
The University of Manchester Research

A self-evolving fuzzy system which learns dynamic
threshold parameter by itself
DOI:
10.1109/TFUZZ.2018.2886154

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Ge, D., & Zeng, X. (2018). A self-evolving fuzzy system which learns dynamic threshold parameter by itself. IEEE
Transactions on Fuzzy Systems. https://doi.org/10.1109/TFUZZ.2018.2886154

Published in:
IEEE Transactions on Fuzzy Systems

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:26. Apr. 2024

https://doi.org/10.1109/TFUZZ.2018.2886154
https://research.manchester.ac.uk/en/publications/0bb3c270-e785-4dd1-80a0-37bcb1e0344f
https://doi.org/10.1109/TFUZZ.2018.2886154

i

A self-evolving fuzzy system which learns dynamic

threshold parameter by itself
Dongjiao Ge, Student Member, IEEE, Xiao-Jun Zeng Member, IEEE

Abstract—This paper proposes an online learning algorithm
for data streams namely self-evolving fuzzy system (SEFS).
Unlike the fixed control parameters commonly used in evolving
fuzzy systems, SEFS uses online training errors, which measure
the quality of an identified model in presenting the dynamics of
the data stream, to set a dynamic threshold automatically for rule
generation. This self-tuning parameter, which controls the speed
and coverage for fuzzy rule generation, helps SEFS properly
deal with the under-fitting/over-fitting problems relying on two
facts. (1) Large training errors present an under-fitted model,
which is too coarse to represent the highly complicated and
rapidly dynamic (e.g. highly nonlinear, non-stationary) behavior
of the data segment. Then, finer rules need to be added. (2)
Tiny training errors reflect an over-fitted model, which can
ideally represent any slight dynamic behavior of the data stream.
In this case, coarse rule base should be used. Besides, a L2

distance based geometric similarity measure is proposed in the
rule merging phase. With this similarity measure, SEFS computes
the similarity between Gaussian membership functions accurately
without making an approximation of the Gaussian membership
function beforehand. In addition, a weighted recursive least
square algorithm with a variable forgetting factor (VFF-WRLS),
which minimizes the mean square of the noise-free posterior error
signal, is applied to learn the consequent parameters. Several
benchmark examples across both artificial and real-life data
sets verify that SEFS has the ability to give better performance
compared with many state-of-the-art algorithms.

Index Terms—Evolving fuzzy system, recursive least square,
online learning, data stream.

I. INTRODUCTION

S
TREAMING data are one of the most common types

of data in many real world applications. This makes

data stream mining a very important research area. A data

stream usually comes in high speed, and it is always ac-

companied with concept drift (also known as non-stationary

phenomenon). As a result, data streams bring new chal-

lenges for mining techniques in data storage, learning in non-

stationary environment as well as quick tracking of the data.

Mining data streams involves a lot of research topics such

as regression, clustering, classification, summarization and so

on [1]. This paper mainly focuses on data stream regression

problems, which typically include problems such as time series

prediction, function approximation and system identification

[2]. With the characteristics of structure and parameters are

Manuscript received April 23, 2018; revised October 18, 2018; accepted
November 22, 2018. The first author, Dongjiao Ge, of this work is funded
by the President’s Doctoral Scholar Award of the University of Manchester.
(Corresponding author: Xiao-Jun Zeng).

Dongjiao Ge and Xiao-Jun Zeng are with School of Computer Sci-
ence, University of Manchester, M13 9PL, Manchester, U.K.(email:
dongjiao.ge@manchester.ac.uk; x.zeng@manchester.ac.uk).

able to update online, and no requirement for storing huge

historical data, evolving fuzzy systems (eFSs) are effective

and widely used fuzzy models in dealing with data stream

regression issues.

In previous literatures, there are numerous eFSs researches

about data stream regression problems. Since the early devel-

opment of methods for identifying eFSs, there have been two

major parts consist of those eFSs identification approaches.

These two parts contain antecedent learning (rule generation,

rule simplification) and consequent learning (consequent pa-

rameters updating). Both of these two blocks severely affect

the learning ability of eFSs. Most of existing works focus

on studying the first block—making improvement on fuzzy

rule generation and simplification criterions, while using the

existing optimization approaches directly in consequent learn-

ing. Frequently used methods in existing eFSs identification

algorithms for antecedent learning could be summarized as

follows:

(1) Fuzzy rule generation: This process is also known as

fuzzy rule adding. Since there is usually no prior knowledge

about how many and what fuzzy rules are needed to depict

the input space, it is a crucial task to learn the fuzzy rules

including the cluster centers and radiuses as well as fuzzy

rule numbers online. In the early work of eFSs, a distance

based criterion has been used. For example, [3] proposed a

dynamic evolving neural-fuzzy inference system (DENFIS)

adding new fuzzy rules based on the Euclidean distances

between the new input data and the existing cluster centers.

Furthermore, flexible fuzzy inference systems (FLEXFIS) [4]

and dynamically evolving clustering (DEC) [5] judge whether

a new input sample is in the existing clusters by comparing

distances between this input and the cluster centers with the

corresponding radiuses. Considering eFSs developed based on

generalized fuzzy rules [6], Mahalanobis distance has been

used to control the fuzzy rule growth e.g. [7], [8]. Similar to

distance based methods, there exists another effective criterion

built according to the activation degree (or firing strength).

As activation degree takes the distance between the input

and existing cluster centers into consideration by nature, the

essence of activation degree is the same as the distance

based criterions, but the activation degree is more intuitive

to assess whether a data point is close to a cluster center.

Approaches such as self-organizing fuzzy neural network

(SOFNN) [9], online self-organizing fuzzy modified least-

square network (SOFMLS) [10] whose improved approaches

could be found from [11], [12], evolving neural-fuzzy se-

mantic memory model (eFSM) [13], and evolving neo-fuzzy

neural network approach (eNFN) [14] implement activation

ii

degree to make decisions on fuzzy rule adding. Further, recent

researches using activation degree, for example, are generic

self-evolving Takagi-Sugeno-Kang fuzzy framework (GSET-

SK) [15], the eFSs identification method proposed by [2],

and local error optimization approach (LEOA) [16]. Besides,

datum significance (DS) criterion is another effective rule

generation criterion. As a generalized version of the significant

criterion [17], [18]–[20] and the influence [21], DS criterion

measures whether the new input could contribute more to the

prediction results than existing clusters. Parsimonious network

based on fuzzy inference system (PANFIS) [22] and Generic

Evolving Neuro-Fuzzy Inference System (GENEFIS) [23] are

two typical methods that put forward and apply this criterion.

In addition to these approaches for rule generation, there also

exist many other criterions, for instance, rule potential [24]–

[26], compatibility measure, [6], [27], data density [28].

(2) Fuzzy rule simplification: Rule simplification process

helps an eFS lower down the computational burden and keep

a tidy rule base to make swift predictions. There are two main

ways to help eFS eliminate redundant rules. One is fuzzy rule

merging and the other is fuzzy rule pruning. Previous research-

es such as [8], [14], [16], [24], [27], [29], [30] proposed and

used rule simplification criterions such as age, utility to delete

clusters which are rarely used. Apart from pruning low utility

rules, another desirable approach to simplify the rule base is

known as fuzzy rule merging. The process combines two or

several similar clusters to one cluster to not only decrease the

computational burden, but also avoid the rule conflict. As a

result, how to judge the similarity of two fuzzy rules becomes

a crucial problem discussed by researches containing merging

process. There are two major classes of rule similarity mea-

sure: set-theoretic similarity measure and geometric similarity

measure [31]. Set-theoretic measures measure the proportion

of the intersection of two clusters comparing with the union of

these two clusters; while geometric measures are comparing

the distance between membership functions of two clusters.

Set-theoretic measures are valid measures which can determine

the similarity between two overlapping clusters. Examples of

previous researches with set-theoretic similarity measures are

GSETSK [15], eFSM [13], eT2FIS [32]. Different from set-

theoretic measures, geometric measures are distances based

effective alternatives. Geometric similarity measures are usu-

ally fast and comparatively easy to calculate. Furthermore,

they are also widely used in many existing eFSs identification

algorithms (e.g. [5]–[7], [9], [16], [22], [23], [27], [28]).

Following the above methods, many different approaches

and algorithms for eFSs have been proposed and developed.

However, all these approaches still suffer technical limitations

from the following two aspects.

• As discussion above, the rule generation of the eFSs could

be determined by the distance based criterion, activation

degree or other criteria. However, a fundamental problem

which has not been effectively solved is how to deter-

mine the right threshold value for such a criterion. This

threshold value is very crucial in controlling the speed for

rule growth and accuracy of the systems. When threshold

is set to make the criterion loose, the rule number will

growing slowly and the obtained clusters are big ones. If

the threshold is set to let the criterion very strict, then it

will obtain many tiny clusters. It can be seen from this

phenomenon, too loose or too strict criterions are likely

to cause under-fitting or over-fitting issues. Unfortunately,

the current practice of setting such a control parameter is

a fixed value based on the experienced value or trial-

error off-line experiment. The experienced value does

not work as the different threshold values which are

needed when learning different systems, and there is no

one value which fits to all the systems. Even setting the

individual value for each system to be learned based on

the off-line experiment still inappropriate, as data streams

always have non-stationary and nonlinear phenomenon.

