been limited due to the loss of interpretability/transparency2. In this paper, it is proposed to employ

a fuzzy model in this link function of the Cox model for the analysis of survival data. This integrated

approach will be shown to allow for concomitantly meeting the two objectives of 1. eliciting accurate

flexible models, 2. allowing for models to maintain transparency which is natural in fuzzy models [8] in

the analysis of complex survival data.

Fuzzy logic was first introduced in 1965 in Zadeh’s seminal paper [9]. It has found wide applicability

ranging from control [10], signal processing [11] and modelling [12], [13]. Fuzzy modelling has been

shown to be able to provide an intuitive representation of complex systems via if-then rules to which

humans can relate and which makes them interpretable [14]. Approaches such as those proposed in [15]

have only attempted to extrinsically combine fuzzy methods and the Cox model. Consequently, the fuzzy

modelling stage is no different from the existing fuzzy frameworks which are inadequate for handling the

censoring problem (which is discussed in Section II-B). It is surprising that up until now, the prospect

of intrinsically integrating fuzzy logic with statistically principled survival data modelling methods (such

as the Cox) to solve the conundrum of competing objectives of flexibility and interpretability has not

been investigated in the open literature. It is presumed that this may be due to two reasons: the first is

the belief that fuzzy logic and probabilistic reasoning are conflicting and cannot be reconciled. However,

as discussed in [16], fuzzy logic differs from probability as both handle different types of imprecision

and both can in fact work complementarily to provide a synergistic powerful framework. Therefore, there

exists, we believe, ample room to exploit the advantages of fuzzy and statistical modelling. The second

reason may be that the fuzzy community may not yet be aware that some fuzzy modelling problems may

be posed in a survival analysis framework to improve modelling performance. Therefore, the purpose of

this paper is of two fold: the first is to show how using fuzzy models can improve survival data models

in terms of both accuracy and interpretability, and the second to prove emphatically the fact that fuzzy

logic and statistical modelling are indeed complementary by successfully applying fuzzy models in the

context of a survival data modelling problem such as predicting risk groups in patients diagnosed with

BCa. Consequently, the overarching original contributions of this new study include:

• the development of a framework where type-2 fuzzy modelling is for the first time intrinsically

integrated into the Cox model for risk management of patients diagnosed with BCa.

• the development of a newly proposed efficient algorithm for calculating the receiver operator char-

2they are typically called black-box models because it is difficult to interpret the parameters of the model
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acteristics (ROC) when some of the data points are censored.

• the validation result to test the generalising properties of the proposed integrated model using our

own real patient clinical data drawn from a cohort of 2918 patients.

Two data sets are used in this research. The first is an artificial non-linear data set similar to the one

reported in [17] which is used to investigate the complexities of survival data. This data set allows one

to understand the survival data generation process and for checking whether the proposed framework

may correctly predict the time of death in the presence of censored observations. The second data set

is a real-life data containing history of patients diagnosed with BCa collected at the Sheffield Royal

Hallamshire Hospital (RHH), United Kingdom (UK) between 1995 and 2009. It is of interest in this data

set to predict the risk group to which a new patient (with specific variables) diagnosed with BCa belongs.

The approach hence adopted involves an implicit model in which the type of treatment administered to a

patient (if any) is taken as an input to the modelling framework. One may then investigate how different

therapies affect the predicted prognostics indices (the output of the fuzzy model) which may lead to risk

management decisions. Hence, the resulting model is not only able to predict risk but should also be

capable of providing recommendations for risk management. For simplicity, the binary risk classification

is used in this research such that a patient may either have low or high risk of mortality although other

risk grouping mechanisms are possible using the proposed framework.

The remainder of the paper is organised as follows: Section II provides, very briefly, the theories of

survival analysis, fuzzy logic and fuzzy modelling. Section III details the proposed modelling framework

and provides analysis of data used in the paper. Section IV provides a comparative study between the

original Cox model, a neural network-based non-linear model which has been applied in the literature and

the proposed fuzzy modelling framework. Section V concludes the paper by providing recommendations

for practical model design and directions for future work.

II. FUZZY LOGIC AND SURVIVAL ANALYSIS

A. Fuzzy Systems Modelling

This section briefly introduces fuzzy logic systems (FLS) and readers are referred to [18] and [19] for

more in-depth analyses. A Fuzzy logic system (FLS) is capable of representing subjective knowledge [20].

A conventional FLS block diagram has four elements as shown in Fig. 1.

It can be seen that a FLS takes in an input and returns an output and consequently may be taken as a

mapping from the input space X to an output space Y . The fuzzifier block takes a crisp input and provides
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Figure 1: Block diagram of the Type-1 Fuzzy Logic System.

a fuzzy mapping of this crisp input. This is done to allow for scenarios of uncertain input measurements.

