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Abstract—A key component of Fuzzy Rule-Based Classification
Systems (FRBCSs) is the Fuzzy Reasoning Method (FRM),
since it infers the class predicted for new examples. A crucial
stage in any FRM is the way in which the information given
by the fired rules during the inference process is aggregated.
A widely used FRM is the winning rule, which applies the
maximum to accomplish this aggregation. The maximum is an
averaging operator, which means that its result is within the
range delimited by the minimum and the maximum of the
aggregated values. Over the last years, new averaging operators
based on generalizations of the Choquet integral were also
proposed to perform this aggregation process. However, the most
accurate FRBCSs use the FRM known as additive combination,
that considers the normalized sum as the aggregation operator,
which is non-averaging. For this reason, this paper is aimed
at introducing a new non averaging operator named CF1F2 -
integral, which is a generalization of the Choquet-like Copula-
based integral (CC-integral). CF1F2 -integrals present the desired
properties of an aggregation-like operator, since they satisfy
appropriate boundary conditions and have some kind of in-
creasingness property. We show that CF1F2 -integrals, when used
to cope with classification problems, enhance the results of the
previous averaging generalizations of the Choquet integral and
they provide competitive results (even better) when compared
with state-of-the-art FRBCSs.

Index Terms—Fuzzy rule-based classification systems, Choquet
Integral, CF1F2 -integrals, CC-integrals, OD monotone functions.

I. INTRODUCTION

In a supervised classification problem [1] it is necessary to
determine the class of an example based on the information
given by labeled examples. Among others, an accurate way to
tackle classification problems is by using Fuzzy Rule-Based
Classification Systems (FRBCSs) [2]. This technique achieves
accurate results taking into consideration linguistic labels in
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the rules, which leads to obtaining an interpretable model that
can be easily used in the decision making process.

The two main components of FRBCSs are the knowledge
base, which is composed of the rule base and the data base,
and the Fuzzy Reasoning Method (FRM) [3]. The latter
is a mechanism that uses the information available in the
knowledge base to assign a class to new examples that have
to be classified. The FRM of the winning rule is a classical
inference process found in the literature that assigns the class
of the fuzzy rule whose compatibility with the example to be
classified is maximum. To do so, it applies the maximum as the
aggregation operator, which has an averaging characteristic,
i.e., its result is delimited by the minimum and the maximum
of the values to be aggregated. Consequently, to classify an
example it only uses the information given by one fuzzy rule
and it disregards the remainder information.

Barrenechea et. al proposed in [4] a FRM that takes into
account the information provided by all the fired rules using
the Choquet integral [5]. After that, the Choquet integral was
generalized by replacing the standard product operator by
different t-norms, which led to the concept of pre-aggregation
functions [6]. Next, aiming at producing an aggregation func-
tion, in [7] the authors presented the Choquet-like Copula-
based integral (CC-integrals, for short). They swapped the
product operator of the extended form of the Choquet integral
by two identical copulas C. These three approaches have
averaging characteristics [8] and they provide competitive
results in classification problems.

However, the state of the art FRBCSs algorithms, like
IVTURS [9], FARC-HD [10] or FURIA [11] apply the FRM
known as additive combination that is based on the usage of
the normalized sum as aggregation function [3], which has a
non-averaging behavior. Taking this fact into account, in [12]
the standard Choquet integral was generalized by replacing
the product operation by different functions F , introducing the
concept of CF -integrals. These integrals are pre-aggregations
that may have either averaging or non-averaging characteristics
according to the considered function F . The authors showed
that the non-averaging CF -integrals statistically overcome the
averaging ones, reinforcing the quality of the usage of non-
averaging functions in this domain.

For this reason, in this paper we define a generalization
of the CC-integral, named CF1F2

-integral, substituting the
copula C by two fusion functions F1 and F2 satisfying some
special conditions. The CF1F2

-integrals are non-averaging
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Ordered Directionally (OD) increasing functions satisfying
the required boundary conditions for any “aggregation-like
operator”. Moreover, we present a methodology to select the
best pairs of fusion functions F1 and F2 to define the CF1F2

-
integrals to tackle classification problems. Finally, we also
introduce a new FRM based on this concept.

In the experimental study, we consider 33 different datasets
available in Keel dataset repository [13]. We analyze the
quality of our method by selecting the best CF1F2 -integrals
and comparing them against the state-of-the-art fuzzy classi-
fiers, the best CF -integral presented in [12] and the classical
probabilistic sum [14] applied in the FRM of a FRBCS as it
is a known non-averaging function. The quality of the results
is supported by a proper statistical study as suggested in the
specialized literature [15], [16], [17].

The paper is organized as follows. In Section II, we in-
troduce the background necessary to understand the paper.
In Section III, we introduce the concept of CF1F2

-integrals,
showing that these functions are OD increasing functions
satisfying appropriate conditions. We describe in Section IV
the use of CF1F2

-integrals in the FRM and the evolutionary
learning of the fuzzy measure. Section V introduces the experi-
mental framework, describing the datasets along with the setup
configuration for the different methodologies and the statistical
tests used for performance comparison. In Section VI we
present the experimental results achieved in testing by CF1F2 -
integrals and we draw the main conclusions in Section VII.

II. PRELIMINARIES

In this section, we present some basic theoretical concepts
that are necessary to develop the paper. Any n-ary function
F : [0, 1]n → [0, 1] is named fusion function as it receives n
values and it fuses them returning a single one.

Definition 1. [18], [19] A fusion function A : [0, 1]n → [0, 1]
is an aggregation function whenever the following conditions
hold:

(A1) A is increasing1 in each argument: for each i ∈
{1, . . . , n}, if xi ≤ y, then A(x1, . . . , xn) ≤
A(x1, . . . , xi−1, y, xi+1, . . . , xn);

(A2) A satisfies the boundary conditions: (i) A(0, . . . , 0) = 0
and (ii) A(1, . . . , 1) = 1.

An aggregation function A : [0, 1]n → [0, 1] is said to
be averaging if and only if: (AV) ∀(x1, . . . , xn) ∈ [0, 1]n :
min{x1, . . . , xn} ≤ A(x1, . . . , xn) ≤ max{x1, . . . , xn}.

Definition 2. [20] Let ~r = (r1, . . . , rn) be a real n-
dimensional vector, ~r 6= ~0. A function F : [0, 1]n → [0, 1]
is said to be ~r-increasing if for all ~x = (x1, . . . , xn) ∈ [0, 1]n

and for all c > 0 such that ~x+c~r = (x1+cr1, . . . , xn+crn) ∈
[0, 1]n it holds

F (~x+ c~r) ≥ F (x1, . . . , xn). (1)

Similarly, one defines an ~r-decreasing function.

