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BPEC: Belief-Peaks Evidential Clustering

Zhi-gang Su and Thierry Denoeux

Abstract—This paper introduces a new evidential clustering LemmT =~
method based on the notion of “belief peaks” in the framework e o
of belief functions. The basic idea is that all data objects in /’05 e 07\
the neighborhood of each sample provide pieces of evidence that /@ \ e s
induce belief on the possibility of such sample to become a cluster { ) 07 001 ! Q- / ()N
center. A sample having higher belief than its neighbors and ! © : ,
located far away from other local maxima is then characterized as \0 0 (=) o b
cluster center. Finally, a credal partition is created by minimizing N04 i o \ 0 K
an objective function with the fixed cluster centers. An adaptive o 009// Y- O
distance metric is used to fit for unknown shapes of data R Q9 e
structures. We show that the proposed evidential clustering ’
procedure has very good performance with an ability to reveal ) =)
the data structure in the form of a credal partition, from which Q?
hard, fuzzy, possibilistic and rough partitions can be derived. mzmm—
Simulations on synthetic and real-world datasets validate our .~
conclusions. ’/O @ 0

S
© o
o
o

Index Terms—Dempster-Shafer theory, belief functions, unsu- \ o 0
pervised learning, soft clustering, density peaks clustering. 9 . J
O ! -6 Q 7
I. INTRODUCTION Fig. 1. lllustration of ambiguity and uncertainty in clustering.
LUSTERING is one of the most important tasks in data

mining and machine learning. It aims to find group8y drawing a decision graph withandé asz— andy—axes,
or clusters of objects that are similar to one another béspectively, cluster centers are then defined as the data objects
dissimilar to objects in any other clusters. With differenfhat have both high density and large distance. At last, each
philosophies, distinct clustering techniques have been derivegthe remaining data objects is assigned heuristically to the
for example, see [1]-[4] and the literature therein. Amongame cluster as its nearest neighbor with higher density. One
them, partitional clusteringhas attracted a lot of attention inmerit of the DPC algorithm is its ability to detect cluster
artificial intelligence communities. centers without requiring to fix the number of clusters as priori.
Classicalhard partitional clusteringintends to assign eachTherefore, a lot of interesting work on DPC has emerged. See,
object unambiguously to one cluster with full certainty. Refor example, [6]-[10].
cently, Rodriguez and Laio proposed such a hard partitionaljowever, the DPC and its variants compute hard partitions:
clustering algorithm by fast search and find of density peakfey do not allow ambiguity, uncertainty or doubt (rather than
calleddensity peaks clusterir@PC) [5]. In the DPC, a cluster pojse) in the assignment of objects to clusters. As illustrated in
center is defined as an object surrounded by neighbors Wiy 1, the objects between or among different clusters should
lower local densities and far away from any other object Withe considered as ambiguous and/or uncertain. In contrat,
highe_r local density. In order to detect all the cluster centesyidential clustering[2], [11]-[16] allows us to describes
density p; ambiguity and uncertainty in the membership of objects to
pi = Z#i x(dij, de) (1) clusters using Dempster-Shafer mass functions [17]. Roughly
speaking, a mass function can be seen as a collection of
sets with corresponding masses. A collection of such mass
functions forn objects is calleccredal partition
Furthermore, in DPC algorithms, each object in the neigh-
borhood of a sample provides just a numerical measure (i.e.,
a cutoff or Gaussian kernel function value of the distance
5 — {mamgjgn{dij}, if i=argmax;{p;}, @ between the object and the sample) supporting such sample
’ minj., >, {di;}, otherwise. to become a cluster center. As a matter of fact, an object
in the neighborhood of a sample could provide more useful
This work is supported in part by the National Natural Science FoundatigRformation on the possibility of such sample to become a
of Chlnq under Grants 51876035_, 51676034 and 51476028, and fully by th‘e . .. . . . .

Key Project of Yunnan Power Grid Co. Ltd. under Grant YNYJ2016043. Cluster center. With this in mind and the theoretic viewpoint
Z.-G Su is with the School of Energy and Environment, Southeast Univedf belief functions, we may describe the support degree at
sity, Nanjing, Jiangsu 210096, China (e-mail: zhigangsu@seu.edu.cn).  each object by a mass function. The belief degree (associated

T. Denoeux is with Sorbonne Univers#t, Universié de Technolo- . . .
gie de Compgne, CNRS, Heudiasyc, Comdgne, France (e-mail: 1O @ Mmass function) at each data object can then be viewed as
thierry.denoeux@hds.utc.fr). an extension of the (local) density in DPC algorithms. As we

is first computed at each data objegtaccording to distance
d;; (between objects; ando;,i =1,2,--- ,n,j # i) using a
cutoff or Gaussian kernef(-, -) with cutoff distanced.. Next,
for each object, the distaneg separating it from its nearest
object with a higher density is computed as
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will see, the cluster centers selected according to belief peaks Bayesianif it only has singletons (i.e]A| = 1) as focal

are usually different from, and more appropriate than those sets, andinnormalized Bayesidifiit has either singletons

obtained by density peaks. For instance, in Fig. 1, object or the empty seff)) as focal sets;

can be selected as a cluster center according to density peaks, Consonantf its focal sets are nested;

whereas the objeat; is preferred by belief peaks, as will be « Logical if it has only one nonempty focal set;

discussed in Section IlI-A. « Non-dogmatidf it has €2 as one focal set; in particular,
Motivating by the above considerations, this paper intends the vacuous mass function, verifying®*(Q2) = 1, corre-

to propose a new evidential clustering method based on sponds to total ignorance;

finding belief (rather than density) peaks as well as a credale Unnormalizedf it has the empty set as one focal set, and

partition in the theoretic framework of belief functions [17]-  normalizedotherwise.

