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Self-Supervised Learning for Specified
Latent Representation

Chicheng Liu , Libin Song, Jiwen Zhang, Ken Chen, and Jing Xu

Abstract—Current latent representation methods using unsu-
pervised learning have no semantic meaning; thus, it is difficult
to directly express their physical task in the real world. To this end,
this paper attempts to propose a specified latent representation with
physical semantic meaning. First, a few labeled samples are used to
generate the framework of the latent space, and these labeled sam-
ples are mapped to framework nodes in the latent space. Second,
a self-learning method using structured unlabeled samples is pro-
posed to shape the free space between the framework nodes in the
latent space. The proposed specified latent representation therefore
possesses the advantages provided by both supervised and unsu-
pervised learning. The proposed method is verified by numerical
simulations and real-world experiments.

Index Terms—Latent representation, neural networks, unsuper-
vised learning.

I. INTRODUCTION

THERE are only three degrees of freedom (DOF) of an ob-
ject rotating in 3D space. However, if the rotation process

is recoded by a camera with a series of images, then the low-
dimensional rotation is represented by the high-dimensional im-
ages since each image can be regarded as a high-dimensional
vector. In other words, these high-dimensional images contain
a latent representation of three-dimensional rotation. There are
many similar problems; for example, a series of images of a car
traveling from near to far contain one-dimensional latent repre-
sentations of distances, a sequence of photographs of a person at
different ages contains a one-dimensional latent representation
of age, and a series of images of a 6-DOF robotic manipulator
contains a six-dimensional latent representation of joint angles.
If we can obtain the physical semantic latent representation of
such images, many tasks can be easily performed. Taking visual
servoing for example, if we can obtain the latent representation
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of the relative pose between an object and a camera, we can
directly control the motions of the camera or the object.

Using neural networks to learn the latent representations of
images has been widely studied in recent years [1]–[4]. Within
the community of latent representation learning, there two broad
parallel lines of methods that have developed: one line rooted
in probabilistic models and one line rooted in neural networks.
Both lines represent unsupervised learning methods, whose sig-
nificant advantage is that only unlabeled samples are needed, as
opposed to labeled samples. In particular, the restricted Boltz-
mann machine [5]–[7] is mainly used on the probabilistic side,
and auto-encoder variants [8]–[10] are used on the neural net-
work side. However, the significant shortcoming of these unsu-
pervised learning models is that they are not focused on learn-
ing latent representations that have physical semantic meanings.
Thus, the latent representations cannot directly represent the
model’s performance in the real world; that is, the performance
described in the first paragraph cannot be represented by these
methods alone.

If a large number of labeled samples can be obtained, we
can use supervised learning methods to directly learn a speci-
fied latent representation with physical semantic meaning [11].
Thus, the learning of specified latent representations can be re-
garded as a regression problem, which has been widely stud-
ied. However, it is difficult to obtain the label of each sample
in some cases since the acquisition of labels requires massive
measurements, expensive equipment, or special experimental
environments.

In this paper, we present a method that can learn a speci-
fied latent representation with a few labeled samples and a large
number of unlabeled samples, therein combining the advantages
of unsupervised learning and supervised learning methods. The
specified latent representation is one of the many feasible forms
that can represent the real world. For example, the specified la-
tent representation of images of a rotating object in this paper is
three Euler angles that can be used to describe the orientation of
objects in the world coordinate system. For this purpose, first, a
few labeled samples are used to construct the regression loss to
build up the framework of the latent space, and labeled samples
are mapped to framework nodes in the latent space. Unfortu-
nately, the prediction accuracy of the free space between frame-
work nodes is low due to underfitting of supervised learning
caused by insufficient data. Second, a large number of struc-
tured unlabeled samples are used to address the structure loss
to further shape the free space between framework nodes to im-
prove the prediction accuracy in the free space.
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The structured unlabeled samples are specially designed to
shape the free space between the framework nodes. The free
space between the framework nodes can be regarded as twisted
space details that are not flattened by the framework generated
by supervised learning with the labeled samples. The structured
unlabeled samples used in this paper are grouped together, and
the unlabeled samples in the same sequence are equally dis-
tributed in the latent space. It is easy to obtain such structured
unlabeled samples in some cases. For example, if a car is mov-
ing away from the camera at a constant speed, the frames in
the captured video can be regarded as a sequence of structured
unlabeled samples because the distances between the cars in all
adjacent frames are equal. The structure information in each se-
quence of structured unlabeled samples, which can flatten these
twisted space details, are used to construct the structure loss to
shape the free space; thus, the prediction accuracy of the la-
tent representation in this free space can be improved. Since the
structure information of each sequence is used by itself, it is
called self-supervised learning in this paper.