Therefore, a fixed threshold value is hard to generate a

fuzzy system with appropriate complexity to approximate

the data stream. The reason behind this is that too

simple/coarse system is usually lack of ability to fit the

highly non-stationary phenomenon, and may cause under-

fitting; whereas over complicated system would learn

from the noise and lead to over-fitting. Furthermore, a

fixed threshold is hard to guarantee that new added rules

can ensure the reduction of prediction errors. Therefore,

in many applications, it is difficult to find a fixed value

threshold, no matter whether it is based on experience

or experiment, to make the eFS evolve effectively and

accurately according to the state and the need of a data

stream.

• Both set-theoretic and geometric similarity measure face

two common challenges: i) the direct use of Gaussian

membership functions is hard to meet the requirement of

the online learning regarding to computation speed [33];

ii) approximations of Gaussian membership functions,

and the heuristic similarity measures are difficult to

accurately measure the rule similarities. To be more spe-

cific, on one aspect, set-theoretic similarity measures are

usually computationally expensive when using Gaussian

or bell-shaped membership functions [34], because of the

difficulty in computing the intersection of fuzzy sets even

for the off-line learning. Many alternative methods have

been proposed in previous works, such as using triangle

[32] or trapezoidal [34] to approximate the Gaussian

membership function based on the α-cut of the fuzzy set.

These approximated measures are inaccurate due to the

different shapes between Gaussian and the approximated

membership functions. On the other aspect, geometric

measures are distance based measures and easier to

compute, as only the distance between the membership

functions is required to calculate and so widely used for

on-line learning. Considering the computation speed, in-

accurate and intuitive approaches (e.g.distances between

cluster centers or radiuses, Bhattacharyya distance) have

been frequently applied. The assumption behind these

measures are that if the parameters or the statistical

samples present extremely similar behavior, then the

firing strengths would have high similarity. Unfortunately,

the existing approaches are approximate or heuristic and

so are inaccurate, as a result, they could lead to the wrong

merge. Therefore, there is a need to propose a similarity

iii

measure to tackle these problems.

To address these important issues, a self-evolving fuzzy

system (SEFS) is proposed in this paper. The main novelties

and advantages of SEFS could be summarized as follows.

• Rather than a fixed value, SEFS determines and dynami-

cally tunes the threshold parameter by self-learning from

data. Noticing the fact that online training errors can indi-

cate whether the learned eFSs has appropriate complexity

to fit the data stream, then a self-learning strategy is

proposed. This strategy automatically and dynamically set

the threshold parameter to control rule generation based

on two basic principles: when the learned eFS is under-

fitting, the threshold value is decreased to speed up the

rule adding; when the learned eFS is over-fitting, the

threshold parameter is increased to slow down the speed

of rule adding. In more details, the threshold is set to be a

function of the cumulative online training error which is

computed by the sum of the output absolute errors with

forgetting factor as weights (the older the training errors,

the smaller the weights). The small or even tiny online

training errors demonstrate that the eFS is complicated

enough to fit the data stream, and more complicated

system would cause over-fitting. Then, the threshold

parameter should be tuned to slow down the speed for

generating new rules. Otherwise, the big online training

errors illustrate the eFS is not complex enough to catch

up the data dynamics, and it is necessary to increase the

system complexity. Then, the threshold parameter should

be tuned to allow more new rules generated to get rid of

under-fitting. As a result, with the time-varying threshold

to control the rule growth, SEFS can learn by itself to

discover the right value of the threshold parameter; the

error based rule generation approach intends to reduce

the errors through adjusting the rule adding speed.

• We propose a new geometric similarity measure, which

is derived from the idea that two fuzzy rules are similar

when they have similar normalized firing strengths every-

where in the domain. This proposed similarity measure

has two main novelties: i) an accurate calculation of

the similarity is given by the straight forward use of

the Gaussian membership functions; ii) with an analytic

form, this similarity measure is easy to compute and

suitable for online learning. To be more specific, the

proposed similarity measure determines the similarity of

two fuzzy rules from the difference between the firing

strengths, instead of the difference between membership

functions in each dimension, and results in an economic

rule base without losing the accuracy. Despite of applying

triangles or trapezoids to approximate and replace the

Gaussian membership functions, the original form of

Gaussian membership functions are applied. Besides,

unlike the heuristic and indirect approaches to measure

the difference of two firing strengths, we measure the

L2 distance between the firing strengths directly in the

function space, and induct a easily computed analytic

form of this L2 distance. To summarize, with this accurate

similarity measure, SEFS can make fast decisions of rule

merging at appropriate occasions on the fly.

The rest of this paper is arranged as follows. Section II

presents the basic structure of a evolving fuzzy system and the

problem which needs to be solved. Section III proposes and

explains the learning details of SEFS in fuzzy rule adding and

merging, and antecedent and consequent parameters updating.

Numerical examples used to evaluate SEFS are displayed in

Section IV. In Section V, conclusions are given.

II. PROBLEM STATEMENT

The T-S fuzzy system is considered in this paper. The form

of the i-th fuzzy rule Ri is multi-input-single-output (MISO)

type shown in (1):

Ri : I f x1 is Γi,1 and x2 is Γi,2 and . . . and xn is Γi,n,

then yi = ψi,0 +
n

∑
j=1

ψi, jx j, (1)

where i = 1,2, . . . ,K, K is the number of fuzzy rules, x =
(x1,x2, . . . ,xn), in which x j is the j-th input, x ∈ Ω= [a1,b1]×
[a2,b2]× . . .× [an,bn] ⊂ Rn, yi is the output of rule Ri, ψi =
(ψi,0,ψi,1, . . . ,ψi,n) is the vector of consequent parameters, n

is the number of the input variables.

The membership function of Γi, j is µi, j(x j) which is a

Gaussian membership function [12], [19], [20] with form (2),

µi, j(x j) = exp{− (x j − ci, j)
2

2(σi, j)2
}, (2)

in which ci, j and σi, j are cluster center and radius, respectively.

Furthermore, for rule Ri, the firing strength γi(x) and the

normalized firing strength θi(x) are presented by (3) and

(4), respectively. The final output of the system ŷ could be

computed by (5).

γi(x) =
n

∏
j=1

µi, j(x j), (3)

θi(x) = γi(x)/
K

∑
j=1

γ j(x), (4)

and

ŷ =
K

∑
i=1

θi(x)yi. (5)

This paper is going to propose the one-pass online ap-

proach to identify T-S fuzzy system from three aspects:

rule number K, antecedent parameters ci = (ci,1,ci,2, . . . ,ci,n),
σi = (σi,1,σi,2, . . . ,σi,n), as well as consequent parameters

ψi = (ψi,0,ψi,1, . . . ,ψi,n)
T , where i = 1,2, . . . ,K.

III. INCREMENTAL LEARNING ALGORITHM OF SEFS

A. Fuzzy rule adding and updating

Assume that the real input and corresponding output are

x(t) = (x1(t),x2(t), . . . ,xn(t)) and y(t), and ŷ(t) is the output

estimated by SEFS. It is the most widely used approach to add

a new fuzzy rule if ∀i = 1,2, . . . ,K, γi(x(t)) < ε holds. Most

of the previous researches set ε as a fixed value threshold.

Different from the existing approaches, in this paper, this

threshold is a time varying and self-tuning threshold εt , which

iv

captures the dynamics of the data stream, and adjusts its

value by self-learning to follow these dynamics. As the online

training errors contain the information of under-fitting and

over-fitting of the eFS, the threshold εt is designed to be

the function of the online training errors. Besides, due to the

fact that the most recent data always have higher influence

on the future behaviour of the data stream than the old data,

it is natural and reasonable that newer training errors should

have more influence on the threshold than the older ones.

Furthermore, on one hand, when the cumulative online training

error is big, the learned eFS is too coarse to catch up the non-

linearity and non-stationary of the data stream, then, more

fuzzy rules are required to overcome the under-fitting problem.

In this case, a big threshold εt enables the eFS to evolve rapidly

to increase the accuracy. On the other hand, a small (or tiny)

cumulative online training errors demonstrate that the eFS is

complex (or over complicated) to approximate the data stream.

In this situation, increasing the rule numbers in a high speed

is likely to lead to over-fitting, thus, a small threshold εt is

more appropriate for slowing down the rule adding speed to

avoid over-fitting. As a result, in order to preciously depict

the phenomenon of the variation of the threshold along with

the ability of eFS to fit the dynamics of the data stream,

the threshold εt (6) is designed as the monotonic increasing

function of the cumulative online training error
t

∑
k=1

λ t−kek.

Because the direct use of the training errors ŷk−yk to compute

the cumulative error will lead to the positive and negative

values compensate each other, therefore, the absolute training

errors ek = |ŷk − yk| are applied.

εt = εmax − (εmax − εmin)Et , where (6)

Et = exp{−
t

∑
k=1

λ t−kek}, (7)

λ ∈ [λ0,1) is the forgetting factor for indicating the importance

of each error, ek = |y(k)− ŷ(k)|, which is the absolute error,

and the interval [λ0,1) is the admissible forgetting factor

interval. Smaller λ permits faster forgetting of the old er-

rors and more focus on information contained in the recent

errors. The lower and upper bounds of the threshold εt are

εmin and εmax, respectively. Assume Et−1 = exp{−A(t − 1)}
and A(t − 1) =

t−1

∑
k=1

λ t−1−kek, then A(t) could be updated by

A(t) = λ A(t − 1)+ et.

