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CFM-BD: a distributed rule induction algorithm for
building Compact Fuzzy Models in Big Data

classification problems
Mikel Elkano, Jose Sanz, Edurne Barrenechea, Humberto Bustince, Mikel Galar

Abstract—Interpretability has always been a major concern
for fuzzy rule-based classifiers. The usage of human-readable
models allows them to explain the reasoning behind their pre-
dictions and decisions. However, when it comes to Big Data
classification problems, fuzzy rule-based classifiers have not
been able to maintain the good trade-off between accuracy
and interpretability that has characterized these techniques in
non-Big Data environments. The most accurate methods build
too complex models composed of a large number of rules and
fuzzy sets, while those approaches focusing on interpretability
do not provide state-of-the-art discrimination capabilities. In
this paper, we propose a new distributed learning algorithm
named CFM-BD to construct accurate and compact fuzzy rule-
based classification systems for Big Data. This method has been
specifically designed from scratch for Big Data problems and
does not adapt or extend any existing algorithm. The proposed
learning process consists of three stages: 1) pre-processing based
on the probability integral transform theorem; 2) rule induction
inspired by CHI-BD and Apriori algorithms; 3) rule selection
by means of a global evolutionary optimization. We conducted
a complete empirical study to test the performance of our
approach in terms of accuracy, complexity, and runtime. The
results obtained were compared and contrasted with four state-of-
the-art fuzzy classifiers for Big Data (FBDT, FMDT, Chi-Spark-
RS, and CHI-BD). According to this study, CFM-BD is able to
provide competitive discrimination capabilities using significantly
simpler models composed of a few rules of less than 3 antecedents,
employing 5 linguistic labels for all variables.

Index Terms—Fuzzy Rule-Based Classification Systems, Evolu-
tionary Algorithms, Big Data, Apache Spark, Probability Integral
Transform, Quantile Function.

I. INTRODUCTION

FUZZY Rule-Based Classification Systems (FRBCSs) are
powerful machine learning algorithms that provide inter-

pretable and accurate models described by human-readable
linguistic labels [1]. The main feature that makes FRBCSs
stand out from other types of solutions is the ability to explain
how outputs are inferred from inputs. Due to this valuable
reasoning, these systems have been widely used in applications
such as bioinformatics [2], medical problems [3], software
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fault prediction [4], anomaly intrusion detection [5], financial
applications [6], image processing [7], and traffic congestion
prediction [8], among others.

However, the construction of interpretable models usu-
ally involves computationally intensive learning algorithms
that require long runtimes. As a consequence, state-of-the-
art FRBCSs have serious difficulties dealing with large-scale
datasets. Given the increasing amount of information in the
Digital Age, which is doubling every two years according to
the study carried out by the International Data Corporation
(IDC) [9], the design of new scalable solutions presents many
challenges. Some of the latest publicly available Big Data
classification problems, such as HIGGS or HEPMASS1, do
not fit into the main memory of standard computers. Therefore,
state-of-the-art sequential learning algorithms are not able to
handle the whole training set on a single computer. Moreover,
even if such quantity of data could be stored in an 8-GB
RAM memory, the training process would probably lead to
unacceptable runtimes.

In order to overcome these challenges, many researchers
started to adapt well-known machine learning techniques to
distributed computing paradigms such as MapReduce [10]–
[12]. This methodology rapidly became very popular as a
result of the development of open-source frameworks such as
Apache Hadoop2 and Apache Spark3. In the last few years, a
number of distributed FRBCs based on either Hadoop or Spark
have been proposed [13]–[22]. Although great progress has
been made, most contributions do not achieve state-of-the-art
results in terms of both accuracy and interpretability. Some of
them perform several local optimization or learning processes
to obtain an approximate global solution [15], [16], [19], [20],
missing important patterns that could only be extracted when
the training set is treated as a whole. Other methods produce
too complex models that affect interpretability, mainly due to
a large number of rules or fuzzy sets [14], [21], [22]. There
are also other contributions that, from our point of view, do
not include enough Big Data problems to assess their quality
in the corresponding experimental study [13], [18].

In this work, we propose a new distributed FRBCS named
CFM-BD to build compact and accurate models for Big Data
classification problems. Our objective is to generate rule bases
containing a few (short) fuzzy rules using a small fixed number

1http://archive.ics.uci.edu/ml/datasets.html
2http://hadoop.apache.org
3https://spark.apache.org
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of fuzzy sets per variable, while achieving state-of-the-art
classification performance. The proposed algorithm consists
of three sequential stages:

1) Pre-processing and partitioning. Training data is trans-
formed into a uniform distribution by applying the prob-
ability integral transform theorem [23], [24]. Next, the
fuzzy sets are uniformly distributed in the new trans-
formed space. In this manner, the partitions fit the actual
distribution of the training data and can be safely recov-
ered in the original space by making use of the inverse
cumulative distribution function or quantile function [25].

2) Rule induction process. Rules are constructed by a novel
learning algorithm inspired by CHI-BD [14] and Apri-
ori [26] algorithms. First, the most frequent itemsets are
extracted from the initial rules generated by CHI-BD and
a pruning process is then carried out. Next, the itemsets
are converted into candidate rules and a filtering and
pruning process is performed to select the rules with the
greatest discrimination capability.

3) Evolutionary rule selection. We implement our own dis-
tributed version of the CHC evolutionary algorithm [27]
to optimize the rule base by means of rule selection. To
the best of our knowledge, this is the first distributed
solution for global evolutionary rule selection.

We must remark that all the stages process the whole dataset in
a distributed fashion and the model obtained is not affected by
the distribution of the partitions and the degree of parallelism.
The full source code was written in Scala4 2.11 on top of
Apache Spark 2.0.2 and is publicly available at GitHub5 under
the GPL license.

In order to assess the performance of our method, we carried
out an empirical study using 6 Big Data classification problems
available at UCI [28] and OpenML6 repositories. Accuracy,
complexity, and runtimes were analyzed and compared with
the results obtained by three state-of-the-art fuzzy classifiers,
i.e., CHI-BD [14], Chi-Spark-RS [16], and FMDT/FBDT [22].
Additionally, the scalability of our approach was measured
with three well-known metrics used to evaluate distributed
systems, i.e., speedup, sizeup, and scaleup [29], [30]. The
experimental results show that CFM-BD is able to deal with
large-scale datasets and achieve competitive accuracy rates
while providing simpler models than the aforementioned al-
gorithms.

This paper is organized as follows. Section II includes the
basics of FRBCSs and Apache Hadoop/Spark and presents
some related work. In Section III, we introduce the proposed
distributed FRBCS for Big Data classification problems. The
experimental framework is described in Section IV and the
analysis of the empirical results is presented in Section V.
Finally, Section VI concludes this paper.

II. PRELIMINARIES

In this section we briefly describe some basic concepts and
frameworks that are directly related to our proposal. First, we

4https://www.scala-lang.org
5https://github.com/melkano/cfm-bd
6https://www.openml.org/search?type=data

explain the basics of Fuzzy Rule-Based Classification Systems
(Section II-A). Next, we introduce two popular frameworks
used to handle Big Data environments called Apache Hadoop
and Apache Spark (Section II-B). Finally, we present and
discuss some recent related work (Section II-C).

A. Fuzzy Rule-Based Classification Systems

Fuzzy Rule-Based Classification Systems (FRBCSs) are
well-known models that achieve a good trade-off between clas-
sification accuracy and interpretability. These systems provide
an interpretable rule base containing human-readable rules
composed of linguistic labels [1].

The two main components of FRBCSs are described here-
after.

1) Knowledge base (KB): It is composed of both the rule
base (RB) and the database (DB), where the rules and
membership functions used to model the linguistic labels
are stored, respectively.

2) Fuzzy Reasoning Method (FRM): This is the mechanism
used to classify examples employing the information
stored in the KB.

In order to generate the KB, a fuzzy rule learning algorithm
is applied using a training set TR composed of N labeled
examples xi = (xi1, . . . , xiF ) with i ∈ {1, . . . , N}, where
xif is the value of the f -th feature (f ∈ {1, 2, . . . , F}) of
the i-th training example. Each example belongs to a class
yi ∈ C = {C1, C2, ..., CM}, where M is the number of classes
in the problem.