[19]. More precisely, all data objects in the neighborhood of There are other equivalent representations of a mass func-

each sample provide pieces of evidence on the possibility @fn such as thebelief and plausibility functions defined,
such sample to become a cluster center. Then, by combiggpectively, as

these pieces of evidence, a sample having higher belief than its

neighbors and located far away from other local maxima will Bel*(A)= > m"(B), 4
be characterized as a cluster center. Once all the cluster centers 0£BCA
have been fixed, a credal partition will finally be created by PI%(A) = Z m(B), (5)
minimizing an objective function, using an adaptive distance ANBA£D

metric to describe non-spherical clusters. In this paper, we ) o
call our methodBelief-Peaks Evidential ClusterinBPEC). for all A C Q. The functionpl® : Q — [0,1] such that

Q) — prQ : ; :
The philosophy of BPEC is distinct from that of the DPC if?! (%) - PIQ ({«}) is called thecontoQur functlo(r;assouated
several respects: to m*'. If m* is Bayesian, we havel**(w) = m*({w}) for

« BPEC selects cluster centers from the viewpointiref all w € Q2. In_th|s_ casepl™ Is a propablllty dlstrlbu.t|_on. .
. . . : The combination of mass functions plays a critical role in
formation fusionin the theoretic framework of belief

i o . , the theory of belief functions. Let; and ms be two mass
functions, considering more useful information on th

possibility of a data object to become a cluster center.?uncnons' The conjunctive combination of, andm yields

o BPEC creates a credal partition allowing ambiguity antcgle unnormalized mass function

uncertainty in the assignment of data objects, by solving mia(A) = > mP(B)mE(C), VACQ.  (6)
a constrained optimization problem (with fixed cluster BNC=A
centers) as an alternative to heuristic assignment.

. . : If necessary, the normality conditiom® = 0 may be
« The credal representation in the BPEC provides us 4 y () y

r8covered by dividing each massi,,(A) by 1 — m$,(0).
4the resulting operation is noted and is calledDempster’s

it can produce hard, fuzzy [20], possibilistic [21] anqule of combination

rough [22], [23] partitions. o
As will be shown in Section IV, the BPEC procedure has Ml 5(4) = mm?)(A) 0£ACQ @
good performances and outperforms the standard DPC algo- 1 —mihy(0)
rithm as well as some other evidential clustering algorithnoth rules are commutative, associative and admit the vacuous

in most cases. _ . mass function as a unique neutral element.
The rest of this paper is organized as follows. The theory

of belief functions and the notion of credal partition arey

first briefly recalled in Section Il. The BPEC method is then Credal partitions

introduced in Section IIl. In Section IV, we conduct some Suppose that we have a st = {o01,02,--- ,0,} 0f n
experiments to study the performances of BPEC using soffaects. LetQ = {wi,ws, -+ w.} be the set ofe clusters.
synthetic and real-world datasets. The last section concludedve know for sure which cluster each object belongs to,
the paper. we have a hard partition of the datag®t More precisely, a
hard partition may be represented by binary variablgssuch
[I. PRELIMINARIES that u;;, = 1 if object o, belongs to clustet, andu;;, = 0

A. Background on belief functions otherwise. _ _
When objects cannot be assigned to clusters with cer-

In this subsect_ion, we _briefly recall some Dasic notions_ ?&inty, one can represent ambiguous and uncertain cluster
the theory of belief functions [17]-[19], [24]-[26] needed 'r}nemberships by mass functioms?,i = 1,2, --- ,n. Each

the rest of the paper. Given fz_namg of c_hscernmenﬂ — _massmi}(A) is interpreted as a degree of support attached
{wl’WQQ"" ywe}, @ mass function is defined as a mapping, y,q proposition “the true cluster of objeet is in A”,
from 2°* to [0, 1] such that and to no more specific proposition. The-tuple M =
Z m2(A) = 1. @3) (mi,mf,--- m) is called a credal partition [2], [13].
Ach Example 1: The 4—tuple M®? = (m$, m$, m$, m) in
The subsetst of Q such thatn‘(A) > 0 are called thdocal Table | is an example of a credal partition. We can see that
setsof m. A mass function is said to be objectso; and o3 likely belong tow; and ws, respectively.
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TABLE | of clusters whose plausibility exceeds the degree of belief of
A CREDAL PARTITION ONQ2 = {w1,w2} any other clusters,
0 {wi} {w} Q A ={w e Q' € Qplf(w) > Bell*({w'})},  (10)

0 0.7 0.2 0.1 ) )
::}1 0 0 0 1.0 where pl$? and Bel! are the normalized contour and belief

2 . . . .
mg 0 02 08 0 functions associated to mass functiory’.
m$ 1.0 0 0 0

Ill. PROPOSED METHODBPEC

In contrast, objects, and o, correspond to two different Similar to DPC algorithms, the BPEC algorithm also con-
situations of maximum uncertainty. Objeet has a full sists of two parts: definition of cluster centers and assignment
mass assigned t@: this reflects total ambiguity in the classof the remaining data objects. These two parts will be dis-
membership of this object, which means that it might belorgyssed in Sections Ill-A and IlI-B, respectively. In Section
to w; as well as taw,. For objetoy, it has the largest masslll-C, the time complexity of BPEC will be analyzed and
assigned to the empty set, indicating that this object does @otvariant with a limited number of informative composite
seem to belong to any of the two clusters and isoatlier. (] clusters will be introduced. The tuning of parameters will be
The notion of credal partition boils down to several othedddressed in Section IlI-D.
usual clustering structures when the mass functions have some
special types [2]. A. Belief peaks
o Hard partition: We have a hard partition with;, = 1
if all mass functionsn$? are certain, i.e4n$?({w}) =1
for somek, andu;; = 0 otherwise.

For a given setO of n data objects, a new frame of
discernmentC = {C,—~C} is defined to discern whether an
e . . __ object is a cluster centerClj or not (-C). The basic idea
» Fuzzy partition: We have a fuzzy partition with;y, = to detect cluster centers can be summarized as follows. Let

o . ) N ;
i (.{w’“}) it all the mass func.t|on$ni are Bayesian. In Nk (0;) denote the set of th& nearest neighbors (KNN) of
particular, a fuzzy partition with a noise cluster may bg, " : . . .
obtained if all the mass functions are unnormalized O06Ct 0i- Each neighbow; in N (o;) provides a piece of

. , , Q Q evidence about objeat; being a cluster center. This piece
Bayesian, i.e., ifu;x = m;'({wr}) and u;. = my; = f evid b d b functi
m2(0) =1 — 5 ug of evidence can be represented by a mass unomfp.
¢ k=1 "k By combining these mass functions using Dempster’s rule