Proposition III.1. εt is monotonically increasing against
t

∑
k=1

λ t−kek.

Proof. See appendix A.

Definition III.1. (ε-completeness [35]) For any input x ∈ Ω,

there exists at least one fuzzy rule such that the activation

degree of x is no less than ε .

Now the rule adding method of SEFS is proposed as below.

Rule adding method. If γi(x(t)) < εt , ∀ i = 1,2, . . . ,K, then

add a new fuzzy rule with cluster center x(t). Radius is σ =

(σ1,σ2, . . . ,σn) with σ j =
‖ci∗−x(t)‖2

k0
(k0 =

√

−2log(εt), j =

1,2, . . . ,n), in which i∗ = argmax
i

γi(x(t)). εt is a time varying

threshold with the function form shown in (6).1

Rule adding method helps to determine the radius of

the new cluster by assuring ci∗ , which is the nearest clus-

ter center of x(t), satisfies that exp{−
n

∑
j=1

(ci∗, j−x j(t))
2

2σ 2
j

} =

εt . According to the bounds of εt , the corresponding dy-

namic parameter k0 = kt =
√

−2log(εt) is in the inter-

val [
√

−2log(εmax),
√

−2log(εmin)]. The form of kt in rule

adding method is the generalized form of which in [22], [23],

[36].

The radius setting method given by rule adding method is

applicable when K > 0. However, at the very beginning of

SEFS learning from the data, the first input x(1) is set as the

center of the first cluster and the radius could not be set by rule

adding method. In order to deal with this, we set the original

radius of the first cluster as 0, and when the second input x(2)
comes, a new cluster is built with center x(2), and the radiuses

of the first and second cluster are set as σ1, j = σ2, j =
1
k1
‖c1−

c2‖2 (k1 =
√

−2log(ε1)), j = 1,2, . . . ,n. If rule adding method

is not satisfied, then SEFS updates the cluster center and radius

of rule Ri∗ according to rule updating method, the formulas in

which are based on the sample mean ĉ and variance σ̂2 shown

in (8),

ĉ =
∑N

k=1 x(k)

N
, σ̂2 =

∑N
k=1(x(k)− ĉ)2

N
, (8)

where x(1),x(2), . . . ,x(N) are the samples, N is the number of

samples.

Rule updating method. If γi∗(x(t)) ≥ εt , then ci∗ and σi∗

should be updated by the following recursive formulas

ci∗, j(t) =ci∗, j(t − 1)+
x j(t)− ci∗, j(t − 1)

Ni∗(t − 1)+ 1
, (9)

(σi∗, j(t))
2 =(σi∗, j(t − 1))2 +

(x j(t)− ci∗, j(t))
2 − (σi∗, j(t − 1))2

Ni∗(t − 1)+ 1

+
Ni∗(t − 1)(ci∗, j(t)− ci∗, j(t − 1))2

Ni∗(t − 1)+ 1
, (10)

where Ni∗ is the number of inputs with firing strengths larger

than εt , j = 1,2, . . . ,n.2

Proof. The induction of formula (9) and (10) is presented in

the appendix B.

Existing methods which use the same approach for rule

updating are, for example, DENFIS [3], FLEXFIS [4].

B. Fuzzy rule merging

Fuzzy rules with similar antecedent parts but different

consequent parts are very likely to cause rule confliction.

Merging fuzzy rules with similar antecedent parts is an ef-

fective approach to avoid rule confliction and redundancy.

1k0 is obtained by εt = exp{−(k0)
2/2}. ‖ ·‖2 is the Euclidean norm.

2Ni for the rule Ri is regarded as the number of inputs which determine the
real position and shape of the corresponding cluster of rule Ri. Ni should be
recorded from the time that the rule Ri is built. Once rule updating method

holds for the rule Ri∗ , then Ni∗ = Ni∗ +1.

v

More importantly, in the context of online learning, rule

adding without merging will lead to the rule number keeping

increase and result in an unnecessarily too complicated fuzzy

system. Therefore, it is crucial to make judgement of the

similarity between the fuzzy rules and then merge the similar

rules. As summarized in the introduction, there are many

existing works on both set-theoretic and geometric similarity

measures. Set-theoretic similarity measures require to compute

the intersection and the union of the fuzzy sets. Due to the non-

linearity of the Gaussian membership function, it is difficult

to compute the set-theoretic similarity measures [34], [37].

Therefore, the commonly used approach is to use the piece-

wise linear approximation of the Gaussian membership func-

tion, and two typical examples to make this approximation are

to use triangle [37] or trapezoidal [34] membership functions.

There are a small number of researches in recent years, for

instance, [38], attempted to compute the intersection and union

of the fuzzy sets using Gaussian membership function directly,

without making any approximations in advance. However, this

method is computationally expensive, and under the risk of the

curse of dimensionality. Comparing with set-theoretic similar-

ity measures, geometric measures are easier to compute and

widely used in many existing works of eFS. The most widely

used geometric measure is based on the distance between the

parameters of the membership functions, and the examples

could be found from [23], [22], [28], [27]. However, it is still

hard to make the accurate judgement for whether the distance

between the firing strengths is small from only comparing the

distance between the antecedent parameters. As a result, no

matter set-theoretic or geometric similarity measures cannot

measure the distance between the firing strengths (or Gaussian

membership functions) directly and accurately. In addition, to

our best knowledge, there is no analytic form to compute the

distance between the firing strengths computed using Gaussian

membership functions presented in the existing researches.

In SEFS, an analytic form of the similarity measure between

the firing strengths based on L2 distance is proposed, which

is a direct and accurate method of computing the similarity

rather than the indirect and approximate ones in the literature.

Further, our new similarity measure could be worked out

very fast. Follow from the formal definition of the geometric

similarity measure presented in [31], the similarity measure for

rule R1 and R2 could be presented by S(R1,R2) =
1

1+D(R1,R2)
,

where D(R1,R2) is the distance between rule R1 and R2.

Set D(·, ·) be the L2 distance, then definition III.2 could be

obtained.

Definition III.2. Assume that γi1 and γi2 are the firing

strengths of rules Ri1 and Ri2 , respectively. The similarity be-

tween these two fuzzy rules is defined as S(Ri1 ,Ri2) presented

by (11),

S(Ri1 ,Ri2) =
1

1+ ‖γi1 − γi2‖L2

, (11)

where ‖ · ‖L2 is the L2 norm.

The following part of this section will develop the method

on how to compute the L2 distance ‖γi1 − γi2‖L2 fast and

precisely.

The L2 distance in (11) could be represented by formula

(12),

‖γi1 − γi2‖2
L2 =

∫

Ω
|γi1(x)− γi2(x)|2dx

=

∫ bn

an

· · ·
∫ b1

a1

[
n

∏
j=1

µi1 j(x j)−
n

∏
j=1

µi2 j(x j)]
2dx1 · · ·dxn

=
n

∏
j=1

∫ b j

a j

[µi1, j(x j)]
2dx j +

n

∏
j=1

∫ b j

a j

[µi2, j(x j)]
2dx j

− 2
n

∏
j=1

∫ b j

a j

[µi1, j(x j)µi2, j(x j)]dx j, (12)

µi1, j and µi2, j are both Gaussian membership functions defined

by (2). In the following parts we calculate those three terms

in (12) separately.

Let t j =
x j−ci1, j

σi1, j
, a j = σi1, jai1, j + ci1, j, b j = σi1, jbi1, j + ci1, j,

then we have

n

∏
j=1

∫ b j

a j

[µi1, j(x j)]
2dx j =

n

∏
j=1

∫ b j

a j

exp{−(
x j − ci1, j

σi1, j
)2}dx j

=
n

∏
j=1

σi1, j

∫ bi1, j

ai1, j

exp{−t2
j }dt j

=(
1

2

√
π)n

n

∏
j=1

σi1, jG(ai1, j,bi1, j). (13)

Function G(a,b) has the form shown in (14),

G(a,b) =

er f (b)− er f (a) 0 ≤ a ≤ b

er f (−a)+ er f (b) a ≤ 0 ≤ b

er f (−a)− er f (−b) a ≤ b ≤ 0,

(14)

where er f (·) is the error function expressed as (15),

er f (x) =
1√
π

∫ x

−x
exp{−t2}dt =

2√
π

∫ x

0
exp{−t2}dt. (15)