The RB is composed of a set of rules having the following
structure:

Rule Rj : If x1 is Aj1 and . . . and xF is AjF
then Class = Cj with RWj

(1)

where Rj is the label of the j-th rule, x = (x1, . . . , xF ) is an
F -dimensional pattern vector that represents the example, Ajf
is a linguistic label modeled by a membership function, Cj is
the class label and RWj is the rule weight. In some cases rules
might contain don’t care linguistic labels making the classifier
to ignore the corresponding attribute value. These labels can
simply be removed from the RB, leading to variable rule
lengths. Regarding the rule weight computation, in this work
we use an adaptation of the well-known Penalized Certainty
Factor (PFC) method [31] called Penalized Cost-Sensitive
Certainty Factor (PCF-CS). This method minimizes the impact
of the frequency of each class on the learning process by
applying the following formula:

RWj =
matchClass−matchNotClass
matchClass+matchNotClass

, (2)

where

matchClass =
∑

xi∈ClassCj

µAj (xi) · cost(yi)

matchNotClass =
∑

xi 6∈ClassCj

µAj (xi) · cost(yi).

cost(yi) is the misclassification cost associated with the class
yi and µAj (xi) is the matching degree between the example
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xi and the antecedent part of the rule Rj . The original PFC
formula is recovered when the same cost (cost(yi) = 1)
is given to all classes. Although class costs were originally
considered for binary classification problems, we have adapted
their computation to multi-class problems as follows:

cost(yi) =

max
m=1,...,M

(count(ym))

count(yi)
, (3)

where count(yi) is the number of examples belonging to the
class yi. As for the matching degree µAj (xi), it is defined as:

µAj (xi) =

F∏
f=1

µAjf (xif ), (4)

where µAjf (xif ) is the membership degree of the value xif
to the fuzzy set Ajf of the rule Rj . If Ajf is marked as don’t
care, the membership degree is set to 1.

In order to classify a new example xi, the classifier runs an
FRM composed of the following steps.

1) Matching degree. The strength of activation of the an-
tecedent part of all rules in the rule base for the example
xi is computed (Eq. (4)).

2) Association degree. The association degree of the exam-
ple xi with each rule in the rule base is computed.

bj(xi) = µAj (xi) ·RWj (5)

3) Classification. The final prediction is made based on the
association degrees. In this work we use the winning rule
method [32], which predicts the class of the rule with the
highest association degree:

class = arg max
m=1,...,M

(
max

Rj∈RB; Cj=m
bj(xi)

)
(6)

B. Apache Hadoop and Apache Spark

In the last few years, distributed computing has become
very popular in the machine learning community thanks to
open-source frameworks such as Apache Hadoop7 and Apache
Spark8. These frameworks provide a transparent distributed
system that allows the user to focus only on data processing.
The core of Hadoop consists of a distributed file system based
on the Google File System [33] called Hadoop Distributed File
System (HDFS) (storage layer) and an implementation of the
MapReduce paradigm [10] (processing layer).

Spark was introduced as a generalization and an exten-
sion of the MapReduce paradigm. It has seemingly unseated
Hadoop thanks to the so-called Directed Acyclic Graphs
(DAGs) and the in-memory computing feature, which mini-
mize the latency of multi-stage data flows that require multiple
MapReduce jobs. Spark is built around the concept of Resilient
Distributed Datasets (RDDs) [34], which represent distributed
immutable data (partitioned data) and lazily evaluated op-
erations (transformations). The execution of a user-defined
algorithm consists of a sequence of stages composed of a
number of transformations that are split into tasks. One stage

7http://hadoop.apache.org
8https://spark.apache.org

consists only of transformations that do not require any shuf-
fling/repartitioning process (e.g., map and filter operations).
Tasks are executed by the so-called executors, which represent
independent processes in the Java Virtual Machine (JVM) of
a worker node. Finally, the result of all transformations is
obtained by calling an action that computes and returns the
result to the driver node. This data flow (Fig. 1) allows the
user to run an indefinite number of MapReduce jobs within
the same main program, supporting a much wider variety of
algorithms and methods than Hadoop.

C. Related work

To the best of our knowledge, barely a dozen interpretable
fuzzy methods have been proposed to deal with Big Data
classification problems [13]–[22], [35], [36]. Although there
exist more contributions that use fuzzy logic for classification
[37], [38], their scalability has not been proven in Big Data
problems, and thus they are out of the scope of this paper.
Given the success of fuzzy classifiers in a wide range of
fields [2]–[8], designing scalable solutions seems worth the
effort. In [39], the authors provide an overview of the progress
and opportunities of fuzzy logic in Big Data environments.

In general, the aforementioned solutions are based on either
incremental learning [35], [36] or distributed computing [13]–
[22]. In the former case, training data is divided into several
subsets called episodes that sequentially feed a classifier that
incrementally learns from input data, including the knowledge
acquired in previous episodes. The advantage of this approach
is that it does not require a computing cluster to run the
algorithm, since each episode is equivalent to a small-data
classification problem in terms of computational cost. Regard-
ing distributed solutions, the learning process is carried out by
distributing training data across several computing nodes that
perform partial computations in order to get the final model.
The main difference between this strategy and incremental
learning is that the former runs a single learning process in
parallel using the whole training set, while the latter carries out
several learning stages in a sequential fashion. Therefore, it is
clear that the drawback of distributed approaches is the need
for several computing nodes. However, incremental learning
might miss important knowledge coming from inter-relations
among data from different episodes, since it lacks the overview
of the whole training set. In this work, we focus on the design
of distributed methods.

Distributed learning algorithms might, in turn, tackle classi-
fication problems either by decomposing the original training
data into several local sub-problems [15], [16], [19] or by per-
forming a global distributed learning process [14], [17], [18],
[21], [22], or even by combining these two approaches [13],
[20]. In the former case, an independent local model is
concurrently built in each subset (chunk) of data, so that the
final classifier is obtained by aggregating all these models. In
this manner, one could apply a well-known non-distributed
algorithm to train each local model. However, similarly to
incremental learning, the learning process becomes strongly
dependent on the distribution of subsets and might miss im-
portant information available only when training data is treated
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Fig. 1: Spark’s data flow (P = Partition).

as a whole. Regarding global distributed learning algorithms,
the difficulty of parallelizing the training phase across several
computing units is the main drawback.

Different strategies have been applied to obtain human-
readable fuzzy models in Big Data classification problems, in-
cluding fuzzy versions of decision trees (FDTs) [17], [22], sub-
group discovery (SD) [20], associative classifiers (FACs) [13],
[21], emerging patterns mining (EPM) [18], and rule-based
classifiers (FRBCs) [14]–[17], [19]. In [17], a distributed
version of C4.5 is used to extract a candidate rule base that
is optimized by an evolutionary algorithm. Segatori et al.
proposed a distributed FDT that exploits the classical Decision
Tree implementation in Spark MLlib9, extending the learning
scheme by employing fuzzy information gain based on fuzzy
entropy [22]. A new algorithm for SD called MEFASD-BD
was presented in [20], which makes use of an evolutionary
fuzzy system to extract fuzzy rules describing subgroups for
each partition, though the quality of each solution is measured
on the whole training set. Fuzzy logic was also used for EPM
in Big Data by Garcı́a-Vico et al. [18], applying a global
evolutionary fuzzy system that employs the entire training set.
Finally, different distributed versions of both FACs and FRBCs
were proposed in [13]–[16], [19], [21].

However, the above-mentioned algorithms sacrifice either
interpretability for classification accuracy or viceversa. Some
algorithms focus on the accuracy and tend to generate too
complex models having large amounts of rules [14], [15],
[19], excessive rule lengths [14]–[16], [19], or a high number
of fuzzy sets (linguistic labels) [21], [22]. On the other hand,
those algorithms that optimize the interpretability of the model
are not able to achieve state-of-the-art results in terms of
accuracy [17]. There are also other contributions that, from
our point of view, do not consider enough datasets to assess
these aspects in Big Data environments [13], [18], [20].

III. CFM-BD: A NEW DISTRIBUTED FUZZY RULE
INDUCTION ALGORITHM FOR BIG DATA

In this work we present CFM-BD, a new distributed fuzzy
rule induction algorithm specifically designed for Big Data
classification problems. The motivation behind our proposal

9http://spark.apache.org/mllib

is to build compact fuzzy models achieving state-of-the-
art results in terms of both classification performance and
interpretability.

In order to overcome this challenge, we propose a learning
algorithm composed of three stages:

1) Pre-processing and partitioning (Section III-A).
2) Rule induction process (Section III-B).
3) Evolutionary rule selection (Section III-C).

We must remark that all stages are conducted by distributed
processes that employ the whole training set. Therefore, no
approximations are introduced throughout the whole execution
of the algorithm. This feature allows the user to obtain exactly
the same model regardless of the distribution of data partitions
and the parallelization degree used for the execution.

The full source code was written in Scala10 2.11 on top
of Apache Spark 2.0.2 and is publicly available at GitHub11

under the GPL license.

A. Pre-processing and partitioning
The goal of this stage is to build fuzzy sets (linguistic labels)

that fit the real distribution of the training data while keeping
the number of fuzzy sets per variable constant (e. g., low,
medium, high). This process is divided into two parts:
• Pre-processing: the original distribution of the training

data is transformed into a uniform distribution. This
transformation applies the probability integral transform
theorem [23], [24], described in Theorem 1. This theorem
implies that any dataset can be transformed into a new
dataset where all the variables follow a uniform distribu-
tion, regardless of the original distribution.
Theorem 1. If X is a continuous random variable with
cumulative distribution function (CDF) FX(x) and if
Y = FX(X), then Y is a uniform random variable on
the interval [0,1].
Proof. Suppose that Y = g(X) is a function of X where
g is differentiable and strictly increasing. Thus, its inverse
g−1 uniquely exists. The CDF of Y can be derived using

FY (y) = Prob (Y ≤ y) = Prob
(
X ≤ g−1(y)

)
= FX

(
g−1(y)

)
10https://www.scala-lang.org
11https://github.com/melkano/cfm-bd
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and its density is given by

fY (y) =
d

dy
FY (y) =

d

dy
FX(g−1(y))

= fX(g−1(y)) · d
dy
g−1(y).