1For an increasing (decreasing) function we do not mean a strictly increas-
ing (decreasing) function.

Definition 3. [6] A function PA : [0, 1]n → [0, 1] is said to be
an n-ary pre-aggregation function if the following conditions
hold:

(PA1) Directional increasingness: there exists
~r = (r1, . . . , rn) ∈ [0, 1]n, ~r 6= ~0, such that PA
is ~r-increasing;

(PA2) Boundary conditions: (i) PA(0, . . . , 0) = 0 and (ii)
PA(1, . . . , 1) = 1.

If F is a pre-aggregation function with respect to a vector
~r we just say that F is an ~r-pre-aggregation function.

In what follows, denote N = {1, . . . , n} for an arbitrary
n > 0.

Definition 4. [5], [21][22, Definition 1.77] A function m :
2N → [0, 1] is said to be a fuzzy measure if, for all X,Y ⊆ N ,
the following conditions hold:

(m1) Increasingness: if X ⊆ Y , then m(X) ≤ m(Y );
(m2) Boundary conditions: m(∅) = 0 and m(N) = 1.

A fuzzy measure m is symmetric whenever m(X) = m(Y )
for all X,Y ⊆ N such that | X |=| Y |.

Definition 5. [5] Let m : 2N → [0, 1] be a fuzzy measure. The
discrete Choquet integral is the function Cm : [0, 1]n → [0, 1],
defined, for all of ~x = (x1, . . . , xn) ∈ [0, 1]n, by:

Cm(~x) =

n∑
i=1

(
x(i) − x(i−1)

)
·m
(
A(i)

)
, (2)

where
(
x(1), . . . , x(n)

)
is an increasing permutation on the

input ~x, that is, 0 ≤ x(1) ≤ . . . ≤ x(n), where x(0) = 0 and
A(i) = {(i), . . . , (n)} is the subset of indices corresponding
to the n− i+ 1 largest components of ~x.

The CC-integral [7] is a generalization of the Choquet
integral using copulas [14].

Definition 6. [7, Definition 7] Let m : 2N → [0, 1] be a fuzzy
measure and C : [0, 1]2 → [0, 1] a copula. The CC-integral
with respect to m is the function CCm : [0, 1]n → [0, 1], defined,
for all of ~x = (x1, . . . , xn) ∈ [0, 1]n, by:

CCm(~x) =

n∑
i=1

(
C
(
x(i),m

(
A(i)

))
− C

(
x(i−1),m

(
A(i)

)))
.

(3)

III. A GENERALIZATION OF CC-INTEGRALS USING TWO
FUSION FUNCTIONS F1 AND F2

In this section, we introduce a method for constructing a
generalization of CC-integrals, named CF1F2

-integral, using
two fusion functions F1 and F2 satisfying some specific
properties instead of the same copula C (Section III.A). We
also present a mechanism for choosing the functions F1 and
F2 that will be applied in the FRM of FRBCSs (Section III.B).
Finally, we prove that CF1F2

-integrals built with some specific
pairs of fusion functions F1 and F2 are non-averaging OD
increasing functions satisfying proper boundary conditions to
be applied in the FRM (Section III.C).
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A. Defining the CF1F2
-integrals

In this subsection, we aim at introducing the definition of
CF1F2

-integrals and analyzing some properties for specific
pairs of fusion functions F1 and F2.

An important concept used in this paper is the dominance
(or, conversely, subordination) property:
(DM) F1-Dominance (or, equivalently, F2-Subordination):

F1 ≥ F2, that is: ∀ x,y ∈ [0,1]: F1 (x,y) ≥ F2(x,y)

Definition 7. Let m : 2N → [0, 1] be a symmetric fuzzy
measure and F1, F2 : [0, 1]2 → [0, 1] be two fusion functions
fulfilling:
(i) F1-dominance
(ii) F1 is (1, 0)-increasing,

A CF1F2
-integral is defined as a function C

(F1,F2)
m : [0, 1]n →

[0, 1], given, for all x ∈ [0, 1]n, by

C(F1,F2)
m (~x) = (4)

min

{
1, x(1)+

n∑
i=2

F1

(
x(i),m

(
A(i)

))
−F2

(
x(i−1),m

(
A(i)

))}
,

where (x(1), . . . , x(n)) is an increasing permutation on the
input ~x, that is, 0 ≤ x(1) ≤ . . . ≤ x(n), with the convention
that x(0) = 0, and A(i) = {(i), . . . , (n)} is the subset of
indices of n− i+ 1 largest components of ~x.

Observe that it is immediate that C(F1,F2)
m is well defined,

for any pair F1, F2 : [0, 1]2 → [0, 1] and a symmetric fuzzy
measure m.

Remark 1. Observe that the first element of the summation
in the definition of C(F1,F2)

m is just x(1) instead of

F1

(
x(1),m

(
A(1)

))
−F2

(
x(0),m

(
A(1)

))
.

This is considered to avoid the initial discrepant behavior of
non-averaging functions in the initial phase of the aggregation
process. For example, consider an unitary vector ~x = 0.9 ∈
[0, 1] and F1 = F2 = AV G, where AV G(x, y) = x+y

2 is the
arithmetic mean. Then, if we included the first element in the
summation of the integral the result would be:

C
(F1,F2)
m (~x) (5)

=min

{
1,

n∑
i=1

F1

(
x(i),m

(
A(i)

))
−F2

(
x(i−1),m

(
A(i)

))}
,

=min

{
1,

0.9 + 1

2
− 0 + 1

2

}
= 0.45 6= 0.9.

Observe here the large discrepancy of the result, since one
expects that the aggregated value would be 0.9. Using our
definition of CF1F2 -integral (Equation (4)) this unexpected
behavior is avoided and the result is 0.9.