Error function could be calculated by some very simple

formulas with high accuracy. Two simple examples taken from

[39] to compute er f (·) are listed in (16) and (17),

er f (x) ≈ 1− 1

(1+ a1x+ a2x2 + a3x3 + a4x4)4
, (16)

where a1 = 0.278393, a2 = 0.230389, a3 = 0.000972, a4 =
0.078108,

er f (x)≈ 1− (a1t + a2t2 + a3t3 + a4t4 + a5t5)exp{−x2},
(17)

in which t = 1
1+px

, p = 0.3275911, a1 = 0.254829592, a2 =
−0.284496736, a3 = 1.421413741, a4 =−1.453152027, a5 =
1.061405429. The maximum error obtained by (16) and (17)

are 5× 10−4 and 1.5× 10−7, respectively. In this paper, the

MATLAB built-in function er f (x), which is a rational function

approximation shown in [40], is used for approximating the

error function. Similar to the first term of (12), the second

term of (12) could be computed by (18),

n

∏
j=1

∫ b j

a j

[µi2, j(x j)]
2dx j = (

1

2

√
π)n

n

∏
j=1

σi2, jG(ai2, j,bi2, j). (18)

vi

Let t j = {x j −
σ 2

i1, j
ci2 , j

+σ 2
i2, j

ci1 , j

σ 2
i1, j

+σ 2
i2, j

}/{
√

2
σi1, j

σi2, j
√

σ 2
i1, j

+σ 2
i2, j

}, formula

(19) gives how to compute the third term in (12),

− 2
n

∏
j=1

∫ b j

a j

[µi1, j(x j)µi2, j(x j)]dx j

=− 2(
1

2

√
π)n

n

∏
j=1

√
2σi1, jσi2, j

√

σ2
i1, j

+σ2
i2, j

exp{− (ci1, j − ci2, j)
2

2(σ2
i1, j

+σ2
i2, j

)
}

·G(ai1,2, j,bi1,2, j), (19)

where a j =
σ 2

i1, j
ci2, j

+σ 2
i2, j

ci1, j

σ 2
i1, j

+σ 2
i2, j

+ ai1,2, j

√
2σi1, j

σi2, j
√

σ 2
i1, j

+σ 2
i2, j

,

b j =
ci1, j

σ 2
i2, j

+ci2, j
σ 2

i1, j

σ 2
i1, j

+σ 2
i2, j

+ bi1,2, j

√
2σi1, j

σi2, j
√

σ 2
i1, j

+σ 2
i2, j

.

Apply (13), (18) and (19), it can be summarized that (12)

can be computed by (20),

∫

Ω
|γi1(x)− γi2(x)|2dx

=(
1

2

√
π)n{

n

∏
j=1

σi1, jG(ai1, j,bi1, j)+
n

∏
j=1

σi2, jG(ai2, j,bi2, j)

− 2
n

∏
j=1

√
2σi1, jσi2, j

√

σ2
i1, j

+σ2
i2, j

exp{− (ci1, j − ci2, j)
2

2(σ2
i1, j

+σ2
i2, j

)
}G(ai1,2, j,bi1,2, j)}

(20)

It could be seen from (20), the computation speed is decided

by exp(x) function, which is caused by the rational function

approximation of the er f (x). This rational function approx-

imation contains the multiplication of a polynomial of the

8th (or lower than 8th) degree and an exponential function,

and achieves maximal relative errors ranging down to between

6×10−19 and 3×10−20 [40]. Because it is faster to compute

exp(x) for just a few times than a vast amount of times

required by the multiple numerical integral, as a result, it is

realistic and appropriate to use (20) to compute the similarity

S(Ri1 ,Ri2) in online computing. Based on (20), the fuzzy

rule merging method of SEFS is constructed in rule merging

method below.

Rule merging method. If rule Ri∗ is updated following the

rule updating method, and there exist rule Ri1 ,Ri2 , . . . ,RiM

such that S(Ri∗ ,Rik)> δ (k = 1,2, . . . ,M), then merge rule Ri∗

with Rik∗ (ik∗ = argmax
ik

S(Ri∗ ,Rik)) to one rule Ri′ . The center

and radius of rule Ri′ are ci′ and σi′ = (σi′,1,σi′,2, . . . ,σi′,n)
calculated by (21) and (22), respectively. The consequent pa-

rameters of rule Ri′ could be computed by ψi′ =
Ni∗ψi∗+Nik∗ ψik∗

Ni∗+Nik∗
.

Remove the original two rules Ri∗ and Rik∗ , and then set rule

Ri′ to be rule Ri∗ . (Each time when two rules are merged, then

the number of rules K should be updated by K − 1.) Repeat

the above whole process until there is no fuzzy rule which has

the similarity degree with rule i∗ larger than the threshold.

ci′ =
Ni∗ci∗ +Nik∗ cik∗

Ni∗Nik∗
, (21)

(σi′, j)
2 =

Ni∗σ2
i∗, j +Nik∗ σ2

ik∗ , j
+Ni∗(ci′ − ci∗)

2

Ni∗ +Nik∗

+
Nik∗ (ci′ − cik∗)

2

Ni∗ +Nik∗
, (22)

where Ni∗ and Nik∗ are defined the same as the rule updating

method, and j = 1,2, . . . ,n.

Rule merging method illuminates that, once there is a rule

Ri∗ is updated and its center and radius are changed, then there

is a need to consider whether it evolves similar to other rules.

It is likely that there are more than one fuzzy rule have the

similarity degree with rule Ri∗ larger than the threshold. In

this case, it is plausible to merge Ri∗ with the rule which has

the largest similarity degree with rule Ri∗ . If the fuzzy rule

which has the largest similarity degree with rule Ri∗ is not

unique, then merge the earliest built rule with the rule Ri∗ . The

formulas for computing the new cluster center and radius are

displayed by (21) and (22), respectively. Similar methodology

could also be found from [41]. The induction of formulas (21)

and (22) is presented in the appendix B.

Besides, when a evolving fuzzy system evolves as rule

adding method, rule updating method and rule merging

method, then this fuzzy system satisfies the ε-completeness

property.

Theorem III.1. (ε-completeness of SEFS) Assume that the

input space Ω is a bounded and closed subset of Rn.

(1) Rule adding: Assume that the existing cluster centers and

radiuses are ci and σi with i = 1,2, . . . ,N
′
0. Furthermore,

assume that fuzzy rules are added according to rule adding

method, then ∀x∈Ω, ∃i and K <∞ (i∈ {1,2, . . . ,K}) such

that the firing strength of x satisfies γi(x)≥ εmin.

(2) Rule updating: Assume ∃K < ∞ such that ∀x ∈ Ω,

∃i ∈ {1,2, . . . ,K} with γi(x) ≥ εmin. Further, assume the

i∗-th rule is updated by x(t + 1). Then, for all x ∈
B(ci∗(t),kminσi∗(t)), it could be inducted that x∈ B(ci∗(t+
1),kminσi∗(t + 1)), kmin =

√−2logεmin when Ni∗ → ∞.

(3) Rule merging: Assume that ∃K < ∞ such that ∀x ∈
Ω, ∃i ∈ {1,2, . . . ,K} with γi(x) ≥ εmin. Further, assume

∃i1, i2 ∈ {1,2, . . . ,K} such that ‖ γi1(x)− γi2(x) ‖L2< ε ,

and these two rules are merged to one rule i0. Then, for

all x ∈ B(ci1(t),kminσi1(t))∪B(ci2(t),kminσi2(t)), it could

be inducted that x ∈ B(ci0(t + 1),kminσi0(t + 1)) when

Ni1 ,Ni2 → ∞.

Proof. Proof could be found from the appendix D.

C. Consequents learning

Consequent parameters are updated by the recursive least

square algorithm with variable forgetting factor (VFF-RLS)

proposed by [42]. VFF-RLS is an improved version of the

recursive least square (RLS) method with better performance

on tracking sudden system changes. VFF-RLS has an optimal

dynamic forgetting factor obtained from minimizing the mean-

square noise-free posterior error, and usually has better per-

formance in both stationary and non-stationary environment

[42]. In this paper, we generalize VFF-RLS to a local optimum

version known as the weighted recursive least square algorithm

vii

with variable forgetting factor (VFF-WRLS) to minimize the

error functions (23),

Erri =
t

∑
k=1

θi(k)λ
t−k
i (y(k)− xe(k)ψi)

2, (23)

where xe(k) = (1,x(k)), θi(k) = θi(x(k)), i = 1,2, . . . ,K. As-

sume that the new input is x(t), and the corresponding output

is y(t). The recursive least square updating formulas3 of ψi

are

ψi(t) = ψi(t − 1)+
θi(t)Pi(t − 1)xe(t)(y(t)− ŷ(t))

λi(t)+θi(t)xe(t)T Pi(t − 1)xe(t)
, (24)

Pi(t) =
1

λi(t)
(Pi(t − 1)− θi(t)Pi(t − 1)xe(t)xe(t)T Pi(t − 1)

λi(t)+θi(t)xe(t)T Pi(t − 1)xe(t)
),

(25)

in which λi(t) is the time varying forgetting factor. Following

[42], the initial value of Pi(t) is set as a big unit matrix

Pi(0) =M0∗ I(n+1)×(n+1) (M0 is a big number). Further, λi(t) is

given in (26), which is the optimum forgetting factor obtained

by minimizing E[(ε ′i (t))
2] where ε ′i (t) = θi(t)[xe(t)h(t − 1)−

xe(t)ψi(t)] and h(t − 1) are the noise-free posterior error and

the impulse response, respectively. Further, according to [42],

the optimum λi(t) could be computed by (26),

λi(t)≈ 1− 2E[e′i(t)
2]

M(E[e′i(t)
2]+σ2

ν)
, (26)

where M is a big value, E[e′i(t)
2] is the excess mean square

error (EMSE), ei(t) = θi(t)[y(t)− xe(t)ψi(t − 1)] = e′i(t) +
θi(t)νt is the prior error signal, y(t) = xe(t)h(t − 1) + νt ,

e′i(t) = θi(t)[xe(t)h(t −1)− xe(t)ψi(t −1)], σ2
ν is the variance

of Gaussian noise signal νt . The noise-free prior error signal

e′i(t) is estimated by the non-iterative shrinkage method. This

method has been used in [43] and [44] to deal with the

image de-noising problem. This method recovers a noise-free

signal ρ f from a noisy signal ρ = ρ f + ι , in which ι is a

white Gaussian noise signal, from solving the following l1− l2
minimization problem (27),

min
ρ f

α‖ρ f‖1 + 0.5‖Λρ f −ρ‖2
2. (27)

In (27), α is the threshold, and Λ is an orthogonal matrix.