This procedure is called the CDF technique and allows
the distribution of Y to be derived as follows:

FY (y) = Prob (Y ≤ y) = Prob
(
X ≤ F−1X (y)

)
= FX

(
F−1X (y)

)
= y

�

However, since the original distribution of the training set
is unknown, we cannot compute the exact CDF. Instead,
we propose computing the q-quantiles of the training set
and compute an approximate CDF. To this end, for each
variable, all the values are sorted and each quantile is
extracted. If q is smaller than the number of examples
in the training set, the CDF of a certain value is linearly
interpolated on the interval [Qi−1, Qi], Qi being the first
quantile greater than the value. If the value is smaller than
the first quantile (Q1) or greater than the last quantile
(Qq−1), the CDF is 0 or 1, respectively. Of course,
the transformation of the testing set is performed by
interpolating the CDF using the quantiles extracted from
the training set.

• Partitioning: the fuzzy sets are built using triangular
membership functions and uniformly distributed across
the interval [0,1] in the new transformed space. It is
worth noting that the definition of every single fuzzy
set in the original space can be recovered by applying
the inverse cumulative distribution function or quantile
function [25]. In this case, for every point defining the
triangular membership function, we would linearly inter-
polate the corresponding value between the two closest
quantiles by computing the inverse of the linear function
used to compute the CDF.

Fig. 2 shows an illustrative example of how fuzzy sets
are distributed in the original and transformed spaces of the
variables lepton 1 eta and R of SUSY12. Solid lines and bar
plots represent the membership functions of the fuzzy sets and
the original distribution of the variables, respectively.

This stage plays an important role in our method’s robust-
ness and is key to building accurate fuzzy rules. We provide
additional experiments in this respect in the supplementary
material accompanying this paper.

B. Rule induction process

After the training data has been pre-processed and the fuzzy
sets have been built, the rule base is constructed by applying
a new rule induction algorithm specifically designed for Big
Data. This process consists of two sequential stages that are
inspired by some of the concepts introduced in CHI-BD [14]
and Apriori [26] algorithms.

12https://archive.ics.uci.edu/ml/datasets/SUSY
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Fig. 2: Fuzzy sets built for lepton 1 eta and R on SUSY.

1) Search for the most promising itemsets: In this work, we
consider all fuzzy sets (linguistic labels) and nominal values
as items. When some of these items (one or more) appear
together in a given transaction (example), they form an itemset.
In order to find out the most promising itemsets in terms of
discrimination capability, a procedure composed of three steps
is applied.

(a) Discretization of the examples: all the itemsets that are
present in the training set are extracted by making use
of the rule generation process performed by the CHI-BD
algorithm [14]. This procedure consists in discretizing
all the examples by computing the membership degree
of each value to all the fuzzy sets of the corresponding
variable. That is, each value is replaced with the fuzzy
set leading to the highest membership degree. In case of
nominal values, no discretization is conducted. Example
1 illustrates a discretized example, where the subscript
indicates the variable that the fuzzy set corresponds to.

Example 1. Given the following example in the trans-
formed input space:
0.15, 0.82, 0.51,

https://archive.ics.uci.edu/ml/datasets/SUSY
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and considering three uniformly distributed triangular
membership functions for each variable, it could be
discretized as:
Low1, High2,Medium3

In this manner, an F -dimensional example is trans-
formed into an itemset of F items. After discretizing
the example, all the possible subsets of items contained
in the itemset are generated. The maximum cardinality
of these subsets is set by the user and determines
the maximum length of the rules that will be built in
subsequent stages. In this work we have set this value
to 3 in order to achieve a good trade-off between model
complexity and discrimination capability, based on the
results obtained in [40]. Example 2 shows the itemsets
extracted from Example 1.
Example 2. Given the following discretized example:
Low1, High2,Medium3,

all the possible itemsets are:
{Low1}, {High2}, {Medium3},
{Low1, High2}, {Low1,Medium3},
{High2,Medium3},
{Low1, High2,Medium3}

(b) Search for frequent itemsets: the support of each itemset
is computed and only those having a minimum support
are kept. In the original Apriori algorithm [26], the
support of an itemset is the number of times that the
itemset appears in the training set. In this work, the
support of an itemset I is redefined as

suppcrisp(I) =
count(I)

N
, (7)

where count(I) is the original support used in [26]
and N is the number of training examples. We have
called it suppcrisp to differentiate the crisp support
used in this stage from the fuzzy support used in
the subsequent fuzzy rule generation step (Eq. (10)).
Similarly to Apriori, an itemset is considered as frequent
if its support equals or exceeds the support threshold
set by the user. However, in our proposal this threshold
depends on the cardinality of the itemset and the number
of classes instead of being a fixed number:

minSuppcrisp =
0.025

|I| ·M
, (8)

where |I| is the number of items contained in the
itemset, M is the number of classes in the problem,
and the value 0.025 has been set based on empirical
results. Unlike Apriori, in this work an itemset might be
considered as frequent even if any of its subsets of items
are non-frequent. In this manner, only those itemsets
having a support lower than the support threshold are
discarded. This modification comes from the fact that
the minimum support of each itemset depends on the
length of the itemset, so that small non-frequent itemsets
are penalized more than larger ones. The reason for this
adaptation is that the difference between the crisp and
the fuzzy supports of larger itemsets is greater than that

of smaller ones, which might cause valuable itemsets to
be removed if this difference is not minimized.

(c) Selection of the most confident itemsets: among the
frequent itemsets, another filtering process is carried out
based on the confidence of the itemsets. In this work,
the confidence of an itemset is defined as:

confcrisp(I) =

max
m=1,...,M

(countClass(I, ym))

count(I)
, (9)

where countClass(I, ym) counts the number of exam-
ples belonging to the class ym in which the itemset
I is present. Similarly to suppcrisp, we have called it
confcrisp to differentiate this confidence from that used
in the fuzzy rules generation (Eq. (11)). In order to select
the most confident itemsets, the following criteria are
used:
• For each class, if more than 50% of the itemsets

associated with the class satisfy a certain confidence
threshold (in this work called minConfcrisp), those
not satisfying the threshold are discarded. Otherwise,
itemsets are sorted in descending order by confidence
and the bottom 50% are discarded. This criterion
guarantees that at most half of the itemsets are dis-
carded.

• If there exists a subset of the itemset that is more
confident than the itemset itself and fulfills the pre-
vious criterion, the itemset is discarded. This means
that large itemsets are kept if and only if they provide
more discrimination capability than smaller ones.

We must remark that any occurrence of a certain itemset is
always weighted by the cost associated with the class of the
example in which the itemset is present (Eq. (3)). That is,
both the support and the confidence count the occurrences by
summing up the cost of the class of each example (same for
N in Eq. (7)). This procedure is aimed at reducing the impact
of the frequency of each class during the learning process.

2) Construction of fuzzy rules: Based on the most promis-
ing frequent itemsets extracted in the previous stage, a fuzzy
rule base is created as follows.

(a) Conversion from itemsets to candidate rules: every sin-
gle itemset is transformed into one or more candidate
rules. To this end, for a given itemset, the algorithm
keeps track of the examples in which the itemset is
present and it obtains their class labels. Then, a new
candidate rule is generated for each of these classes.
Example 3 illustrates this conversion.
Example 3. Given the following itemsets that have
passed the previous filtering phase:
{High2}, {Low1, High2}, {Low1, High2,Medium3}.
And given the examples that have generated those
itemsets:
Low1, High2,Medium3 → C1
Low1, High2,Medium3 → C2.
We can extract the classes the itemsets belong to (C1
and C2) and generate the corresponding candidate
rules:
IF A2 is High THEN C1

IF A2 is High THEN C2
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IF A1 is Low and A2 is High THEN C1

IF A1 is Low and A2 is High THEN C2

IF A1 is Low and A2 is High and A3 is Medium THEN C1

IF A1 is Low and A2 is High and A3 is Medium THEN C2.

As we can observe in Example 3, two examples belong-
ing to different classes might produce the same itemsets,
and thus the algorithm would generate rules that share
the antecedent part and have different consequent. This
situation is known as a conflict and is resolved in the
next step.

(b) Computation of rule weights and conflict resolution:
for each rule, the matching degree between the rule
and all the examples in the training set is computed
in order to obtain the rule weight, as shown in Eq. (2).
This computation is performed in a distributed fashion
by broadcasting all candidate rules across the worker
nodes. In this manner, each worker computes only the
partial sum of the matching degrees corresponding to the
assigned partition. We must point out that this process
represents a small fraction of the total computing time
of the learning algorithm, since the number of rules
considered at this point is generally low. When rule
weights are computed, conflicts are resolved by keeping
the rule with the largest weight.