Table I shows the definitions of fusion functions F :
[0, 1]2 → [0, 1] that are (1, 0)-increasing (condition (ii) of
Definition 7) and, thus, candidates to be used as F1 and/or
F2 in the definition of CF1F2 -integrals. The expression of the
function is introduced in the first column whereas in the second
and in the third columns we show the family (or families)

TABLE I: (1, 0)-increasing fusion functions initially consid-
ered in this study

Definition Family Reference
TM (x, y) = min{x, y} t-norm, copula [23]
TP (x, y) = xy t-norm, copula [23]
TŁ(x, y) = max{0, x+ y − 1} t-norm, copula [23]

THP (x, y) =

{
0 if x = y = 0

xy
x+y−xy otherwise t-norm, copula [23]

TDP (x, y) =

 x if y = 1
y if x = 1
0 otherwise

t-norm [23]

OB(x, y) = min{x√y, y
√
x} overlap function, copula [24], [25]

OmM (x, y) = min{x, y}max{x2, y2} overlap function, copula [26], [27], [28], [29]
Oα(x, y) = xy(1 + α(1− x)(1− y)), overlap function, copula [12], [14]

α ∈ [−1, 0[ ∪ ]0, 1]

ODiv(x, y) =
xy+min{x,y}

2
overlap function, copula [14]

GM(x, y) =
√
xy overlap function [30]

HM(x, y) =

{
0 if x = 0 or y = 0

2
1
x
+ 1
y

otherwise overlap function [30]

S(x, y) = sin
(
π
2
(xy)

1
4

)
overlap function [30]

CF (x, y) = xy + x2y(1− x)(1− y) copula [23], [7]
CL(x, y) = max{min{x, y

2
}, x+ y − 1} copula [14], [7]

AV G(x, y) = x+y
2

overlap

FRS(x, y) = min
{

(x+1)
√
y

2
, y
√
x
}

aggregation function [12]

FGL(x, y) =
√
x(y+1)

2
aggregation function [12]

FBPC(x, y) = xy2 aggregation function [18]

Fα(x, y) =

{
αx if x < y
max{αx, y} otherwise , 0 < α < 1 Pre-aggregation function [12]

FNA(x, y) =

{
x if x ≤ y
min{x

2
, y} otherwise Pre-aggregation function [12]

FNA2(x, y) =


0 if x = 0
x+y
2

if 0 < x ≤ y
min{x

2
, y} otherwise

Pre-aggregation function [12]

FIM (x, y) = max{1− y, x} Non Pre-Aggregation function [12]
FIP (x, y) = 1− y + xy Non Pre-Aggregation function [12]
∗ When α = 0, we have that Oα = TP , the product t-norm.

of the function and the source where they were published,
respectively.

As we have mentioned, all these functions fulfill condition
(ii) of Definition 7. Therefore, we need to study whether they
fulfill condition (i). Consequently, we conduct the study about
the dominance property in the next subsection.

B. Analyzing the Dominance (Subordination) property

In this paper, CF1F2
-integrals are applied in the FRM of a

FRBCS (see Section IV). To select the pairs of fusion functions
(F1, F2) to be used in the construction of the CF1F2

-integrals,
we consider the analysis of the dominance property. This
property plays then a central role in the construction of the
selected CF1F2

-integrals discussed in this paper. We analyze
such property in order to determine which fusion functions,
among those presented in Table I, are more suitable to be F1

or F2 in the construction the CF1F2
-integrals.

To do so, we define the concepts of dominance and subor-
dination strength degrees. Let F = {F1, . . . , Fm} be a set of
m fusion functions. The dominance and subordination strength
degrees, DSt and SSt, of a fusion function Fi ∈ F are defined
for j ∈ {1, . . . ,m} as follows:

DSt(Fi) =
1

m

m∑
j=1

{
1 if Fi ≥ Fj ,
0 otherwise · 100%

SSt(Fi) =
1

m

m∑
j=1

{
1 if Fi < Fj ,
0 otherwise. · 100%

That is, the DSt and SSt degrees of a fusion function
F take into account the number of functions in which F
dominates, or is subordinated to, respectively.

Table II presents the analysis of the dominance property
for the functions presented in Table I. In this table a cell is
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TABLE II: Analysis of the dominance property of the fusion functions introduced in Table I
TP TM TŁ TDP THP OB OmM Oα ODiv GM HM S FRS CF CL FGL FBPC FNA Fα FNA2 AVG FIM FIP DSt (%)

TP X X X X X 21.74

TM X X X X X X X X X X X X X 56.52

TŁ X X 8.70

TDP X 4.35

THP X X X X X X X X 34.78

OB X X X X X X X 30.43

OmM X X X 13.04

Oα X X X X X X 26.09

ODiv X X X X X X X X 34.78

GM X X X X X X X X X X X X X X X X 69.57

HM X X X X X X X X X X X X X X 60.87

S X X X X X X X X X X X X X X X X X X X X X X X 100

FRS X X X X X X X X 34.78

CF X X X X X X 26.09

CL X X X X 17.39

FGL X X X X X X X X X X X X X X X X X X 78.26

FBPC X X 8.70

FNA X X 8.70

Fα X X 8.70

FNA2 X X X 13.04

AVG X X X X X X X X X X X X X X X X X X X 82.61

FIM X X X X X X X X X X X X X X X 65.22

FIP X X X X X X X X X X X X X X X X 69.57

SSt (%) 60.87 30.43 69.57 95.65 34.78 43.48 65.22 52.17 34.78 13.04 17.39 0.00 17.39 39.13 34.78 4.35 73.91 39.13 21.74 8.70 4.35 8.70 4.35

marked with the X symbol when the function introduced in
the row dominates the one shown in the column. Furthermore,
we also show in this table the DSt of the function in the row
(it conforms the last column) and the SSt of the function in
the column (it conforms the last row).

Since the number of possible combinations of fusion func-
tions, marked with X in Table II, for F1 and F2 is too high
(201 different combinations), we propose a methodology to
reduce the scope of this study. We consider the DSt and
SSt degrees to be Low, Medium and High when they are
less than 33%, between 34% and 66% and larger than 66%,
respectively. Then, we have selected three functions of each
category (Low, Medium, High) for both DSt and SSt to
play the role of functions F1 and/or F2 respectively. Observe
that we selected 9 different functions considering the DSt and
SSt degrees. Precisely, we selected the three functions having
the lowest, medium and highest degrees in each category.
The selected functions according to this methodology are
presented in Table III, which imply in a total number of
possible combinations of 81. However, only 51 out of these 81
functions can be used as (F1, F2) pairs as they have an active
X in Table II, which means that they are pairs of functions
fulfilling the (DM) property.

C. The selected CF1F2
-integrals as non-averaging OD mono-

tone functions

For the aggregation process in the FRM to be well defined
it is necessary an operator that has two characteristics. First,
some kind of increasingness property is required in order to
guarantee that the more information is provided the higher is
the aggregated value (condition (A1) of Def. 1 and Def. 3).
Second, the aggregation operator must satisfy boundary con-
ditions related to the domain [0, 1] (condition (A2) of Def. 1
and Def. 3).