In this paper, our proposed method is embedded with differ-
ent types of networks, and their performances are compared.
The generality of our proposed method is also verified by some
typical applications.

Our contributions are as follows:
1) A structure loss is proposed for structured unlabeled sam-

ples for self-supervised learning, which provides more in-
formation than traditional unlabeled samples for unsuper-
vised learning and greatly reduces the number of labeled
samples.

2) Supervised learning and a proposed self-supervised learn-
ing are combined for the learning of a specified latent rep-
resentation.

3) The mechanism of the proposed method is studied, and the
factors influencing the prediction accuracy are analyzed.

Our code is available at https://github.com/liucc09/self-
supervised. Your can check out more results there.

II. RELATED WORK

Learning Representation: Representation learning is a field
in the machine learning community, and representation learning
has many successful applications in both academia and indus-
try such as speech recognition and processing [12]–[17], object
recognition [18]–[21], natural language processing [22]–[25],
and transfer learning [26]–[29]. The question of representation
learning can be interpreted as an attempt to recover the latent
random variables that describe a distribution over observed data.
For some tasks, we have prior knowledge of the latent represen-
tation, and we want the networks to learn a specified latent rep-
resentation instead of any feasible representation. In this paper,
we focus on how to learn a specified latent representation.

Autoencoder: The latent representation of high-dimensional
data can be learned by training a multilayer autoencoder [4],
[30] with a small central layer to reconstruct high-dimensional
input vectors. Some studies use an autoencoder to learn a
low-dimensional latent representation of input images and

then perform specific tasks based on the latent representation.
Byravan et al. [2] design SE3-Pose-NETS, which learns a low-
dimensional pose embedding for visuomotor control via an au-
toencoder structure. The low-dimensional pose is used as the
input to a three-layer network that is used to predict the 6D pose.
Watter et al. [1] also build their embedded control method based
on autoencoders, and the locally linear dynamics are estimated
and used to control the motion of an agent. Finn et al. [4] present
an approach that can learn a state representation based on a deep
spatial autoencoder, and reinforcement learning is used based
on the state representation.

However, in contrast to these prior works, our approach at-
tempts to learn a specified low-dimensional latent representation
that has physical semantic meaning.

Direct Encoding: Several other methods directly learn the
encoding of the high-dimensional inputs based on supervised
learning. Bateux et al. [11] present a deep neural network-based
method that can directly learn the 6DOF relative pose from raw
images. Semi-supervised embedding [31] uses unsupervised di-
mensionality reduction algorithm before learning direct encod-
ing. Several approaches [7], [32], [33] also use semi-supervised
methods to learn a parametric mapping based on a neighbor-
hood graph. Supervised methods can be regarded as learning
direct encoding, but these methods need a large number of la-
beled samples. The semi-supervised methods in the literature
mainly use unsupervised methods to learn a better representa-
tion of the inputs, and then use supervised methods to learn the
encoding based on the learned representation.

However, in contrast to the above-mentioned approaches, our
method attempts to use the proposed self-supervised learning
technique to reduce the number of labeled samples.

III. METHOD

This paper attempts to learn mapping functions from a raw
image X to a specified latent representation Z (such as object
orientation, location, and pose). To format the framework of the
latent space for the semantics and reduce the number of labeled
samples, supervised learning and the proposed self-supervised
learning technique are combined in this paper. Our objective
function contains two types of terms: the regression losses and
the structure losses. Regression losses are used for supervised
learning and can be used to build up the framework of the latent
space. Structure losses are used for the self-supervised learning
and use unlabeled samples to shape the free space between the
framework nodes generated by the previous supervised learning.