(c) Filtering and pruning: rules are first filtered based on
their support and confidence, which are computed ac-
cording to Eq. (10) and (11), respectively, reusing the
previously computed matching degrees:

suppfuzzy(R) =
matchClass+matchNotClass

N
(10)

conffuzzy(R) =
matchClass

matchClass+matchNotClass
,

(11)
considering the matchClass, matchNotClass, and N
defined in Eq. (2) and (7), respectively. As described in
the extraction of itemsets, N is weighted by the cost of
each class. The filtering process consists in removing
those rules having a support or a confidence lower
than a certain threshold. In this work, the confidence
threshold (minConffuzzy) has been set to 0.6. The
support threshold is defined as:

minSuppfuzzy(R) =
0.05

len(R) ·M
, (12)

where len(R) and M are the rule length and the number
of classes in the problem, respectively, and the value
0.05 has been set based on empirical results. The usage
of the rule length in this computation minimizes the
penalizing effect that the product operation has in the
matching degree involved in Eq. (10) when the number
of antecedents increases [41], [42].
Finally, a pruning process is carried out to keep only
the most confident rules of each class. To this end, all
the rules are grouped by class and length and sorted
by confidence. Next, for each class Cm with m ∈
{1, 2, ...,M} and rule length len ∈ {1, 2, ...,maxLen},

where maxLen is the maximum rule length set by the
user, the first NR(Cm, len) rules are taken:

NR(Cm, len) = L · F · proplen · γ, (13)

where L is the number of fuzzy sets per variable and
F is the number of variables of the problem. In this
work, we set maxLen = 3 according to previous
studies showing good trade-offs between discrimination
capability and complexity [40]. However, for the sake
of completeness, we include additional experimental
results varying this parameter in the supplementary
material. As for proplen, it represents the proportion of
rules with length len that the rule base should contain
after filtering the most confident rules. In this work, we
set prop = (0.2, 0.3, 0.5) to prioritize specific rules over
general ones. Regarding γ, it is a hyperparameter that
allows the user to set the priority between classifica-
tion performance and model complexity (in this work
γ ∈ {2, 4, 8}). High values of γ cause the algorithm to
build more rules and might enhance its classification
performance. After filtering the most confident rules,
a pruning process is carried out, where those rules
containing all the antecedents of a more confident and
shorter rule are removed from the rule base. Example 4
illustrates this pruning process.
Example 4. Given the following rules:

R1 : IF A1 is Low and A2 is High THEN C1

R2 : IF A1 is Low and A2 is High and A3 is Medium THEN C1,

with conffuzzy(R1) = 0.83 and conffuzzy(R2) = 0.76,
R2 is discarded because R1 is shorter, more confident,
and all its antecedents are present in the antecedent part
of R2.

Fig. 3 and 4 show the pseudo-code of the rule induction
algorithm and the four Spark stages launched during the
process, respectively. We must highlight two aspects in Fig.
3:
• In line 17, candidate rules are grouped by the antecedent

part, and thus conflicting rules fall into the same key-
value pair. In this manner, map and filter transformations
can compute the support, the confidence, and the weight
of all conflicting rules at once.

• Functions is frequent () and is confident () check whether
the support and the confidence of a given itemset/rule are
greater than the corresponding thresholds, respectively.

As mentioned in Section II-B, the shuffling operation occurs
only between stages, and thus transformations such as map
and filter run in parallel without communication overhead.

C. Evolutionary rule selection

When the rule base has been created, a rule selection process
is carried out in order to obtain a compact and accurate
model. To this end, we apply the CHC evolutionary algorithm
(EA) [27] because of its ability to deal with complex search
spaces [43] and the good results achieved by this EA in state-
of-the-art FRBCSs, such as FARC-HD [40] or IVTURS [44].
Unlike other methods that make use of CHC [15], [16], we
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Function generate rule base (TR)
Input: A pre-processed training set TR containing N labeled examples xi.
Output: A rule base RB.

Begin
1: # 1. Search for the most promising itemsets
2: # 1.1 Discretization of the examples
3: TRd ← TR.map (xi ← discretize (xi))
4: Itemsets← TRd.map (xdi ← extract itemsets (xdi ))

5: # 1.2 Search for frequent itemsets
6: SuppConf ← Itemsets

.reduceByKey (itemset← support and confidence (itemset))
7: ItemsetsFreq ← SuppConf.filter (is frequent (itemset))

8: # 1.3 Selection of the most confident itemsets
9: ItemsetsConf ← ItemsetsFreq.filter (is confident (itemset))

10: ItemsetsProm ← distributed pruning (ItemsetsConf )

11: # 2. Construction of fuzzy rules
12: # 2.1 Conversion from itemsets to candidate rules
13: Rulescand ← ItemsetsProm.map (itemset← rule (itemset))
14: Rulesbroad ← broadcast (Rulescand.collect ())

15: # 2.2 Computation of rule weights and conflict resolution
16: matchings← TRd.map (xi ← matching (Rulesbroad))
17: SuppConfWght← matchings

.reduceByKey (rule← support confidence weight (rule))
18: Rulesno conflicts ← SuppConfWght

.map (rule← resolve conflicts (rule))

19: # 2.3 Filtering and pruning
20: Rulesfreq ← Rulesno conflicts

.filter (rule← is frequent (rule))
21: Rulesconf ← Rulesfreq.filter (rule← is confident (rule))
22: Rules← distributed pruning (Rulesconf )

23: RETURN build rule base (Rules)

End

Fig. 3: Pseudo-code of the rule induction algorithm.

have implemented a new distributed version that performs a
global optimization process by evaluating the quality (fitness)
of each individual considering the whole training set.

Next, the main features of the CHC algorithm are described:

• Coding Scheme. Each chromosome C = (c1, c2, ..., cNR)
is coded as a binary vector of NR elements, NR being
the number of rules contained in the rule base. Each
element is associated with a certain rule and determines
whether the rule is selected or not. In this manner,
If ci = 1 Then (Ri ∈ RB) Else (Ri /∈ RB), where
RB is the final optimized rule base.

• Initial Gene Pool. To include the initial rule base as a
candidate solution, the initial pool is obtained with the
first individual setting all genes to 1 and the remaining
individuals being generated at random.

• Chromosome Evaluation. Since the goal of our method is
to build a compact and accurate model, both the accuracy
and the complexity of the rule base need to be considered.
To this end, the quality or the fitness of a chromosome
is determined by the same equation used in FARC-HD:

Fitness(C) = acc− δ · NRinitial
NRinitial −NR+ 1

, (14)

where NRinitial and NR are the number of rules in the
initial and the current rule bases, respectively, and acc
is the accuracy obtained by the current model. In order
to preserve the descrimination capability for all classes,
the accuracy is measured in terms of the geometric mean

Fig. 4: Spark stages launched during the rule induction process
(P = Partition).

(GM) [45] defined later in Section IV-B (Eq (17)), which
is a commonly used metric for imbalanced datasets.
Since the evaluation of the whole population is the
most computationally expensive task in EAs, we have
implemented our own distributed version of CHC to
parallelize this computation across worker nodes. When
computing the fitness of a whole population, all the indi-
viduals are sent to every single worker. Then, each worker
computes a partial confusion matrix for each individual
considering only the examples contained in its partitions.
Finally, these partial matrices are summed up and the
exact accuracy is obtained. In this manner, the fitness of
an individual is computed using the whole training set
without introducing any approximation. Additionally, in
order to avoid repeated computations, we store an RDD
containing the pre-computed association degrees of each
rule in the initial rule base for all the examples. This
allows CHC to use this RDD as a look-up-table when
classifying a certain partition. We must point out that the
look-up-table is distributed across worker nodes, and thus
only the partition assigned to the worker is loaded in the
main memory.

• Crossover Operator. The half uniform crossover scheme
(HUX) is applied [46]. The HUX crossover randomly
interchanges half of the genes that are different in the
parents, ensuring the maximum distance between the
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offspring and their parents (exploration).
• Restarting Approach. The usage of a restarting approach

helps the EA avoid local optima. When the population is
restarted, the best chromosome is kept and the remaining
are generated at random by keeping a certain percentage
(Γ) of the genes contained in the best chromosome (set
by the user).

CHC uses an incest prevention mechanism when apply-
ing the crossover operator: two parents are crossed only if
their hamming distance divided by 2 is greater than a given
threshold D. This threshold is initialized as the maximum
possible distance between two individuals (number of genes
in a chromosome) divided by four. When no individuals are
added to the next generation, the value of D is decreased
by ϕ times its initial value, ϕ being set by the user (in this
work 0.01). When D is below zero, and if the maximum
number of restarts without improvement has not been reached
(maxRestarts), the population is restarted.

Although CHC has proven effective in dealing with
interpretability-accuracy tradeoffs, it would be interesting to
adapt the evolutionary rule selection process to multi-objective
frameworks [47]. However, this approach is out of the scope
of this paper and will be studied in future work.

IV. EXPERIMENTAL FRAMEWORK

In this section we present the framework used to develop the
experiments carried out in Section V. Firstly, we describe the
datasets selected for the experimental study (Section IV-A).
Next, we introduce the performance and scalability measures
used to evaluate the methods (Section IV-B). Finally, we show
the parameters considered for each method (Section IV-C).