The singleton fuzzification (as opposed to non-singleton) is used throughout in this research since the

analysis of the FLS becomes simplified without any loss of generality [18]. The rules provide a linguistic

representation of the system. The fuzzy inference engine (FIS) is the heart of the FLS and it is where

the fuzzified inputs are combined with rules which results in a fuzzified output. Because crisp outputs

are required to operate engineering systems, the output of the FIS is mapped into a crisp value through a

process known as defuzzification (the defuzzifier block). Fuzzy systems interpretability stems from the

rules block. Given a FLS with n inputs (x ∈ R
n), x1 ∈ X1, x2 ∈ X2, · · · , xn ∈ Xn , and one output

y ∈ Y , with a rule-base consisting of c rules, the ith rule of a typical IF-THEN fuzzy rule base may be

expressed in the following form:

Ri :IF x1 is Ai
1 and x2 is Ai

2 · · · and

xn is Ai
n, THEN yi is Bi

n

(1)

where Ai
j represents the jth antecedent MF of the ith rule and Bi

n the consequent MF. This paper uses

the Takagi-Sugeno-Kang (TSK) type of FLS such that Bi is represented by a linear function gi(x) of the

inputs i.e. gi(x) = βT
i x [18], where βi is a vector of consequent parameters for i = 1, 2, · · · c. Usually,

these MFs are used to represent words such as high, low etc. The MFs are in turn represented by a fuzzy

set (FS) which represents the subjective information that an individual has about the previous words.

This human-like representation of rules gives FLSs their subjectivity and also their interpretability.

However, this subjectivity can also be a source of great conundrum. Because ‘words mean different things

to different people’ [18], the definition of the MFs of the FSs can vary amongst individuals/experts. For
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Figure 2: An example of a Type-2 Fuzzy Set (Ã) employing Gaussian primary MF uÃ(x) and triangular

secondary MF (µÃ(u, x)). The primary MF defines the range of the degree of membership that element x
belongs to the FS, Ã. The secondary MF defines to what extent the PMF values belong to Ã as represented

by the vertical slice in the figure.

this reason, type-2 fuzzy sets T2 FS (Fig. 2) were introduced more than four decades ago [21].

Using T2 FSs instead of the conventional FS (henceforth called type-1 fuzzy set - T1 FS) can address

these linguistic uncertainties. Additionally and especially in modelling, using type-2 counterparts provides

an extra degree of freedom which may, more often than not, improve the accuracy and the generalisation

capabilities of models [11]. However, the disadvantage of using T2 FS is the inclusion of a new block

in the T2 FLS block diagram (Fig. 3) which results from the need to type-reduce the T2 FSs into a T1

FS before any defuzzification operation is performed. This type reduction stage involves reducing the

resulting T2 FS from the FIS output to a T1 FS. This process is discussed in detail in [22]. As shown in

[18], this is a computational demanding stage because the type-reduction process involves enumerating

the many (possibly infinite) embedded T1 FS in the T2 FS and then defuzzifying them in turn. There exist

many ways to reduce computational burden of this process [23]. A popular approach consists of using the

interval type-2 fuzzy sets (IT2 FS) (Fig. 4) in the FLS instead of the general T2 FLS. The Karnik-Mendel

algorithms and its variants [22]–[24] provide a fast iterative mechanism for type reduction. This work

makes use of the IT2 approach since it represents a trade-off between exploiting the degree of freedom and

the reasonable computational speed especially for high dimensional modelling problems. Additionally, the

IT2 approach, as discussed in [18], may also help in handling uncertainties in data modelling. However,

it is worth noting that the proposed techniques are capable of extending to both the T1 and the GT2
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Figure 3: Block diagram of the Type-2 Fuzzy Logic System.

approaches.

The general FLS is consequently a mapping from the input space X to the output space Y , which may

be represented as follows:

ŷ =
c

∑

i

φi(x)ζi (2)

where ŷ is the estimated output returned by FLS after type-reduction, φi(x) represents the validity function

for ith rule for a total of c rules for input defined as x. For the TSK FLS method employed in this research,

ζi = a⊺
ixi + bi. For the IT2 FLS used here, φi(x) has two components (φi(x) and φ

i
(x)) which represent

the left and right end points of the validity functions as derived from the Karnik-Mendel algorithms. ŷ is

the average of the two calculated values for after plugging the values of φi(x) and φ
i
(x)) into (2). It is

worth noting that the Gaussian primary MF with fixed mean and uncertain width as derived in [18] and

[25] is employed in this research with the t-norm operator being taken as the product.

B. Survival Analysis

A typical BCa database usually contains information relating to the patient characteristics (such as age),

disease pathology (stage and grade of the disease), disease history (relapse and administered therapies) and

time of death from BCa (if any). Clinicians often require information on how these varying characteristics

affect the risk of an individual on being diagnosed with BCa. Naturally, high risk patients would have a

lower survival time T and vice versa. The major problem when analysing such databases is that not all

patients in the database have died from BCa. For example, some patients are lost to follow-up, possibly

due to moving to other locations and had never contacted the hospital again, and some have died from
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Figure 4: The Interval Type-2 Fuzzy Set (IT2 FS) is a simplification of the T2 FS. The primary MFs

remain unchanged (as shown in the left panel) but the secondary membership values are all taken to be

unity (as shown in the right panel). Thus, the IT2 FS is completely defined by the so-called footprint of

uncertainty (FOU) [18].

causes completely unrelated to BCa. A natural and easy approach to analysing such survival data is

to completely exclude these patients from the analysis. However, this approach may well result in the

significant loss of useful information, especially in cases where the proportion of patients with incomplete

information is significant. It is possible, however, that one is privy to the time of the last follow-up or

time of death from other causes (C) so that T is known to be greater than C. This problem is known as

censoring and is illustrated in detail in Fig. 5.

Survival analysis provides an excellent framework for analysing such databases even in the presence of

such incomplete information (censoring). Survival analysis relates to the analysis of time until an event

occurs. Mathematically, T is taken as a random variable which represents the time of death from BCa and

survival analysis is concerned with identifying P(T > t) from data. Two broad frameworks for survival

analysis (when covariates are involved) are the Cox models and accelerated failure time (AFT) models.