A. Regression Loss

The regression losses are used to build up the framework of the
latent space by minimizing the prediction errors of the labeled
samples. For the mapping function G : X → Z, we express the
regression loss Lre as

Lre (Xi, Zi) = ‖G (Xi)− Zi‖2 (1)

where the subscript i is the sample index.
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Fig. 1. Possible latent representations. The sequence of pumpkin pictures is created by rotating a 3D pumpkin model from top to bottom. The specified latent
representation is the rotation angles about the horizontal axis.

Fig. 2. Illustration of the structure loss. The labeled samples are used to de-
termine the general framework of the latent space, and the unlabeled structure
samples are used to shape the free space between the framework nodes.

The regression loss can be used to define the framework of
the latent space with supervised learning using labeled samples,
which will further determine the specified latent representation.
Meanwhile, the labeled samples are mapped into frameworks
nodes in the latent space. As shown in Fig. 1, the pictures are
generated by rotating a 3D pumpkin model from top to bot-
tom about the horizontal axis. Therefore, these pictures are one-
dimensional manifolds in a high-dimensional space. The latent
representation can be a series of vectors in an arbitrary one-
dimensional manifold. Therefore, there are infinite possible la-
tent representations with different frameworks of the latent space
such as the first two rows in Fig. 1. However, the latent represen-
tation that we want is that representation with physical semantic
meaning, which represents the actual rotation angle about the
horizontal axis as the third row in Fig. 1. To this end, the re-
gression loss is designed to build up the framework of the latent
space (such as the rotation angle about the horizontal axis, as
shown in Fig. 1).

B. Structure Loss

Due to the insufficient labeled samples for the above super-
vised learning, the prediction accuracy of the free space between
framework nodes is low, that is, the free space between the frame-
work nodes is unconstrained. To this end, the structure loss is
used to shape the free space between the framework nodes gen-
erated by the previous supervised learning. As shown in Fig. 2,
the solid spots represent the ground truth of the labeled samples,
which are used to generate the framework of the latent space
via supervised learning. Therefore, the solid black spots are also
framework nodes in the latent space. However, the free space
between the framework nodes remains unconstrained. To shape
the free space between the framework nodes, the structured un-
labeled sample is employed. There is a sequence of unlabeled

samples with known relationships between unlabeled samples
in the same sequence; for example, this sequence of unlabeled
samples is evenly distributed in the latent space. The predicted
positions of this sequence of unlabeled samples in the latent
space, shown as a solid circle in Fig. 2, are generated by the
network trained by labeled samples using supervised learning.
Assuming that the first and last unlabeled samples are perhaps
closer to the framework nodes than the other unlabeled sam-
ples in this sequence, the predicted positions of the first and last
unlabeled samples are more accurate than the predicted posi-
tions of the other unlabeled samples. In this paper, the positions
(called interpolated positions) of the other unlabeled samples
(except the first and last unlabeled samples) in this sequence in
the latent space are also linearly interpolated by the predicted
positions of the first and last unlabeled samples, as shown by
the dashed circle in Fig. 2. Obviously, the predicted position
and interpolated position of the other unlabeled samples are not
coincident. Predicted position is regarded as target position in
each epoch. To improve the position accuracy and shape the free
space, the distance between the target position and interpolated
position in the latent space is minimized by the structure loss
Lst as

Lst

(
Y j
i
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(
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i

)
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where superscript j is the sequence index, Y j
i represents the ith

unlabeled samples in the jth sequence, F is a function that gives
the interpolations of Y j

i based on the structure information of
the sequence, and nj is the total number of the samples in the
jth sequence.