A. Datasets
In order to develop the experimental study, we considered

6 Big Data classification problems available at UCI [28] and
OpenML13 repositories. Table I shows the description of the
datasets indicating the number of instances (#Instances), real
(R)/integer(I)/categorical(C)/total(T) attributes (#Attributes),
and classes (#Classes). The names of BNG Australian (BNG),
Covertype (COV), HEPMASS (HEPM), and KDDCup1999
(KDD) have been shortened. All the experiments were carried
out using a 5-fold stratified cross-validation scheme. To this
end, we randomly split the dataset into five partitions of data,
each one containing 20% of the examples, and we employed a
combination of four of them (80%) to train the system and the
remaining one to test it. Therefore, the result of each dataset
was computed as the average of the five partitions.

B. Performance metrics and scalability measures
The classification performance of the different methods was

measured using the accuracy rate (Acc), the average accuracy
rate per class (AccClass), and the geometric mean (GM ) [45],
defined as follows:

Acc =

M∑
m=1

TPRm ·Nm

N
, (15)

13https://www.openml.org/search?type=data

TABLE I: Description of the datasets.

Dataset #Instances #Attributes #Classes
R I C T

BNG 1,000,000 8 6 0 14 2
COV 581,012 10 0 44 54 7
HEPM 10,500,000 28 0 0 28 2
HIGGS 11,000,000 28 0 0 28 2
KDD 4,898,431 26 0 15 41 5
SUSY 5,000,000 18 0 0 18 2

AccClass =

M∑
m=1

TPRm

M
, (16)

GM =
M

√√√√ M∏
m=1

TPRm, (17)

where TPRm is the true positive rate of class Cm (proportion
of correctly classified examples belonging to class Cm), Nm
is the number of examples from class Cm, and N is the total
number of examples. Since some of the datasets considered in
the experiments are imbalanced, AccClass and GM provide
more information about the actual discrimination capability
than Acc.

Additionally, we measured the scalability of our approach
by applying three well-known metrics used to evaluate dis-
tributed systems, i.e., speedup, sizeup, and scaleup [29], [30].
• Speedup: the data size is kept constant and the number of

cores is increased. An ideal distributed algorithm should
feature linear speedup, that is, a system with m cores
must provide a speedup of m. However, in practice a
linear speedup is difficult to obtain due to communication
and synchronization overhead.

Speedup(m) =
runtime on 1 core

runtime on m cores
(18)

• Sizeup: the number of cores is kept constant and the data
size is increased. Sizeup measures how much longer it
will take to process an m-times larger dataset. A linear
increase in execution time represents the ideal case.

Sizeup(data,m) =
runtime for processing m · data

runtime for processing data
(19)

• Scaleup: the ability of a system to run an m-times greater
job with m-times larger system is measured, whose ideal
value should be 1 (runtime of the baseline system).

Scaleup(data,m) =

runtime for processing data on 1 core
runtime for processing m · data on m cores

(20)

C. Methods and parameters setup

We included all the open-source fuzzy classifiers available
for Big Data so far, i.e., CHI-BD [14], Chi-Spark-RS [16],
and FMDT/FBDT [22]. Chi-FRBCS-BigData [19] was not
included in the comparisons because CHI-BD showed better

https://www.openml.org/search?type=data
https://www.openml.org/search?type=data
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performance in terms of accuracy and complexity in [14].
Although MLlib provides a non-fuzzy version of decision
trees for Big Data, we did not include this method because
Segatori et al. already carried out a comparative study in
which FBDT/FMDT outperformed MLlib decision trees [22].
Table II shows the parameters considered for each method
throughout the experiments. In all cases, we set the values
suggested by the authors in the original papers.

TABLE II: Parameters used for each method.

Algorithm Parameters

#Fuzzy sets per variable = 5
Inference = winning rule

CFM-BD Rule weight = PCF-CS
(rule induction) maxLen = 3; prop = (0.2, 0.3, 0.5)

minConfcrisp = 0.7; minConffuzzy = 0.6
γ ∈ {2, 4, 8}
#Individuals = 50; #Evaluations = 10,000

CFM-BD maxRestarts = 3; D = NRinitial / 4
(rule selection) δ = 0.15; Γ = 0.35; ϕ = 0.01

Impurity = entropy; T-norm = product
FMDT maxBins = 32; maxDepth (β) = 5

γ = 0.1%; φ = 0.02 · N ; λ = 10−4 ·N
Impurity = entropy; T-norm = product

FBDT maxBins = 32; maxDepth (β) ∈ {5, 10, 15}
γ = 0.1%; φ = 1; λ = 1

#Fuzzy sets per variable = 3
Inference = winning rule

CHI-BD Rule weight = PCF-CS
(cost-sensitive) Number of rule subsets = 4

Minimum #occurrences
for frequent subsets = 10
Maximum #rules per reducer = 400,000

#Fuzzy sets per variable = 3
Chi-Spark-RS Inference = winning rule
(cost-sensitive) Rule weight = PCF-CS; T-norm = product

#Individuals = 50; #Evaluations = 1,000
α (for fitness) = 0.7

In the case of CFM-BD, there is an extra boolean parameter
called cost sensitive that enables/disables the cost-sensitive
mode. When it is off, the cost associated with each class
(cost(ym)) is set to 1, so that the learning algorithm ignores
the frequency of each class. Also, different parts of the
algorithm are adapted accordingly:
• The pruning of itemsets described in Section III-B con-

siders all the itemsets at once regardless of their class.
• Similarly, the most confident fuzzy rules are extracted

without considering their classes, so that rules are
grouped only by length. Consequently, NR(Cm, len)
(Eq. (13)) is replaced with NR(len) (Eq. (21)) by adding
the number of classes M :

NR(len) = L · F · proplen · γ ·M. (21)

• In addition to the rule induction process, the evolutionary
optimization is also modified by replacing the GM with
the Acc to focus on improving accuracy rate.

This way, the user can turn on/off the cost-sensitive mode
of CFM-BD by simply setting the parameter cost sensitive.
When optimizing the Acc, the non cost-sensitive version
performs better in general, while the best AccClass and GM

are obtained when using the cost-sensitive version. The Acc
reported in this work corresponds to the non cost-sensitive
CFM-BD, while the AccClass and GM correspond to the cost-
sensitive version.

Additionally, we include two versions of CFM-BD: CFM-
BD and CFM-BDL. The former corresponds to the origi-
nal method introduced in Section III, while the latter is a
lightweight mode that omits the evolutionary rule selection
process. Therefore, the only difference between these two
versions is that CFM-BDL gets rid of the third stage described
in Section III-C. The original CFM-BD provides more accurate
and compact models than CFM-BDL, since the latter is meant
to achieve a good trade-off among classification performance,
model complexity, and execution time.

Regarding the cluster used for running the algorithms, it is
composed of 6 slave nodes and a master node connected via
1Gb/s Ethernet LAN network. Half of the slave nodes have
2 Intel Xeon E5-2620 v3 processors at 2.4 GHz (3.2 GHz
with Turbo Boost) with 12 virtual cores in each one (where
6 of them are physical). The other half are equipped with 2
Intel Xeon E5-2620 v2 processors at 2.1 GHz with the same
number of cores as the previous ones. The master node is
composed of an Intel Xeon E5-2609 processor with 4 physical
cores at 2.4 GHz. All slave nodes are equipped with 64 GB of
RAM memory, while the master works with 32 GB of RAM
memory. With respect to the storage specifications, all nodes
use Hard Disk Drives featuring a read/write performance of
128 MB/s. The entire cluster runs on top of CentOS 6.5 +
Apache Hadoop 2.6.0 + Apache Spark 2.0.2.

Except for FMDT/FBDT, the number of partitions/cores
used for the execution of the algorithms equals the maximum
number supported by our cluster, i.e., 128. In the case of
FMDT/FBDT, we found that using more than 24 cores had
a negative impact on runtimes when setting the configuration
recommended by the authors. Thus, the number of cores used
for FMDT/FBDT was 24. In all cases, we assigned 4 cores
to every single executor in order to ensure full HDFS write
throughput while minimizing memory replication overhead
(e.g. broadcast variables).

V. EXPERIMENTAL STUDY

In this section we describe the empirical study carried out
to assess the performance of the proposed method (CFM-BD),
which consists of two parts:

1) We tested CFM-BD in six Big Data classification prob-
lems and compared its performance with that provided by
four state-of-the-art fuzzy classifiers (FMDT/FBDT [22],
Chi-Spark-RS [16], and CHI-BD [14]) (Section V-A).
More specifically, the performance of these methods
was evaluated in terms of classification accuracy, model
complexity, and runtimes.

2) We assessed the scalability of our approach with three
well-known metrics used to evaluate distributed systems,
i.e., speedup, sizeup, and scaleup [29], [30] (Section
V-B).
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A. Classification performance and complexity

Tables III and IV show the classification performance of
each method and the model complexities in terms of the
number of rules (#rules), average rule length (RL), average
number of fuzzy sets per variable (FS), and total rule length
(TRL = #rules · RL · FS), respectively. The second column
indicates the γ used for CFM-BD (Eq. (13)) and the maximum
depth considered for FBDT and FMDT (β). In order to
replicate the configurations suggested in [22], the maximum
depth used for FMDT is always 5. As we can observe, larger
γ’s do not imply better classification performance in the
case of CFM-BD, while deeper trees generally provide more
accurate models in FBDT. Notice that the best classification
performance achieved for each dataset is highlighted in bold-
face (Table III).