The Cox model is due to [1] in which, as already mentioned, the so-called hazard is modelled directly.

The hazard is defined as the instantaneous risk of an event (the event is death from BCa in this study)

and is given in the Cox model [1] by the following equation:

hj(t,xj) = ho(t) exp(α
⊺xj) (3)

where α is a vector of parameters and xj represents the values of the input variables (covariates) for the
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Figure 5: Illustration of right censoring. The event times of patients B and D are not known since the

study ended before they could be observed. Only their censoring times are known. Patients A and F have

their event times fully observed as they died from the event of interest at approximately 40 and 75 months

respectively. However, the event time of patient F is about 30 months since the patient entry point is about

45 months after the study started. This phenomenon whereby patients do not enter the study at the same

time is known as staggered entry [3]. Patient E withdrew from the study at 60 months (censoring time

is 50 months) while patient C was lost to follow-up at 40 months (censoring time is 20 months). The

duration of the study is 80 months.

jth subject with hj(t,xj) representing the corresponding hazard for j = 1, 2, · · ·N . N is the number of

subjects under study.

The survival function (S(t) = P(T > t)), is given as follows:

S(t) = S0(t)
exp(αT

xj) (4)

where S0(t) is called the baseline survivor function and represents an hypothetical survivor function where

all the covariates have zero values.

The relationship between the hazard function and the survival function for a specific covariate xj is

given as follows:

S(t) = exp

{

−
∫ t

0

h(t)dt

}

(5)

which easily shows, as a result of (3), that a high value of exp(αTxj) for patient j would result in a
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narrower survival function (and consequently lower median time). Eq. 3 simply means that the hazard

(or risk) of failure at any point in time t for a subject j with the covariates defined by the vector xj is

a product of two functions. The first function is time-dependent and is called a baseline hazard function

(ho(t)) and does not depend on the subject’s attributes. The second function depends only on the subject’s

attribute but is not dependent on time (exp(αTxj)). It may be easily deduced that the so-called hazard

ratio which is the ratio of two subjects’ hazards does not depend on time since the common time function

which they both share cancels out. This time-independent function completely specifies the hazard of an

individual and can be estimated without the need to find the baseline hazard function. It is for this reason

that the relative hazard, which is defined as the exponent of the link function (exp(αTxj)), represents

useful information.

The AFT approach models the time of event directly by assuming the times and the covariates act

multiplicatively on a time scale [3]. This approach is very similar to an ordinary linear regression. The

AFT approach is not considered in this research since the assumption that the survival time follow a

particular distribution must be made which is not usually justifiable in complex modelling problems such

as eliciting risk models from a BCa database. Other types of survival data modelling interpretations exist

e.g. proportional odds [26].

Using linear models in the link function of the Cox model has peculiar intuitive appeals, especially to

clinicians. However, even though this linear assumption may not be tenable, there is a reluctance to using

black-box non-linear models because of the loss of this intuitiveness and interpretability. It is argued in

this research that the use of fuzzy systems will provide a better solution to helping one to understand

survival data both accurately and in a more transparent way.

Performance Indices in Survival Modelling: Performance indices allow for comparison of modelling

performances of different techniques. Because of the presence of censored observations, using performance

indices such as the root mean square error (RMSE) typically used in regression, or the area under the curve

(AUC) and the ROC used in classification, may be challenging [27]. For this reason new performance

indices have been defined in the literature [4] but the concordance-index (c-index), which is one of the

considered performance indices in this paper, appears to have the best intuitive appeal. The concordance

index makes use of the fact that a subject with a high risk or prognostics index (pk), is likely to have a

lower survival time than the one with a lower prognostics index (pl). Hence, if pk > pl, tk < tl, then the

subject pair (pk, pl) is said to be in concordance. The c-index is useful when one is strictly not interested
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in the times of failure but rather in grouping the observations into risk groups according to their risk ranks

as is the case in many medical studies and in this paper. The concordance index is defined as follows:

c-index =
1

Np

∑

k,l

I(pk, pl) (6)

where Np represents the number of unique usable pairs in the observations. A pair is usable if and only if

both survival times are observed or the subject with the censored observation has a censored time greater

than the subject whose event time is observed. The pair will be unusable if both observations are censored.

I is an indicator function which is defined as follows:

I(pk, pl) =











1 if pk > pl,

0 otherwise

(7)

The interpretation of Eqs. (6) and (7) is that a higher risk/prognostics index indicates a tendency for a

lower survival time. When the prognostics indices for the population have been found, existing methods

of finding the ROC cannot be used because some observed times are censored. This is because it is not

possible in practice to know if an individual with a censored failure time lower than the chosen threshold

time (60 months in this study) would survive past this threshold i.e. is a low risk individual. To obtain

a pictorial performance index, an efficient ROC algorithm based on that discussed in [28] is modified to

make it suitable for eliciting an ROC for censored survival data.

The algorithm which is used to find the true positive (TP ) rate
(

≈ positives correctly classified

Total positives

)

and the false

positive (FP ) rate
(

≈ Negatives incorrectly classified

Total negatives

)

is shown in Algorithm 1.

Additionally, the Breslow estimator [3] allows for calculating the baseline hazards and baseline survival

functions which will consequently facilitate calculating the median survival times for specific covariate

values. This was explored in this study so that the predicted median of survival times can be compared

with the observed values in the case of the artificial data. It is worth noting that it would be erroneous

to compare the predicted median survival times with the observed times for individuals whose failure

times are censored. This paper makes use of both the defined c-index in (6), the proposed modified ROC

analysis and the RMSE of predicted median times and observed times for non-censored observations to

compare the results of the proposed fuzzy modelling framework, with those of the Cox-model and the

neural networks model.