C. Full Objective

Our full objective function is

Lfull =

mre∑
i=1

Lre (Xi, Zi)+λ

mst∑
j=1

nj∑
i=1

Lst

(
Y j
i

)
(3)

where mre is the number of labeled samples, mst is the number
of sequences of structured unlabeled samples, and λ controls the
weight of the two objectives. We aim to solve the following:

G∗ = argmin
G

Lfull (G) . (4)

Fig. 3 illustrates the mechanism of the proposed method in
the 2D latent space. The red dots and green dots represent the
latent representations of the labeled samples and structured un-
labeled samples for training, respectively. For clear illustration,
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Fig. 3. Illustration of the mechanism of the proposed method. (a) Latent repre-
sentations after training with only the labeled samples using the regression loss.
(b) Latent representations after training with both labeled samples and structured
unlabeled samples using the full objective.

two sequences of structured unlabeled samples are selected and
marked with crosses. Black dots represent the latent represen-
tations of the testing samples. The desired distributions of the
latent representations of the labeled samples and the testing sam-
ples are grid distributions. As shown in Fig. 3(a), after training
with only labeled samples using the regression loss, the latent
representations of the labeled samples are accurate while the
latent representations of the testing samples are not accurate.
The latent space between the labeled samples is twisted. To flat-
ten the twisted latent space, we take advantage of the structure
information of the structured unlabeled samples. The structure
information is that the latent representations of the unlabeled
samples in the same sequence should be equally spaced along a
straight line. Fig. 3(b) shows the results after 20 epochs of train-
ing with both labeled samples and structured unlabeled samples
using the full objective. We can see that the latent representa-
tions of the structured unlabeled samples in each sequence are
equally spaced along a straight line as desired; each line can
flatten the latent space where it passes through. As the number
of sequences of the unlabeled samples becomes larger, the num-
ber of straight lines becomes larger. The twisted latent space is
flattened by more straight lines; thus, the latent representations
of the testing samples improves.

Notice that our model is not based on a specific network ar-
chitecture; it can be embedded in a wide range of networks.
In Section IV, we embed our model in different networks and
compare their performance.

D. Data Preprocessing

This paper attempts to learn a continuous latent represen-
tation, in contrast to classification whereby discrete labels are
used to represent different classes. In this paper, if raw images
are directly translated into discrete image vectors, then the dis-
crete image vectors are further mapped to a latent representation
(such as rotation angle). Specifically, as illustrated in Fig. 4, a
dark spot moves from left to right in a series of one-dimensional
images in the top, and one of the possible latent representations

Fig. 4. Illustration of the discrete image vectors and the continuous latent
representation.

is shown at the bottom. However, the variations in each dimen-
sion of the image vectors with respect to the latent representation
are not continuous. Because of dimension curse, learning con-
tinuous outputs from discrete inputs is more difficult than with
continuous inputs.

In this case, principal component analysis (PCA) [34] is used
to transform the discrete image vectors into continuous image
vectors to generate continuous inputs. In addition, PCA is also
able to reduce the dimensions of the image vectors. Specifically,
we perform PCA on all the training samples as shown in (5).
To reduce the dimensions of the image vectors V s after trans-
formation by PCA, we only retain the dimensions of the image
vectors V s if the corresponding importances of each principal
componentWs is greater than 0.01% of the greatest importance.
Therefore, images of 50× 50 pixels can be translated to column
vectors of approximately 40 dimensions.

[Ps, V s,Ws] = PCA(images) (5)

where Ps represent the principal components.
In this paper, PCA is only used to preprocess the raw images

for networks without convolutional layers. For convolutional
neural networks (CNNs), the convolutional layers and the pool-
ing layers can avoid the problems caused by discretization, thus,
PCA is not required.

The next step, following preprocessing, is normalization,
which normalizes all the elements of the image vectors to [−1, 1].
For the input, all the elements in every dimension in the input
vectors are normalized as a whole, whereas for the output, the
elements in the same dimension in the output vectors are nor-
malized individually.