Before analyzing and comparing each method, we must
mention that the implementation of Chi-Spark-RS available
at GitHub14 does not support multi-class problems, and thus
we could not run this algorithm on KDD and COV. Besides,
this method was not able to tackle HIGGS, HEPMASS, and
SUSY within a period of 48 hours, and hence no results are
given on these datasets for this method. Consequently, we will
not consider Chi-Spark-RS in the analysis of the results. Also,
FMDT and CHI-BD ran out of memory on HEPMASS and
we were not able to extract any result on this dataset.

Next, we analyze and compare the performance of CFM-BD
in terms of classification performance and model complexity
for each dataset:

• BNG: in this case CFM-BD clearly surpasses the rest of
methods, improving the accuracy of FBDT, FMDT, and
Chi-Spark-RS by more than 6% (Acc) and 8% (AccClass
and GM ), while building less than 10 rules. In the case
of CHI-BD, the difference in classification performance
is not that large (though CFM-BD is still more accurate).
However, CHI-BD builds nearly 9K rules composed of
14 antecedents, yielding a TRL 3-7K times greater than
CFM-BD’s.

• COV: FMDT stands out from the rest of methods but
generates a model with a TRL value of 17M (0,7-8K
times the TRL of CFM-BD). As for FBDT, the only
model that provides a comparable TRL with respect to
CFM-BD (FBDTβ=5) is not able to maintain classifica-
tion performance. In fact, when it comes to AccClass and
GM , FBDT requires a minimum depth of 10 to provide
a more accurate model than CFM-BD’s, yielding a TRL
19 and 6 times greater than that of CFM-BDγ=4 and
CFM-BDγ=8, respectively. The improvement obtained
by deeper trees in FBDT suggests that COV requires
more than 3 antecedents per rule to achieve state-of-
the-art classification performance, which might explain
the performance loss in CFM-BD. Regarding CHI-BD,
it is unable to provide competitive Acc but achieves
comparable AccClass and GM with respect to CFM-
BD. However, CFM-BD provides a TRL 40-400 times
smaller than CHI-BD’s.

14https://github.com/aFdezHilario/Chi-Spark-RS

TABLE III: Classification performance of each method.

Accuracy rate % (Acc)

Dataset γ; β CFM-BD CFM-BDL FBDT FMDT Chi-Spark-RS CHI-BD

2; 5 86.45 85.42 78.83 80.23
BNG 4; 10 86.05 85.31 80.17 75.19 84.21

8; 15 86.54 85.32 80.17

2; 5 72.67 69.67 69.31 94.28
COV 4; 10 72.61 69.75 76.30 - 51.69

8; 15 72.49 70.18 82.87

2; 5 90.60 89.15 90.61 -
HEPM 4; 10 90.75 89.23 91.15 - -

8; 15 90.75 89.20 91.40

2; 5 65.11 62.19 66.39 71.54
HIGGS 4; 10 68.19 63.23 70.60 - 58.54

8; 15 68.47 63.48 72.23

2; 5 99.07 98.79 99.88 99.99
KDD 4; 10 98.81 98.79 99.99 - 99.65

8; 15 98.82 98.80 99.99

2; 5 77.53 75.88 77.31 79.29
SUSY 4; 10 78.41 76.13 79.09 - 64.89

8; 15 78.85 76.45 79.70

Average accuracy rate % per class (AccClass)

Dataset γ; β CFM-BD CFM-BDL FBDT FMDT Chi-Spark-RS CHI-BD

2; 5 86.20 85.02 77.44 78.96
BNG 4; 10 86.32 84.99 78.81 75.35 85.02

8; 15 86.36 85.00 78.84

2; 5 62.09 59.25 44.59 87.25
COV 4; 10 64.74 60.88 62.17 - 66.73

8; 15 67.98 63.08 75.65

2; 5 90.62 89.15 90.61 -
HEPM 4; 10 90.69 89.23 91.15 - -

8; 15 90.74 89.07 91.40

2; 5 67.90 64.63 66.23 71.43
HIGGS 4; 10 68.90 65.29 70.47 - 58.48

8; 15 68.87 65.30 72.09

2; 5 95.59 93.39 59.47 92.15
KDD 4; 10 95.68 93.00 89.84 - 83.94

8; 15 95.90 94.29 90.60

2; 5 76.21 74.53 76.57 78.59
SUSY 4; 10 77.13 74.88 78.35 - 62.42

8; 15 78.27 75.38 79.01

Geometric mean (GM )

Dataset γ; β CFM-BD CFM-BDL FBDT FMDT Chi-Spark-RS CHI-BD

2; 5 .8620 .8484 .7685 .7847
BNG 4; 10 .8632 .8480 .7825 .7534 .8483

8; 15 .8636 .8481 .7832

2; 5 .5917 .5448 .2861 .8680
COV 4; 10 .6240 .5667 .5738 - .6419

8; 15 .6602 .5930 .7417

2; 5 .9061 .8908 .9059 -
HEPM 4; 10 .9069 .8917 .9114 - -

8; 15 .9073 .8904 .9139

2; 5 .6787 .6447 .6619 .7140
HIGGS 4; 10 .6887 .6528 .7043 - .5847

8; 15 .6882 .6530 .7205

2; 5 .9529 .9307 .0000 .9076
KDD 4; 10 .9556 .9265 .8833 - .7594

8; 15 .9578 .9415 .8880

2; 5 .7617 .7452 .7603 .7815
SUSY 4; 10 .7712 .7487 .7787 - .5524

8; 15 .7816 .7537 .7858

https://github.com/aFdezHilario/Chi-Spark-RS
https://github.com/aFdezHilario/Chi-Spark-RS
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TABLE IV: Complexity of each method.

Dataset γ; β CFM-BD CFM-BDL FBDT FMDT Chi-Spark-RS CHI-BD

#rules RL FS TRL #rules RL FS TRL #rules RL FS TRL #rules RL FS TRL #rules RL FS TRL #rules RL FS TRL

2; 5 5 1.97 5.00 51 241 2.51 5.00 3,018 32 5.00 6.04 967 83,044 3.02 6.04 1,515,513
BNG 4; 10 8 1.89 5.00 72 455 2.58 5.00 5,858 666 9.69 6.04 38,992 6,493 14.00 3.00 272,706 8,720 14.00 3.00 366,240

8; 15 9 1.81 5.00 81 857 2.63 5.00 11,266 6,302 14.22 6.04 541,615

2; 5 164 2.70 5.00 2,219 2,158 2.78 5.00 30,032 31 4.97 18.84 2,901 268,677 3.39 18.84 17,183,934
COV 4; 10 565 2.86 5.00 8,076 3,908 2.87 5.00 56,090 779 9.87 18.84 144,824 - - - - 5,135 54.00 3.00 831,870

8; 15 1,576 2.94 5.00 23,133 6,763 2.92 5.00 98,876 8,723 14.36 18.84 2,359,402

2; 5 7 1.00 5.00 34 462 2.49 5.00 5,762 30 4.93 22.20 3,286 - - - -
HEPM 4; 10 9 1.35 5.00 61 867 2.55 5.00 11,066 681 9.84 22.20 148,858 - - - - - - - -

8; 15 13 1.71 5.00 115 1,693 2.60 5.00 22,006 13,805 14.77 22.20 4,525,926

2; 5 22 2.41 5.00 268 440 2.61 5.00 5,747 32 5.00 13.01 2,081 6,414,575 3.25 13.01 271,561,578
HIGGS 4; 10 32 2.47 5.00 398 873 2.62 5.00 11,438 849 9.89 13.01 109,142 - - - - 666,068 28.00 3.00 55,949,712

8; 15 51 2.60 5.00 664 1,486 2.71 5.00 20,168 17,390 14.79 13.01 3,345,832

2; 5 44 2.28 5.00 507 1,639 2.58 5.00 21,153 24 4.83 15.93 1,848 8,042 3.18 15.93 407,509
KDD 4; 10 227 2.60 5.00 2,948 3,110 2.64 5.00 41,033 171 8.80 15.93 24,010 - - - - 5,646 41.00 3.00 694,458

8; 15 740 2.74 5.00 10,138 5,343 2.76 5.00 73,610 369 11.89 15.93 69,806

2; 5 11 1.02 5.00 58 325 2.43 5.00 3,955 32 5.00 22.60 3,616 5,225,134 3.68 22.60 435,136,493
SUSY 4; 10 19 1.60 5.00 151 606 2.53 5.00 7,668 718 9.78 22.60 158,646 - - - - 9,505 18.00 3.00 513,270

8; 15 21 1.76 5.00 187 1,169 2.58 5.00 15,080 11,054 14.63 22.60 3,654,337

• HEPM: only deep FBDTs are able to obtain slightly better
classification performance than CFM-BD (by less than
%1), but using a TRL 1-100K times greater than CFM-
BD’s. The rest of models ran out of memory during the
execution.