Several methods exist to define the risk groups of subjects from survival times, for example see [29].
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Algorithm 1 Efficient method for generating the ROC curve in the presence of censored observations.

Inputs: Calculated prognostics indices p(k), observed times T (k), censoring indicator ∆(k), and threshold

(TH). For k = 1 · · ·N , N being the number of subjects.

Outputs: The ROC points (stack) with increasing FP rate.

Psorted ← P , sorted by decreasing p scores

FP ← TP ← 0
k ← 1
Ne← |T > Th|
Po← |T < Th & ∆ = 1|
while k 6 |Psorted| do

if p(k) 6= pprev then

push
(

FP
Ne

, TP
Po

)

into ROC
pprev ← p(k)

end if

if Psorted[k] is a high risk example i.e. T [k] < Th & ∆[k] = 1 then

TP ← TP + 1
else if T [k] < Th & ∆[k] = 0 then

TP ← TP
else

FP ← FP + 1
end if

k ← k + 1
end while

Here, we take a simple approach usually common among clinicians. A time frame is chosen (typically

5 years in cancer studies), and subjects with failure time greater than this threshold are assumed to be

low risk individuals and vice versa. Only censored observations that have survival times greater than this

threshold may be included in the study. No conclusion can be drawn for individuals whose censored times

were less than this time threshold, as shown in Algorithm 1 when calculating the ROC points. For more

details on how to calculate the AUC, readers are referred to [28].

III. MODELLING FRAMEWORK AND DATA GENERATION MECHANISM

A. Modelling Framework

As already mentioned, it is proposed in this study to integrate for the first time the traditional Cox

model with fuzzy systems modelling such that the linear part (link function) of Cox model is replaced

with a flexible fuzzy model. The elicited model, as will be shown, is able to infer risk groups (low risk

or high risk) using a BCa database in a non-linear manner while maintaining the transparency that is

inherent in fuzzy systems modelling. From the relationships in (3) and (5), a high value for the hazard

(prognostics index) means that the patient has a lower median survival time and would tend to die sooner
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than a patient with lower prognostics index. It thus intuitive and natural to consider patients with higher

prognostics indices as high risk patients and vice versa. Using the hazard/prognostics index for this risk

subdivision is thus a natural and intuitive approach3. From (3), the link function defined as λ is the

prognostics index p and is taken to be the exponent of the output of the fuzzy logic model so that for

subject j, the prognostics index is defined by the following equation:

λj = exp(f j
FLS(xj,α)) (8)

so that

hj = ho(t)λj = ho(t) exp(f
j
FLS(xi,α)) (9)

where f j
FLS(xj,α) is the output of the FLS defined in (2) with parameters α for individual with covariate

values xj . λj is the prognostics index of the individual. The reason for taking the exponent is to ensure

that the hazard function is positive and defined. It is worth noting that (8) and (9) are similar to the

traditional Cox model (see (3)), the only difference being that the linear part has been replaced by a FLS.

Estimating the parameters of the FLS consequently includes similar steps to those followed in the case

of the Cox model, thereby exploiting its mathematical convenience and simplicity. It can easily be shown

that since λj is mapped from the output space of the fuzzy model using a monotonic function (exp),

then according to Zadeh’s extension principle [18], the MF is maintained as a result of the one-to-one

mapping caused by the monotonic transformation. Consequently, this will ensure that the transparency

inherent in fuzzy models is maintained since a linguistic value of the output space maintains the same

linguistic value (e.g high, low) in the transformed space.

Lemma. Consider two universes of discourse X and Y , and a monotonic function y = f(x), then a fuzzy

set A in X has same interpretation with image of B in Y , such that B = f(A).

Proof. Proof follows from Zadeh’s extension principle which says that the MF of B:

µB(y) = max
y=f(x)

µA(x) (10)

so that the same MF (f is a one to one mapping) is retained in B and consequently same interpretation. �

Therefore, it can easily be seen that interpretability is not compromised as long the function is monotonic

3
Si(t) = So(t)

λ. λ is the link function, Si(t) is the survival time of individual i and S0(t) is the baseline survival function. Since

S0(t) < 1 ∀ t, higher value for λ i.e. higher risk/hazard, lower survival time.
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Figure 6: Schematic diagram of the proposed modelling framework. The first stage consists of building

an interpretable model that classifies a patient as a low or high risk. The elicited models have implicitly

added the treatment decisions (if any) which can help proffer the type of treatment in the second stage.

(an exponential in this study). The optimisation stage of the fuzzy model elicitation operation may often

lead to overlapping and indistinguishable MFs thereby degrading the intrepretability of the resulting fuzzy

model. Interested readers may refer to [30] and [31] for more techniques on interpretability enhancement.

Fig. 6 shows the schematic diagram of the proposed modelling framework. The output of the fuzzy model,

as discussed, is a prognostics index that is indicative of the degree of risk a patient has. The prognostics

index is the output of the fuzzy model which it being transparent may easily be integrated with expert

knowledge. For example, a clinician may know from experience if a patient is of a low or a high risk of

mortality. Fuzzy modelling provides a natural framework for this clinician to investigate this assertion.

