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 

Abstract—This paper presents a new methodology for building 

and evolving hierarchical fuzzy systems. For the system design, a 

tree-based encoding method is adopted to hierarchically link low 

dimensional fuzzy systems. Such tree structural representation 

has by nature a flexible design offering more adjustable and 

modifiable structures. The proposed hierarchical structure 

employs a type-2 beta fuzzy system to cope with the faced 

uncertainties, and the resulting system is called the Hierarchical 

Interval Type-2 Beta Fuzzy System (HT2BFS). For the system 

optimization, two main tasks of structure learning and parameter 

tuning are applied. The structure learning phase aims to evolve 

and learn the structures of a population of HT2BFS in a multi-

objective context taking into account the optimization of both the 

accuracy and the interpretability metrics. The parameter tuning 

phase is applied to refine and adjust the parameters of the 

system. To accomplish these two tasks in the most optimal and 

faster way, we further employ a multi-agent architecture to 

provide both a distributed and a cooperative management of the 

optimization tasks. Agents are divided into two different types 

based on their functions: a structure agent and a parameter 

agent. The main function of the structure agent is to perform a 

multi-objective evolutionary structure learning step by means of 

the Multi-Objective Immune Programming algorithm (MOIP). 

The parameter agents have the function of managing different 

hierarchical structures simultaneously to refine their parameters 

by means of the Hybrid Harmony Search algorithm (HHS). In 

this architecture, agents use cooperation and communication 

concepts to create high-performance HT2BFSs. The performance 

of the proposed system is evaluated by several comparisons with 

various state of art approaches on noise-free and noisy time series 

prediction data sets and regression problems. The results clearly 

demonstrate a great improvement in the accuracy rate, the 

convergence speed and the number of used rules as compared 

with other existing approaches. 

 
Index Terms—Beta function, hierarchical representation, interval 

type-2 fuzzy system, multi-agent architecture, multi-objective 

structure learning. 

I. INTRODUCTION 

He recent years have witnessed a growing interest in type-

2 fuzzy logic systems due to their ability to handle high 

levels of uncertainties faced in dynamic real world and 

changing environments [1]. In fact, these uncertainties are 
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present in most applications and can be a result of different 

sources such as the presence of noise in the training data, 

linguistic uncertainties, the uncertainty in input and output 

data as they usually contain inaccurate, incomplete, weak, and 

sometimes false information [2]. Type-2 fuzzy logic systems 

have been employed in various applications including pattern 

recognition [3], intelligent control [4], mobile robots [5], time 

series prediction [6], [7], function approximation [8], [9], 

classification [10], [11]. This work presents a new interval 

type-2 fuzzy system based on the Beta basis function [12], 

[13] for system modeling. The proposed system is termed 

interval type-2 Beta fuzzy system (IT2BFS). 

In fuzzy logic systems, when the dimensionality and the 

complexity of the given applications increase, the number of 

used fuzzy rules will increase exponentially (the curse of 

dimensionality problem [14]) which can reduce the 

interpretability of the obtained rule base. As an alternative to 

solve this problem, hierarchical fuzzy design was suggested in 

the early 1990s by Raju and Zhou [15] to reduce the number 

of fuzzy rules from an exponential function of system 

variables to a linear one. In this case, instead of the use of a 

standard high-dimensional flat fuzzy system, a number of 

lower-dimensional sub-fuzzy models are linked in a 

hierarchical way. This method of hierarchical modeling allows 

the construction of fuzzy systems which are more interpretable 

(with fewer rules) as well as being relatively accurate with 

good approximation abilities. For example, suppose that the 

standard fuzzy system illustrated in Fig.1a has 4 input 

variables each represented by 5 fuzzy sets, then the total 

number of rules is equal to 54 = 625 rules. However, in the 

case of the hierarchical fuzzy system of Fig.1b, each subfuzzy 

system (SFS) consists of 52 rules and, consequently, the total 

rules number is equal to 3 ∗ 52 = 75 rules. This shows the 

great rule reduction achieved by the hierarchical structure 

which makes it a good candidate to solve high-dimensional 

problems.  

Recently, hierarchical fuzzy design has attracted increasing 

attentions and many works have been proposed to build or to 

optimize these systems [16–22]. However, most of the 

existing hierarchical systems employed type-1 fuzzy models. 

To the author’s knowledge, very few publications can be 

found in the literature that address the use of fuzzy type-2 

hierarchical design [5], [23], [24]. In this paper, we will 

develop a novel hierarchical IT2BFS based on a tree structural 

representation called the hierarchical interval type-2 Beta 

fuzzy system (HT2BFS). Hence, instead of using a standard 

IT2BFS with high dimension, the input variables are 

distributed over different sub-interval type-2 fuzzy models 

having lower dimensions.  
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Fig. 1. An example of (a) usual flat standard fuzzy system, (b) hierarchical 

fuzzy system 

 

Traditionally, most of the existing learning methods for 

type-2 fuzzy systems use single-objective learning techniques 

such as the gradient descent algorithms [25-27], least-squares 

methods [28], Evolutionary Algorithms (EAs) [29, 30], and 

other hybridizations [8], [31]. In fact, most of the existing 

approaches reported in the literature focused on improving 

only the accuracy of type-2 models while the interpretability 

was neglected. In order to optimize the model 

comprehensibility as well as the accuracy, Multi-Objective 

Evolutionary Algorithms (MOEAs) are employed in our 

research. Multi-Objective Evolutionary Algorithms (MOEAs) 

have widely spread over the past few years as an most 

effective tool to optimize type1 fuzzy systems [32–34], but 

until now, little works have exploited these algorithms to 

optimize type-2 fuzzy systems [9], [11], [35]. In this work, we 

will employ the Multi-Objective Immune Programming 

(MOIP) in order to evolve the HT2BFS structures. 

This paper focuses on two main tasks of HT2BFS 

optimization which are a multi-objective structure learning 

process and a parameter tuning process. To accomplish these 

tasks in the most optimal and faster way, we further need a 

multi-agent architecture to provide both a distributed and a 

cooperative management of these optimization tasks. In fact, a 

multi-agent system is a coherent and interactive system 

formed by a set of agents with varied functions, which can 

share information and cooperate with each other to complete 

common goals [36]. An agent can be an abstract or a physical 

entity that has the aspect of initiative, cooperation and 

autonomy. In this study, a multi-agent architecture is proposed 

to provide a distributed coordinated environment of 

optimization. Based on their functions, agents are classified 

into two categories: a structure agent and a parameter agent. 

Indeed, the structure agent executes the proposed MOIP 

algorithm as a multi-objective structure optimization phase. 

The function of this agent is to learn the structures of a 

population of HT2BFSs with the objective of attending a good 

interpretability-accuracy trade-off. Once a set of optimal 

structures is obtained, a number of parameter agents are 

launched for further parallel tuning of the parameters encoded 

on these optimized structures. Each parameter agent will 

execute its own Hybrid Harmony Search (HHS) algorithm 

[37] for parameters adjustment. The tuned parameters are the 

interval type-2 Beta membership function parameters and the 

consequent parts of fuzzy rules. And then, we go back to 

improve the structures again by the structure agent. The loop 

continues until a stopping criterion is reached, and as a final 

result, an optimal HT2BFS is obtained. This new approach 

shows its efficiency in terms of high learning capacities, good 

convergence speed and a smaller rule base. 

The rest of this paper is structured as follows: section II 

defines the proposed interval Type-2 Beta Fuzzy System. The 

MOIP and the HHS algorithms used in the training process are 

respectively presented in sections III and IV. The evolutionary  

HT2BFS is detailed in section V. Next, the employed multi-

agent architecture for structure and parameter optimization 

processes is described in section VI. Simulation results with a 

comparative study are presented in section VII. And finally, 

the conclusion is drawn in section VIII. 

II. THE INTERVAL TYPE-2 BETA FUZZY SYSTEM 

A. Interval Type-2 Beta Membership Function 

A type-2 fuzzy set (T2FS) 𝐴̃ is characterized by a type-2 

membership function 𝜇𝐴(𝑥, 𝑢) which is expressed by [38]:  

 𝐴̃ = {(𝑥, 𝑢), 𝜇𝐴(𝑥, 𝑢)|𝑥 ∈ 𝑋 , 𝑢 ∈ [0, 1] }        (1) 

where 𝜇𝐴(𝑥, 𝑢) is a type-1 fuzzy set called the secondary set 

with 0 ≤ 𝜇𝐴(𝑥, 𝑢) ≤ 1. 𝐽𝑥 is the primary membership of 𝐴̃ 

denoted by [38]: 

   𝐽𝑥 = {(𝑥, 𝑢)|𝑢 ∈ [0, 1], 𝜇𝐴(𝑥, 𝑢) > 0}        (2) 

When all the secondary grades 𝜇𝐴̃(𝑥, 𝑢) equal 1, then the 

T2FS (𝐴̃) is named an interval type-2 fuzzy set (IT2FS) [39]. 

The uncertainty in the primary MF is expressed by a bounded 

region named the footprint of uncertainty (FOU). The FOU 

provides additional degrees of freedom and it is delimited by 

two MFs called the Upper Membership Function (UMF), 

𝜇̅𝐴(𝑥), and the Lower Membership Function (LMF), 𝜇𝐴(𝑥). 