• HIGGS: FBDT and FMDT performs better than CFM-BD
only with considerably more complex models (200-20K
times the TRL of CFM-BD). With respect to CHI-BD,
CFM-BD clearly outperforms this method by up to 10%.

• KDD: all methods perform well in terms of Acc (98-
99%), but CFM-BD stands out from all the rest when it
comes to AccClass and GM . As for model complexities,
FBDT is the only method that is able to extract fewer
rules than CFM-BD. However, the rules generated by
FBDT are 2-5 times longer and use 3 times more fuzzy
sets, leading to larger TRLs.

• SUSY: CFM-BD achieves competitive classification per-
formance with respect to the best method (FBDTβ=15),
using 1K and 10 times fewer rules and antecedents,
respectively. Furthermore, the accuracy of CFM-BD with
21 rules (TRL = 187) is quite similar to that of FMDT
with 5M rules (TRL = 400M ).

We must remark that some datasets have certain properties that
affect the classification performance and/or model complexity
of CFM-BD:
• If the great majority of features are categorical (COV

has 44 out of 54), CFM-BD is not able to take full
advantage of fuzzy logic. This type of feature also causes
the algorithm to build more rules when there exist many
possible values.

• Unlike FBDT and FMDT, CFM-BD is designed to dis-
criminate all classes, and thus multi-class problems such
as COV and KDD require more rules to face the greater
overlap that generally exists among the examples of
different classes. As a result, shallow FBDTs might yield
fewer rules than CFM-BD, though the TRL of such
models is still larger than CFM-BD’s.

The execution times of each method are shown in Table V.
As expected, the original evolutionary version of CFM-BD is
slower than the rest. Although we prioritized the interpretabil-

ity of the model over the execution time, we have proposed
a non-evolutionary lightweight version of CFM-BDL that is
much faster than CFM-BD, as shown in Table V. Of course,
this version sacrifices both accuracy and interpretability to
reduce execution times.

TABLE V: Runtime (s) of each method.

Dataset γ; β CFM-BD CFM-BDL FBDT FMDT Chi-Spark-RS CHI-BD

2; 5 3,079 33 65 84
BNG 4; 10 5,170 32 84 1,740 77

8; 15 12,692 33 108

2; 5 9,592 496 29 113
COV 4; 10 13,406 481 49 -

8; 15 26,386 428 87

2; 5 11,805 2,646 325 -
HEPM 4; 10 28,313 2,654 391 - -

8; 15 60,167 2,399 623

2; 5 22,961 3,252 309 5,238
HIGGS 4; 10 37,167 3,300 474 - 9,658

8; 15 57,762 3,015 716

2; 5 29,064 582 105 77
KDD 4; 10 56,341 599 157 - 81

8; 15 116,584 499 186

2; 5 6,483 397 148 1,392
SUSY 4; 10 12,547 403 235 - 103

8; 15 21,822 351 364

Overall, CFM-BD achieves state-of-the-art discrimination
capabilities with respect to the best performing algorithms
(FBDT and FMDT), while providing much simpler models
that can be interpreted. The models of CFM-BD generally
consist of a few rules composed of less than 3 antecedents
when keeping γ below 4, whereas other methods generate
thousands of rules containing many antecedents and linguistic
labels. Additionally, the experimental results have revealed
that the non-evolutionary rule induction algorithm of CFM-BD
(CFM-BDL) provides a good trade-off among classification
performance, model complexity, and execution time. We must
mention that the model and time complexities of CFM-BD
shown in this paper correspond to the cost-sensitive mode.
Anyway, the complexities are similar regardless of this feature.
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B. Scalability

Finally, we study the efficiency of our approach in terms of
speedup, sizeup, and scaleup [29], [30] by testing CFM-BD on
several reduced versions of HIGGS and varying the number
of cores used for the execution. More specifically, we take 8
cores and 10% of HIGGS as the baseline case (m = 1) and we
gradually double both the number of cores and the data size
(maintaining the original class distribution), until 64 cores and
80% of HIGGS. This way, for each number of cores (8, 16,
32, 64) we run the model using 10%, 20%, 40%, and 80%
of data. In addition to the total execution time, we test the
efficiency of the most critical stage of the learning algorithm:
the rule induction process. With the runtimes obtained in
these executions we build the matrices shown in Table VI,
which are used to compute the speedup, sizeup, and scaleup
(Fig. 5 and 6). All the executions haven been carried out
using the configuration that leads to the best trade-off between
classification performance and model complexity (γ = 4).

TABLE VI: Runtime (s) of CFM-BD on HIGGS.

Stage Data size 8 cores 16 cores 32 cores 64 cores

10% 1,486 754 397 269
Rule induction 20% 2,549 1,495 811 470

40% 6,084 2,687 1,537 949
80% 12,226 5,850 3,169 1,788

10% 27,445 13,872 7,949 5,434
Whole learning 20% 68,846 23,000 14,576 11,296

algorithm 40% 108,492 71,415 29,505 20,410
80% 478,612 106,728 74,642 37,018

As we can observe in Fig. 5 and 6, both the rule induction
process and the whole learning algorithm reveal nearly linear
speedup and sizeup and are able to maintain the scalability
above 0.83 and 0.74, respectively. However, when it comes
to the whole learning process, Fig. 6 shows large variations
when using 8 cores. The reason behind this behavior is
the pre-computation step performed before the evolutionary
optimization. Since the matching degrees of the rules do not
change during the rule selection process, a distributed look-up
table stores the matching degrees between the rules and the
examples before launching the evolutionary algorithm. When
this table does not fit into a cached RDD, the efficiency of the
evolutionary optimization drastically drops.

VI. CONCLUDING REMARKS

In this paper we have presented a new distributed FRBCS
for Big Data classification problems named CFM-BD. The
majority of fuzzy classifiers designed for Big Data so far
are based on adaptations or extensions of existing learning
algorithms. None of these approaches has been specifically
designed from scratch to provide a good trade-off between
accuracy and interpretability in Big Data problems.

The goal of this work was to build compact and interpretable
models that achieve competitive classification performance.
To this end, we have proposed a new rule induction process
inspired by CHI-BD [14] and Apriori [26] algorithms called
CFM-BD. Although it employs concepts introduced by these
two methods, CFM-BD does not adapt, extend, or combine

any of them. Instead, it applies a new learning algorithm
composed of three stages: preprocessing, rule induction, and
global evolutionary rule selection. All these stages have been
specifically designed for Big Data from scratch in order to
process the whole training set in a distributed fashion and
perform global optimization tasks that do not introduce any
approximation error. As a result, CFM-BD always provides
exactly the same model regardless of the degree of parallelism
used for the execution.

The experimental results show that the models generated by
CFM-BD are significantly simpler than the rest. In terms of
the number of rules, CFM-BD generally builds a few rules
composed of less than 3 antecedents, while other methods
generate thousands of rules containing many antecedents and
linguistic labels. The only exception are the shallowest models
of FBDT, which usually build less than 32 rules. However,
these models are generally less accurate than CFM-BD and do
not achieve state-of-the-art classification performance. More-
over, the rules constructed by FBDT are more complex than
those of CFM-BD, since the number of fuzzy sets used for
each variable depends on the variable itself and is often
greater than 10. In CFM-BD, each variable is modeled with
5 fuzzy sets that are adjusted to the actual distribution of the
variable, obtaining accurate and interpretable rules. In addition
to interpretability, CFM-BD has been shown to be competitive
in terms of classification performance, providing state-of-the-
art discrimination capability.
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Abstract

This is a supplementary document for ”CFM-BD: a distributed rule induction algorithm for building
Compact Fuzzy Models in Big Data classification problems”. In this document, we provide additional exper-
imental results to explain how the preprocessing stage and the maximum rule length (maxLen) affect the
performance of the lightweight version of CFM-BD (CFM-BDL). We have considered CFM-BDL instead of
CFM-BD because the stages where the preprocessing algorithm and the hyperparameter maxLen are directly
involved correspond to the rule induction process (as explained in the paper, CFM-BDL is equivalent to
running CFM-BD without the evolutionary stage). In this analysis, we measure classification performance,
model complexity, and runtimes.

APPENDIX A
IMPACT OF THE PRE-PROCESSING STAGE

As explained in the paper, the pre-processing stage of CFM-BD plays an important role in the discrimination
capability of linguistic labels (fuzzy sets). When this stage is removed from the algorithm (CFM-BDNo Pre),
the fuzzy sets are built by simply distributing a number of triangular membership functions across the attribute
domain in a uniform fashion. Consequently, neither the shape nor the position of the fuzzy sets is adjusted
to the real distribution of training data, leading to worse classification performance (Table I). In terms of
model complexity and runtimes (Tables IIa and IIb), we can observe a decrease in the number of rules when
getting rid of the pre-processing stage. This behavior suggests that many fuzzy sets might be delimited by
low-density regions of the input space when they are built on the original training set (Fig. 1). As a result, the
number of fuzzy sets that can be used for distinguishing the great majority of data points drops dramatically,
leading to less itemsets and reduced discrimination capabilities.