« Possibilistic partition: if massesn’ are consonant, the . " ;
. L N .(6)-(7), a normalized mass function! can be obtained as
corresponding plausibility function is formally a possi- ; . : e . .
o . well as its associated belief functidBel;. An object having
bility measure, and the credal partition can be seen a

a . . . A
possibilistic partitionz;, = pif(wy ) being interpreted as?ugher degree of belieBel$ ({C}) than its neighbors will be
the possibility that ob?gab» bzelonk s to clusten characterized as a cluster center if it is also at a relatively large
Rough partitii/)n' it mz;sseZSmQ arg logical, i.e k;/.\/e have distance from other objects with higher degrees of belief.
m(A;) = 1 for.some(Z) 4 A-Z cQ we ca’n.tr.l;an define Each neighboo; in N (0;) supports the assumption that
thé IO\;ver and upper a roxlirrTatic,)ns of cluster as is a cluster center if the distandg; between the two objects

pper app is small. If this distance is large, the evidence of objects
wEk ={0i|A; = {wp}}, wY = {oi|{wr} C A;}. (8) Iinconclusive. Mass functiom% can, thus, be defined as

The memberships_ to the lower a?zd upper appr9ximations ¢ (4) = ¢(d?j), A=1{C}, (1)
are then, respectivelyy,;, = Bel;*({wx}) and @, = ij 1-¢(d2), A=C,
PI ({wr}). N
In general the credal partition obtained by an evidenti4fhere¢(-) is a decreasing function verifying
clustering algorithm does not belong to any of the previous _ d 1 2) — 12
specific types, but it can be transformed into a simpler repre- $(0) = ap an ,3131 ¢(dy) =0 (12)

sentation. A fuzzy partition can be obtained by transformi
each mass functiom$? into a probability distributiorp; using
the plausibility-probability transformation defined by
pi(wk)zﬁig7k:172a"'7c~ (9) i . i i

> i=1 Pl (wr) where~; is a positive parameter associated to objgct
By selecting the cluster with maximum probability for each US"?Q Dempster's rule, the final normal mass functiofi
object, we get a hard partition. To obtain a fuzzy partition witfPr objecto; can be calculated as
a noise cluster, the degree of membership of each object c c
to clusterw;, can be defined ag;;, = (1 — m{})pi(wy) and i = , AE/B Mij- (14)
the degree of membership to the noise clustetas= m%. €N (00)
To obtain rough patrtition, for instance, the followiingerval According to (14), we have the following proposition used
dominance decision rulfL3] can be used to select the sét to calculate beliefBel ({C}) at data objecb;.

n
\%ith a constantyy such thatd < oy < 1. A popular choice
for ¢(-) is [27], [28]
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Proposition 1:The degree of belief that objegt is a cluster 1 A
center is L
|
Bel¢({C}) =1— H [1—o(d)] - (15) = | Cluster centers
JENK (01) 5:- : location zone
Proof: The combined mass function has two focal sets: i |
C and{C%}. The mass ort is the product of tha — ¢(d;;), 3 - L
so the mass ofC'} is 1 minus this product. Hence, we have f:: ( 8 pin-Belin) Belyin
m{©C)= JI [1-9(d)] (16) %
JENK (07) Q
and
mf{ch=1- [[ [1—e@)]. (17) B 3
, 1
JENK (0:)

Now, Bel¢({C}) = mC({C}), which completes theroof, m 9 2= AN example of decision graph- Sel

Proposition 1 provides us with the final belief on the
possibility of an object to become a cluster center. According, = 1 and~; = 1/+/nf, where f is a constant percentage.
to the basic idea of BPEC, to be a cluster center an obj&y expanding (15), we get
should not only have high degree of belief, but it should also
be located far away from other objects with high degrees of Bels ({C}) = (—1)*** HjeN o o(d3))+
belief. Hence, a metric should be defined in order to measure o o o
distances among objects, as that done in DPC. Here, we ZjeNK(oi)¢(dij)+l(¢(dij)) (19)

redefine thedeltametric ; in (2), as follow with a polynomial functioni(-). It is evident that the belief

Bel§ ({C}) can be viewed as an extension of densities defined
di; (18) in [5] with K = n, [9] and [7]. If one uses a non-squared
distance, therBel$ ({C}) is an extension of the local density

8; = max;<j<,{d;;} for the object with the highest degreedlly different from and arguably more appropriate than those
of belief. obtained by these DPC algorithms. To show this, a numerical

(6 — Bel for short) example is presented as follows, and another synthetic example
will be presented later in Example O

0; = m

= in
{5:Bel§ ({C})>Bel{ ({Ch)}

Now, we can construct &— Bel®({C})
decision graph by plottingzel€({C}) versusé. The objects ) ' _
with higher Bel¢ ({C}) and largers; are identified as cluster Example 2: Given data ObJeCtSQDi’ =12 '2’9 as
centers. As illustrated in Fig. 2, cluster centers usually appé%‘s”atezd in Fig. 1. Su?pposeb(dlg) = 20'3’ ¢(d123) =
in the upper right corner of the decision graph. For given low&r?: ‘b(déﬁ) = 0.45, ¢(d223) = 0.35, ¢(dyy) = ¢(d3s) =
boundss, i, and Bel,i,, the objects such that > 6,.;, and -7+ ¢(dse) = 0.25, ¢(dy;) = 0.5, and all ¢(-) between
Bel€({C}) > Belmsn will be selected as centers. Meanwhile@y Other t‘QNO ObjeCtQS are smaller thar. Furthermore, we
data objects with small degrees of belief and large deltas ¢&pumes(di;) = ¢(dj;), i,j = 1,2,---,9. For simplicity,

be detected as outliers from the decision graph. this example considers; = 3¢ v, (,,) ¢(d7;) with K = 3.