The choice of the shape of MFs is important since it has an 

impact on the performance of the fuzzy system. Different 

shapes of MFs are usually used in the fuzzy logic literature 

like triangular, gaussian, trapezoidal, etc. However, since the 

piece-wise linear MFs (like triangular and trapezoidal MFs) 

are formed from straight line segments, they are not smooth at 

the corner points specified by the parameters. Symmetric bell-

shaped (such as gaussian) membership functions are also 

widely used since they present more smoothness, but they are 

unable to define asymmetric MFs. On the other hand, the Beta 

MF proposed by Alimi [12], [13] can generate richer forms 

than those functions. The Beta function has universal 

approximation proprieties and is able to approximate other 

usual functions such as triangular, gaussian or trapezoidal 

functions [40]. For example, [40] demonstrated the capacity of 

Beta function to approximate the Gaussian function and noted 

that the reverse is not true. In addition, the Beta function is 

characterized by its high flexibility and its ability to generate 

rich shapes (asymmetry, linearity, etc.). The Beta membership 

function is defined by: 
𝛽(𝑥; 𝑐, 𝜎, 𝑝, 𝑞) =                                                                              (3) 

{
[1 +

(𝑝+𝑞)(𝑥−𝑐)

𝜎𝑝
]

𝑝

 [1 −
(𝑝+𝑞)(𝑐−𝑥)

𝜎𝑞
]

𝑞

  𝑖𝑓 𝑥 ∈ ]𝑐 −
𝜎𝑝

𝑝+𝑞
, 𝑐 +

𝜎𝑝

𝑝+𝑞
[

0                                       𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
  

where c is the center of the function and 𝜎 is its width. p and q 

are the form parameters, 𝑝, 𝑞 > 0.  

In this study, a Beta primary MF having an interval-valued 

secondary MF is employed and called the interval type-2 Beta 

membership function (IT2BMF). This function is 
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characterized by a fixed center c, an uncertain width 𝜎 and 

uncertain form parameters p and q: 

{
𝛽(𝑥; 𝑐, 𝜎, 𝑝, 𝑞) =  [1 +

(𝑝+𝑞)(𝑥−𝑐)

𝜎𝑝
]

𝑝

[1 −
(𝑝+𝑞)(𝑐−𝑥)

𝜎𝑞
]

𝑞

𝜎 ∈ [𝜎𝐿 , 𝜎𝑈], 𝑝 ∈ [𝑝𝐿 , 𝑝𝑈]  𝑎𝑛𝑑  𝑞 ∈ [𝑞𝐿 , 𝑞𝑈]
       (4) 

where 𝜎𝐿 , 𝜎𝑈, 𝑝𝐿 , 𝑝𝑈 , 𝑞𝐿 𝑎𝑛𝑑  𝑞𝑈 are positive real values 
with 𝜎𝐿 < 𝜎𝑈, 𝑝𝐿 < 𝑝𝑈  𝑎𝑛𝑑 𝑞𝐿 < 𝑞𝑈.  The upper and the 
lower Beta MFs are respectively denoted by: 

   {  
𝜇̅𝐴(𝑥) =  𝛽(𝑥; 𝑐, 𝜎𝑈 , 𝑝𝑈 , 𝑞𝑈)

𝜇𝐴(𝑥) =  𝛽(𝑥; 𝑐, 𝜎𝐿 , 𝑝𝐿 , 𝑞𝐿)           (5)                           

The use of IT2BMFs provides flexibility and capacity to 

create more variant MF shapes. In comparison with the 

gaussian function, the Beta function relies on two additional 

form parameters (p and q) which allow a greater flexibility in 

the modeling of type-2 fuzzy sets. Hence, different shapes of 

FOUs can be created using the IT2BMF. Fig. 2 presents some 

examples of interval type-2 Beta MFs with uncertain 𝜎, p and 

q having different FOU. 

 

 
Fig. 2. Examples of Interval Type-2 Beta MFs with different FOU 

B. Interval Type-2 Beta Fuzzy System 

In this paper, the Interval A2-C1 TSK fuzzy model [41] is 

adopted and using IT2BMFs, the system is termed the interval 

type-2 Beta fuzzy system (IT2BFS). In the IT2BFS, the 

antecedent parts of each fuzzy rule are interval type-2 Beta 

fuzzy sets, while the consequent parts are of TSK nature 

having interval weights. Consider an IT2BFS with n inputs 

𝑥𝑖(𝑖 = 1, . . , 𝑛), one output and M fuzzy rules, the jth rule can 

be written as follows: 

𝐼𝑓 (𝑥1 𝑖𝑠 𝐴̃1𝑗)  𝑎𝑛𝑑 … 𝑎𝑛𝑑 (𝑥𝑛 𝑖𝑠 𝐴̃𝑛𝑗) 𝑡ℎ𝑒𝑛 𝑌𝑗 = 𝐶0𝑗 +

 𝐶1𝑗𝑥1 + ⋯ + 𝐶𝑛𝑗𝑥𝑛                     (6) 

where 𝑗 = 1, . . . , 𝑀; 𝐴̃𝑖𝑗 are the antecedent fuzzy sets modeled 

by the IT2BMFs; 𝐶𝑖𝑗 are the consequent sets formed by 

interval type-1 fuzzy sets; 𝑌𝑗 is the 𝑗𝑡ℎ rule output. The 𝑗𝑡ℎ rule 

firing strengths are evaluated using the product t-norm 

operator: 

{
𝐹𝑗(𝑥) = [𝑓𝑗(𝑥) , 𝑓𝑗(𝑥)]

𝑓𝑗(𝑥) =  ∏ 𝜇𝑛
𝑖=1 (𝑥𝑖),   𝑓𝑗(𝑥) =  ∏ 𝜇𝑛

𝑖=1 (𝑥𝑖)
       (7)                

where 𝑓𝑗(𝑥) and 𝑓𝑗(𝑥) are respectively the lower and the upper 

firing strengths. 

The type-reduced set is an interval fuzzy set defined by its two 

end points, its left end point (𝑦𝑙) and its right end point (𝑦𝑟): 

𝑦 = [𝑦𝑙 , 𝑦𝑟] = ∫ … 
𝑦1

    ∫  
𝑦𝑀

∫ … 
𝑓1

    ∫  
𝑓𝑀

1    ( 
∑ 𝑓𝑗 𝑦𝑗

𝑀
𝑗=1

∑  𝑓𝑗 𝑀
𝑗=1

⁄ )    (8) 

where 𝑦𝑗 ∈ 𝑌𝑗 , 𝑦𝑗 = [𝑦𝑗
𝑙 , 𝑦𝑗

𝑟] and 𝑓𝑗 ∈ 𝐹𝑗. The type-reduced 

end points 𝑦𝑙  and 𝑦𝑟are calculated through the KM algorithm 
using center of sets type-reduction [20]. Finally, the final 
output is defuzzified and calculated as follows: 

        𝑦 = (𝑦𝑙 + 𝑦𝑟)/2                          (9) 

III. MULTI-OBJECTIVE IMMUNE PROGRAMMING ALGORITHM: 

MOIP 

A. Dominance and Pareto-Optimality 

A minimization multi-objective problem has the following 

form: 

          𝑀𝑖𝑛𝑓(𝑥) = [𝑓1(𝑥), . . , 𝑓𝑘(𝑥)]                     (10) 

subject to: 
       𝑔𝑗(𝑥) ≤ 0 , 𝑗 = 1, … , 𝑝                       (11) 

       ℎ𝑗(𝑥) ≤ 0 , 𝑗 = 1, … , 𝑞                             (12) 

where k defines the number of objective functions 𝑓𝑗: ℝ𝑛 → ℝ. 

𝑥 = [𝑥1, … , 𝑥𝑛]𝑇 is the vector of decision variables. 𝑔𝑗(𝑥) and 

ℎ𝑗(𝑥) are the functions representing the constraints of the 

problem. p and q are respectively the number of equality and 

inequality constraints. Unlike single objective optimization, 

multi-objective optimization considers that there is no unique 

optimum solution considering all objectives, but rather there 

are several solutions that provide different compromises 

between the objectives known as non-dominated or Pareto 

optimal solutions. Those solutions are generated using the 

Pareto dominance concept [42]. The main idea of dominance 

concept is that a given solution 𝑥 can dominate another 

solution 𝑦 if and only if: 

- 𝑥 is not worse than 𝑦 in any of the objectives; 

- 𝑥 is strictly better than 𝑦 in at least one of the objectives; 

Solution 𝑥 is named Pareto optimal if there is no solution in 

the search space that dominates it. In the objective space, the 

set of Pareto optimal solutions is called the Pareto optimal 

front or Pareto front. 

B. Basic Single-Objective Algorithm: IP 

The Immune Programming (IP) [43] is a population-based 

algorithm inspired from the clonal selection principle. It 

operates with a population of antibodies modeled by tree 

structures and uses the following three principal operators to 

evolve new generations: 

- Cloning operator: allows the multiplication of the best 

candidates in the population. It presents more chance to 

explore a favorable region in the solution space. 

- Mutation operator: applied to modify an antibody (tree) 

according to its fitness value. In this work, four mutation 

operators were employed which are: pruning (replace a 

randomly selected sub-tree by a random leaf node); growing 

(replace a randomly selected leaf node by a random sub-

tree); modifying all leaf nodes randomly; modifying one leaf 

node randomly.   

- Replacement operator: allows the replacement of an 

antibody of the population with another one generated at 

random. This operator is one of the most responsible factors 

of the population diversity. 
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C. Multi-Objective Algorithm: MOIP  

The IP algorithm proved its efficiency in different studies, but 

it is still often used as a single optimization algorithm. In this 

work, we propose an extended multi-objective version of the 

IP algorithm called the Multi-Objective Immune Programming 

algorithm (MOIP). This algorithm is able to improve the 

structures of a given population of antibodies with the 

consideration of more than one objective function. To achieve 

such multi-objective optimization goals, the MOIP 

methodology combines the Pareto-dominance principles with 

IP operators and uses an elitist strategy in its evolution. This 

strategy makes use of an external elitist archive A (secondary 

population) in order to store the best non-dominated 

antibodies (solutions) found so far over the generations.  