1) Training the Model: In survival data modelling with the right-censored observations (see Fig. 5),

one observes the data of size N and a triple (Tj, δj,xj), j = 1, · · · , N , where Tj is the time observed for

individual j, δj ∈ {0, 1} is an event indicator (δj = 1 means event times Tj are observed directly, δj = 0

represents a situation where the observed times Tj is the censored time). Estimation of parameters is

usually carried-out by maximizing an objective function such as the c-index [17], area under the survival

curve [4] and partial likelihood [32].

The fuzzy model is trained according to the partial likelihood methodology given in (11) which is

based on the same premise of the original Cox model. The idea of the partial likelihood methodology

is to find those parameters that ensure that a patient with a lower event time is ranked higher (higher

prognostics index) than the one with a higher event time. With the unique event times (censored times

are excluded) ordered, the Cox’s partial likelihood methodology is thus a rank-based objective function
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defined as follows:

L(α) =
R
∏

j=1

exp(f(xj,α))
∑nj

m=1 exp(f(xm,α))
(11)

where R is the number of unique event times and f(xj,α) is the output of a FLS with parameters α

for individual j with covariate values xj . nj represents the number of individuals at risk at event time tj

and this number includes the censored individuals that have not failed at this time. The parameters of the

FLS are found by maximising (11). In this research, a Genetic Algorithm (GA) is used to perform the

optimisation of this function. The negative log-likelihood (NLL) of (11) was used to change the objective

function to a minimisation problem so as to be able to use our prior designed GA software. The NLL can

be shown to be as follows:

NLL(α) =
R
∑

j=1

f(xj,α)−
R
∑

j=1

log

{

nj
∑

m=1

f(xm,α)

}

(12)

Details of the derivations of partial likelihood formula for the Cox models from data likelihood may

be found in [32] and [3].

2) Optimisation and Validation Details: GA is an evolutionary algorithm which simulates natural

survival of the fittest. This is the optimisation method of choice in this work because it is a tested

and trusted in many applications and has the capability of returning global optima solutions [33].

Using a non-linear model, such as FLS together with GA, can quickly lead to over-fitting of the training

data set. To circumvent this problem, each data set was divided into two parts. About 2/3 for training

and remaining the 1/3 for testing and the k-fold cross validation was performed on the training data sets

to select the model with the best generalisation ability k = 5. The maximum allowable number of rules

was set at 20 to manage the computational time. In the artificial data set, the fuzzy model with 17 rules

was found to lead to the best results based on the k-fold cross validation while the fuzzy model with 18

rules was found for the BCa data set. The testing data set was used to show the generalisation ability on

a data set that was not used in the training procedure.

B. Data

As already stated and especially in real systems, the assumption that the hazards are affected by an

exponentiated linear function of the covariates as given by (3) may not be tenable. It has already been

shown in the last section how interpretability of a fuzzy model output is maintained and that this output is

indicative of the risk a patient faces as far as the onset of a disease is concerned. In this section, it is shown
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that using FLS may be an ideal framework candidate for non-linear behaviour and when interpretability

is important. The proposed modelling framework is now tested on two datasets, one artificial data and a

real BCa data, and the test results are compared with standard modelling methods.

The artificial data generation mechanism is similar to the one used in [17] but has been modified to

make it more non-linear. The real data is a real life data on BCa patients. This paper investigates the

ability of using fuzzy survival modelling results to identity risk groups in the data and thereafter providing

recommendations for therapy. These two data sets are examined in greater details in the next subsections.

1) Artificial Data: The purpose of this artificial data generation is to demonstrate the case where a

non-linear modelling technique is needed to generate good modelling results in a noisy data set. The

artificial data set is generated according to the following equation:

t = (x0 +
√
x1 + x2

2 − 15)2 + (x3 + x4 − 10)2+

x5 + (x2
6 +
√
x7 − 15)2 + (x8 + x9 − 10)2 + ǫ

(13)

The x’s are the covariates drawn from uniform continuous distributions so that they have values between

0 and 10. ǫ is a random noise added to the times and p(ǫ) ∼ N (0, ρ) where ρ = 5.0. Independent censoring

was achieved by randomly choosing a proportion of the data set and randomly drawing a uniform number

from between 0 to the event times of the chosen data points.

The advantage of testing the framework on the artificial data is that one is able to compare the predicted

median times against what the failure time would have been had the events not been censored which may

provide an excellent indication on how the models perform. It is perhaps worth noting that in real datasets,

one would not be privy to such information. 2000 data points were generated MATLAB® 2015A software

for training and 1000 was used for testing.

The model is trained following the procedures already discussed in Section III-A. Investigations on

how the predicted median times (a function of the prognostics index and baseline hazard) compare with

what ‘would have been the event time’, had they not been censored, are carried-out using the RMSE as

the performance index. As already stated, the k-fold cross validation was used to select optimal number

of fuzzy rules which was found to be 17 for a maximum number of 20 rules to manage computational

time. Fig. 7a shows the plot of the artificial data for two input dimensions (x0 and x1) against the output

dimension which is time t. The other input variables are set equal to a constant value (mean value) to

show the non-linear distributions of the data. Fig. 7b shows the data distribution of the times and one
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(a) Plot of two input variables for the artificial data for

two input variables only (x0 and x1) to display the non-

linearity. The other variables were set equal to their mean

values.

(b) Histogram of simulated times and one input variable

(x0). The times in this case are the real times (with noise

added) and not the censored times.

Figure 7: Artificial data characteristics.

input variable (xo).