Our selected CF1F2
-integrals (Table III) satisfy the boundary

conditions (A2) of an (pre) aggregation function. However, our

TABLE III: Summary of the adopted functions according to
dominance/subordination strength degrees

Strength degree Dominance (F1) Subordination (F2)

Low
TDP S
FNA GM
OB TM

Medium
THP TP
TM FNA
FIM THP

High

GM TŁ
FGL FBPC
S TDP

selected CF1F2 -integrals are neither increasing nor direction-
ally increasing. Nevertheless, we have noticed that they do
present some kind of increasingness property. In fact, they are
Ordered Directionally (OD) monotone functions [31]. Such
functions are monotonic along different directions according
to the ordinal size of the coordinates of each input.

In this section, we prove such properties for our best CF1F2
-

integral, according to the results shown in Section VI (GM–
FBPC), since the proofs for the other pairs of fusion functions
F1 and F2, considered in this paper, are analogous. We also
show that they are non-averaging functions.

Definition 8. [31] Consider a function F : [0, 1]n → [0, 1] and
let ~r = (r1, . . . , rn) be a real n-dimensional vector, ~r 6= ~0.
F is said to be ordered directionally (OD) ~r-increasing if,
for each ~x ∈ [0, 1]n, any permutation σ : {1, . . . , n} →
{1, . . . , n} with xσ(1) ≥ . . . ≥ xσ(n), and c > 0 such that 1 ≥
xσ(1)+cr1 ≥ . . . ≥ xσ(n)+crn, it holds that F (~x+c~rσ−1) ≥
F (~x), where ~rσ−1 = (rσ−1(1), . . . , rσ−1(n)). Similarly, one
defines an ordered directionally (OD) ~r-decreasing function.

Theorem 1. For any symmetric fuzzy measure m : 2N → [0, 1]

and k > 0, C(GM,FBPC)
m , where GM and FBPC are defined

in Table I, is an (OD) (k, 0, . . . , 0)-increasing function.

Proof. For all ~x ∈ [0, 1]n and permutation σ : {1, . . . , n} →
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{1, . . . , n} with xσ(1) ≥ . . . ≥ xσ(n) and c > 0 such that
xσ(i)+ cri ∈ [0, 1], for i ∈ {1, . . . , n}, and 1 ≥ xσ(1)+ cr1 ≥
. . . ≥ xσ(n)+ crn, for ~rσ−1 = (rσ−1(1), . . . , rσ−1(n)), one has
that:

C
(GM,FBPC)
m (~x+ c~rσ−1)

= min
{
1, (x(1) + c · rσ−1(1))

+

n−1∑
i=2

(√
(x(i) + c · rσ−1(i)) ·m(A(i))

−(x(i−1) + c · rσ−1(i−1)) ·m(A(i))
2
)

+
√

(x(n) + c · rσ−1(n)) ·m(A(n))

−(x(n−1) + c · rσ−1(n−1)) ·m(A(n))
2
}

= min
{
1, (x(1) + c · 0)

+

n−1∑
i=2

(√
(x(i) + c · 0) ·m(A(i))

−(x(i−1) + c · 0) ·m(A(i))
2
)

+
√

(x(n) + c · k) ·m(A(n))

−(x(n−1) + c · 0) ·m(A(n))
2
}

≥ min
{
1, x(1)+

n−1∑
i=2

(√
x(i) ·m(A(i))− x(i−1) ·m(A(i))

2
)

+
√
x(n) ·m(A(n))− x(n−1) ·m(A(n))

2
}

= C
(GM,FBPC)
m (~x),

since GM dominates FBPC and GM is (1, 0)-increasing.
Thus, C

(GM,FBPC)
m is OD ( k, 0, . . . , 0)-increasing, for k >

0.

Theorem 2. For any symmetric fuzzy measure m : 2N →
[0, 1], C(GM,FBPC)

m satisfies the boundary conditions (A2).

Proof. Consider ~0 = (0, . . . , 0) ∈ [0, 1]n and ~1 = (1, . . . , 1) ∈
[0, 1]n. It follows that:

C
(GM,FBPC)
m (~0)

= min

{
1, 0 +

n∑
i=2

√
0 ·m(A(i))−0 ·m(A(i))

2

}
= 0

C
(GM,FBPC)
m (~1)

= min{1, 1 +
n∑
i=2

√
1 ·m(A(i))−1 ·m(A(i))

2} = 1

Proposition 1. For any symmetric fuzzy measure m : 2N →
[0, 1], C(GM,FBPC)

m is non-averaging.

Proof. Suppose that C
(GM,FBPC)
m is averaging. Now take

~x = (0.2, 0.5, 0.7, 0.9) and the power measure (Equation (10)),
with q = 1. It follows that

C
(GM,FBPC)
m (~x)

= min

{
1, 0.2 +

3∑
i=1

(GM(x(i),m(A(i)))

−FBPC(x(i−1),m(A(i))))
}

= min

{
1, 0.2 +

3∑
i=1

(√
x(i) ·m(A(i))− x(i−1) ·m(A(i))

2
)}

= min
{
1, 0.2 +

√
0.5 · 0.75− 0.2 · 0.752

+
√
0.7 · 0.5− 0.5 · 0.52 +

√
0.9 · 0.25− 0.7 · 0.252

}
= min{1, 1.59} > 0.9 = max{0.2, 0.5, 0.7, 0.9}.

This a contradiction with the averaging property (AV).

IV. USING CF1F2
-INTEGRALS IN FUZZY RULE-BASED

CLASSIFICATION SYSTEMS

In this section, our goal is to describe the main components
of FRBCSs and the used fuzzy classifier. Furthermore, we
present the considered FRM containing the main modification
with respect to the original, which consist of the inclusion of
the CF1F2

-integrals in the aggregation stage.
A classification problem consists of t training examples

xp = (xp1, . . . , xpn, yp), with p = 1, . . . , t, where xpi,
with i = 1, . . . , n, is the value of the i-th variable and
yp ∈ C = {C1, . . . , CM} is the label of the class of the p-th
training example, and M is the number of classes.