In the VFF-RLS algorithm, ρ f = e′i(t), ρ = ei(t), Λ = 1. [42]

has shown the optimal solution of (27) could be presented by

(28).

e′i(t) = sign{ei(t)}max{|ei(t)|−α, 0}. (28)

The excess mean square error (EMSE) E[e′i(t)
2] is estimated

by the time average of (e′i(t))
2, and presented by (29),

E[e′i(t)
2] = β2E[e′i(t − 1)2]+ (1−β2)(e

′
i(t))

2. (29)

The threshold parameter α is taken as the time average of the

variance of the white noise νt . That is α =
√

β1σ2
ν . As y(t) =

xe(t)h(t−1)+νt , then the variance of νt could be updated by

(30),

σ2
ν =

t − 1

t
σ2

ν +
ei(t)

2

t
. (30)

The learned eFS: F(t −1).

Read (x(t),y(t)),
set inda = 0.

γi∗ (x(t)) > εt−1 (rule
updating method)

Update ci∗ , (σi∗)
2.

Add new rule with
center x(t), inda = 1.

inda = 0

∃Rik ,k = 1,2, . . . ,M,
s.t.S(ri∗ ,rik) > δ .

Update ψi(t), Pi(t) by VFF-WRLS in (24) and (25).

Merge rule Ri∗ and rule Rik .

Compute the absolute
online training error:
et = |yt − xe(t)ψi(t)|.

Update εt−1 by εt

using (6) and (7).

The learned eFS: F(t).

Compute the
prediction of y(t):

ŷ(t) = xe(t)ψi(t − 1).

no
yes

yes

no

yes

no

Update the eFS by F(t).

Fig. 1. The flowchart of SEFS.

D. The algorithm: SEFS

According to the antecedent, consequent and rule number

learning methods in section III, the flowchart of SEFS algo-

rithm is shown in Fig. 1. Inda is the indicator for fuzzy rule

adding. The default value of inda is 0. If a fuzzy rule is added,

then inda = 1. Further, Fig. 1 presents the online learning and

updating framework of SEFS when (x(t),y(t)) comes.

IV. NUMERICAL RESULTS

Benchmark examples across nonlinear system identification,

Mackey-Glass chaotic time series prediction, and real non-

stationary time series prediction are shown in this section.

These examples are applied to demonstrate that SEFS can ef-

fectively solve online regression problems. In these examples,

SEFS is running in an online mode. The numerical results are

evaluated by the rooted mean square errors (RMSEs(31)) (e.g.

[3], [12], [15], [19], [20], [24]), and the non-dimensional error

indexes (NDEIs (32)) (e.g. [3], [5], [15], [22], [23], [26]).

RMSE =
1

t

t

∑
k=1

(y(k)− ŷ(k))2, (31)

NDEI =
√

RMSE/std(y). (32)

3The induction of (24) and (25) is shown in the appendix E.

viii

TABLE I
SENSITIVITY ANALYSIS (EXAMPLE 1 IN SECTION IV-B).

εmax 0.5 0.55 0.6 0.65 0.7

s=0.2600
No. of rules 6 6 6 7 6
RMSE 0.0474 0.0452 0.0428 0.0439 0.0506
NDEI 0.0459 0.0438 0.0414 0.0425 0.0490

εmin 0.4 0.45 0.5 0.55 0.6

s=0.2744
No. of rules 6 6 6 6 6
RMSE 0.0476 0.0458 0.0428 0.0461 0.0511
NDEI 0.0461 0.0444 0.0414 0.0447 0.0494

δ 0.5 0.6 0.7 0.8 0.9

s=0.3718
No. of rules 4 4 6 8 16
RMSE 0.0500 0.0523 0.0428 0.0483 0.0487
NDEI 0.0484 0.0507 0.0414 0.0467 0.0471

A. Sensitivity analysis

Control parameters εmax, εmin, δ (εmax ≥ εmin) need to be

identified beforehand. Inspired by [45]–[47] the sensitivity s

of each parameter ξi (i=1,2,3,4 in this paper) is computed by

(33):

s =
1

κ(πmax −πmin)

κ−1

∑
j=1

|RMSE(ξ
(j+1)
i)−RMSE(ξ

(j)
i)|,

(33)

where κ is the number of samples for a particular parameter,

RMSE(ξi) is the RMSE computed when using a particular

parameter ξi, πmax and πmin are the upper and lower bound of

RMSEs. Parameters should be in [0,1] and neither be too big

nor too small. In this example, πmax and πmin are set as the

maximum and the minimum value of RMSEs obtained from

all the different setting of parameters. In this example, πmax

and πmin are 0.0523 and 0.0428, respectively. This example

allows rule generation control parameters εmax and εmin gear

at [0.5, 0.55, 0.6, 0.65, 0.7] and [0.4, 0.45, 0.5, 0.55, 0.6],

respectively. The parameter δ that controls the rule merging

is varying from [0.5, 0.6, 0.7, 0.8, 0.9]. When each of these

parameters are varying from their domains, other parameters

are kept as εmax = 0.6, εmin = 0.5, δ = 0.7.

Because the nonlinear dynamic plant data in example 1

section IV-B has obvious concept drift based on the 3-state-

shift, the data generated from (34) and (35) are applied to

analyse the sensitivity of the predefined parameters. We use

all 3000 data pairs for evaluation.

It can be seen from Table I, δ is a little bit more sensitive

than εmax and εmin. When δ < 0.7 the fuzzy system uses 4

rules to track the data stream and get worse accuracy; and

when δ > 0.7 the fuzzy system applies more than 8 rules to

track the data stream and get worse accuracy than δ = 0.7. The

reason behind this phenomenon is the under-fitting and the

over-fitting problem. Besides, εmin and εmax suffer the similar

problems.

Therefore, in all the numerical examples (section IV-B —

IV-D), εmax = 0.6, εmin = 0.5, δ = 0.7 are kept the same. Based

on the existing research, we use the forgetting factor λ = 0.9.

Besides, according to [42] the parameters in VFF-WRLS are

β1 = 8, β2 = 0.9, M0 = 104, M = 103.

TABLE II
EXAMPLE 1: NONLINEAR DYNAMIC PLANT IDENTIFICATION WITH TIME

VARYING CHARACTERISTIC.

No. of rules
(AVG.)

No. of param-
eters (AVG.)

RMSE

SEFS 6(3.5610) 63(24.9270) 0.0428
GSETSK [15] 11 77 0.0661
DENFIS [3] 15 105 0.1749
eTS [24] 11 77 0.0682

1000 1200 1400 1600 1800 2000

Step

-2

-1

0

1

2

3

O
ut

pu
t a

nd
 T

ar
ge

t

Prediction Results

Fig. 2. Online identification results in example 1. (t ∈ [900,2100])

B. Example 1: Nonlinear dynamic plant identification with

time varying characteristics

The same as [15], the model is (34),

y(t + 1) =
y(t)

1+ y2(t)
+ u3(t)+ n(t), (34)

where u(t)= sin(2πt/100), n(t) is a time-varying factor which

could be presented by (35),

n(t) =

0 1 ≤ t ≤ 1000 and t ≥ 2001

0.5 1001 ≤ t ≤ 1500

1 1501 ≤ t ≤ 2000

(35)

There are 3000 data points with t ∈ [1,3000] generated, and

all of them are used for online learning and testing. (u(t),y(t))
is the input, and y(t + 1) is the output. Numerical results are

shown in Table II. Fig. 2 displays the results from t = 900 to

t = 2100, which contains the time of the two drifts at t = 1000

and t = 1500. Fig. 2 indicates SEFS can adapt to the changes

of the state successfully with high accuracy. The running time

for SEFS is 0.416035s calculated by a intel(R) core (TM) i7-

4790CPU with a 3.6 GHz processor and 16.0 GB memory.

C. Example 2: Mackey-Glass Chaotic time series (long term

prediction)

Mackey-Glass Chaotic time series prediction example is a

widely used benchmark example in existing works such as [5],

[15], [23], [24], [28], [30]. Data is generated from the system

(36),
d[x(t)]

dt
=

0.2x(t − τ)

1+ x10(t − τ)
− 0.1x(t), (36)

where τ = 17, x(0) = 1.2. There are totally 6000 observations

generated. 3000 data points from 201 ≤ t ≤ 3200 are used for

ix

TABLE III
EXAMPLE 2: MACKEY-GLASS CHAOTIC TIME SERIES (LONG TERM

PREDICTION).

No. of rules
(AVG.)

No. of param-
eters (AVG.)