The main steps of the algorithm consists of initialization of 

population, evaluation, Pareto-dominance selection, applying 

IP operators, and reiterating the search on population until a 

near optimal Pareto front is obtained.   

In addition, in the case of single objective optimization, a 

child is usually selected over its parent if it has better fitness 

value. In MOIP, the superiority is measured as a dominance 

relationship, and a child is selected over its parent only if this 

latter dominates its parent. As a result, as the search 

progresses, the different solutions move more closer to the 

true Pareto front.  

On the other hand, among the desirable characteristics of 

the obtained Pareto front is to have evenly spaced solutions 

covering the largest possible area of the front. Hence, we 

further use the crowding distance measure (applied in Non-

dominated Sorting Genetic Algorithm II: NSGA-II [44]) to 

improve the diversity of solutions and to maintain a well-

distributed front. In fact, the crowding distance gives a density 

estimation of solutions that surround one selected solution. A 

large average crowding distance allows a better diversity in 

the front. Suppose that 𝑐𝑑(𝑥𝑖) represents the crowding 

distance of 𝑥𝑖 (solution of the front). 𝑐𝑑(𝑥𝑖) is evaluated by 

the following steps:   

i) Initialization: 𝑐𝑑(𝑥𝑖)  = 0 ;  

ii) For each objective function 𝑓𝑗 do: 

 Sort the front’s solutions along 𝑓𝑗 ; 

 𝑐𝑑(𝑥𝑖)= 𝑐𝑑(𝑥𝑖) + 𝑓𝑗 (the solution preceding 𝑥𝑖 in 

the ordered sequence) - 𝑓𝑗(the solution following 

𝑥𝑖 in the ordered sequence); 

The flow chart of the MOIP algorithm is presented by Fig. 3. 

When applying the dominance criterion on a population, the 

antibodies are evaluated and checked for dominance relations 

among the population. Using the definition of Pareto 

dominance, an antibody is called a non-dominated antibody 

when it is not dominated by any other antibodies in the 

population. Then, the non-dominated solutions found are 

stored in the elitist archive A. The size of this archive is 

restricted to a predefined number. This restriction is imposed 

by a pruning process executed as follows: If the size of the 

archive (solutions number) is greater than MaxSize, then the 

crowding distances of all individuals of the archive are 

calculated and sorted in a descending order. The first MaxSize 

solutions are then selected to update the archive. Such pruning 

process aims to limit the archive size while preserving its 

diversity and spread along the front. 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

Fig. 3. Flow chart of the MOIP algorithm 

IV. THE HYBRID HARMONY SEARCH ALGORITHM: HHS 

The HHS algorithm [37] is an evolutionary music-inspired 

meta-heuristic algorithm inspired from the improvisation of 

music: a musician (decision variable) plays (creates) a note 

(value) to reach a good state of harmony (global optimum).  

Inspite of its efficiency, the Harmony Search algorithm 

(HS) in its original version [45] contains some weaknesses. In 

fact, it is remarkable that, the harmony memory is usually 

stable and doesn’t present changing values in the 

improvisation. Thus, in general, the standard HS algorithm has 

a small probability of providing new harmony vectors with 

good qualities. Therefore, there is a need to add a dynamic 

aspect allowing the creation of various values in memory with 

respect to their allowable ranges. This aspect is provided by 

the embedding of the Particle Swarm Optimization (PSO) 

algorithm which can generate after every iteration a new  

population totally different and nearer to the optimal solution. 

So, a hybridization between the HS and the PSO algorithm is 

proposed in [37] and called the Hybrid Harmony Search 

(HHS) algorithm. Indeed, the dynamic and stochastic aspects 

of particles velocities in PSO orientate the research to the right 

areas of the search space. In this case, the vectors of memory 

in HS are treated as particles taken from the swarm and the 

new values of memory for the new improvisation are supplied 

by the novel positions attained by the particles. For each 

particle 𝑗, the velocity 𝑣𝑗 and the position 𝑥𝑗 are calculated by 

the following equations: 

Return the Pareto front formed by 
the archive solutions 

 

 

StrIter = StrIter + 1 

 

 

 

Updated Archive A 

 

 

Apply dominance criterion 

 

 

Combine the new population and the archive solutions 

 

 

Updated population 

 

 

Apply IP operators: Cloning/Mutation/Replacement 

 

 

 

Combine the population and the archive solutions 

 

 

StrIetr = 0 

Evaluate each individual of the population 

 

 

 

Create initial random population of antibodies and an empty archive A 

 Size(A) > MaxSize? 

 

 

Apply dominance criterion on the population and store 

non-dominated solutions on the archive A 

F2 

F1 

 

Pruning of A 

 
No 

Yes 

 

 

 

 

 

Pruning of A 
 

No 

Yes 

Yes 

No 

Size(A) > MaxSize? 

 StrIter >= MaxIter? 
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𝑣𝑗(𝑡 + 1) =  𝛹(𝑡)𝑣𝑗(𝑡) + 𝑐1𝜑1 (𝑝𝑗(𝑡) − 𝑥𝑗(𝑡)) +

𝑐2𝜑2 (𝑝𝑔(𝑡) − 𝑥𝑗(𝑡))                         (13) 

𝑥𝑗(𝑡 + 1) = 𝑥𝑗(𝑡) + (1 − 𝛹(𝑡)) 𝑣𝑗(𝑡 + 1 )               (14) 

where 𝑐1 and 𝑐2 are acceleration factors, 𝑗1 and 𝑗2 are random 

numbers in [0,1]. 𝛹 is the inertia factor. 𝑝𝑗 is the local best 

position (attained by the 𝑗𝑡ℎ particle) and 𝑝𝑔 is the global best 

position (attained by the swarm). 

A simple global description of this algorithm is given by the 

following main steps: 

– Step1: Formulation of the problem and initialization of the 

parameters which include: 

   • Harmony Memory Consideration Rate (HMCR): rate of the 

randomly selected values from the memory (0≤HMCR≤1); 

   • Harmony Memory Size (HMS): equivalent to population 

size;   

   • Pitch Adjustment Rate (PAR): rate of the altered values 

that was originally taken from the memory (0≤PAR≤1);   

   • Number of Improvisations (NI): the maximum number of 

generations;  

   • FW or BW: the width of the fret or bandwidth; 

– Step2: Random initialization of the harmony memory (HM); 

– Step3: Improvisation of a new harmony; 

– Step4: Update of the harmony memory; 

– Step5: 

   • Determines the best local and global positions; 

   • Calculates the particle velocity according to (13); 

   • Update of the particle position according to (14); 

– Step6: Verification of the stopping criterion; 

Readers may refer to [37] to get more details about this 

algorithm. 

V. EVOLUTION OF THE HIERARCHICAL INTERVAL TYPE-2 

BETA FUZZY SYSTEM 

A. The Hierarchical Interval Type-2 Beta Fuzzy System: 

HT2BFS 

The hierarchical modeling of interval type-2 beta fuzzy 

systems is treated in this study. Thus, instead of designing a 

standard high dimensional IT2BFS, which is a common 

practice, the input variables are distributed over different sub-

fuzzy models having lower dimensions. Consequently, each 

individual sub-fuzzy model having a moderate dimension will 

form a surface in all the hierarchy. For that, a tree-based 

encoding scheme is used to represent the hierarchical system. 

The reason for choosing the tree encoding method is that the 

tree has by nature a flexible hierarchical representation. Such 

encoding scheme can provide more adjustable and modifiable 

structures by means of existing or modified tree-based 

learning approaches, i.e., IP, Genetic Programming (GP), Ant 

Programming (AP), and so on. The proposed system is named 

the Hierarchical Interval Type-2 Beta Fuzzy System 

(HT2BFS). A possible tree structural representation (with 4 

input variables and 4 hierarchical levels) and its corresponding 

HT2BFS are illustrated in Fig. 4a. The proposed HT2BFS is 

characterized by a set of non-leaf nodes N and leaf nodes L. 

Non-leaf nodes are formed by different sub-fuzzy models of 

IT2BFS type while leaf nodes are formed by original input 

variables. The node set S of the system is described as follows: 

 

Fig. 4. a) A possible tree structural representation, (b) The corresponding 

HT2BFS: the tree node set S= { 𝐵𝐹𝐼𝐼41
1 , 𝐵𝐹𝐼𝐼21

2 , 𝐵𝐹𝐼𝐼22
3 , 𝑥1, 𝑥2, 𝑥3, 𝑥4} 

S = N ∪ L = {𝐵𝐹𝐼𝐼𝑐𝑖
𝑙 / 𝑐 ∈ {2, … . , 𝑁𝑁}, 𝑖 ∈ {1, … . , 𝑇}, 𝑙 ∈

{1, … . , (𝑀𝐿 − 1)}}∪{𝑥1,…,𝑥𝑀}                                    (15) 

where 𝐵𝐹𝐼𝐼𝑐𝑖
𝑙  represents a sub-fuzzy model of IT2BFS type 

formed by c inputs (children) and one evaluated output. NN 

defines the tree’s maximal degree (nodes number), i is the 

index of the BFII having c children, T is the occurrence 

number of BFII having c offspring, l presents the level index 

of the tree and ML is the maximum number of levels (the 

tree’s depth); 𝑥1,…,𝑥𝑀 are the original input variables 

illustrating the L leaf node set. 