In this paper, we focus on FRBCSs. Specifically, we use the
Fuzzy Association Rule-based Classification model for High
Dimensional Problems (FARC-HD [10]). The structure of the
fuzzy rules generated by this classifier has the following form:

Rule Rj : Ifx1 isAj1 and . . . andxn isAjn (6)
then Class isCj withRWj ,

where Rj is the label of the j-th rule, Aji is a fuzzy set
representing a linguistic term modeled by a triangular shaped
membership function. Cj is the class label and RWj ∈ [0, 1]
is the rule weight [32], which in this case is computed as the
confidence of the fuzzy rule.

In order to generate the set of fuzzy rules, FARC-HD applies
the following three stages:

• Fuzzy association rule extraction for classification: In this
step, an initial fuzzy rule base is obtained. To accomplish
it, for each class, a search tree [33] is constructed, whose
maximum depth is limited (parameter depthmax) . For
each linguistic label (item), the support and confidence
are calculated in order to obtain the frequent itemsets
(set of items). Then, a fuzzy rule is generated for each
frequent itemset.

• Candidate rule prescreening: This stage considers a
weighting pattern scheme [34] to select the best generated
fuzzy rules.

• Genetic rule selection and lateral tuning: At this point,
the previously generated fuzzy rules are optimized so as
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to enhance as much as possible the system’s performance.
To do so, the CHC evolutionary algorithm [35] is applied
to carry out a rule selection process and the lateral tuning
of the fuzzy sets [36].

A. Application of CF1F2 in the fuzzy reasoning method

Once the knowledge base has been learnt and a new
example has to be classified, the FRM is responsible to
perform this task. As we have mentioned, we modify the
classical FRM of FARC-HD [10] to include the usage of
CF1F2 -integrals in its third stage. The steps of the new FRM
are the following ones:

1) Matching degree: It represents the importance of the
activation of the if-part of the rules for the example to be
classified xp, using a t-norm T : [0, 1]2 → [0, 1].

µAj (x) = T (µAj1(x1), . . . , µAjn(xn)), j = 1, . . . , L,
(7)

where L is the number of rules.
2) Association degree: For each rule, the matching degree is

weighted by its rule weight:

bkj (x) = µAj (x) ·RW k
j , (8)

with k = Class(Rj) and j = 1, . . . , L.
3) Example classification soundness degree for all classes:

This is the stage in which the CF1F2
-integrals are applied.

At this point, for each class, all information given by the
fired fuzzy rules is aggregated. To do so, the positive
information provided by the previous step is aggregated
by Equation (9).

Sk(x) = C
CF1F2
mk

(
bk1(x), . . . , b

k
L(x)

)
, (9)

with k = Class(Rj) and bkj > 0, where CF1F2
is the

CF1F2 -integral considered to perform the aggregation. We
remind that we use as F1 and F2 the functions presented
Table III (Section III-B). CF1F2

-integrals are functions
that generalize the Choquet integral (Equation (2)) and
consequently, they use a fuzzy measure. In this work, we
use the symmetric fuzzy measure applied in our previous
papers, that is, the power measure:

mk(X) =

(
|X|
n

)qk
, with qk > 0, (10)

where the exponent qk is genetically learnt (see sec-
tion IV-B) by an evolutionary algorithm, to obtain the
most suitable value, qk, for each class k. Consequently,
we use a different measure for each class.

4) Classification: The final decision is made in this step.
To do so, a function F : [0, 1]M → {1, . . . ,M} is
applied over the results obtained by example classification
soundness degrees of all classes:

F ((S1, . . . , SM ) = arg max
k=1,...,M

(Sk). (11)

B. Evolutionary learning of the fuzzy measure for each class

The original FARC-HD algorithm makes usage of the CHC
evolutionary algorithm [35] to perform the lateral tuning of
the fuzzy sets [36] and select the best set of fuzzy rules. In
this paper we also learn a fuzzy measure for each class [4], k,
by learning the qk parameter as shown in Equation (10). The
specific features of our evolutionary model are:

1) Coding Scheme: The chromosome is divided into three
parts.
(i) The first one considers the genes related to the tuning

of lateral position of the membership functions and it
has as many genes as the number of linguistic labels,
where the range of each gene is [-0.5, 0.5] (for more
details see [36]).

(ii) The second part has one gene per class, k, and it
is used to learn the exponent qk. It is encoded in the
range [0.01, 1.99]. However, as the real range is [0.01,
100] as showed in [4] the values of the genes have to
be decoded in this range (See [4], [7] for details).

(iii) The last part of the chromosome is related to the
rule selection and it has as many genes as rules. Each
gene determines if the corresponding rule is used in
the FRM or not, by setting it to 1 (selected) or to 0
(not selected).

2) Chromosome Evaluation: We use as fitness function the
standard accuracy rate, which is defined as follows.

Fitness(C) =
#Hits

N
,

where #Hits is the number of correctly classified exam-
ples and N is the total number of examples.

3) Initial Gene Pool: The population is composed by 50 in-
dividuals. Having one chromosome initialized by setting
to 0 the value of all the genes to perform the lateral
tuning, those used to learn the exponent of the fuzzy
measure are set to 1.0 to obtain the classical cardinality
fuzzy measure and the genes to perform the rule selection
process are set to 1. The remainder chromosomes are
randomly generated in the corresponding ranges of the
genes.

4) Crossover Operator: We use the Parent Centric BLX
(PCBLX) crossover operator [37] for the real coding part
and the HUX [38] for the binary coded part. Two parents
are crossed if their hamming distance divided by 2 is
superior than the threshold Th, which is initialized as:

Th =
(#Genes ·BITSGENE)

4.0
(12)

We use the Gray code to convert each real coded gene to
binary coding with a fixed number of bits for each gene
(BITSGENE).

5) Restarting Approach: To increase the convergence of the
algorithm, if new individuals are not included in the new
population, we decrease the threshold by BITSGENE.
When the threshold is smaller than 0 we pick the best
chromosome (elitist scheme) and reset all the population
with random values.

6) Stopping Criteria: The search process is stopped when:
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(i) The maximum number of trials is reached.
(ii) A 100% is obtained as the fitness of the best indi-

vidual.

V. EXPERIMENTAL FRAMEWORK

In this section we present the experimental framework used
in this paper. We start by describing the datasets along with
the configuration of the classifiers considered in this paper.
After that, the statistical methods that are used for performance
comparison.

A. Datasets and classifiers’ set-up

In this study, to assess the performance of our approach, we
consider 33 numeric datasets selected from the KEEL2 dataset
repository [39]. The features of the datasets are summarized in
Table IV, showing for each one its identification (ID), followed
by the name of the dataset (Dataset), the number of samples
(#Samp.), the number of features (#Feat.) and the number of
classes (#Class).