Remark 1: There exist some relationships between tha'e Navepr = 0.45+ 0.9+ 0.3 = 1.65, pp = 0.7 x 2+

belief (Bel§ ({C})) and the density ;) in DPC algorithms. 8625 371'7‘3’2’:3 1:4 0.9+ (())?f’) + 855 :O ;i O’DS’%_ <
Four typical densitieg; are briefly recalled as follows. With 0‘2 * 3'_2 6. o 7 ’8p96 Z i dfr .t JZFLS. o plbt<'
Gaussian kernel, i.ex(dy;,d.) = ¢(dZ;) with ap = 1 and x 3 =06, i="7,8,9. According to (15), we can obtain

: : n Bel¢({C}) =1—-0.1 x 0.55 x 0.7 = 0.9615, Bel§({C}) =

vi = 1/d., density (1) can be rewritten ag := >, qﬁ(d?j). 1 e_l é{SQ}L 065 — 09415, BelS({C}) — 612<_{ 0}1) N
To reduce the influence of data objects far away, the densbt)é5 >< 075 o 0 9_5125 B;ZC({(;}) Belc(EC}) < '1

. . —_ . I} 1 4 Pl 5 -

can be locally defined as := ZjeNK(Oi) q&(d?j), e.g., see the o 9 = c o o o
ciapis DPC (DPC XN B 1 i, = Lk 10%) 0370703, D% BAE(ICD) 1038 <075
such thap® = L 370, v, o = \/ﬁ i (vff = pk)? 7,8,9. Hence, p» = maxi<;<o{p;} While Bel{({C}) =

and v/ = max;en, (o;)(diz)- In [10], Xie et al. proposed a max;<;<o{Bel{ ({C})}. Consequently, object, is selected
fuzzy weighted KNN-DPC (FKNN-DPC) in which the localas a cluster center by the density peaks method, whereas
density is defined ag; = ZjGNK(Oi) o(d;j) with ag = 01, located closer to the center of gravity of these nine data
1, v; = 1 and non-squared Euclidean distance. In a differenbjects, is preferred by the belief peak&thod. O

way, Du et al. [7] proposed a DPC-KNN algorithm in which Remark 2: In some cases, some prior knowledge may be
the local density was defined ps:= HjeNK(oi) (;S(dfj) with  obtained in the form of mass functions$,,i = 1,2,...,n,
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representing the initial possibility of each data object to be To minimize Jgprc, we apply the alternate optimization
selected as a cluster center. In this case, the final masgesalgorithm as suggested in the constrained ECM [11] and get

in (14) can be recalculated as |Aj|fa/(ﬁf1)Di—j2/(ﬂ—1)

m% - A |—a/(5—1)D*2/(5*1) A-2/(B-1)
mzc e miCO @ @ mlcj . (20) EZ:AHS(D ‘ l il +
FENK (0i) (253)
Q _ 4 _ Q
However, it is not clear how the prior mass functions; mip =1 Zj:Aj;é(Z) Mijs (25b)

could be obtained in practice. We leave this problem for further . _ | o = j:0+# A CQ, and
research. O A T
S = det(Zp)VPE Y, k=1,2,--- ¢ (26)

3 )

B. Construction of the credal partition with

In this section, we address the problem of deriving a n
credal partitionM® = (m$,m%,...,m2) € R™2 for the  Ti= > Y [A;* 7 (mi) sp;(wi — v;)(zi — ;).
set of objectsO locating at(z1,z2,...,2,) € R"*P, by i=1j:A;7#0

minimizing an objective function with the fixed cluster centergq, completeness, the calculations of (25) and (26) are pre-
v, €ERP E=1,2,...,¢, found in the previous section. sented in the Appéndix A

Deriving a credal partition fron® implies determining the The BPEC algorithm can be summarized in Algorithm 1.
quantitiesms} = m$(A;), A; C Q for each objecb; in such
a way thatm% is high (respectively, low) when the distance
D,; betweeno; and the focal set4; is small (respectively,
large). Suppose each clustey, is represented by a center

Algorithm 1: Belief-peaks evidential clustering
Input: K, «ag, q, a, 8, termination threshold, A, d,,in,

: : ; : Bel,,;n, data of objects; e RP, i =1,2,--- ,n
vg. As suggested in thEvidential C-Meanslgorithm (ECM) mans X . ’ P
[15], the barycented;, of the centers associated to the clusters S;Ir::(;ll?ltg)degrees of belieBel; ({C})) for all objects

composing nonempty set; can be defined as
P ¢ Py S 2 Calculate delta’s;) for all objects according to (18)

_  — 3 Draw the decision graph — Bel, and determine lower
b= 14;] Z SkjVks (21) boundsé, ,;,, and Belyin
o k=l 4 Select cluster centers,, k = 1,2, --- ¢ in the decision
wheres,; = 1 if wi, € A; and s,; = 0 otherwise. LetS, graph and determin&

be thep x p symmetric positive definite matrix associated ta ¢ < 0,.5,(0) = I, M%(0) =0
clusterw; inducing a norm||z||3, = z'Syx. Similar to (21), 6 repeat
we can define the matri¥; associated to the nonempty subset t—t+1; % t is the number of iterations
(i.e., the composite clusted;. The distance between objectg Calculate M (t) according to (21), (22) and (25)
o; and composite clusted; is then using Sk (t — 1);
9 Update matrixSy(¢) according to (26)
10 until M) — ME(t-1)|| <e;
Output: cluster centers;, and credal partition\*?

D% = flas — 5,13,
C

— (Ii*ﬁj)/‘Aj|7lzskjSk(xi 71_)]'). (22)

k=1

0 , L Remark 3: When selecting cluster centers, BPEC considers
Then, a credal partition\™ can be derived by minimizing e |ocal geometric information of each data object, whereas
the following objective function: the ECM algorithm does not. This characteristic may result in
Q more appropriate cluster centers and, thus, a more reasonable
jBPEC(iVl 51y Se) . credal partition, as shown later in Example 3. Furthermore,
_ a/ Q 2 2, Q when just applyingd — Bel instead ofp — ¢ in DPC [5],
N Z Z 1417 (m5)" D + ; A*(m)", (28) namely, selecting cluster centers according to belief peaks and

=120 assigning each of the remaining objects to the same cluster
subject to as its nearest neighbor with higher belief, we can intuitively
o O . induce abelief versionof DPC, calledBelief peaks clustering
Djagpemi gy =1, i=12n, (24) (BPC), which is summarized in Algorithm 2 and is presented
det(Sk) =1, k=1,2,---,c in Appendix B. The BPC will be implemented under the same
where constants, 3 and A have the same meaning as thos'é"t'a‘I conditions as those of the BPEgorithm. -