For the HT2BFS evaluation, each 𝐵𝐹𝐼𝐼𝑐𝑖
𝑙  receives c inputs 

and calculates one output. Some 𝐵𝐹𝐼𝐼𝑐𝑖
𝑙  calculate and generate 

their output to be exploited as inputs for other 𝐵𝐹𝐼𝐼𝑐𝑖
𝑙 . The 

evaluation of the HT2BFS is done recursively from level to 

level (from left to right), and the root node generates finally 

the output of the whole tree-based system. 

The rules at each non-leaf node were created as follows: 

Considering Fig. 4b as an exemple of a generated HT2BFS, 

the rules for each 𝐵𝐹𝐼𝐼𝑐𝑖
𝑙   are of TSK nature taking the 

following format: 

𝐵𝐹𝐼𝐼22
3 :   𝑅𝑖

𝑙=3 ∶ 𝐼𝑓 (𝑥1 𝑖𝑠  𝐴̃1𝑖
3  ) 𝑎𝑛𝑑 (𝑥2 𝑖𝑠 𝐴̃2𝑖

3 ) 𝑡ℎ𝑒𝑛  
       𝑌𝑖

3 = 𝐶0𝑖
3 +  𝐶1𝑖

3 𝑥1 + 𝐶2𝑖
3 𝑥2                           (16) 

   𝐵𝐹𝐼𝐼21
2 :  𝑅𝑗

𝑙=2 ∶ 𝐼𝑓 (𝑦1 𝑖𝑠 𝐴̃1𝑗
2 ) 𝑎𝑛𝑑 (𝑥2 𝑖𝑠 𝐴̃2𝑗

2 ) 𝑡ℎ𝑒𝑛  

                 𝑌𝑗
2 = 𝐶0𝑗

2 + 𝐶1𝑗
2  𝑦1 + 𝐶2𝑗

2 𝑥2                             (17) 

 𝐵𝐹𝐼𝐼41
1 :  𝑅𝑘

𝑙=1: 𝐼𝑓 (𝑥1 𝑖𝑠 𝐴̃1𝑘
1 ) 𝑎𝑛𝑑 (𝑦2 𝑖𝑠 𝐴̃2𝑘

1 ) 𝑎𝑛𝑑  

(𝑥3 𝑖𝑠 𝐴̃3𝑘
1 ) 𝑎𝑛𝑑 (𝑥4 𝑖𝑠 𝐴̃4𝑘

1 ) 𝑡ℎ𝑒𝑛 𝑌𝑘
1 = 𝐶0𝑘

1   
              +𝐶1𝑘

1 𝑥1 + 𝐶2𝑘
1  𝑦2 + 𝐶3𝑘

1 𝑥3 + 𝐶4𝑘
1 𝑥4                 (18) 

where: 

- 𝑖 = 1, . . . , 𝑀3; M3 presents the rules number of 𝐵𝐹𝐼𝐼22
3 ; 𝐴̃1𝑖

3  

and 𝐴̃2𝑖
3  are the antecedent fuzzy sets modeled by the 

IT2BMFs; 𝐶0𝑖
3  , 𝐶1𝑖

3  𝑎𝑛𝑑 𝐶2𝑖
3  are the consequent sets formed by 

interval type-1 fuzzy sets;  𝑌𝑖
3 is the 𝑖𝑡ℎ rule output.  

- 𝑗 = 1, . . . , 𝑀2; M2 presents the rules number of 𝐵𝐹𝐼𝐼21
2 ; 𝐴̃1𝑗

2  

and 𝐴̃2𝑗
2  are the antecedent fuzzy sets modeled by the 

IT2BMFs; 𝐶0𝑗
2  , 𝐶1𝑗

2  𝑎𝑛𝑑 𝐶2𝑗
2  are the consequent sets formed by 

interval type-1 fuzzy sets;  𝑌𝑗
2 is the 𝑗𝑡ℎ rule output. 

- 𝑘 = 1, . . . , 𝑀1; M1 presents the rules number of 𝐵𝐹𝐼𝐼41
1 ; 

𝐴̃1𝑘
1 , 𝐴̃2𝑘

1 , 𝐴̃3𝑘
1  and 𝐴̃4𝑘

1  are the antecedent fuzzy sets modeled 

by the IT2BMFs; 𝐶0𝑘
1 ,  𝐶1𝑘

1 ,  𝐶2𝑘
1 ,  𝐶3𝑘

1   and 𝐶4𝑘
1  are the 

consequent sets formed by interval type-1 fuzzy sets; 𝑌𝑘
1 is the 

𝑘𝑡ℎ rule output. 

- 𝑥1,  𝑥2,  𝑥3 and 𝑥4 are original input variables; y1, y2 and y3 

are respectively the outputs of 𝐵𝐹𝐼𝐼22
3 , 𝐵𝐹𝐼𝐼21

2 and 𝐵𝐹𝐼𝐼41
1 and 

are calculated by (9). 

- y3 is the output of the whole HT2BFS.  
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B. Initialization of HT2BFSs Population 

In general, initial fuzzy rule generation is usually considered 

as a time-consuming and a difficult task since it needs expert 

knowledge information. One way of solving this difficulty is 

to use a clustering technique allowing an automatic extraction 

of an initial rule base. Clustering methods have been 

frequently used in the literature for the identification of both 

type-1 and type-2 fuzzy systems [46- 49]. In the same context, 

the subtractive clustering algorithm is applied in this study to 

derive the initial rules of each sub-fuzzy model from the 

available data and to determine the initial MFs locations. The 

use of such technique allows the optimization processes 

applied afterwards to converge in a shorter time. 

The subtractive clustering algorithm is a fast and 

unsupervised algorithm used to divide the input data into 

smaller and meaningful subgroups named clusters, so that the 

items in the same cluster are as homogenous as possible. For 

this algorithm, the number of clusters is automatically defined 

based on a measure of data density in space. Hence, the 

obtained clusters centers will define the centers of MFs, and 

each center of a cluster will be transformed into a fuzzy rule. 

Based on this concept, the subtractive clustering algorithm is 

applied in the initialization step for the generation of an initial 

population of HT2BFSs. 

To do this, first of all, a random population of initial trees 

having random structures is created; i.e. with random number 

of levels in [3, LMax] and with random number of nodes in [2, 

NMax], where LMax is the maximum level number and NMax 

is the maximum number of child nodes for each non-leaf node 

(degree of the tree). NMax and LMax are fixed according to 

the studied problem. In fact, the generation process of a tree 

structure is realized with a random and recursive way. It’s an 

automated random process done recursively from top to 

bottom and from left to right. Non-leaf nodes are randomly 

distributed over the levels. Concerning the way of 

arrangement of original inputs in the different levels, original 

input variables are randomly chosen to be assigned for non-

leaf nodes. The minimum size of each tree is equal to 5 and its 

maximum size is calculated as following: 

                        𝑆𝑖𝑧𝑒𝑀𝑎𝑥 =  
𝑁𝑀𝑎𝑥𝐿𝑀𝑎𝑥−1

𝑁𝑀𝑎𝑥−1
                         (19) 

After the initial generation of random population of trees, each 

tree is examined separately, and starting from the lowest level, 

the subtractive clustering algorithm is applied recursively by 

depth-first method. Consequently, for each non-leaf node, its 

child nodes are clustered in order to create the corresponding 

interval type-2 Beta sub-fuzzy model 𝐵𝐹𝐼𝐼𝑐𝑖
𝑙 . The number of 

rules, the rule base in each 𝐵𝐹𝐼𝐼𝑐𝑖
𝑙  and the MFs locations are 

automatically defined by the clustering algorithm. 

The embedding of such initialization clustering step allows 

both an automatic extraction of fuzzy rules from input data 

and also creates a better distribution of the Beta MFs centers. 

Consequently, the initial population will be composed of 

relatively good solutions of HT2BFSs, and this can save many 

generations of evolutionary search later. More details about 

this clustering method are presented in [46]. 

C. The Evolutionary HT2BFS: E_HT2BFS 

The Evolutionary HT2BFS (E_HT2BFS) is a systematic 

design method of HT2BFSs. The HT2BFS evolution is  

 

 

 
Fig. 5. The flowchart of the E_HT2BFS 

considered as a search problem in both structure and 

parameter spaces. So, starting with a random population of 

trees having different structures, an initial population of 

HT2BFSs is derived by recursively clustering leaf nodes of 

input variables of each tree. Next, two main optimizations 

processes are iteratively applied: the HT2BFS structure 

learning and the HT2BFS parameter tuning. The structure 

learning phase is applied in a multi-objective context 

considering two objectives which are the accuracy 

maximization (by minimizing the error) and the 

interpretability maximization (by reducing the rules number).  

The MOIP is used in the multi-objective structure learning 

phase, while the HHS is employed in the parameter tuning 

phase. The two algorithms are alternately applied until an 

optimal HT2BFS is obtained. The flowchart of the E_HT2BFS 

is illustrated in Fig. 5. As we can see from this figure, the 

multi-objective structure learning phase generates a Pareto-

optimal front of non-dominated HT2BFSs, and then the most 

suitable solution (having a good trade-off between the two 

objectives) is selected to undergo the next parameter tuning 

phase. The stopping criterion here is to find a near-optimal 

HT2BFS or to reach the maximum number of global 

iterations. If the stopping criterion is not validated, another 

round of structure optimization is performed. In this case, the 

new population is formed by the best found HT2BFS having 

tuned parameters concatenated with a set of random generated 

individuals. 