Examples containing missing information were removed,
e.g., in the wisconsin dataset. Also, the datasets magic, page-
blocks, penbased, ring, satimage and twonorm were stratified
sampled at 10% in order to reduce their size for training.

For each dataset, we have considered a 5-fold cross-
validation technique, that is, the dataset is split into five
random partitions, with 20% of the examples and maintaining
the class distribution. Then, we use four partitions for training,
which involves the learning of the system and its optimization
by applying the evolutionary algorithm, and the remainder is
used for testing. This process is repeated five times, consid-
ering a different partition for testing each time. Moreover, we
have repeated the process three times using a different seed in
each one. Consequently, the result reported for each method is
the average of the accuracy rate obtained in the fifteen testing
folds.

In order to show the quality of our method, we compare
it versus three state-of-the-art FRBCSs, namely, FURIA [11],
IVTURS [9] and the original FARC-HD [10]. We show the
configuration of these algorithms in Table V. In this table, we
have to stress that our new proposal and IVTURS share the
same fuzzy rule learning algorithm than that of FARC-HD and
consequently, we use the same values for their parameters to
perform a fair comparison.

B. Statistical tests for comparing performances

To give statistical support to the analysis of the results, we
consider some hypothesis validation techniques [16], [40], that
is, non-parametric tests, taking into account that the conditions
that guarantee the reliance of the parametric tests cannot be
warranted [17].

Specifically, we use the aligned Friedman rank test [41]
to discover statistical differences among a group of results
and to verify the quality of a method in comparison to other
approaches. Observe that the algorithm achieving the lowest
average ranking is the best one.

2http://www.keel.es

TABLE IV: Properties of the datasets considered in this study

Id. Dataset #Samp. #Feat. #Class
App Appendicitis 106 7 2
Bal Balance 625 4 3
Ban Banana 5300 2 2
Bnd Bands 365 19 2
Bup Bupa 345 6 2
Cle Cleveland 297 13 5
Con Contraceptive 1473 9 3
Eco Ecoli 336 7 8
Gla Glass 214 9 6
Hab Haberman 306 3 2
Hay Hayes-Roth 160 4 3
Ion Ionosphere 351 33 2
Iri Iris 150 4 3
Led led7digit 500 7 10
Mag Magic 1,902 10 2
New Newthyroid 215 5 3
Pag Pageblocks 5,472 10 5
Pen Penbased 10,992 16 10
Pho Phoneme 5,404 5 2
Pim Pima 768 8 2
Rin Ring 740 20 2
Sah Saheart 462 9 2
Sat Satimage 6,435 36 7
Seg Segment 2,310 19 7
Shu Shuttle 58,000 9 7
Son Sonar 208 60 2
Spe Spectfheart 267 44 2
Tit Titanic 2,201 3 2
Two Twonorm 740 20 2
Veh Vehicle 846 18 4
Win Wine 178 13 3
Wis Wisconsin 683 11 2
Yea Yeast 1,484 8 10

TABLE V: Parameter setup of the considered algorithms

Algorithm Configuration

FURIA
Number of optimizations: 2
Number of folds: 3
Linguistic labels per variable: 5
Conjunction operator: Product t-norm

FARC-HD, IVTURS and Rule weight: Confidence
CF1F2

-integrals Minimum support: 0.05
Minimum confidence: 0.8
Depth of the search tree: 3
Number of fuzzy rules that cover each example: 2
Population size: 50
Gray codification: 30 bits per gene
Number of evaluations: 20.000

Moreover, we also use the Holm post-hoc test [42] to find
the method that reject the equivalence hypothesis with respect
to the best approach found with the aligned Friedman rank
test. We compute the adjusted p-value (APV) considering that
multiple tests are performed. Then, it is possible to directly
compare the APV with the level of significance α, and, thus,
we are capable of rejecting the null hypothesis.

Finally, we perform pair-wise comparisons by using the
Wilcoxon test [43].

VI. EXPERIMENTAL RESULTS

This section is aimed at analyzing the performance of our
new approach. To do so, we have separated the study in
two parts. In the first one, we present the results obtained
by the CF1F2

-integrals constructed using the pairs selected in
section III-B (Table III). In the second one, in order to show
the quality of our method, we perform comparisons against
different state-of-the-art FRBCSs.
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A. Analysis of the results of different CF1F2
-integrals

The results achieved in test by all the constructed CF1F2
-

integrals are presented in Table VI. The rows represent the
functions used as F1, which are dominant in relation to the
functions F2, which are shown by columns and they have sub-
ordination characteristics. The result of each cell is the average
testing result and the standard deviation among the 33 datasets
considered in the study. We have to point out that we only
show the averaged results due to space limitations. The com-
plete results can be accessed in – https://github.com/Giancarlo-
Lucca/CF1F2-Integrals. In Table VI we highlight in boldface
the maximum accuracy per row and we underline the best
accuracy for each column. Observe that blank spaces are
related to combinations that could not be performed, since
the dominance property is not satisfied for the specific pair of
functions.

In a general looking, it is possible to observe that the
largest accuracy is obtained by picking the function FGL as
F1 and TM as function F2. This pair is a combination of
a function having a high dominance as F1 combined with
a function with a low subordination as F2. Moreover, we
can observe that for the functions to be F1 the results are
better when they are paired with a function F2 with a high
subordination degree (results highlighted in boldface). The
opposite is also observed, since for each F2 function, the
best results are obtained when considering a F1 with high
dominance (underlined results).

Analyzing the results by categories (high, medium and low)
according to the functions F1, we have that:

• Using a function with high dominance characteristics
as F1 provides good results, since eight of the top
ten best classifications, are pairs with this characteristic.
Observe that, if we pick the functions GM and FGL
as F1, the results tend to present a stability since the
accuracies could be considered as similar. Regarding the
sine function, S, its unsatisfactory behavior could occur
since the differences between the pair of functions are too
wide, which may imply a decrease on the performance
of the classifier. Observe that in [30] this function also
presents a similar behavior.

• The usage of functions having medium dominance char-
acteristic as F1 (THP , TM and FIM ) produced 16 pos-
sible combinations. The combination of these functions
with functions having a low subordination (TM ) achieved
an accuracy mean inferior than 80%. The same happened
with the medium subordination function, FNA and THP .
We believe that this occurred because these functions
produce generally averaging combinations and, according
to our previous paper [12], the results when using non-
averaging operators excels those of averaging ones. For
the remaining cases, the achieved mean is superior than
80%.