Remark 4: The barycenters (21) as defined in ECM may
lead to uninformative composite clusters in some cases, as
remarked in [12]. To reduce the time complexity of BPEC,
an informative BPEC algorithm with a limited number of
1This was suggested by an anonymous referee. composite clusters will be discussed in Sectibi+C. OJ

in the ECM algorithm, andlet(-) denotes the determinant of
a matrix. Note that the empty focal dktis treated separately
from other nonempty focal sets by using a constant
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D. Tuning of parameters

{o. 03} Q2 .
i /Q© © 0 To implement the BPEC algorithm, some parameters should
/O o s oy, 03} ;’ 000 \1 be selected in advance, includidg, g, Vi, Omin, Belmin, @,
:' o© oy, @, }Q () \f _(’;’» ' P ! 8, A ande. When implementing the informative BPEC, the
| © | () Y =R © number of mutualC nearest pairs of clusters also needs to be
\\0 © 1‘ 00 o @ N.@ .- determined.
“Reemz® \Q@ o © @3 The constanty, in the decreasing function(-) should be
| Bed® positive and not greater than 1. We suggest= 1/K in order
(2)) to avoid “saturated beliefs” if the number of nearest neighbors

K is large. (This issue will be discussed later in Remark 6).
Fig. 3. lllustration of less informative composite clusters in a credal partition. Parametersy; and K together play critical roles on de-

termining the distribution of objects in the decision graph.

As shown in Remark 1, most DPC algorithms usually define

C. Time complexity analysis and informative BPEC a unique value ofy; for all objectso;, i = 1,2,---,n.
Using the notations of Algorithm 1, the time complexity oft iS interesting to allow “adaptive®; (i.e., different cutoff
BPEC can be analyzed as follows. distances) for different data objects. Here, we definas the

First, the computation cost to obtain the belief peaks {verse of a quantile of the distances between objeand

Step 1 isO(p?n(n — 1)/2) + O(22Kn). Then, the sorting 'S I nearest neighbors
and assignment processes in Step 2 can be performed in )
O(nlogn) + O(n) operations. Finally, to derive a credal vi=1/ quﬁnme(dif’q% (28)
partition in Step$—10, we need to performd(2¢tn)+0(2¢t) JENlon
operations. The total time complexity of BPEC s, thUSNhereq is a quantile number such that< ¢ < 1. To fix 4, in
O(pzngn —1)/2 4+ 2°t(n + 1) + n(logn + 2°K + 1)) ~  an automatic way for simplicity, we set= 0.9 in this paper.
O(p™n® + 20””'_ _ For KNN-based classification or clustering algorithms, there
The complexity of BPEC depends heavily on both thg ng efficient rule to determine the optimal numbr of
numbern of objects and the number of clusters. When: nejghpors automatically. For BPEC, a simple approach is to
is large, we may have“ > n, and the complexity of BPEC jncreasek until some objects (i.e., cluster centers and outliers)
becomes prohibitive if the numberof clusters is too large. can pe visually separated from the other objects. It will be seen
Moreover, some composite clusters (i.e., focal sets) in theyt for most datasets, a large valuefofis preferable. More
credal partition may be less informative in some cases. Fgferestingly, the distribution of cluster centers in the decision
instance, in a two dimensional clustering task as shown in F@r-aph is not too sensitive to the changeSfprovided K is

3, the composite clustersu,,ws} and(? are less informative |arge enough. More details will be given with experimental
than the other clusters. results in Section V.

Hence, it is interesting to remove less informative focal sets |, contrast tokx” and g, it is easy to determine the lower
so as to reduce the time complexity of the BPEC algorithm. Bbundsémm and Bel,,i, because cluster centers can usually
[14], Denceux proposed to preserve the needed expressivity@f|ocated far away from other data objects. In fact, we will
the credal partition by considering as focal sets the empty sgie thats,,;, and Bel,i» are not as crucial as they seem
the singletons, and opt'lonally the whple frame of discernmert, he and there are many choices ff;, and Belmin. AS
and then to add some informative pairs of clusters. As a resyfcommended with most DPC algorithms, we suggest deter-
the number of focal sets is much smaller tte&nin particular MINing 8,5, and Bel,;, by visual inspection after drawing
when the numbet i; large. In a similar way, thenformative e decision graph. The lower boundls;, and Bel,i, will
BPEC can be described as follows: be presented together with cluster centers in the decision graph

1) Step 1: Run the BPEC in the basic configuration witifor convenience.

focal sets of cardinalities 0, 1, and optionally, An To derive a credal partition, we should presgt, 5, K and
initial credal partitionM! is then created. The similarity A. We use as default values= 103, a = 1 and3 = 2, as
between each pair of clustefs,,w;) is measured by in the ECM algorithm [15]. Furthermore, we just consider at
N most two mutual nearest pairs of clusters when the number of
S(j,1) = Zizlplgplﬁf, (27) clusters is large (i.eK = 1 or 2). Finally, we setA? equal to
a constant smaller than the minimal delta associated to outliers
where pl?j and pl§} are, respectively, the normalizedin the decision graph if outliers exist; otherwisk? can be a
plausibilities that object; belongs to clusters; andw;. ~constant larger than the maximummax; <;<n{d; }.
We then can determine the s8¢ of pairs{w;,w;} that Remark 5: As a matter of fact, tuning<{ and g together
are mutual nearest neighbors according to similarityusually provides a more flexible way to distinguish cluster
measure (Note that should not be confused with’). centers from other regular data objects. In practice, one can

2) Step 2: Run the BPEC again starting froom}, and alternately increase and/or decredseand ¢ in their ranges

adding as focal sets the pairs of clustersfg. until one gets an interpretable— Bel decisiongraph. [
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IV. EXPERIMENTAL RESULTS 10 013 012

This section consists of two parts. In Section IV-A, som
numerical examples are used to illustrate the behavior of BPI | 5.
algorithm. In Section 1V-B, we compare the performance ¢
BPEC as to those of some other clustering algorithms.

During the simulations, all the attributes of data objects we
normalized intd0, 1] to make the results independent from th 6 -4 2 0 2 4 6 8 10
units in which these attributes are expressed, according to X
following min-max rule:

x;; —min(z.;)

, (29)

lCij —

max(x.;) — min(x.;)

Masses

where z;; denotes the value of attribute of objecto;, and
min(x.;) and max(x.;) are, respectively, the minimum and
maximum values of attributg.