2) Bladder Cancer Data: The BCa data were obtained from a study of BCa patients at the Royal

Hallamshire Hospital in Sheffield, United Kingdom (UK)4. To understand the long term outcomes of

patients diagnosed with BCa, the hospital created a database of all patients diagnosed with the disease

for the 16-year period between 1 January, 1994 and 31 December, 2009. Tumours were given histological

grading and staging following the World Health Organisation (WHO) convention of 1973 as well as the

Tumour-Node-Metastasis (TNM) classification. A detailed statistical-based study was previously conducted

by the third author of this paper (Professor W. F. Catto) as published in his earlier work of [34], whereby

the Kaplan-Meier method was applied in order to identify the most significant features via the Kruskal-

Wallis and χ2 tests. Patients diagnosed with the disease, but who are still alive after the study period,

were automatically censored. These expert and statistical-based analyses resulted in identifying thirteen

(13) explanatory variables (input variables) for each patient which included details of disease pathology,

patient specific characteristics and treatment interventions (if any). Details of each variable are shown in

Table I. There were 3634 patients with primary BCa but those with insufficient follow up (< 6 months)

were excluded from the analysis. Additionally, patients with missing covariates were excluded from the

analysis leaving 2918 patients in the database.

The response variable is time of death from BCa in months. The median survival time is 35.26 months

(30 days taken equal to 1 month). Of the 2918 patients 2305 were censored (78.99%) due to end of

4Sole provider of urological services in the city of Sheffield, UK
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Table I: Input variables in the BCa data.

Continuous

Variables

Median Mean Range

Age (years) 72.7 71.6 21.3 - 101.0

Stage 4.03 4.02 0.00 - 9.00

Urothelium 2.00 3.42 0.00 - 6.00

Nodes Detail 4.00 3.94 0.00 - 4.00

Categorical

Variables

Values Number

of

Patients

Percentage

Sex
Male 2129 72.96%

Female 789 27.04%

Tumour Grade

Good 736 25.22%

Moderate 956 32.76%

Poor 1226 42.02%

Squamous
No 2789 95.58%

Yes 129 4.45%

CIS Present
No 2548 87.32%

Yes 370 12.68%

SPB

Solid 492 16.86%

Papillary 1856 63.61%

Both 570 19.53%

Vascular Invasion
No 2701 92.56%

Yes 217 7.44%

Muscle Invasion
No 816 27.96%

Yes 2102 72.04%

Cystectomy
No 2886 98.90%

Yes 32 1.10%

Radiotherapy
No 2854 97.81%

Yes 64 2.19%

study, loss to follow up or death due to other causes. Table II includes typical non-linear and stochastic

behaviours in survival data. This table includes 4 male patients having identical values of input variables

showing widely different event times. In particular, patient B is the oldest of the four patients but lived

longer than all but patient A. Patient A lived for more than 70 months after being diagnosed with BCa

but patient C with about the same age as patient A lived less than a month even though exactly the same

values were recorded for the other input variables. This is evident of the non-linearity and noise embedded

in a typical survival data. It would be interesting to see how the newly proposed framework handles these

challenges.

The distribution of the times is shown in Fig. 8. There is a higher proportion of censored observations
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Table II: Evidence of noise and non-linearity in the BCa data. The patients are represented by A, B, C

and D.

Variables A B C D

Age 63.6 70.2 62.4 69.6

Stage 2.00 2.00 2.00 2.00

Urothelium 2.00 2.00 2.00 2.0

Nodes Detail 4.00 4.00 4.00 4.00

Sex Male Male Male Male

Tumour Grade Poor Poor Poor Poor

Squamous No No No No

CIS Present No No No No

SPB Solid Solid Solid Solid

Vascular Invasion No No No No

Muscle Invasion Yes Yes Yes Yes

Cystectomy No No No No

Radiotherapy No No No No

Event Time 72.72 36.16 0.62 2.56

at longer follow-up times than at lower follow-up times. This is typical of survival analysis and is due

to the study having a fixed duration which means that patients with highest the follow up times tend

to be censored. It is worth re-emphasizing at this stage that treatment decisions (cystectomy5 and/or

radiotherapy) were implicitly modelled by including them as part of the input variables. This can provide

information on how these treatments dynamically affect the risk prognostics index and how they can also

help in providing clinicians with recommendations for therapy as already discussed.

IV. RESULTS & DISCUSSIONS

A. Artificial Data

Fig. 9 shows a comparison of the ROC performances using the newly proposed fuzzy modelling

framework and other standard modelling methods on the test data of the artificial data set. With an

AUC of 0.53, the Cox model is just marginally better than a random guess of the risk groups of patients.

This is because a Cox model has been used on a highly non-linear and noisy data set. The same conclusion

5Cystectomy is the surgical removal of bladder and it is usually administered in advanced stages of the bladder cancer, usually after

radiotherapy has been administered.
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Figure 8: Histogram of the times of events for both censored and uncensored observations for the bladder

cancer data set. Patients with higher follow-up times tend to be the most censored as is typical in survival

data studies. This is is because the study was for a limited amount of time and patients with high event

times become automatically censored at the conclusion of the test.

can be drawn when the logistic regression is used to analyse the data with censored times taken as event

times which has an AUC of 0.51.

The fuzzy model has a AUC of 0.82 which represents approximately a 50% improvement in the

modelling accuracy as compared with the Cox and logistic regression models. Compared with a non-

linear model such as the one based on a neural network earlier proposed in [17], the proposed fuzzy

model provides an improvement (of approximately 5%) in performance.