APPENDIX B
IMPACT OF THE MAXIMUM RULE LENGTH

In order to analyze the impact of the maximum rule length (maxLen) we tested three different values:
maxLen = 2 (CFM-BDL

2 ) with prop = (0.2, 0.8), maxLen = 3 (CFM-BDL
3 ) with prop = (0.2, 0.3, 0.5),

and maxLen = 4 (CFM-BDL
4 ) with prop = (0.1, 0.2, 0.3, 0.4). Some methods were not able to train a model

within a period of 24 hours or ran out of memory on certain datasets (marked as ’-’). A detailed description
of the CPU and memory resources used for the experiments can be found in the paper.

In principle, one could expect better classification performance when increasing the value of maxLen as
a result of the larger search space explored to obtain all the existing itemsets containing maxLen items at
most. Of course, the algorithm requires more computing resources as the value of maxLen is increased, and
thus the most suitable configuration would be that providing a good trade-off. According to the experimental
results, gradually increasing maxLen from 2 to 4 seems to be useless in terms of classification performance
in most of the cases (Table III) and apparently does not worth the cost of extra computing resources required
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TABLE I: Classification performance of each method.

Accuracy rate % (Acc) Accuracy rate % per class (AccClass) Geometric mean (GM )

Dataset γ CFM-BDL
No Pre CFM-BDL CFM-BDL

No Pre CFM-BDL CFM-BDL
No Pre CFM-BDL

2 84.96 85.42 84.88 85.02 .8468 .8484
BNG 4 84.96 85.31 84.88 84.99 .8468 .8480

8 84.94 85.32 84.90 85.00 .8470 .8481

2 68.14 69.67 56.17 59.25 .5072 .5448
COV 4 68.20 69.75 55.48 60.88 .4787 .5667

8 68.72 70.18 56.49 63.08 .4973 .5930

2 88.24 89.15 88.05 89.15 .8804 .8908
HEPM 4 87.71 89.23 87.39 89.23 .8739 .8917

8 87.33 89.20 87.34 89.07 .8733 .8904

2 54.06 62.19 52.03 64.63 .4720 .6447
HIGGS 4 54.06 63.23 52.03 65.29 .4720 .6528

8 54.06 63.48 52.03 65.30 .4720 .6530

2 99.12 98.79 90.62 93.39 .8972 .9307
KDD 4 99.12 98.79 91.26 93.00 .9043 .9265

8 99.14 98.80 89.95 94.29 .8901 .9415

2 66.97 75.88 67.81 74.53 .6744 .7452
SUSY 4 66.27 76.13 67.64 74.88 .6716 .7487

8 66.29 76.45 67.65 75.38 .6718 .7537

TABLE II: Runtimes and model complexity of each method.

(a) Complexity of each method.

Dataset γ CFM-BDL
No Pre CFM-BD

#rules RL TRL #rules RL TRL

2 228 2.56 2,915 241 2.51 3,018
BNG 4 402 2.65 5,335 455 2.58 5,858

8 637 2.78 8,853 857 2.63 11,266

2 2,121 2.79 29,611 2,158 2.78 30,032
COV 4 3,816 2.87 54,762 3,908 2.87 56,090

8 6,371 2.92 93,091 6,763 2.92 98,876

2 430 2.56 5,509 462 2.49 5,762
HEPM 4 841 2.60 10,945 867 2.55 11,066

8 1,627 2.62 21,289 1,693 2.60 22,006

2 9 3.00 132 440 2.61 5,747
HIGGS 4 9 3.00 132 873 2.62 11,438

8 9 3.00 132 1,486 2.71 20,168

2 1,674 2.57 21,551 1,639 2.58 21,153
KDD 4 3,213 2.62 42,045 3,110 2.64 41,033

8 5,552 2.72 75,463 5,343 2.76 73,610

2 275 2.57 3,535 325 2.43 3,955
SUSY 4 480 2.67 6,409 606 2.53 7,668

8 827 2.81 11,604 1,169 2.58 15,080

(b) Runtime (s) of each method.

Dataset γ CFM-BDL
No Pre CFM-BDL

2 18 33
BNG 4 18 32

8 18 33

2 99 496
COV 4 98 481

8 101 428

2 875 2,646
HEPM 4 868 2,654

8 881 2,399

2 895 3,252
HIGGS 4 900 3,300

8 905 3,015

2 221 582
KDD 4 222 599

8 217 499

2 38 397
SUSY 4 37 403

8 36 351
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Fig. 1: Fuzzy sets built by CFM-BDNo Pre and CFM-BD for the variable R on SUSY.

by increased model complexities and runtimes (Tables IV and V). These findings suggest that the most
suitable value of maxLen for CFM-BDL might be 2 instead of 3 (default value used in the paper). However,
since the goal of this work is to design an algorithm for building compact fuzzy models, we have focused
on the evolutionary version of CFM-BD and set maxLen = 3 to allow the evolutionary algorithm (which is
not included in CFM-BDL) to explore more solutions. In order to perform fair comparisons of both methods
(CFM-BD and CFM-BDL) in the experiments carried out in the paper, we set the same value of maxLen
for both.
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TABLE III: Classification performance of each method.

Accuracy rate % (Acc) Accuracy rate % per class (AccClass) Geometric mean (GM )

Dataset γ CFM-BDL
2 CFM-BDL

3 CFM-BDL
4 CFM-BDL

2 CFM-BDL
3 CFM-BDL

4 CFM-BDL
2 CFM-BDL

3 CFM-BDL
4

2 85.31 85.42 85.33 84.98 85.02 84.99 .8479 .8484 .8480
BNG 4 85.31 85.31 85.42 84.98 84.99 84.99 .8479 .8480 .8480

8 85.31 85.32 85.31 84.98 85.00 84.99 .8479 .8481 .8480

2 69.63 69.67 - 57.12 59.25 - .5136 .5448 -
COV 4 69.63 69.75 - 57.12 60.88 - .5136 .5667 -

8 69.63 70.18 - 57.12 63.08 - .5136 .5930 -

2 89.23 89.15 - 89.23 89.15 - .8917 .8908 -
HEPM 4 89.11 89.23 - 88.99 89.23 - .8896 .8917 -

8 88.71 89.20 - 88.71 89.07 - .8868 .8904 -

2 63.14 62.19 - 65.07 64.63 - .6507 .6447 -
HIGGS 4 63.27 63.23 - 64.99 65.29 - .6499 .6528 -

8 63.27 63.48 - 64.99 65.30 - .6499 .6530 -

2 98.79 98.79 98.79 94.46 93.39 92.02 .9435 .9307 .9158
KDD 4 98.79 98.79 98.79 94.43 93.00 93.58 .9431 .9265 .9326

8 98.79 98.80 98.79 94.43 94.29 94.63 .9431 .9415 .9449

2 76.20 75.88 75.89 74.96 74.53 74.44 .7495 .7452 .7444
SUSY 4 76.48 76.13 76.01 75.46 74.88 74.57 .7545 .7487 .7456

8 76.40 76.45 76.20 75.64 75.38 75.06 .7561 .7537 .7505

TABLE IV: Complexity of each method.

Dataset γ CFM-BDL
2 CFM-BDL

3 CFM-BDL
4

#rules RL TRL #rules RL TRL #rules RL TRL

2 201 1.91 1,916 241 2.51 3,018 269 3.08 4,138
BNG 4 300 1.94 2,908 455 2.58 5,858 521 3.15 8,198

8 300 1.94 2,910 857 2.63 11,266 1,014 3.20 16,210

2 502 1.98 4,968 2,158 2.78 30,032 - - -
COV 4 503 1.98 4,980 3,908 2.87 56,090 - - -

8 515 1.98 5,096 6,763 2.92 98,876 - - -

2 400 1.89 3,786 462 2.49 5,762 - - -
HEPM 4 737 1.94 7,158 867 2.55 11,066 - - -

8 1,444 1.97 14,230 1,693 2.60 22,006 - - -

2 374 1.98 3,708 440 2.61 5,747 - - -
HIGGS 4 418 1.99 4,148 873 2.62 11,438 - - -

8 418 1.99 4,148 1,486 2.71 20,168 - - -

2 1,175 1.97 11,568 1,639 2.58 21,153 1,806 3.17 28,595
KDD 4 1,276 1.97 12,576 3,110 2.64 41,033 3,645 3.20 58,400

8 1,275 1.97 12,562 5,343 2.76 73,610 6,934 3.28 113,790

2 279 1.86 2,596 325 2.43 3,955 360 2.99 5,382
SUSY 4 520 1.93 5,014 606 2.53 7,668 680 3.11 10,565

8 969 1.96 9,504 1,169 2.58 15,080 1,320 3.17 20,940
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TABLE V: Runtime (s) of each method.

Dataset γ CFM-BDL
2 CFM-BDL

3 CFM-BDL
4

2 9 33 68
BNG 4 9 32 67

8 8 33 68

2 23 496 -
COV 4 22 481 -

8 22 428 -

2 93 2,646 -
HEPM 4 89 2,654 -

8 91 2,399 -

2 96 3,252 -
HIGGS 4 95 3,300 -

8 97 3,015 -

2 19 582 3,097
KDD 4 19 599 2,953

8 18 499 3,097

2 27 397 1,166
SUSY 4 27 403 1,231

8 27 351 1,151
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