The Adjust Rand IndexARI) [29] is a popular choice for a
performance index and is suitable to measure the closen Data object number
of a hard partition to the truth. To perform comparison
among hard, fuzzy, rough and even credal partitions, Denodtix 4. Butterfly (top) and credal partition (bottom) via BPEC algorithm.
proposed a credal version of ARI, call€tedal Rand Index
(CRI) [30]. In this paper, we use CRI as the performanc
index when comparing the closeness between two crei 06 : ———————————————
partitions. When comparing two hard partitions, CRI and AF |
are equivalent. In this case, the criterion will be referred to i !
“ARI”. We refer the reader to [29] and [30] for the precise 05 G Bel )
definitions of ARI and CRI.

14

A. lllustrative examples 0.4}

In the following three examples, we use the notatidel
in place of Bel¢ ({C}) for simplicity when there is no risk of
confusion. 03r

Example 3: In this example, we consider the famous
butterfly dataset [12], [15] to illustrate the results of BPEC
The butterfly dataset is represented by circles in Fig. 4 (toj 92
We setK =4, ¢ = 0.9 andA? = 0.1. The§ — Bel decision 12 e
graph can first be drawn, as shown in Fig. 5. In this grap 13
objects 3 and 9 have qually high degrees beliefs and are 0-%'1 02 03 04 05 06 07 08
away from other data objects. Hence, these two data obje 5
can be considered as the centers of two clusters,ci.e. 2.

With the selected cluster centers, outlined by symbeal ”  Fig. 5. 5§ — Bel decision graph for the butterfly dataset.

in Fig. 4 (top), a credal partition can then be created and

illustrated in Fig. 4 (bottom), from which we can see that

the credal partition is meaningful to reveal ambiguity andy BPEC. Fig. 6 shows the number of clusters and the
uncertainty. For instance, objeat could be assigned to anyARI as functions ofK andg. The ARI was computed after
of the two detected clusters, whereas objgstando;s could transforming the credal partition into a hard one using the
be better identified as outliers. In contrast, o; ando;3 were maximum probability rule (9). From Fig. 6a, we can see
assigned td2 by ECM, and insteady;3 was assigned t& by that the true number of clusters can be easily identified in
the Belief C-Means (BCM) algorithm [12]. More interestinglymost cases, in particular wheR and ¢ take large values
BPEC can find the true locations of centers whereas the EQimultaneously. Correspondingly, Fig. 6b indicates that better
and BCM cannot. O performances (i.e., higher ARI) can be achieved when the true

Example 4: In this example, we consider the stronglynumber of clusters has been found, in which case the best
overlappingfour-classdataset [15] consisting of 100 of dataperformance is achieved witARI = 0.7398 when K = 75
objects in each class. We aim to study the influencé(ofy andg = 0.9. In the best case, the decision graph and the credal
and the locations of centers on the clustering performancgsrtition are illustrated in Figs. 7 and 8, respectively.

We consideredy € {20,25,---,90}, ¢ € {0.1,0.2,--- ,1.0} For comparison with this best case, we present in Fig. 9 the
and A? = 0.2. In each case, we selected the cluster centemisister centers selected by the degree of belief and the four
from the decision graph. The credal partition was then creatggbical densities mentioned in Remark 1. We can see that some

Bel

L]
e 2,4,8,10

outliers -
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b Fig. 7. 6 — Bel decision graph for the four-class dataset.
0.8
credal partition obtained via informative BPEC seems to be
0.7 reasonable. O
06 Remark 6: As can be seen from the decision graphs in
z above three examples that, the belid#sl¢({C}) seem to
<05 approach an upper bound that is smaller thaThis is the
case because, according to (15), we have
0.4
Bef({ch <1 lim [ [1-o(a)]
0.3 di;—0
100 JENK (0:)
1 =1—(1-ap)¥. (30)
When choosingyy = + we havelimg .o (1— %)K =1 and
thus get the infimum of upper bound, i.&.;- <. To increase

K 20 0 q

this infimum, o can be redefined in a more general form such
asag = 1/K% with a positive constart. With an appropriate

Fig. 6. Number of selected clusters (A) and ARI (b) as functiongoand choice ofd, correct number of clusters can belected. [

q for the four-class dataset.

B. Performance evaluation

cluster centers selected by belief peaks are different from thoseén this subsection, we aim to evaluate the performances of
obtained by density peaks. To study the influence of clustBPEC based on some synthetic and UCI real-world datasets
centers, we computed the ARI for each group of selectegth characteristics summarized in Table Il. As can be seen
cluster centers, by applying the same assignment strategyfrasn Table I, the synthetic datasets have large numbers of
used in DPC. WithK = 75, ¢ = 0.9, f = 2%, we get clusters, while the real-word datasets have more attributes.
ARIppc = 0.3258, ARIappc_xkNn = ARIpkNN_DPC = To implement BPEC, some parameters were preset as men-
ARIppc—knny = 0.7279 and ARIgpc = 0.7392, which, tioned in Section IllI-D and some others were fixed individually
together with ARIgprc = 0.7398, shows that the cluster as shown in Table Ill. In the absence of outliers, we suggest
centers selected by belief peaks are better in¢hige. [ A = 1 for simplicity. For comparison, several DPC algorithms
Example 5: In this example, we used the datas2 in were also applied to these datasets, including BPC, DPC [5],
[31], consisting of5000 objects andl5 clusters, to illustrate DPC-KNN [7], ADPC-KNN [9] and FKNN-DPC [10]. For
the partition via informative BPEC with a limited numbeDPC [5], the cutoff distancel. was defined according to a
of composite clusters. Witk = 80, ¢ = 0.9, A = 1 and proportionf = 2% of the total number of objects in a dataset,
K =1, the decision graph is drawn in Fig. 10, and the rougte.,d. = J(ip), whered is a vector sorting distancels;,i < j
approximations of the initial and final credal partitions ar@ descending order ang = round(n- f). For DPC-KNN [7],
illustrated in Figs. 11 and 12, respectively. It can be seen frofn= 2%. The ARI values are shown in Table IV.
Fig. 10 that the true number of clusters can be found, and fromAs can be seen from Tables Il and IV, BPEC and BPC can
Figs. 11 and 12 that the rough partition transformed from ttimd the true number of clusters for most of these datasets,
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Fig. 8. Contour surfaces of the credal partition (top: singletonsgrzbttom:
empty set and composite clusters wjth;| = 2, 3) obtained by BPEC for

the four-class dataset.