NDEI

SEFS 4(1.3043) 52(16.9559) 0.1287
DENFIS [3] 58 886 0.278
eTS+ [26] 10 130 0.392
Simple eTS+ [29] 15 150 0.375
GENEFIS(C) [23] 19 475 0.280
GENEFIS(B) [23] 9 225 0.339
PANFIS [22] 19 475 0.301
eT2RFNN [28] 3 108 0.32
GSETSK [15] 19 247 0.347
SPLAFIS [30] 30 390 0.279
DeTS [5] 3 39 0.440
GEFNS [48] 5 65 0.2635

500 1000 1500 2000 2500 3000 3500
-0.15

-0.1

-0.05

0

0.05

0.1

Fig. 3. Online prediction errors of all 3500 data points in example 2.

online training, and 500 data points ranging from 5001 ≤ t ≤
5500 are used for testing. The prediction model is of the form

x̂(t + 85) = f (x(t − 18),x(t − 12),x(t − 6),x(t)). (37)

Numerical results are displayed in Table III. In Fig. 3 the

online prediction errors are shown. It can be seen that most

of the prediction errors are varying between -0.05 and 0.05.

It takes 0.351014s for SEFS to compute the result.

Observed from Table III that the numbers of fuzzy rules

used by eT2RFNN and DeTS are slightly smaller than that

used by SEFS. However, considering the complexity of the

system structure and the accuracy achieved, SEFS still has

its advantages. The specific analysis is shown below. i) Gen-

eralized Gaussian membership function is implemented in

eT2RFNN, which makes eT2RFNN has a more complicated

structure with more additional parameters get involved to

measure the relationship between the data. In this aspect,

SEFS enables more accurate predictions while using a much

more simple system. ii) Although DeTS has a slightly more

simple structure than SEFS, the proposed algorithm improves

the prediction accuracy significantly from 0.440 to 0.1287.

Although both DeTS and SEFS apply a small amount of fuzzy

rules and simple structures, this significant improvement on the

accuracy is worth with this slight increase of the complexity.

TABLE IV
EXAMPLE 3: ONLINE PREDICTION OF S&P 500 DAILY CLOSING PRICE.

No. of rules
(AVG.)

No. of param-
eters (AVG.)

NDEI

SEFS 2(1.2835) 32(20.5360) 0.0182
eTS [24] 14 75 0.04
Simpl eTS [25] 7 39 0.04
PANFIS [22] 4 144 0.09
GENEFIS [23] 2 72 0.07
eT2RFNN [28] 2 110 0.04

0 0.5 1 1.5 2 2.5 3

Step 104

0

0.2

0.4

0.6

0.8

1

O
ut

pu
t a

nd
 T

ar
ge

t

Prediction Results

Fig. 4. Online prediction results for example 3.

0 0.5 1 1.5 2 2.5 3

Step 104

-0.1

-0.05

0

0.05

0.1

0.15

E
rr

or

Prediction Errors

Fig. 5. Prediction errors for example 3.

D. Example 3: Online prediction of S&P 500 daily closing

price

This data set contains 60 years daily closing price of

S&P500 collected from Yahoo! Finance website ranging from

03.01.1950 to 12.03.2009. There are totally 14893 data points.

We use SEFS to make online predictions for the original time

series and the flipped time series with 29786 data points. The

prediction model is of the form (38),

x̂(t + 1) = f (x(t − 4),x(t − 3),x(t − 2),x(t − 1),x(t)). (38)

The original data set is used for training and the flipped time

series is applied for testing. The results are listed in Table

IV. Fig. 4 and Fig. 5 demonstrate SEFS predicts the time

series preciously. Furthermore, the maximum absolute error is

0.1030 and most of the prediction errors are located between

-0.05 and 0.05, and the computing time of SEFS is 2.346683s.

V. CONCLUSION

This paper proposes an online learning algorithm known

as SEFS for solving regression problems of data stream.

The major novelties of SEFS are its new fuzzy rule adding

x

and merging methodologies to evolve the structure of the

fuzzy rule base. To be more specific, on one hand, an error

based dynamic threshold, which can learn and update itself

automatically, is proposed for adding new fuzzy rules. This

not only enables the frequency of adding the fuzzy rules to be

controlled by the dynamics of the data stream, but also avoid

both over-fitting and under-fitting phenomenon. On the other

hand, a geometric based similarity measure is developed in this

paper. A direct, accurate and easily computed analytic formula

of the L2 distance between firing strengths of two rules is

inducted and proposed to deal with the difficulty in calculating

the L2 distance, when membership functions are Gaussian

type. This similarity measure leads to a more relax merging

criterion but reserves the accuracy. Furthermore, consequent

parameters are updated by an improved WRLS method, a

local version of VFF-RLS — VFF-WRLS. The experimental

results based on three benchmark examples show that SEFS

outperforms many of the existing state-of-the-art algorithms

in accuracy.

Our future work mainly focus on the following aspects. i)

To further prevent over-fitting, rule pruning method will be

considered by pruning fuzzy rules which have small number

of observations in the corresponding clusters. ii) Generalized

Gaussian membership functions will be implemented to further

improve the prediction accuracy. iii) Completely self-learned

and self-evolved control parameters will be investigated.

APPENDIX A

THE PROOF OF PROPOSITION III.1

Proof. Let A =
t

∑
k=1

λ t−kek, then εt = εmax − (εmax −
εmin)exp{−A}. Assume A′ ≤ A′′.

ε ′t − ε ′′t =εmax − (εmax − εmin)exp{−A′}
− [εmax − (εmax − εmin)exp{−A′′}]

=− (εmax − εmin)exp{−A′}(1− exp{A′−A′′}) (39)

∵ A′−A′′ ≤ 0, ∴ exp{A′−A′′} ≤ 1, thus, ε ′t −ε ′′t ≤ 0. There-

fore, εt is monotonically increasing against
t

∑
k=1

λ t−kek.

APPENDIX B

INDUCTION OF (9) AND (10) IN rule updating method

Suppose x(t) is the new input and the cluster center and

radius for fuzzy rule Ri∗ is ci∗(t − 1) = (ci∗,1(t − 1),ci∗,2(t −
1), . . . ,ci∗,n(t − 1)) and σi∗(t − 1) = (σi∗,1(t − 1),σi∗,2(t −
1), . . . ,σi∗,n(t − 1)), respectively. Assume the input points

which satisfy rule updating method before x(t) comes are

{x′(k)}Ni∗ (t−1)
k=1 . Input x(t) satisfies the condition of rule updat-

ing method, then the updated center (ci∗(t)) and radius (σi∗(t))
of rule Ri∗ are inducted by (40) and (41), respectively.

ci∗(t) =(
Ni∗ (t−1)

∑
k=1

x′(k)+ x(t))/(Ni∗(t − 1)+ 1)

=(Ni∗(t − 1) · ci∗(t − 1)+ x(t))/(Ni∗(t − 1)+ 1)

=ci∗(t − 1)+ (x(t)− ci∗(t − 1))/(Ni∗(t − 1)+ 1)
(40)

(σi∗, j(t))
2 =

∑
Ni∗ (t−1)
k=1 (x′j(k)− ci∗, j(t))

2 +(x j(t)− ci∗, j(t))
2

Ni∗(t − 1)+ 1

=
∑

Ni∗ (t−1)
k=1 (x′j(k)− ci∗, j(t − 1)+ ci∗, j(t − 1)− ci∗, j(t))

2

(Ni∗(t − 1)+ 1)

+
(x j(t)− ci∗, j(t))

2

Ni∗(t − 1)+ 1

=(σi∗, j(t − 1))2 +
(x j(t)− ci∗, j(t))

2 − (σi∗, j(t − 1))2

Ni∗(t − 1)+ 1

+
Ni∗, j(t − 1)(ci∗, j(t)− ci∗, j(t − 1))2

Ni∗(t − 1)+ 1
, (41)

where j = 1,2, . . . ,n.

APPENDIX C

INDUCTION OF (21) AND (22) IN rule merging method

Assume that all the historical inputs within the cluster

of rule Rik∗ are {xik∗ (lk∗)}
Nik∗
lk∗=1. Then, c′i∗ and σ ′

i∗ could be

computed by (42) and (43), respectively. The induction of ψ ′
i∗

is almost the same as c′i∗ .

c′i∗ =
∑

Ni∗
li∗=1 xi∗(li∗)+∑

Nik∗
lk∗=1 xik∗ (lk∗)

Ni∗ +Nik∗
=

Ni∗ci∗ +Nik∗ cik∗

Ni∗ +Nik∗
,

(42)

(σ ′
i∗)

2 =
∑

Ni∗
li∗=1(xi∗(li∗)− ci∗)

2 +∑
Nik∗
lk∗=1(xik∗ (lik∗)− cik∗)

2

Ni∗ +Nik∗

={
Ni∗

∑
li∗=1

(xi∗(li∗)− c′i∗ + c′i∗ − ci∗)
2 +

Nik∗

∑
lk∗=1

(xik∗ (lik∗)

− c′i∗ + c′i∗ − cik∗)
2}/{Ni∗ +Nik∗}

={Ni∗σ2
i∗ +Nik∗ σ2

ik∗ +Ni∗(c
′
i∗ − ci∗)

2 +Nik∗ (c
′
i∗ − cik∗)

2}
/{Ni∗ +Nik∗}. (43)

APPENDIX D

THE PROOF OF THEOREM III.1

Proof. Without loose of generality, we prove the theorem from

the following three cases.

1) Rule adding: Assume Ω′ ⊂Ω is a closed subset and Ω′ ⊂
∪n0

i=1Bi(ci,kiσi), where Bi(ci,kiσi) are the open balls with

centers ci and radiuses kiσi.

(i) Assume there exist countable number of points

{x(k)}∞
k=1 = Ω \ Ω′. Based on the rule adding

method, ∀x(k), there would be a new fuzzy rule

added with center x(k) and radius 1
kt
‖x(k)− ci∗‖,

where kt =
√−2logεt , i∗ = arg max

i=1,...,n0

‖x(k)− ci‖.