The concordance index shown in Table III gives similar results. The fuzzy model expectedly (being a

non-linear model) outperforms the Cox and logistic regression models on the artificial data. It also shows

a better generalisation capability than the neural network model result which was obtained using the test

data.

A closer inspection of the performance of the proposed fuzzy modelling framework on the artificial

data shown in Fig. 10 reveals that it is able to both infer correctly the risk groups as well as the predicted

median survival times even in the presence of noise. It can also be observed that the model (Fig. 10D) is

capable of handling the fact that certain ‘times’ were not observed exactly (censored) and is able to infer

correctly what would have been the observed survival times had they not been censored. The proposed

modelling framework has also been able to handle this missing data (information) problem. In contrast,

as shown in Fig. 11, the Cox model performs very badly on this data set and is not able to infer the risk

groups correctly as well as to predict the median times.
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(a) Cox model results.
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(b) Fuzzy modelling results.
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(c) Logistic Regression results.
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(d) Neural networks results.

Figure 9: Comparison of ROC performances on the artificial test data set. Results show that the Linear

model is not better than random guessing of the risk groups while using fuzzy modelling gives the best

results. Positive means high risk (low survival time) and negative means low risk (high survival time).

The red dotted line is the y = x line. ROC curves that coincide with this line are no better than random

guessing.

Table III: Concordance index values on the Training and Testing data sets using Cox, Logistic Regression

(LoR), Neural Network (NN) and Fuzzy modelling (Type-1 and Type-2) on the artificial data and BCa

data. The Type-1 fuzzy model was elicited following the same procedure described for the IT2 fuzzy

model.

Training Testing

Artificial Data

Cox 0.54 0.53

LoR 0.53 0.51

NN 0.72 0.68

T1 FS 0.72 0.65

IT2 FLS 0.73 0.72

BCa Data

Cox 0.71 0.70

LoR 0.68 0.67

NN 0.83 0.77

T1 FS 0.80 0.78

IT2 FLS 0.82 0.81
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(a) Training data (censored and uncensored). Cen-

sored observations are indicated by red data points. It

can be seen that the fuzzy model tries to predict what

the failure time would be if the observation had not
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(b) Training data (uncensored only). The fact that the
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(c) Testing data (uncensored only). The proposed

modelling framework is able to generalise to unseen

data. The testing RMSE is not so much different from

the training RMSE, even though the data is highly

complex and non-linear.
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(d) Predicted median times vs. would have been

failure time of censored observations. The fuzzy

model does a good job in anticipating what the failure

time would have been had the observations not been

censored. It should be noted that the ”would have

been failure time” is not observed in real life data.

For censored observations, the censoring times were

used in training the fuzzy model as explained.

Figure 10: Fuzzy model prediction results on the artificial data set. The fuzzy model outperforms

the traditional Cox model both in terms of prediction performances as well as not allowing censored

observations to bias the elicited models.

B. Bladder Cancer Data

Figs. 12 and 13 show the ROC curves on the testing data set of the BCa data using the proposed fuzzy

model and standard methods. The AUC for the Cox model is 0.83 while that for the fuzzy model is 0.91

which represents a significant improvement on the Cox model. The AUCs using the logistic regression

and neural network based models were 0.76 and 0.88 respectively which shows that the proposed fuzzy

modelling method led to the best generalisation performance. The ROC of the elicited model, as compared
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failure time of censored observations.

Figure 11: The Cox model prediction results on the artificial data set.

with other modelling techniques, are shown in Table IV. The concordance index, as shown in Table

III, reveals that the proposed fuzzy modelling framework provides approximately 13%, 16% and 5%

improvement in performance as compared with the Cox model, logistic regression and neural network

based models respectively based on the testing data performance. On the BCa training data, only the

neural network-based model marginal improvement in performance accuracy. The interval type-2 fuzzy

model elicited in this study outperformed the type-1 counterpart in all performance measures. This is not

surprising since type-2 fuzzy modelling includes one more degree of freedom and can better cope with

uncertainties than its type-1 counterpart. The log-prognostics indices for patients A, B, C and D shown

in Table II were found to be −5.21 (low risk), 0.2 (high risk), 2.18 (high risk) and 2.01 (high risk) which

is in line with the event times, demonstrating that the proposed model is able to discriminate the noise

and censored event times to elicit a more accurate and more reliable risk model.

1) Therapy Recommendation: The ROC curves of Figs. 12 and 13 show the performance of the

classifiers at different selected thresholds for the prognostics index/risk score. In practice, however, only
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Figure 12: Comparison of ROC performances on the BCa test data set using Cox and fuzzy-based models.

Point marked o is the optimum point based on the isocost.
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(a) Logistic regression modelling performance on the

BCa data.
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(b) Neural network based model performance on the

BCa data

Figure 13: Comparison of ROC performances on the BCa test data set using the neural network and

logistic regression based models.

one value of the prognostics index is desired and values greater than this threshold are taken to be high

risk patients and vice versa. In this paper, the ‘optimum’ point is selected to represent a trade-off between

FP and TP rates using the isocost lines method. Fig. 14 shows the distribution of the log of the predicted

prognostics indices for the testing data set of the BCa data. It is worth recalling that the output of the fuzzy

model is the logarithm of the prognostics index for a particular patient. A sample rule (in one dimension)

is of the form if age is ‘big’, then log(risk) is ‘high’. As a consequence of the Lemma in Section III.A,

the prognostics index (defined in (8)) has exactly the same interpretation as the output of the fuzzy model

since the relationship between this output and prognostics index is a monotonic transformation. Therefore,

it would also be correct to transform the sample rule above into if age is ‘big’, then risk is ‘high’.