TABLE 1l

DATASET DESCRIPTION

T
O brc
[0 FkNN-DPC
N DPC-KNN
x x BPEC/BPC
% ADPC-KNN |
% objects

X % X x « »cxxx:isx x xx
x x
180 T xx B01 o8,
4 x XX X X & i, x
x x
oy %1295, x X *360< 0
x g x . x X ox o XXy x x
38 X x X %
x x x %
Xx XX X % x
N 2, x Xxx x 4
x wx %o xx X x x x
x x X x x x x ® x Xx
Xx o % ox X xSxx x
XXy qf‘x 20X ExXTX xox %
X X X
o XX o3 xx>261x%xx x x
Ofx x x”‘ Xeg XXX g0 Xy x*x* 235& x -
X x XXX X xxxx"x%x
X xx x X x x
x
K % xow X% KK
X x x
x x % x x
20 % x x x 4
x X x
x
x x
-4 L L L X L
-2 0 2 4 6 8

Fig. 9. Locations of centers selected by different methods for the four-class
dataset.

min) Cluster centers

Subplot of cluster centers

Type Name Size  # Attributes ¢ Source
A3 7500 2 50 [32]

D31 3200 2 31 [33]

DIM1024 1024 1024 16 [34]

Synthetic  R15 600 2 15 [33]
S4 5000 2 15 [31]

S2 5000 2 15 [31]

Unbalance 650 2 8 [35]

Iris 150 4 3 [36]
Parkinsons 195 23 2 [36]

Pima 768 8 2 [36]
Real-world  Seeds 210 7 3 [36]
Waveform 5000 21 3 [36]

WDBC 569 30 2 [36]

Wine 178 13 3 [36]

0.56 |
[}
055
o o ©®
. 4
0.54 (] [ ]
[ )
053t ® ’ Y
o o )
0.52 : : : :
01 02 03 04 05 06
0.2 0.3 0.4 0.5 0.6
1

Fig. 10. § — Bel decision graph for the S2 dataset

and BPEC has the highest ARI values in most cases. With the
same fixedK and the same assignment strategy for DPC-
KNN and BPC, we can see that BPC outperforms DPC-
KNN and DPC in most cases. This result shows that cluster
centers selected according to belief peaks can usually yield
more better clustering performances. As stated in Remark
5, alternately tuningK and ¢ in their ranges can usually
induce more distinguishable decision graph and thus better
performance. For instance, more appropriate cluster centers
with ARI= 0.8176 can be achieved for the WDBC dataset
when selecting; = 0.1 and K = 40 in an alternate way. As
another example, the true number of clusters can be found for
the Pima dataset with ARI 0.1210 if ¢ = 0.1 and K = 40.
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TABLE Il
SELECTION OF SOME PARAMETERS INBPEC
Datasets Some parameters  Fowhdgsters
K K by BPEC/BPC
A3 150 1 50 (50)
D31 50 1 31 (31)
DIM1024 20 1 16 (16)
R15 20 1 15 (15)
S4 300 1 15 (15)
S2 80 1 15 (15)
Unbalance 70 1 8 (8)
Iris 20 1 33
Parkinsons 40 1 2 (2)
Pima 40 1 2(3)
Seeds 40 2 313
Waveform 100 2 3(3)
WDBC 40 1 22
X Wine 30 1 3(3)

Fig. 11. Lower rough approximations of the initial credal partitieg} for
the S2 dataset. TABLE IV
ARI VALUES: COMPARISONS BETWEENBPECAND SOME ALTERNATIVE
CLUSTERING ALGORITHMS 1> 2,

Datasets ADPC  FKNN DPC DPC BPC BPEC
-KNN  -DPC  -KNN
A3 0.97 — 0.9775 0.9246 0.9835 0.9889
D31 0.94 — 0.9358 0.8627 0.9384 0.9522
DIM1024 1.00 — 1.00 1.00 1.00 1.00
R15 0.99 — 0.9928 0.9228 0.9928 0.9928
S4 0.63 - 0.6268 0.5876 0.6519 0.6374
S2 - 0.924 0.9286 0.9227 0.8644 0.9303
Unbalance  1.00 — 1.00 1.00 1.00 1.00
Iris 0.76 0.922 0.7060 0.5681 0.7060 0.7565
Parkinsons - 0.391 0.0266 0.3910 0.2566 0.4135
Pima 0.02 0.013 0 0.0143 0.0682 0.0967
Seeds 0.77 0.790 0.7076 0.6531 0.7076 0.7236
Waveform 0.25 0.350 0.2516 0.26690.2872 0.3939
WDBC - 0.786 0.5175 0.5061 0.7546 0.7924
Wine - 0.852 0.7128 0.6990 0.7269 0.8653
1 The ARI values for ADPC-KNN and FKNN-DPC are taken from [9] and
X [10]. Missing values are indicated by-".
2 The bold and underlined value(s) in each row indicates the best perfor-
mance.

Fig. 12. Lower and (four pairs of) upper rough approximations of the final
credal partitionM*? for the S2 dataset.

as EK-NNclus. For ECM and EVCLUS, the number of

By comparing BPEC with BPC, it can be concluded thatlusters was preset to the value found by BPEC, and the
ECM assigns the remaining objects more reliably than BPEuyclidean distance was used in BPEC instead of an adaptive
resulting in better performance. Furthermore, we can see thae. In contrast with ECM and EVCLUS, EK-NNclus was
the hard partition obtained from the BPEC algorithm using thein with integer labels randomly generated in the range
maximum plausibility-probability rule (9) is different from that[1, n], as it does not require number of clusters as priori.
obtained by the BPC algorithm, which means that BPC is nburthermore, the number of nearest neighbaks,{) and
merely a crisp version of BPEC. guantile of these nearest neighbotg,,() were set for EK-