VI. MULTI-AGENT ARCHITECTURE FOR HT2BFS EVOLUTION: 

MA_HT2BFS 

A multi-agent system (MAS) is considered as one of the 

most important branches in the distributed intelligent area. In 

general, a multi-agent architecture ensures a global 

organization between autonomous and coordinated agents in a 

distributed way. This architecture allows agents to interact 

together in order to accomplish common aims and to break the 

complexity of the given tasks [36]. In this study, our goal is to 

perform an optimization process for a population of HT2BFSs 

in the most efficient and fastest way. A key limitation of the 

E_HT2BFS (presented in section V.C) is its concentration on 

the parameter optimization of only one solution causing the 

loss of the other solutions of the pareto front. Indeed, all of the 

front’s solutions have optimized structures and their 

exploitation can improve a lot the optimization process and 

can reduce the training time. Although the search for an 

optimal solution using the E_HT2BFS gives good results, it 

requires many iterations of learning since it usually relies on 

random populations in the structure learning rounds. To 

Stop 
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overcome this drawback, a multi-agent architecture is 

proposed in this study to efficiently parallelize the 

optimization task between different agents with the goal of 

adjusting and exploiting all of the front’s solutions in order to 

contribute to the optimization process. Based on their 

functions, agents in this architecture are partitioned into two 

different types: a structure agent and a parameter agent. The 

functions of these agents are detailed in the next two 

subsections, and the third subsection will detail the negotiation 

protocol and how the communication and the cooperation 

between those agents are realized. 

A. Structure Agent Description 

In general, the modeling of a fuzzy logic system requires 

the consideration of two important metrics which are the 

accuracy and the interpretability. The accuracy reflects the 

fuzzy system’s capability of representing the real system in a 

faithful way. However, the interpretability refers to the ability 

of presenting the designed system in an understandable way. 

Although the accuracy and the interpretability objectives are 

generally in conflict, MOEAs can approximate a set of 

solutions named Pareto optimal solutions having various 

tradeoffs of these objectives. In the same context, a structure 

agent is created for multi-objective structure optimization 

purpose. Its principle function is to undergo an exploration 

step of the search space. The structure agent executes the 

proposed MOIP algorithm and takes into consideration the 

enhancement of both the accuracy and the interpretability 

metrics. The predictive performance of the system (accuracy) 

is expressed by the Root Mean Squared Error (RMSE) or the 

Mean Squared Error (MSE). The RMSE is used as objective 

function in the case of testing time series problems, while the 

MSE is used as objective function in the case of regression 

problems: 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 1: 𝑅𝑀𝑆𝐸 =  √ 1

𝑚
∑ (𝑦𝑡

𝑗
− 𝑦𝑜𝑢𝑡

𝑗
)

2
𝑚
𝑗=1                   (20) 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 1: 𝑀𝑆𝐸 =  
1

2∗𝑚
∑ (𝑦𝑡

𝑗
− 𝑦𝑜𝑢𝑡

𝑗
)𝑚

𝑗=1

2
      (21) 

where m defines the samples number, 𝑦𝑡
𝑗
 and 𝑦𝑜𝑢𝑡

𝑗
 are 

respectively the desired output and the calculated output. The 

rule base complexity (interpretability) is expressed by the 

number of fuzzy rules:  

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒2: 𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =   𝑅                                  (22) 

where R defines the rules number. 

The structure agent firstly takes as input a population of 

different structures of HT2BFSs (antibodies) and then 

executes the proposed MOIP algorithm taking into account the 

following points:  

- Learn and evolve the structures of the population and 

consider both the accuracy and the interpretability metrics as 

two objectives to optimize by the multi-objective algorithm. 

- Use of the three immune programming operators (cloning, 

mutation and replacement) combined with a dominance 

concept to guide the search through an optimal Pareto-front of 

non-dominated solutions of HT2BFSs. 

- Use of an elitist strategy based on the exploitation of an 

external archive of population in order to store elite solutions. 

- Ensure a diversity maintenance mechanism and keep a well-

distributed front based on the crowding distance procedure.  

- Generate as output an optimal set of evolved population 

(Pareto optimal solutions). These solutions have different 

structures and they illustrate the obtained set of HT2BFSs with 

different accuracy-interpretability tradeoff.  

B. Parameter Agent Description 

The parameter agent is an autonomous agent created for 

parameter tuning purpose to refine existing solutions. Its main 

function consists of applying the HHS algorithm as a hybrid 

evolutionary optimization algorithm to perform a parameter 

tuning phase. The selected parameters for adjustment are the 

interval type-2 Beta MF parameters (𝑐, 𝜎𝐿 , 𝜎𝑈 , 𝑝𝐿 , 𝑝𝑈 , 𝑞𝐿 ,
𝑞𝑈) and the consequent parts of fuzzy rules. To do this, the 

parameter agent takes firstly as input a given HT2BFS 

structure, and then it encodes the parameters of this selected 

HT2BFS in a matrix representation and initializes the rest of 

the population at random. Next, it executes the HHS algorithm 

to evolve the population and generates finally an optimum 

matrix of tuned parameters. The parameter agent encodes at 

the end the best parameters found in the fixed structure to be 

its final output. It should be noted that the RMSE previously 

defined is used by this agent as an objective function. 

C. Multi-Agent Architecture: Communication between the 

Structure Agent and the Parameter Agents 

The MA_HT2BFS is a multi-agent system capable of 

distributing and organizing the optimization task between the 

structure agent (the initiator) and a number of parameter 

agents (the participants). In such system, cooperation and 

interaction between agents take place to reach a common goal 

which is the generation of an optimal HT2BFS in a reduced 

time and with a less cost. An HT2BFS solution is called 

optimal or near optimal if it has the optimum structure with 

the optimum set of parameters. That means that this solution 

has the best distribution of nodes by levels in such a way that 

its evaluation meets the two desired objectives (accuracy and 

interpretability features). 

To reach this goal, a negotiation protocol is needed to 

organize the communication and to guarantee the information 

exchange among agents. In fact, different negotiation 

protocols have been presented in the literature, the first and the 

most known one is the contract net protocol [50]. The main 

idea of this protocol is to decompose the problem into sub-

problems by a central agent or a manager. This latter 

announces the sub-problems to the other system’s agents, and 

then it collects their propositions to solve the problem. Here, 

the central agent is responsible for supervising the tasks 

execution and the treatment of their execution results. This 

protocol is more useful in conditions where all worker agents 

cooperate to attain the same goal. 

In this work, we have used a negotiation protocol similar to 

the contract net protocol. In this protocol, the structure agent 

plays the role of an initiator agent or a manager, while the 

parameter agents are presented as participant agents. Fig. 6 

illustrates the flowchart of the MA_HT2BFS, where G and 

Iter correspond respectively to the number of generations and 

the global number of iterations. StrIter and PramIter_i define 

respectively the structure iteration number and the parameter 

iteration number of agent i. The following description gives 
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more details about the communication scenario assured by the 

negotiation protocol. 

After the execution of the MOIP on a population of 

HT2BFSs by the structure agent, a Pareto front of non-

dominated solutions is generated. Indeed, this Pareto contains 

a set of HT2BFSs solutions having different structures. Here, 

the main next task is to undergo a parameter tuning phase to 

all these structures. In fact, this task is difficult to do by one 

agent as the solutions have different structures. Therefore, the 

structure agent who acts as an initiator and a central agent, 

decomposes the main task to several sub-tasks in order to 

break its complexity. So, the initiator starts a negotiation 

session and sends a call to all the participants (parameter 

agents) announcing the beginning of a communication session. 

Then, the initiator sends each solution of the Pareto front to a 

participant agent. It should be noted that the number of the 

front’s solutions is equal to the number of the called 

participant agents. At this level, participant agents answer by 

an approval message; they execute in parallel a parameter 

optimization step to refine solutions and then they send their 

proposals to the structure agent. This latter evaluates the 

received solutions based on their levels of accuracy and 

interpretability. And according to the validation of the 

stopping criterion, the structure agent decides if it will 

continue the learning process or not. The stopping criterion 

here is to find among the obtained high-quality HT2BFSs a 

sufficient solution representing the best trade-off between the 

objectives or to reach the maximum number of global 

iterations. 

If one of the stopping criteria is attained, then the initiator 

sends an ’accept-proposal’ message to the winner participant 

agent and takes its solution as the best final solution. The 

initiator also sends a ’reject-proposal’ message to the other 

participants and closes the negotiation session. 

If the stopping criterion is not yet reached, the initiator 

exposes another novel population for further structure 

optimization. This population is formed by the solutions 

proposals of the participant agents concatenated with the 

population already optimized by the structure agent in the 

previous round. As a result of this step, another Pareto front of 

optimal solutions is generated and will be sent for further 

parameter tuning, and in this case three alternatives are 

possible: 

 If the same number of participant agents is needed (in 

comparison with the previous round), in this case the 

initiator sends a ’counter-proposal’ message to all the 

existing participants containing the proposed structure to 

optimize (taken from the front). 

 If the number of needed participant agents is less than the 

previous round (the number of the front’s solutions is 

reduced), in this case the initiator will reject the extra 

agents by sending them a ’Quit’ message. And, a set of 

’counter-proposals’ containing the new structures are 

sent to the rest of needed agents. 

 If the number of needed participant agents is more than 

the previous round (the number of the front’s solutions is 

increased), in this case, the initiator will create new 

participant agents to receive the extra solutions. 

By this manner, instead of choosing just one solution from 

the front and tuning it, our multi-agent system aims to give the 

same chance to all the solutions to contribute to the learning 

process. This will prevent the other non-dominated solutions 

from being lost and enable their exploitation in the next round. 

As a result, the search space is enlarged, and the fact that all 

the optimized solutions will join the next population for 

further structure optimization, this will speed up the whole 

optimization process and will avoid the extra computations. 