• Applying functions with low dominance as F1, in general,
does not fulfill the dominance property and, for this rea-
son, less pairs can be used to construct CF1F2 -integrals.
However, from the seven pairs constructed in this study,
three of them provide poor results (less than 80%) and

the remainder ones obtain satisfactory results.

B. Comparisons against other non-averaging aggregation
functions and state-of-the-art fuzzy classifiers

As mentioned before, in general the obtained results tend
to be stable and satisfactory. Thus, in order to demonstrate
the quality of our approach, we compared the performance of
the CF1F2 -integral that achieved the highest accuracy (FGL–
TM ) against the best non-averaging function of our previous
paper [12] (FNA2), a classical non-averanging aggregation
operator like the probabilistic sum (P∗) and three state-of-the-
art fuzzy classifiers, namely, FURIA [11], IVTURS [9] and
FARC-HD [10].

The results achieved in testing by the different methods, are
detailed in Table VII by columns. In each row of this table
we present the accuracy and the standard deviation obtained
per each dataset. Furthermore, we highlight in boldface the
best achieved result for each one and, in the two last rows, we
present the number of datasets in which the classifier achieves
the best (#Wins) and the worst result (#Losses).

From the obtained results, performing just a simple numer-
ical comparison, it is possible to observe that FURIA is the
method achieving the best global mean and the largest number
of best classification results. The CF1F2

-integral achieves the
second position in both criteria. However, we have to stress
that whilst FURIA provides the worst result in fourteen
datasets, while our approach achieves the worst results in
a single case. Therefore, we can observe that our method
provides a good performance in a regular way. This affirmation
can also be made to the CF -integral, FNA2, but in this case
it provides the best results in a less number of datasets. For
the remainder methods, the results are worse than those of
FURIA and our new approach, since the number of datasets
having the best results are less and the number of loss cases
are larger.

In order to highlight the behavior or our new method, if
we look at the results in Table VI and we compare them
against the ones of Table VII, we can find a large number of
combinations leading to a global mean equal or larger than that
of the compared methods (except that of FURIA). Specifically,
the number of combinations having an equal or greater average
result is 43, 32, 29 and 28 when compared against IVTURS,
P∗, FARC-HD and FNA2, respectively.

To support these findings we have conducted a set of
statistical studies (as many as combinations in Table VII) using
the aligned Friedman rank test to compare each CF1F2 -integral
with the remainder methods considered in this section, whose
obtained results are available in Table VIII. Specifically, in
this table we only show the results of those CF1F2

-integrals
(in columns) that obtain the best rank and consequently, they
are used as control method in the post-hoc Holm’s test, whose
obtained APV is shown in brackets. If there are statistical
differences between two methods, considering 0.10 (10%) as
the level of confidence, we underline the APV.

From the obtained results, it is noticeable that nine different
CF1F2 -integrals are considered as control method, presenting
statistical differences against IVTURS (all cases), FARC-HD
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TABLE VI: Accuracy mean achieved in testing by different CF1F2 -integrals

F2 (Subordination)
Low Medium High

S GM TM TP FNA THP TDP FBPC TŁ

F
1

(D
om

in
an

ce
) Low

TDP 76.96 ± 3.54
FNA 76.74 ± 3.54 80.41 ± 3.18
OB 79.96 ± 3.14 80.46 ± 3.08 80.18± 3.14 80.43 ± 3.31

Medium
THP 80.18 ± 3.34 78.64 ± 3.79 80.40 ± 3.16 80.37 ± 3.26 80.35 ± 3.33
TM 79.94 ± 3.25 80.30 ± 3.16 79.43 ± 3.45 79.90 ± 3.22 80.45 ± 3.19 80.49 ± 3.24 80.53 ± 3.10
FIM 79.89 ± 3.24 80.26 ± 3.28 79.95 ± 3.23 80.18 ± 3.21 80.26 ± 3.05 80.04 ± 3.18 80.27 ± 3.21

High
GM 79.72 ± 3.12 80.49 ± 3.27 80.46 ± 3.34 80.43 ± 3.36 80.50 ± 3.24 80.44 ± 3.39 80.68 ±0.77 80.64 ± 3.24
FGL 80.48 ± 3.21 80.72 ± 3.33 80.60 ± 3.13 80.54 ± 3.31 80.43 ± 3.21 80.40 ± 3.18 80.65 ± 3.25 80.41 ± 3.29