The optimum operating threshold (marked o in Fig. 12) was found to be 0.4. Patients with prognostics
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Table IV: AUC values on the training and testing data sets using Cox, logistic regression (LoR), neural

network (NN) and fuzzy modelling (type-1 and type-2) on the artificial data and BCa data. The type-1

fuzzy model was elicited following the same procedure described for the IT2 fuzzy model.

Training Testing

Artificial Data

Cox 0.54 0.53

LoR 0.52 0.51

NN 0.79 0.78

T1 FLS 0.77 0.75

IT2 FLS 0.82 0.82

BCa Data

Cox 0.83 0.82

LoR 0.76 0.74

NN 0.88 0.84

T1 FLS 0.88 0.83

IT2 FLS 0.92 0.91
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Figure 14: Distributions of the predicted prognostics indices using the fuzzy model (testing data). The

output of the fuzzy model is the logarithm of the prognostics index (left panel). Exponentiation of the

output gives the prognostic index. This is a monotonic transformation so the fuzzy rules are not changed.

Table V: Confusion matrix at the selected optimum point.

True Class

Low Risk High Risk

Hypothesized Class
Low Risk 471 44

High Risk 64 103

indices greater than this threshold are high risks patients and vice versa.

Table V shows the confusion matrix at the selected optimum point (FP = 0.13 and TP = 0.74). It can

be observed from this table that 167 patients are predicted to being high risk patients and 515 patients to

being low risk. From the risk groups, one patient each is selected at random for analysis. The cystectomy
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Table VI: Selected patients characteristics

Cystectomy Radiotherapy Prognostics Index Observed Event Times

Patient 1 No No 20.090 (High Risk) 10.8 months

Patient 2 Yes No 0.013 (Low Risk) 133.4 months

and radiotherapy values as well as their prognostics indices of these two selected patients are shown in

Table VI.

On the one hand, it can be observed that where patient 1 (high risk patient with prognostics index of

20.09) is seen to neither having undergone radiotherapy nor having had cystectomy performed. On the

other hand patient 2 (low-risk patient with prognostics index of 0.01) had cystectomy performed. Further

investigation of patient 1 reveals that the prognostics index reduced to 10.090 when the cystectomy variable

was changed to ‘yes’. However, the patient still remains high-risk since the prognostics index is still above

the threshold of 0.4.

Overall, of all the patients that received radiotherapy or cysctectomy and are in the low-risk group,

45% would have been in the high-risk group had either therapies not been performed. Also, had either of

the therapies been performed on the high-risk group, 24% would have moved to the low-risk group had

radiotherapy been performed. Additionally as can be observed in the surface plots of Fig. 15, the fuzzy

model has inferred a risk index that is a highly non-linear function of the treatments and age if other

variables are set to the baseline (zero). A patient who undergoes radiotherapy (positive values = treatment

administered, negative values = no treatment) tends to have a lower risk index and is typically below the

threshold (log(0.4) = −0.916), hence in the low-risk group; radiotherapy seems to be more effective in

younger patients. Having cystectomy performed seems to represent a more effective treatment for older

patients.

V. CONCLUSION

This paper has introduced a new fuzzy modelling approach for solving the conundrum of interpretability

and flexibility in survival data modelling. The approach is based on a new framework that integrates

intrinsically and, for the first time, the interval type-2 fuzzy modelling approach with the statistically

principled Cox model so that the risk scores/prognostics indices can be predicted accurately and in

an interpretable but also flexible manner. This new framework is tested on two challenging data sets.

The first is a highly non-linear artificially generated data set. The fuzzy model outperforms the Cox

model and a neural network-based method, recently reported in the literature, by approximately 5% and
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Figure 15: The modelled relationship of age and treatment decisions affect the prognostics index. Negative

values of treatments mean no treatment and positive values mean treatment was performed. It can be

observed that radiotherapy is more effective for younger patients. For cystectomy, the treatment seems

more effective for older patients. The threshold value for the prognostics index, as discussed, is 0.4
(log(0.4) = −0.916).
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Figure 16: A sample rule base of the elicited fuzzy model for the BCa data. Only the first four rules are

displayed for each input dimension. Similar colours represent same rule.
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4% respectively. The second data set is a real life data set containing information relating to patient

characteristics, administered treatment (if any) and disease characteristics of patients diagnosed with

bladder cancer. The interest in this latter data set is driven by the ‘rationale’ that one wishes, more

often than not, to infer risk groups and provide automatic treatment recommendations as well as risk

management decisions for clinicians. When compared with standard modelling frameworks, such as the

Cox model, logistic regression and type-1 fuzzy modelling, the proposed framework outperforms these

standard modelling methods both in accuracy and generalisation abilities proving emphatically that fuzzy

models are more effective alternatives when flexible but interpretable survival models are targeted. The

new modelling framework is also flexible since it allows for the elicitation of a minimalistic fuzzy topology

consisting of only a handful of fuzzy rules without compromising on accuracy. Future works may consider:

1. Expanding this reduced framework to allow for the possibility of including more fuzzy rules. 2. The

inclusion of a probabilistic framework (Bayesian) so that uncertainties in the parameter estimates and

outputs of the fuzzy model may be quantified. Additionally, it would be worth investigating how a multi-

state modelling approach may be incorporated into the proposed modelling framework such that it includes

patients dynamic information such as changing clinical treatments and lifestyles.
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