 

 

 

 

 

 

 

 

 

 

 

   

  

 

 

   

 

 

 

 

 

 

 

  

Fig. 6. The flowchart of the MA_HT2BFS
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VII. SIMULATION RESULTS 

In this section, the performance of the MA_HT2BFS is 

evaluated under both noise-free and noisy environments. The 

simulations include three kinds of forecasting time series 

problems. We also studied the impact of artificial additive 

noise for two cases of time series experiments. The 

experiments were also conducted over large-scale real-world 

regression problems.  

The proposed system is implemented using the Matlab 

platform: the parallel computing toolbox and the distributed 

computing toolbox are exploited for the modeling of the multi-

agent architecture, while the implementation of interval type-2 

fuzzy logic systems was performed by the use of interval type-

2 fuzzy logic toolbox [51]. The employed trees have degrees 

between 2 and 5 and depths between 2 and 4 (as a minimum 

and maximum). In addition, we used for each MF of each 

input a different FOU. For the MOIP training algorithm, the 

parameters are initialized as follows: population size = 20, 

probability of cloning Pc = 0.7 and probability of replacement 

Pr = 0.5. For the HHS tuning algorithm, the parameters are 

initialized with the following values: size of population = 20, 

PARmin = 1e-05, PARmax = 1, HMCR = 0.9, c1=0.2 and 

c2=0.7. Results are generated after 10 runs and then are 

averaged. To evaluate the efficiency of the MA_HT2BFS 

system, several comparisons with state of the art fuzzy/neural 

learning methods are made taking into account the accuracy 

(measured via RMSE), convergence speed (measured via the 

number of Function Evaluations (NFEs) and the global 

number of Iterations (Iter)) and Interpretability (measured 

based on the rule base complexity and fuzzy rules number(R)). 

A. Mackey-Glass Chaotic Time Series 

1) Case 1: Noise-free Mackey Glass time series 

The Mackey-Glass chaotic time series (MG) [52] is a 

widely known benchmark problem usually adopted for 

performance comparison with different approaches. The MG 

is derived from the following differential equation: 

     
𝑑(𝑥(𝑡))

𝑑𝑡
=

𝑎𝑥(𝑡−𝜏)

1+𝑥𝑐(𝑡−𝜏)
 − 𝑏𝑥(𝑡)                          (23) 

Note that, if 𝜏 >  16.8, the series has a chaotic behaviour. 

To make a meaningful comparison with related works, we use 

the same initial conditions as in these works. Hence, we 

choose a = 0.2, b = 0.1, c = 10, 𝜏 = 17 and 𝑥(0) = 1.2. Two 

cases of input variables number are treated for this series. In 

the first case, we used 4 input variables for the prediction of 

MG at 𝑥(𝑡 + 6). These inputs are 𝑥(𝑡), 𝑥(𝑡 − 6), 𝑥(𝑡 − 12) 

and 𝑥(𝑡 − 18). In the second case, the 𝑥(𝑡 + 6) is predicted 

using 19 inputs which are 𝑥(𝑡), 𝑥(𝑡 − 1), 𝑥(𝑡 − 2), 𝑥(𝑡 − 3), 

..., 𝑥(𝑡 − 18). 1000 observations were generated by applying 

the fourth order Runge-Kutta method in (23). The first 500 

data points are exploited for training while the remaining 500 

data points are exploited for testing. 

After performing 8 global iterations and 173 NFEs, the 

obtained RMSE values for training and testing data are 

respectively 6.9421e-16 and 6.7523e-16 (in the case of 4 input 

variables). Tables I and II illustrate the simulation results for 

the two cases and make comparisons between our proposed 

model and other approaches from the literature. The training 

and testing RMSE are respectively given by 𝑅𝑀𝑆𝐸𝑡𝑟 and 

𝑅𝑀𝑆𝐸𝑡𝑠 in the tables. The results indicate that the 

MA_HT2BFS can notably achieve better performance in the 

two cases of 4 and 19 inputs and outperforms other existing 

models. 

Note that the MA_HT2BFS is compared with different 

Type-1 FLSs, Type-2 FLSs and neural network learning 

approaches. For Type-2 FLSs, our system is principally 

compared with the SA-IT2FLS [53] which is an interval type-

2 fuzzy system optimized by the simulated annealing 

algorithm, and with the memetic-T2FS [54] which uses a 

variable-length genetic algorithm with a gradient descent 

technique for the structure and parameters learning of the 

interval type-2 fuzzy system. Our system is also compared to 

the support vector-based interval type-2 fuzzy system: TSK-

SVR II [55] and to a general type-2 fuzzy system that uses 

vertical-slices centroid type-reduction method: GT2FLS-

VSCTR [56]. 

For the TSK-SVR II [55] and the SA-IT2FLS [53] 

approaches, the used number of rules is respectively 32 and 16 

rules. It is remarkable that the MA_HT2BFS with fewer rules 

(6 rules) could yield smaller error than its competitors. This is 

due to the hierarchical nature of the system and the use of a 

multi-objective optimization process which has a great impact 

on the reduction of the resulting rule base without affecting 

the system’s prediction performance.  

 
TABLE I. COMPARISON RESULTS OF MACKEY-GLASS TIME-SERIES IN THE 

CASE OF 4 INPUTS 

Method  𝑅𝑀𝑆𝐸𝑡𝑟 𝑅𝑀𝑆𝐸𝑡𝑠 

ADANN-EDA [59] 1.2e-02 - 

FLNFN-CCPSO [60] 8.2e-03 8.4e-03 

HMDDE-BBFNN [61] 9.4e-03 1.7e-02 
LNF [62] 7.0e-04 7.9e-04 

NARMA [63] 6.3e-04 6.2e-04 

FBBFNT [57] 9.9e-07 2.0e-06 
MA_EFBBFNT [58] 4.1e-11 4.1e-11 

GT2FLS-VSCTR [56] 3.9e-02 3.9e-02 

TSK-SVR II [55] - 7.0e-03 
Memetic-T2FS [54] 3.1e-03 - 

SA-IT2FLS [53] 9.0e-03 8.9e-03 

MA_HT2BFS 6.9e-16 6.7 e-16 

 
TABLE II. COMPARISON RESULTS OF MACKEY-GLASS TIME-SERIES IN THE 

CASE OF 19 INPUTS 

Method  𝑅𝑀𝑆𝐸𝑡𝑟 𝑅𝑀𝑆𝐸𝑡𝑠 NFEs 

FNT [64] 2.7e-03 2.7e-03 - 

FBBFNT_EGP&OPSO [65] 2.5e-05  2.5e-05 5,213,935 
MA_EFBBFNT [58]  2.0e-06 2.0e-06 290,379 

MA_HT2BFS 5.5e-13  9.4e-13 414 

 

Other comparisons with existing neural network learning 

approaches are also discussed, and we can remark from Table 

I that the evolutionary neural system FBBFNT [57] can 

generate high rates of accuracy but using a huge number of
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NFEs (more than 800,000). In the case of the MA_EFBBFNT 

[58] which is an extended version of FBBFNT that integrates 

a multi-agent architecture for training, this system succeeds to 

generate similar low training and testing errors and with much 

fewer number of function evaluations. In spite of this great 

improvement in NFEs, the function evaluations number of 

MA_EFBBFNT is still high (more than 158,000). As 

compared with the results of these systems, the proposed 

MA_HT2BFS seems to have better performance in terms of 

reaching comparable errors with minimum NFEs (173). 

In fact, the huge decrease in the number of function 

evaluation is due to different reasons: firstly, the use of a 

clustering technique in the initialization step allows the 

generation of an initial population composed by relatively 

good solutions. This initialization process combined with the 

use of the powerful reasoning capacities of type-2 fuzzy 

modeling yield to more quality outputs, and this could save 

many iterations of optimization. Note that the FBBFNT based 

systems [57], [58] use an initial random population with 

totally random parameters which requires more generations of 

evolutionary optimization. On the other hand, the multi-agent 

architecture has also a powerful effect on the convergence 

speed of our algorithm. The parallel training and cooperation 

of several agents accelerate a lot the whole optimization 

process. 

2) Case 2: Noisy Mackey Glass time series 

Since type-2 fuzzy systems are supposed to handle higher 

uncertainty levels in comparison to their counterparts, the 

MA_HT2BFS has been tested for the Mackey glass time series 

when an additive noise is present in the training and/or testing 

data and was compared with other existing systems. The 

original data were affected by six different levels of Gaussian 

noise with zero mean and STDs (𝜎) equal to 0.04, 0.08, 0.1, 

0.2, 0.3 and 0.4. To allow a fair comparison with other works, 

we use the same initial conditions as in [8], [31], [66], [67] 

and we adopt 𝜏 = 30 and 𝑥(0) = 1.2. The same set of input 

variables is used for all comparison models. In this 

experimentation, 𝑥(𝑡 − 24), 𝑥(𝑡 − 18), 𝑥(𝑡 − 12) and 𝑥(𝑡 −
6) are used as four past values to predict 𝑥(𝑡). A total of 1000 

data pairs were generated from the interval 𝑡 ∈ [124;1123]. 

The first 500 data points are used for training while the 

remaining 500 data points are used for testing.  

Based on different noise levels, we studied a comparison 

between the MA_HT2BFS presented in this work and another 

modified version of this system. The second considered 

system for comparison is the multi-agent hierarchical Beta 

fuzzy system (MA_HBFS) which employs type-1 Beta sub-

fuzzy models. It should be noted that the same initial 

conditions and parameters were used for the two proposed 

systems. In this sense, Fig. 7 illustrates the MA_HT2BFS and 

the MA_HBFS prediction testing results in terms of training 

with noise level σ=0.1 and noise-free for test. 