To compare BPEC with some other evidential clusterilyNclus as follows, for the seven datasets from Iris to Wine:
algorithms, ECM [15], EVCLUS [13] and EK-NNclus [37] (50,0.5), (300,0.9), (50, 0.9), (500,0.9), (50, 0.5), (200, 0.5)
were also implemented. When compared with ECM ar&hd (50,0.9).
EVCLUS, the BPEC algorithm was implemented with full For each real-world dataset in Table Il, we run ECM,
focal sets. When compared with EK-NNclus, BPEC walVCLUS and EK-NNclus ten times, respectively. At each
used with singletons and the whole frame of discernmetitne, we calculated CRI between BPEC and these three
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Fig. 13. The ARI values via BPEC vs. ARI values via (a) ECM, (b) EVCLUS, (c) EK-NNclus, and (d) informative BPEC with limited composite clusters

TABLE V To gain further insight into the relative performances of
CRI (mean = std.) BETWEEN BPECAND OTHER EVIDENTIAL BPEC and alternative evidential clustering algorithms, we
CLUSTERING ALGORITHMS -
compared the closeness of the hard partitions generated from
Datasets BPEC-ECM BPEC-EVCLUS BPEC-EK.NNclus  credal partitions according to maximum rule (9) by each
s 0.9436 £ 0.0001 __ 0.7407 + 0.0222 03572 £ 0 algorithm, to the true hard partition for each dataset. Fig. 13
Parkinsons 0.8434 + 0.0001  0.5365 + 0.0275 —0.1258 + 0.0203  displays the ARI values obtained by BPEC vs. those obtained
Pima 0.9331 + 0.0005  0.6207 + 0.0022 0.0045 + 0 by ECM, EVCLUS, and EK-NNclus. Fig. 13a shows that
Seeds 0.9504 &+ 0.0002  0.6053 =+ 0.0047 0.3834 + 0.0142 BPEC Outperforms ECM on these seven real-world datasets. It
Waveform 0.9472 + 0.0001  0.7157 4+ 0.0016 0.3963 + 0 can be seen from Flg 13b that BPEC outperforms EVCLUS in
WDBC 0.9596 & 0.0003  0.6527 & 0.0123 0.5352 4+ 0 most cases except for the Wine dataset, for which BPEC and
Wine 0.9616 & 0.0001  0.7642 & 0.0074 0.3423 + 0 EVCLUS have comparable performances. We can see from

Fig. 13c that EK-NNclus outperforms BPEC on the Wine and
evidential algorithms. (Note that, for the EK-NNclus we onlysemjS datasets, whereas BPEC outperforms EK-NNclus on the

considered the cases when true number of clusters had bgtger five real-world datasets. Finally, Fig. 13d shows that the

found). The mean CRI and standard deviatisti() over the peﬁormance of the BPEC algorithm is not deteriorated when

ten times are presented in Table V. It can be concluded froll%nltlng the number of composite clusters.

Table V that, on the one hand, the cluster centers found by

the BPEC are not the same to those obtained by the ECM, on V. CONCLUSIONS

the other hand, BPEC creates different credal partitions fromin this paper, we have introduced a clustering procedure,
those generalized by the ECM, EVCLUS and EK-NNclus. called the Belief-peaks Evidential Clustering (BPEC) algo-
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rithm, which can find the true number of clusters and createNext, we consider thah?j and m?@ are fixed to obtairns;,
a credal partition for some datasets with good performancesd ;. We have, fork = 1,2,...
When the number of clusters is small (usually less than ten),

the performances of BPEC and its informative variant with 9£ Z Z |41~ ) s (s
a limited number of composite clusters are approximately Sy kil

,C,

equal. In contrast, BPEC can be enhanced if less informa- A 1

tive composite clusters (i.e., focal sets) when the number — M det(Sk) Sy =0, (34)
of clusters is large. Furthermore, BPEC can provide hargpg

fuzzy, possibilistic and even rough partitions. Finally, as a by- 575 det(Sy) —1=0 (35)
product of the BPEC algorithm, we proposed a belief version o g o

of DPC, called the Belief Peaks Clustering (BPC) algorithnpyefine
We have shown that BPC outperforms DPC in most cases but
is outperformed by BPEC (of which it is not merely a crisp Y = Z Z | A,
version). =1 jiA, 20
There are several avenues for further research, such as
combining the belief peak approach with other clusterln'arom (34) and (35), it follows that
algorithms instead of ECM, and improving the method to make SpSe =ml, k=1,2,-- ¢, (36)
it applicable to very large datasets.

) skj(wi — v5)(zi — v5)".

wherel is ap x p identify matrix. Taking the determinant of

ACKNOWLEDGEMENTS (36), we get

The authors are grateful to the editor and the referees for det(XxSk) = det(Xy) det(Sk) = det(Xx) =n,,  (37)

the useful comments. which leads to

= det(X;) /7. 38
APPENDIX A Tk ( k) ( )

CALCULATIONS OF (25) AND (26) USING THE ALTERNATE ~ BY inserting (38) into (34), we finally get (26).
OPTIMIZATION ALGORITHM IN CONSTRAINED ECM

The Lagrangian for problem (23)-(24) can be written as APPENDIXB
BPC: BELIEF PEAKS CLUSTERINGALGORITHM
LME, St S, M, A, ) The belief version of DPC algorithm, i.e., belief peaks

n clustering algorithm (BPC) is summarized as follow.
= JpPEC *Z/\z‘( Z mi +mi — 1)
=1 gA#D Algorithm 2: Belief peaks clustering
B - B Input: K, «ag,q, x; e RP fori =1,2,--- |n
;nk(det(sk) 1)’ G Calculate degrees of belieBeI¢({C})) for all objects
o using (15)
where; and7; are Lagrange multipliers. _ 2 Calculate delta’s&;) for all objects according to (18)
First, we optimizemn;; and mS by fixing matrix Sk. 5 praw the decision graph — Bel
By calculatlng the partial derivatives of (31) with respec} gglect cluster centers,, k = 1,2

-C
Q
to mf}, mz@ and \; and setting them to zero, we have for; Agsign each of the remaining objects to the same cluster
i=1,2,...,n and allj such thatd; C , as its nearest neighbor with higher belief
oL Lo Output: cluster centers and hard partition
o = B4 (mi) " IDh = X =0, (323)
X
9L 20 0\6-1
B = BA%(mih) Pt — X =0, (32b) REFERENCES
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