S 76.90 ± 3.56 79.92 ± 3.31 79.70 ± 3.29 79.89 ± 3.18 79.65 ± 3.40 79.75 ± 3.34 79.97 ± 3.37 80.00 ± 3.22 80.21 ±3.22

TABLE VII: Results achieved in testing by different FRMs
Dataset FURIA IVTURS FARC-HD P∗ FNA2 (FGL, TM )
App 87.45 ± 4.46 83.97 ± 5.03 83.65 ± 6.92 84.60 ± 5.75 85.83 ± 4.34 83.64 ± 7.37
Bal 83.57 ± 1.45 85.28 ± 1.70 86.83 ± 1.74 86.56 ± 2.15 87.84 ± 1.94 87.89 ± 2.02
Ban 88.43 ± 1.10 81.55 ± 1.20 85.84 ± 1.34 85.18 ± 1.10 84.58 ± 1.20 84.66 ± 0.89
Bnd 65.42 ± 5.53 67.09 ± 3.82 69.11 ± 5.51 69.31 ± 6.83 69.58 ± 5.26 70.35 ± 7.43
Bup 66.67 ± 3.97 64.73 ± 4.46 66.09 ± 3.84 62.61 ± 5.78 63.38 ± 5.07 67.15 ± 5.03
Cle 56.35 ± 2.70 58.81 ± 4.31 56.55 ± 3.82 59.03 ± 2.60 56.21 ± 5.78 57.57 ± 3.93
Con 54.74 ± 1.45 53.16 ± 1.94 53.23 ± 2.04 53.16 ± 2.50 53.75 ± 2.17 53.54 ± 1.80
Eco 80.26 ± 3.89 79.27 ± 3.40 81.35 ± 3.59 80.66 ± 3.66 80.37 ± 4.65 81.55 ± 3.94
Gla 71.35 ± 6.63 66.69 ± 8.20 65.44 ± 6.83 65.75 ± 5.23 66.99 ± 5.60 65.91 ± 5.42
Hab 72.54 ± 3.14 72.63 ± 8.27 72.75 ± 5.46 71.00 ± 4.56 71.11 ± 6.31 71.22 ± 6.08
Hay 81.00 ± 7.21 80.51 ± 6.24 78.21 ± 7.16 78.44 ± 7.65 78.44 ± 7.67 79.97 ± 6.02
Ion 90.71 ± 2.76 91.66 ± 3.52 89.37 ± 4.55 87.85 ± 5.42 88.99 ± 3.63 90.70 ± 4.21
Iri 94.22 ± 5.24 96.22 ± 3.95 94.44 ± 3.98 94.67 ± 3.98 94.67 ± 4.21 94.89 ± 4.64
Led 71.40 ± 6.27 69.73 ± 5.49 69.73 ± 5.75 69.00 ± 5.65 69.87 ± 5.41 69.67 ± 5.71
Mag 80.63 ± 1.82 79.90 ± 2.76 80.39 ± 2.48 80.13 ± 2.13 79.32 ± 2.37 80.34 ± 2.44
New 94.57 ± 2.91 95.50 ± 2.52 95.19 ± 3.17 94.88 ± 3.14 95.04 ± 2.64 96.12 ± 2.82
Pag 95.50 ± 0.95 94.82 ± 1.66 94.40 ± 1.33 94.34 ± 1.28 94.82 ± 1.77 94.64 ± 1.63
Pen 91.67 ± 2.20 92.18 ± 2.94 92.58 ± 2.27 92.24 ± 2.00 92.06 ± 2.86 92.30 ± 2.38
Pho 84.91 ± 1.10 80.13 ± 0.99 81.85 ± 1.06 81.78 ± 1.42 81.21 ± 1.49 81.40 ± 0.76
Pim 75.39 ± 2.57 74.78 ± 2.60 74.65 ± 2.20 74.74 ± 2.72 75.04 ± 2.32 74.87 ± 1.72
Rin 85.68 ± 3.89 88.24 ± 2.80 91.08 ± 2.03 90.54 ± 2.41 89.46 ± 2.63 90.95 ± 1.69
Sah 70.13 ± 3.35 71.28 ± 3.04 69.33 ± 2.67 69.98 ± 4.65 69.62 ± 2.69 70.84 ± 4.67
Sat 81.91 ± 1.62 75.95 ± 2.16 79.83 ± 1.81 80.14 ± 2.43 80.25 ± 2.29 79.78 ± 2.33
Seg 97.20 ± 0.91 90.53 ± 1.55 93.03 ± 1.63 92.86 ± 1.24 92.55 ± 1.64 93.48 ± 1.44
Shu 99.68 ± 0.13 91.34 ± 2.01 94.51 ± 2.53 95.00 ± 2.40 97.12 ± 0.91 96.21 ± 0.96
Son 79.55 ± 7.02 79.36 ± 4.05 79.99 ± 4.88 81.29 ± 4.87 82.24 ± 4.79 82.43 ± 6.60
Spe 78.00 ± 8.13 80.28 ± 3.35 78.51 ± 4.03 78.63 ± 4.55 79.39 ± 2.64 78.90 ± 2.90
Tit 78.30 ± 1.34 78.87 ± 1.48 78.87 ± 1.48 78.87 ± 1.48 78.87 ± 1.48 78.87 ± 1.48
Two 87.75 ± 3.20 93.06 ± 1.37 90.68 ± 2.35 89.91 ± 2.00 91.89 ± 2.01 92.21 ± 1.75
Veh 70.45 ± 3.33 66.00 ± 2.36 69.03 ± 2.85 68.84 ± 3.33 67.65 ± 2.23 69.94 ± 3.08
Win 94.15 ± 3.79 95.50 ± 2.78 95.48 ± 4.37 95.67 ± 3.88 95.50 ± 4.59 96.82 ± 4.53
Wis 96.49 ± 1.14 96.54 ± 1.16 96.58 ± 1.06 96.73 ± 1.02 96.93 ± 1.02 96.78 ± 0.89
Yea 58.09 ± 1.87 55.77 ± 2.47 58.42 ± 1.29 58.29 ±2.20 56.94 ± 1.51 58.22 ± 1.44
Mean 80.73 ± 3.24 79.74 ± 3.20 80.21 ± 3.27 80.08 ± 3.40 80.23 ± 3.25 80.72 ± 3.33
#Wins 14 6 5 2 2 8
#Losses 10 10 4 5 2 1

(twice), P∗ (four times) and CF1F2 (two times). Regarding
FURIA, we can infer that there are no statistical differences
between both methods, since the obtained APVs are high.

In order to complete the statistical study we have performed
a set of pairwise comparisons using the Wilcoxon’s statisti-
cal test. Specifically, we compare the nine different CF1F2

-
integrals, shown in Table VIII, against the same methods in
that table. The results are available in Table IX, in which
we present for each comparison the p-value and between
parenthesis the rank obtained by the CF1F2 -integral. We must
stress that as the total sum of ranks of this test is 561, the rank
of the compared method can be calculated by the difference.
Consequently, if the rank, shown in Table IX, is superior than
280.5 it means that is favorable to our approach.

The results in Table IX reinforce that the considered CF1F2 -
integrals are equivalent to FURIA. However, looking at these
results we can observe that all the CF1F2

-integrals are statisti-
cally improving the remainder methods in all cases. Therefore,
we can conclude that our new methodology presents a com-
petitive performance versus state-of-the-art fuzzy classifiers.

VII. CONCLUSION

In this paper we have defined the concept of CF1F2 -
integrals, which are a generalization of the CC-integral in-
troduced in [7]. Specifically, these integrals use two different

fusion functions, F1 and F2, in order to try to enhance the
behavior of FRBCSs. The constructed CF1F2

-integrals are
non-averaging as most of the aggregation operators used by
state-of-the-art fuzzy classifiers are. Furthermore, these inte-
grals are OD increasing functions satisfying proper boundary
conditions. We have presented a method to select the best
combination of functions to be F1 and F2, which is based on
the concept of dominance and subordination.

From the obtained results, we can conclude that the results
of this approach could be considered as satisfactory and stable,
since the results are quite similar in many cases. Furthermore,
we showed that different CF1F2 -integrals provide competitive
results when compared against FURIA. Moreover, we have to
highlight that we enhance two state-of-the-art fuzzy classifiers
like IVTURS and FARC-HD and two non-averaging operators
like FNA2 and the probabilistic sum. All these facts support
that this approach is an efficient option and it expands the
scope of the generalizations of the Choquet integral.
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