 

 

Fig. 7. Prediction results of MA_HT2BFS (RMSEts = 0.031)  and MA_HBFS (RMSEts = 0.078)  trained with noise level 𝜎 = 0.1 and noise-free for test 

 

 
 

Fig. 8. Pareto fronts generated by MA_HT2BFS and  MA_HBFS (left) when the noise in the training data is 𝜎 = 0.04 and (right) when the noise in the training 

data is 𝜎 = 0.4 
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Furthermore, we analyze the results generated by the 

MA_HT2BFS and the MA_HBFS when the training data are 

affected by low and high levels of noise. Fig. 8 presents the 

obtained Pareto fronts by the MA_HT2BFS and the 

MA_HBFS under noise levels σ = 0.04 and σ = 0.4. It is 

noticed from Fig. 8 that when the level of noise is low (σ = 

0.04), the two systems achieve similar Pareto fronts. However, 

when the level of noise grows to σ = 0.4, the MA_HT2BFS 

generates a better Pareto front that dominates the front of the 

MA_HBFS. Therefore, we can conclude from the experiments 

that type-2 fuzzy sets have better noise tolerance than their 

type-1 counterparts. On the other hand, the robustness of the 

MA_HT2BFS over the MA_HBFS is also shown by training 

the MA_HT2BFS and the MA_HBFS using noise-free 

training data. Next, two levels of low and high Gaussian noise 

(σ=0.04 and σ=0.4) were added to the testing data in order to 

verify the robustness of the resulting hierarchical fuzzy 

systems. The results of this experiment are shown in Table III. 

The results show a better performance and tolerance to the 

noise of the MA_HT2BFS in comparison with the other type-1 

model in the case of very noisy testing data (σ=0.4).  

In addition, Fig. 9 shows the evolution of the testing error 

(𝑅𝑀𝑆𝐸𝑡𝑠) as the noise level increases for the two types of 

FLSs. It should be noted that to make a fair comparison, we 

compare in Fig. 9 only solutions having the same number of 

rules (6 rules). We can observe that the impact of noise on the 

RMSEts values is not the same for the two systems. For low 

levels of noise, the MA_HT2BFS and the MA_HBFS systems 

give similar 𝑅𝑀𝑆𝐸𝑡𝑠, as the noise level increases, the 

MA_HT2BFS produce much lower RMSEts compared to its 

type-1 counterpart. 

Table IV shows a comparison between our technique and 

other state of art techniques applied to noisy Mackey-Glass. 

For the training part, the training set is created by adding 

Gaussian noise with zero mean and STDs (𝜎) equal to 0.1 to 

the original data 𝑥(𝑡). Three sets are generated for testing: 

clean, 𝜎 = 0.1, and 𝜎 = 0.3. The best values having the lowest 

error are marked in bold. As shown in Table IV, the 

MA_HT2BFS outperforms the competing methods where 

although the SIT2FNN outperforms the other techniques in 

training and testing data, the MA_HT2BFS gives the best 
𝑅𝑀𝑆𝐸𝑡𝑠 over testing data (with less or similar number of 

rules) where the difference to competing techniques increase 

when increasing the noise (with 𝜎 = 0.3). 
 

 

TABLE III. Performance comparison  in terms of noise-free training data and 

noisy testing data for Mackey-Glass time-series  

 

Method 

𝑅𝑀𝑆𝐸𝑡𝑟 𝑅𝑀𝑆𝐸𝑡𝑠  

clean clean 𝜎=0.04 𝜎=0.4 #R 

MA_HBFS 7.9e-16 7.6e-16 0.038 0.301 6 

MA_HT2BFS 1.2e-16 1.2e-16 0.035 0.182 6 

 

Fig. 9. Evolution of the 𝑅𝑀𝑆𝐸𝑡𝑠 values as the noise level increases for 

testing data in the case of Mackey-Glass time-series 

 

 
TABLE IV. COMPARISON RESULTS OF MACKEY-GLASS TIME-SERIES IN THE 

CASE OF NOISE LEVEL 𝜎 = 0.1 

  

Method 
𝑅𝑀𝑆𝐸𝑡𝑟 𝑅𝑀𝑆𝐸𝑡𝑠  

 𝜎=0.1 clean 𝜎=0.1 𝜎=0.3 #R 

T
y
p

e-
1
 MA_HBFS 0.152  0.065 0.113 0.228 5 

SONFIN [66] 0.113  0.054 0.108 0.256 10 
      

T
y
p

e-
2
 

IT2FNN-SVR [8] 0.127  0.046 0.088 0.215 6 

eT2FIS [67] 0.120  0.059 0.107 0.214 - 

SEIT2FNN [31] 0.123  0.049 0.097 0.212 5 

SIT2FNN [68] 0.088  0.041 0.087 0.215 5 

𝑇2𝐻𝐹𝐼𝑇𝑀  [69] 0.123  0.042 0.135 0.365 - 

MA_HT2BFS 0.118  0.039 0.082 0.181 5 

 

B. Lorenz chaotic time series prediction 

1) Case 1: Noise-free Lorenz time series 

The Lorenz system is a model of fluid motion between a hot 

surface and a cool surface [70]. This series is generated by the 

following ordinary nonlinear differential equations: 

 

       {

𝑥̇ = 𝜎(𝑦 − 𝑥)
𝑦̇ = −𝑦 − 𝑥𝑧 + 𝑟𝑥

𝑧̇ = 𝑥𝑦 − 𝑏𝑧
                (24) 

 

The x-coordinate of the equations is employed as the time 

series. The parameters in (24) are most commonly selected to 

be 𝜎= 10, r = 28 and b = 8/3. The data are obtained by solving 

the described equations. For the prediction, (𝑡 − 4) ,𝑥(𝑡 − 3), 

𝑥(𝑡 − 2) and 𝑥(𝑡 − 1) are used as the inputs of the system 

while x(t) is the output. 1000 observations are generated, the 

first 500 data pairs are employed for training and the other 500 

are used for the test.  

Table V shows the comparison for MA_HT2BFS against 

other techniques where the MA_HT2BFS gives the best 

compromise between solution quality, the convergence speed 

and the rule base complexity.  
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TABLE V. COMPARISON RESULTS OF LORENZ TIME-SERIES 

Method  𝑅𝑀𝑆𝐸𝑡𝑟 𝑅𝑀𝑆𝐸𝑡𝑠 Iter NFEs #R 

LNF [62] 3.9e-03  8.1e-03 - - - 

RBLM-RNN [71] 1.8e-02  3.0e-02 1000 - - 

FBBFNT [57] 7.4e-08    1.0e-07 3872 204,911 - 

MA_HT2BFS 3.3e-16 2.1e-16 6  106 5 

 

2) Case 2: Noisy Lorenz time series 

We have also tested with noisy Lorenz time series. 

Different levels of Gaussian noise with zero mean and 𝜎-

deviation are added to the training and testing data, i.e., 𝜎 = 

{0.04, 0.08, 0.1, 0.2, 0.3, 0.4}.  

The robustness of the MA_HT2BFS under a noisy 

environment is compared with that of the MA_HBFS as 

shown below. For the training part, the two systems were 

trained using clean training data (no noise was added), while 

for the testing part, two levels of Gaussian noise were added 

including testing with 𝜎 = 0.04 and 𝜎 = 0.4 respectively. The 

results of this experiment are shown in Table VI where the 

MA_HT2BFS can clearly outperform its type-1 counterpart 

specifically in the case of very noisy testing data (𝜎 = 0.4). In 

Fig. 10, we show the impact of increasing the levels of noise 

on the 𝑅𝑀𝑆𝐸𝑡𝑠values for the two proposed typ-1 and type-2 

hierarchical fuzzy models. We can remark from the figure that 

the MA_HT2BFS achieves significantly lower errors in 

comparison with the MA_HBFS as the noise increases. This 

affirms the noise resilience abilities of the MA_HT2BFS as 

compared with its type-1 counterpart. 

 
TABLE VI. PERFORMANCE COMPARISON  IN TERMS OF NOISE-FREE TRAINING 

DATA AND NOISY TESTING DATA FOR LORENZ TIME-SERIES 

 

Method 

𝑅𝑀𝑆𝐸𝑡𝑟 𝑅𝑀𝑆𝐸𝑡𝑠  

clean clean 𝜎=0.04 𝜎=0.4 #R 

MA_HBFS 8.1e-16 9.4e-16 0.036 0.419 7 

MA_HT2BFS 7.6e-16 7.8e-16 0.033 0.282 7 

 

 

Fig. 10. Evolution of the 𝑅𝑀𝑆𝐸𝑡𝑠 values as the noise level increases for 

testing data in the case of Lorenz time series 

 

C. Sunspot time series 

We have also employed the Sunspot time series data set 

which presents a real world non-stationary and highly-

complex time series showing the annual average relative 

number of observed sunspot [72]. The dataset is recorded 

between years 1700-1979. The training data are formed by 

data points between 1700 and 1920, the testing data are 

divided into two sets, the first set is from 1921 to 1955 and the 

second is from 1956 to 1979. The inputs of the system are 

𝑦(𝑡 − 4), 𝑦(𝑡 − 3), 𝑦(𝑡 − 2) and 𝑦(𝑡 − 1) and the output is 

𝑦(𝑡). The dataset is available from: 

http://www.ngdc.noaa.gov/stp/solar/ssndata.html. 