Then, x(k) ∈ B′
k(x(k),kt σk), where B′

k(x(k),kt σk) is

an open ball with center x(k). Besides, as εt ≥
εmin, ∴ exp{−

n

∑
j=1

(x j(k)−ck, j)
2

2σ 2
k, j

} ≥ εmin. Therefore,

{∪n0
i=1Bi(ci,kiσi)}∪{∪∞

k=1B′(x(k),kt σk)} is an open

cover of Ω. ∵ Ω is compact, ∴ ∃ N′
0 ∈N,N′

0 <∞ s.t.

xi

Ω ⊂ {∪n0
i=1Bi(ci,kiσi)} ∪ {∪N′

0
l=1B′(x(l),kt σl)}. Let

N0 = n0 +N′
0, the result is proved.

(ii) Assume there exists a closed subset Ω′′ = Ω \Ω′.
Construct a bounded countable subset W =Qn∩Ω′′.
It is obvious that W is dense in Ω′′. Based on the

rule adding method, ∀ x′(k) ∈ W , ∃ B′
k(x

′(k),ktσk)
with kt , σk are the same as they are in (i). As W

is countable, so {B′
k(x

′(k),kt σk)}∞
k=1 is a countable

open cover of W . Because W is dense in Ω′′,
so ∀x ∈ Ω′′, ∃x′(k) ∈ W s.t. x ∈ B′

k(x
′(k),kt σk).

Therefore, Ω′′ ⊂ ∪∞
k=1B′

k(x
′(k),kt σk). Further, sim-

ilar to (i), ∵ Ω′′ is compact, ∃ N′
0 < ∞ s.t. Ω ⊂

{∪n0
i=1Bi(ci,kiσi)}∪{∪N′

0

l=1
B′

l(x
′(l),kt σl)}.

2) Rule updating:

As lim
Ni∗→∞

ci∗(t) = ci∗ , lim
Ni∗→∞

σ2
i∗(t) = σ2

i∗ , and (9) and (10),

then lim
Ni∗→∞

ci∗(t + 1) = ci∗ , lim
Ni∗→∞

σ2
i∗(t + 1) = σ2

i∗ . Based

on the convergency of the cluster centers and radiuses,

the conclusion could be get directly.

3) Rule merging:

As ∃i1, i2 ∈ {1,2, . . . ,K} s.t. ∀ε > 0, ‖ γi1(x) −
γi2 ‖L2< ε , then, ∀x ∈ Ω, |

n

∏
j=1

µi1, j(x)−
n

∏
j=1

µi2, j(x)| =

|exp{−
n

∑
j=1

(x j−ci1, j
)2

2σ 2
i1, j

}− exp{−
n

∑
j=1

(x j−ci2, j
)2

2σ 2
i2, j

}|< ε holds.

So |
n

∑
j=1

{(x j−ci1, j)
2σ2

i2, j
−(x j−ci2, j)

2σ2
i1, j

}|< ε , besides,

x j = ci1, j =⇒‖ci1 − ci2‖< ε , x j = ci1, j +σi1, j =⇒‖σ2
i2
−

σ2
i1
‖ < ε . Further, ∵ lim

Ni1
→∞

ci1(t) = ci0 , lim
Ni2

→∞
ci2(t) =

ci0 , lim
Ni1

→∞
σ2

i1
(t) = σ2

i0
, lim

Ni2
→∞

σ2
i2
(t) = σ2

i0
, (21), (22),

∴ lim
Ni1

,Ni2
→∞

ci0(t + 1) = ci0 , lim
Ni1

,Ni2
→∞

σ2
i0, j

(t + 1) = σ2
i0, j

.

Then, the conclusion is obtained.

APPENDIX E

INDUCTION OF VFF-WRLS

For each rule Ri, suppose

R̄i(t) =
t

∑
k=1

λ t−k
i xe(k)xeT (k) and (44)

Qi(t) =
t

∑
k=1

λ t−k
i θi(k)y(k)xe(k). (45)

Then, similar to [42], the conventional recursive least square

(CRLS) updating formulas for ψi could be presented by (46)

and (47),

Pi(t) =
1

λi

(Pi(t − 1)− θi(t)Pi(t − 1)xe(t)xeT (t)Pi(t − 1)

λi + τi(t)
),

(46)

ψi(t) =ψi(t − 1)+
qθi(t)Pi(t − 1)xe(t)xeT (t)Pi(t − 1)

λi + τi(t)
, (47)

where τi(t) = θi(t)xeT (t)Pi(t − 1)xe(t), q is the convergence

factor. So the posterior error signal εi(t) can be expressed by

(48),

εi(t) =θi(t)[y(t)− xeT (t)ψi(t)]

=(1− qτ ′i (t))ei(t)− qτ ′i(t)νi(t), (48)

where τ ′i (t) =
τi(t)

λi+τi(t)
, ei(t) = e′i(t)+νi(t) = θi(t)[xeT (t)h(t −

1)−xeT (t)ψi(t −1)]. The optimal λi are obtained through the

same way as [42] by minimizing E[(ε ′i (t))
2] and setting q= 1.

ACKNOWLEDGMENT

The authors would like to thank the reviewers and the Asso-

ciate Editor for their constructive and very helpful comments.

REFERENCES

[1] L. Pietruczuk, L. Rutkowski, M. Jaworski, and P. Duda, “How to adjust
an ensemble size in stream data mining?” Information Sciences, vol.
381, pp. 46–54, 2017.

[2] E. Lughofer and M. Pratama, “On-line active learning in data stream
regression using uncertainty sampling based on evolving generalized
fuzzy models,” IEEE Transactions on Fuzzy Systems, 2017.

[3] N. K. Kasabov and Q. Song, “Denfis: dynamic evolving neural-fuzzy
inference system and its application for time-series prediction,” IEEE
transactions on Fuzzy Systems, vol. 10, no. 2, pp. 144–154, 2002.

[4] E. D. Lughofer, “Flexfis: A robust incremental learning approach for
evolving takagi–sugeno fuzzy models,” IEEE Transactions on fuzzy

systems, vol. 16, no. 6, pp. 1393–1410, 2008.

[5] R. D. Baruah and P. Angelov, “Dec: Dynamically evolving clustering
and its application to structure identification of evolving fuzzy models,”
IEEE transactions on cybernetics, vol. 44, no. 9, pp. 1619–1631, 2014.

[6] A. Lemos, W. Caminhas, and F. Gomide, “Multivariable gaussian
evolving fuzzy modeling system,” IEEE Transactions on Fuzzy Systems,
vol. 19, no. 1, pp. 91–104, 2011.

[7] E. Lughofer, C. Cernuda, S. Kindermann, and M. Pratama, “Generalized
smart evolving fuzzy systems,” Evolving Systems, vol. 6, no. 4, pp. 269–
292, 2015.

[8] L. Maciel, R. Ballini, and F. Gomide, “An evolving possibilistic fuzzy
modeling approach for value-at-risk estimation,” Applied Soft Comput-

ing, 2017.

[9] G. Leng, T. M. McGinnity, and G. Prasad, “An approach for on-line
extraction of fuzzy rules using a self-organising fuzzy neural network,”
Fuzzy sets and systems, vol. 150, no. 2, pp. 211–243, 2005.

[10] J. de Jesús Rubio, “Sofmls: online self-organizing fuzzy modified least-
squares network,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 6,
pp. 1296–1309, 2009.

[11] E. Lughofer, M. Pratama, and I. Skrjanc, “Incremental rule splitting in
generalized evolving fuzzy systems for autonomous drift compensation,”
IEEE Transactions on Fuzzy Systems, vol. 26, no. 4, pp. 1854–1865,
2018.

[12] J. de Jesús Rubio, “Usnfis: uniform stable neuro fuzzy inference system,”
Neurocomputing, vol. 262, pp. 57–66, 2017.

[13] W. L. Tung and C. Quek, “efsm-a novel online neural-fuzzy semantic
memory model,” IEEE Transactions on Neural Networks, vol. 21, no. 1,
pp. 136–157, 2010.

[14] A. M. Silva, W. Caminhas, A. Lemos, and F. Gomide, “A fast learning
algorithm for evolving neo-fuzzy neuron,” Applied Soft Computing,
vol. 14, pp. 194–209, 2014.

[15] N. N. Nguyen, W. J. Zhou, and C. Quek, “Gsetsk: a generic self-evolving
tsk fuzzy neural network with a novel hebbian-based rule reduction
approach,” Applied Soft Computing, vol. 35, pp. 29–42, 2015.

[16] D. Ge and X.-J. Zeng, “Learning evolving ts fuzzy systems with both
local and global accuracy–a local online optimization approach,” Applied

Soft Computing, 2017.

[17] G.-B. Huang, P. Saratchandran, and N. Sundararajan, “A generalized
growing and pruning rbf (ggap-rbf) neural network for function approx-
imation,” IEEE Transactions on Neural Networks, vol. 16, no. 1, pp.
57–67, 2005.

[18] H. Rong, N. Sundararajan, G. Huang, and G. Zhao, “Extended sequential
adaptive fuzzy inference system for classification problems,” Evolving
Systems, vol. 2, no. 2, pp. 71–82, 2011.