Based on the different performance measures, Table VII 

lists the simulation results of our system and makes a 

comparison with other related works. After accomplishing two 

generations (G=2), an optimal HT2BFS having 6 rules is 

generated with 2.3195e-16 value for training RMSE. The 

actual time series and the predicted output are illustrated 

through Fig. 11. From the results table, we can notice a 

significant improvement when applying the MA_HT2BFS in 

the different measures of performance in comparison with the 

other methods. For example, although the fuzzy wavelet 

neural system FWNN [73] shows an improvement in the 

number of global iterations (Iter=200) as compared with the 

FBBFNT neural system [57] (Iter=3821), but it still uses many 

rules in the prediction (16 rules). In our case, our model can 

reach better rates of accuracy (RMSEts2) in less time (Iter=6 

and NFEs=98) and using less complex rule base (6 rules).  

 
TABLE VII. COMPARISON RESULTS OF SUNSPOT NUMBER TIME-SERIES 

Method  𝑅𝑀𝑆𝐸𝑡𝑟 𝑅𝑀𝑆𝐸𝑡𝑠1 𝑅𝑀𝑆𝐸𝑡𝑠2 Iter NFEs #R 

RFNN [74] - 7.4e-02  2.1e-01 - - - 

FWNN-S [73] 2.5e-01  3.3e-01 5.2e-01 200  - 16 

FWNN-R [73] 2.3e-01  3.3e-01 6.8e-01 200  - 16 
FWNN-M [73] 2.4e-01  3.1e-01  6.0e-01 200  - 16 

FBBFNT [57] 3.1e-08  7.2e-07 8.0e-07 3821   631,075 - 

FBBFNT_EIP
&HBFOA [43] 

1.9e-10 4.1e-10 7.2e-10 - - - 

MA_HT2BFS 2.3e-16 5.4e-16 3.2e-16 6 98 6 

 

 

 
Fig. 11. The desired output and the predicted output for the training, test 1 and 

test 2 data in the case of sunspot number time series 
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D. MA_HT2BFS for High-Dimensional Regression Problems 

In order to analyze the performance of the MA_HT2BFS in 

high-dimensional problems, we have employed four large-

scale real-world regression problems from the KEEL project 

repository [75]. Table VIII shows the characteristics of the 

data sets which have been selected from the most complex 

problems of the KEEL project webpage (Available at 

http://www.keel.es/). In fact, the considered problems present 

an important challenge for the proposed system because of the 

high number of data and features (input variables). The data 

sets cover a range of input variables from 8 to 40 and a range 

of examples from 13750 to 22784. 

 
TABLE VIII. DATA SETS CHARACTERISTICS 

Problem Abbr. Variables cases 

Ailerons AIL  40 13750 

California Housing CAL  8 20640 

Elevators  ELV 18 16559 

House-16H  HOU 16 22784 

 

For all the problems, a 5-fold cross validation method was 

performed. Therefore, we divided each data set into 5 equal 

groups of samples where 4 groups are used for training and 

one group is used for the test. For each of the five partitions, 

six runs are executed resulting in a total of 30 runs per data 

set. The final results are averaged over the 30 runs. This 

experimentation does not aim to generate the lowest mean 

square error (MSE) in comparison with other works, but it 

aims to obtain in the same time the most accurate solution 

having a reduced number of rules and with the least number of 

function evaluations. The MA_HT2BFS is also compared to 

three state-of-the-art fuzzy systems for regression problems. 

Table IX presents the average rules number (#R), the average 

training MSE (𝑀𝑆𝐸𝑡𝑟), the average testing MSE (𝑀𝑆𝐸𝑡𝑠) and 

the average used NFEs for all the data sets. The best values 

having the lowest error and the minimum number of rules are 

marked in bold. Analyzing the results presented in Tables IX, 

we can see that the MA_HT2BFS presents competitive results 

in training and testing errors as compared with the other GFSs. 

Focusing on the used number of rules, it is remarkable that the 

proposed approach has the advantage of reaching competitive 

errors using fewer number of rules. We can see that despite 

the high number of examples, the number of rules generated 

by the MA_HT2BFS is the lowest in most of the cases. This is 

due to the great effect of the multi-objective immune 

programming mechanism which is able to significantly 

minimize the rules number while decreasing the error of the 

system. Regarding the number of executed function 

evaluations, the MA_HT2BFS succeeds to reach the desired 

compromise between the accuracy and the interpretability 

using a reduced number of NFEs. This is due to the 

hierarchical structure of the system and due to the parallel 

optimization process offered by the multi-agent architecture 

which reduces the needed learning iterations. 

VIII. CONCLUSIONS AND FUTURE WORK 

In this paper, we presented a hierarchical representation of 

interval type-2 beta fuzzy systems through a tree encoding 

scheme. Hierarchical type-2 fuzzy modeling has been 

considered in this study as a search problem and an 

optimization task in both structure and parameter spaces. For 

that, innovative hybrid stages of structure learning and 

parameter tuning tasks were applied in order to obtain a near-

optimal system. To accomplish these tasks in the most optimal 

way, we have further employed a multi-agent architecture to 

efficiently parallelize and distribute the optimization tasks 

between a structure agent and a set of parameter agents. Both 

types of agents communicate and coordinate in order to 

generate an optimal hierarchical fuzzy system in a reduced 

time and with less cost. To do this, the structure agent applied 

a multi-objective structure learning phase by means of the 

MOIP algorithm which aims to obtain a set of improved 

structures of HT2BFSs. This phase is presented in a multi-

objective context where the accuracy and the interpretability 

were considered as two main objectives to reach. For the 

tuning task, a number of parameter agents applied a parameter 

tuning phase by means of the HHS algorithm in order to adjust 

the parameters of the evolved structures. 

The proposed hierarchical fuzzy design was implemented 

for both type-1 and type-2 FISs and the robustness of the 

MA_HT2BFS compared with the MA_HBFS was studied. 

The two types of systems were applied for time series 

prediction problems in the cases of absence of noise and under 

noisy environments. A comparative analysis was presented 

showing that when the used data are noise-free, or when the 

level of noise is low, the two types of FLSs gave close results. 

Therefore, the type-1 MA_HBFS is recommended to be used 

in such situations offering simpler computation and 

comparable error results. However, it has been observed that 

in the cases of higher noise levels (large amounts of 

uncertainty), the difference between the two systems becomes 

more evident. For example, in the case of MG time series, 

when the injected noise level is high (𝜎=0.4), the MA_HBFS 

achieved an 𝑅𝑀𝑆𝐸𝑡𝑠  of 0.284 in comparison to the 

MA_HT2BFS which gave an 𝑅𝑀𝑆𝐸𝑡𝑠  of 0.186 (i.e the 

MA_HT2BFS offered about 35% improvement over its type-1 

counterpart).  

Additionally, we presented many comparisons with other

 

TABLE IX. Average results of the different algorithms. Results in this table (𝑀𝑆𝐸𝑡𝑟 and 𝑀𝑆𝐸𝑡𝑠) should be multiplied by 10−8, 10+9, 10−6 or 10+8 in the case of 
AIL, CAL, ELV or HOU respectively 

 

DATA SET 

MA_HT2BFS   𝐹𝑆MOGFSe + TUNe [76]  FRULER [78]  𝑀𝐸𝑇𝑆𝐾 − 𝐻𝐷𝑒 [77] 

#R 𝑀𝑆𝐸𝑡𝑟 𝑀𝑆𝐸𝑡𝑠 NFEs  #R 𝑀𝑆𝐸𝑡𝑟 𝑀𝑆𝐸𝑡𝑠  #R 𝑀𝑆𝐸𝑡𝑠  #R 𝑀𝑆𝐸𝑡𝑟 𝑀𝑆𝐸𝑡𝑠 

𝐴𝐼𝐿40/13750 8.4  1.393 1.400 397.6  15  1.955 2.000  8.5  1.404  48.4  1.39 1.51 

𝐶𝐴𝐿8/20640 6.3   2.934 2.965 257.2  8.4  2.94 2.95  15.4  2.110  55.8  1.64 1.71 

𝐸𝐿𝑉18/16559 7.3  2.821 2.911 326.5  8  9.00 9.00  5.4  2.934  34.9  6.75 7.02 

𝐻𝑂𝑈16/22784 6.4  9.421 9.512 367.1  11.7  9.35 9.40  12.1  8.005  30.5  8.29 8.64 
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methods taken from the literature. The comparisons include 

recent works of neural systems and type-1/type-2 fuzzy or 

neuro-fuzzy systems. In most of the cases (noisy or noise free 

time series), the proposed MA_HT2BFS provided better 

testing error using similar or lower number of rules as 

compared with the other state of the art methods. Simulations 

on time series prediction problems showed good results and 

proved that the MA_HT2BFS outperforms the other 

competing methods even under a noisy environment. 

Moreover, the performance of the proposed system was also 

examined in the case of high-dimensional problems. For this 

purpose, we have tested some large-scale regression problems 

and we compared the results to other well-known existing 

fuzzy systems. It is clear from the results that the 

MA_HT2BFS with much fewer rules could yield smaller or 

competitive error than the other existing GFSs.  

Finally, for our future work, we will look to consider the 

proposed system for real world applications areas. 
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APPENDIX A: NOMENCLATURE 

 

IT2BMF: Interval Type-2 Beta Membership Function. 

IT2BFS: Interval Type-2 Beta Fuzzy System. 

HT2BFS: Hierarchical Interval Type-2 Beta Fuzzy System.  

E_HT2BFS: Evolutionary Hierarchical Interval Type-2 Beta 

Fuzzy System. 

MA_HT2BFS: Multi-Agent Hierarchical Interval Type-2 

Beta Fuzzy System. 

MA_HBFS: Multi-Agent Hierarchical Beta Fuzzy System.  

MOIP: Multi-Objective Immune Programming. 

HHS: Hybrid Harmony Search. 
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