[19] J. de Jesús Rubio and A. Bouchachia, “Msafis: an evolving fuzzy
inference system,” Soft Computing, vol. 21, no. 9, pp. 2357–2366, 2017.

[20] J. de Jesús Rubio, “Error convergence analysis of the sufin
and csufin,” Applied Soft Computing, 2018. [Online]. Available:
http://dx.doi.org/10.1016/j.asoc.2018.04.003

http://dx.doi.org/10.1016/j.asoc.2018.04.003

xii

[21] H.-J. Rong, N. Sundararajan, G.-B. Huang, and P. Saratchandran,
“Sequential adaptive fuzzy inference system (safis) for nonlinear system
identification and prediction,” Fuzzy sets and systems, vol. 157, no. 9,
pp. 1260–1275, 2006.

[22] M. Pratama, S. G. Anavatti, P. P. Angelov, and E. Lughofer, “Panfis:
a novel incremental learning machine,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 25, no. 1, pp. 55–68, 2014.

[23] M. Pratama, S. G. Anavatti, and E. Lughofer, “Genefis: toward an
effective localist network,” IEEE Transactions on Fuzzy Systems, vol. 22,
no. 3, pp. 547–562, 2014.

[24] P. P. Angelov and D. P. Filev, “An approach to online identification of
takagi-sugeno fuzzy models,” IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), vol. 34, no. 1, pp. 484–498, 2004.

[25] P. Angelov and D. Filev, “Simpl ets: A simplified method for learning
evolving takagi-sugeno fuzzy models,” in Fuzzy Systems, 2005. FUZ-

Z’05. The 14th IEEE International Conference on. IEEE, 2005, pp.
1068–1073.

[26] P. Angelov, “Evolving takagi-sugeno fuzzy systems from streaming data
(ets+),” Evolving intelligent systems: methodology and applications,
vol. 12, p. 21, 2010.

[27] L. Maciel, F. Gomide, and R. Ballini, “Enhanced evolving participatory
learning fuzzy modeling: an application for asset returns volatility
forecasting,” Evolving Systems, vol. 2, no. 5, pp. 75–88, 2014.

[28] M. Pratama, J. Lu, E. Lughofer, G. Zhang, and M. J. Er, “Incremental
learning of concept drift using evolving type-2 recurrent fuzzy neural
network,” IEEE Transactions on Fuzzy Systems, 2016.

[29] P. Angelov, “Fuzzily connected multimodel systems evolving au-
tonomously from data streams,” IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics), vol. 41, no. 4, pp. 898–910, 2011.

[30] R. J. Oentaryo, M. J. Er, S. Linn, and X. Li, “Online probabilistic
learning for fuzzy inference system,” Expert Systems with Applications,
vol. 41, no. 11, pp. 5082–5096, 2014.

[31] M. Setnes, R. Babuska, U. Kaymak, and H. R. van Nauta Lemke, “Sim-
ilarity measures in fuzzy rule base simplification,” IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 28, no. 3,
pp. 376–386, 1998.

[32] S. W. Tung, C. Quek, and C. Guan, “et2fis: An evolving type-2 neural
fuzzy inference system,” Information Sciences, vol. 220, pp. 124–148,
2013.

[33] C. Lin and C. G. Lee, “Real-time supervised structure/parameter learning
for fuzzy neural network,” in IEEE Conf. on Fuzzy Systems, 1992, pp.
1283–1291.

[34] M.-Y. Chen and D. Linkens, “Rule-base self-generation and simplifica-
tion for data-driven fuzzy models,” Fuzzy Sets and Systems, vol. 142,
no. 2, pp. 243–265, 2004.

[35] M. Pratama, M. Er, X. Li, R. Oentaryo, E. Lughofer, and I. Arifin, “Data
driven modeling based on dynamic parsimonious fuzzy neural network,”
Neurocomputing, vol. 110, pp. 18–28, 2013.

[36] S. Wu, M. J. Er, and Y. Gao, “A fast approach for automatic generation
of fuzzy rules by generalized dynamic fuzzy neural networks,” IEEE
Transactions on Fuzzy Systems, vol. 9, no. 4, pp. 578–594, 2001.

[37] C.-T. Chao, Y.-J. Chen, and C.-C. Teng, “Simplification of fuzzy-neural
systems using similarity analysis,” IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics), vol. 26, no. 2, pp. 344–354, 1996.

[38] J. Qiao, W. Li, X. Zeng, and H. Han, “Identification of fuzzy neural
networks by forward recursive input-output clustering and accurate
similarity analysis,” Applied Soft Computing, vol. 49, pp. 524–543, 2016.

[39] M. Abramowitz and I. Stegun, Handbook of mathematical functions:

with formulas, graphs, and mathematical tables. Courier Corporation,
1964, vol. 55.

[40] W. J. Cody, “Rational chebyshev approximations for the error function,”
Mathematics of Computation, vol. 23, no. 107, pp. 631–637, 1969.

[41] E. Lughofer, J. Bouchot, and A. Shaker, “On-line elimination of local
redundancies in evolving fuzzy systems,” Evolving Systems, vol. 2, no. 3,
pp. 165–187, 2011.

[42] M. Z. A. Bhotto and A. Antoniou, “New improved recursive least-
squares adaptive-filtering algorithms,” IEEE Transactions on Circuits

and Systems I: Regular Papers, vol. 60, no. 6, pp. 1548–1558, 2013.

[43] M. Zibulevsky and M. Elad, “L1-l2 optimization in signal and image
processing,” IEEE Signal Processing Magazine, vol. 27, no. 3, pp. 76–
88, 2010.

[44] I. Daubechies, M. Defrise, and C. D. Mol, “An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint,” Com-

munications on pure and applied mathematics, vol. 57, no. 11, pp. 1413–
1457, 2004.

[45] D. Coyle, G. Prasad, and T. McGinnity, “Faster self-organizing fuzzy
neural network training and a hyperparameter analysis for a brain–
computer interface,” IEEE Transactions on Systems, Man, and Cyber-

netics, Part B (Cybernetics), vol. 39, no. 6, pp. 1458–1471, 2009.
[46] C. Juang and C. Hsieh, “A locally recurrent fuzzy neural network

with support vector regression for dynamic-system modeling,” IEEE
Transactions on Fuzzy Systems, vol. 18, no. 2, pp. 261–273, 2010.

[47] M. Pratama, J. Lu, and G. Zhang, “Evolving type-2 fuzzy classifier,”
IEEE Transactions Fuzzy Systems, vol. 24, no. 3, pp. 574–589, 2016.

[48] R. Bao, H. Rong, P. P. Angelov, B. Chen, and P. k. Wong, “Correntropy-
based evolving fuzzy neural system,” IEEE Transactions on Fuzzy

Systems, vol. 26, no. 3, pp. 1324–1338, 2018.

Dongjiao Ge received the B.Sc. degree in mathe-
matics and applied mathematics in 2012, and the
M.Sc. degree in applied mathematics in 2015 from
Sichuan University, Chengdu, China. She is current-
ly pursuing her Ph.D. degree in computer science
with the School of Computer Science, University of
Manchester, Manchester, U.K.

Her current research interests include computa-
tional intelligence, machine learning, and statistical
learning.

Miss Ge was awarded the President’s Doctoral
Scholar Award (Sept.2015 – Sept. 2018), which is a flagship funding scheme
of the University of Manchester.

Xiao-Jun Zeng received the B.Sc. degree in Math-
ematics and the M.Sc. degree in Control Theory
and Operation Research from Xiamen University,
Xiamen, China, respectively and the Ph.D. degree
in Computation from the University of Manchester,
Manchester, U.K.

Dr. Zeng has been with the School of Comput-
er Science at the University of Manchester since
2002, where he is currently a Senior Lecturer in
Machine Learning and Optimisation. Before joining
the University of Manchester in 2002, he was with

Knowledge Support Systems, Ltd., Manchester, between 1996 – 2002, where
he was the Head of Research, developing intelligent pricing decision support
systems which won the European Information Society Technologies Award in
1999 and Microsoft European Retail Application Developer (RAD) Awards
in 2001 and 2003. His research in intelligent pricing decision support systems
was selected by UKCRC, CPHC, and BCS Academy as one of 20 impact cases
to highlight the impact made by UK academic Computer Science Research
within the UK and worldwide over the period 2008 – 2013.

Dr. Zeng’s main research interests include computational intelligence,
machine learning, big data, decision support systems, computational finance,
energy demand management, and game theory.

Dr. Zeng has served to scholarly and professional communities in various
roles including an Associate Editor of the IEEE Transactions on Fuzzy
Systems between 2004 – 2018.

	Introduction
	Problem statement
	Incremental learning algorithm of SEFS
	Fuzzy rule adding and updating
	Fuzzy rule merging
	Consequents learning
	The algorithm: SEFS

	Numerical results
	Sensitivity analysis
	Example 1: Nonlinear dynamic plant identification with time varying characteristics
	Example 2: Mackey-Glass Chaotic time series (long term prediction)
	Example 3: Online prediction of S&P 500 daily closing price

	Conclusion
	Appendix A: The proof of proposition III.1
	Appendix B: Induction of (9) and (10) in rule updating method
	Appendix C: Induction of (21) and (22) in rule merging method
	Appendix D: The proof of theorem III.1
	Appendix E: Induction of VFF-WRLS
	References
	Biographies
	Dongjiao Ge
	Xiao-Jun Zeng