E. Implementation

When our proposed method is used in network architectures,
the proposed structure loss and training method result in train-
ing processes that are different from the traditional methods.
Specifically, in (2), the target in the training is dynamically up-
dated in each epoch. The flowchart of each epoch is shown in
Fig. 5. First, the predicted positions of all the labeled samples
and structured unlabeled samples in the latent space are pre-
dicted by the current network. Second, the predicted positions
of the first and last unlabeled samples and the structural informa-
tion are combined to linearly interpolate the positions of other
unlabeled samples in the latent space. Third, the ground truth
positions of labeled samples and the interpolated positions of
unlabeled samples are concatenated as the target positions of
the labeled samples and the unlabeled samples. Fourth, as every
sample used in the training has a target position at this step, a
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Fig. 5. Flowchart of every epoch.

traditional regression method with mean squared error (MSE) is
used, the MSEs of labeled samples are regarded as the regres-
sion loss and the MSEs of unlabeled samples are regarded as the
structure loss. Therefore, the full objective is obtained by com-
bining the regression loss and the structure loss with weight λ.
Finally, the network is updated by the gradient descent method
and the updated network is used in the next epoch.

IV. RESULTS

First, our method is embedded in several network archi-
tectures, and their performances are compared on simulated
datasets, where samples are generated by observing a rotating
3D pumpkin model. Second, the weight of the structure loss and
the impact of the spatial distribution of the labeled samples are
studied, and our full algorithm is compared against several vari-
ants. Third, our method is evaluated on a public dataset. Finally,
the generality of our method is demonstrated on some applica-
tions whereby labeled data are difficult to obtain.

A. Evaluation

The same evaluation datasets and metrics are used to test the
performance of our method in several network architectures. The
task is to learn a specified latent representation from raw images
with a small number of labeled samples and a large number of
unlabeled samples in sequences. An ablation study on the full
algorithm is also performed.

1) Datasets: The datasets are captured images of a rotating
3D pumpkin model. The rotations are performed in 3D space;
thus, the latent representation is a series of three-dimensional
vectors. The 3D pumpkin model is the same as the model illus-
trated in Fig. 1. The resolution of the images is 54× 54. The
datasets consist of three parts: the labeled samples, the struc-
tured unlabeled samples, and the test samples. The structured
unlabeled samples are divided into sequences. The images in
a sequence are evenly distributed in the latent space, and the
images are arranged in order. All the samples were distributed

TABLE I
AVERAGE PREDICTION ERROR OF DIFFERENT NETWORK ARCHITECTURES ON

LABELED SAMPLES, STRUCTURED UNLABELED SAMPLES, AND TEST SAMPLES

within 60◦ × 60◦ × 60◦ in 3D space. A total of 150 labeled ran-
dom samples and 1000 sequences of structured unlabeled sam-
ples were generated. In addition, the samples at the beginning
and end of every sequence were randomly generated, and the
other samples in the sequence were generated in the same inter-
val. The smallest interval is 5◦. The total number of samples in
the 1000 sequences is 8364. In addition, 1000 test samples were
randomly generated.

2) Metric: We use the MSE between the predicted latent rep-
resentation and the ground truth as the evaluation metric. The
MSEs of the labeled samples, unlabeled samples, and test sam-
ples are given.

3) Comparisions:
1) FNN + PCA + regression loss: A feed-forward neural

network (FNN) [35] with one hidden layer of 100 nodes.
The FNN is only trained with the regression losses. The
samples are first transformed by PCA and then down-
sampled to 46-dimensional column vectors.

2) CNN + regression loss: A CNN with three convolutional
layers and a fully connected layer. The CNN is only
trained with regression losses.

3) FNN + PCA + full objective: The same network archi-
tecture and samples as the FNN + PCA, except with the
full objective function.

4) CNN + full objective: The same network architecture
as the CNN except with the full objective function.

5) FNN + full objective: A feed-forward neural network
with one hidden layer of 100 nodes. Raw images are
used as inputs, and the full objective function is used in
the training process.

6) FNN + PCA + structure loss: The same network archi-
tecture as the FNN + PCA, but only the structure losses
are used in the training process.

As shown in Table I, approach 3 has better performance than
approach 5, which indicates that PCA preprocessing can im-
prove the performance when using an FNN architecture. The
reasons are given in Section III-D. Approach 3 is better than ap-
proach 1 and approach 4 is better than approach 2, which means
that the structure loss can improve performance both with an
FNN architecture and a CNN architecture. The reasons are given
in Section III-C. Approach 6 cannot converge, which means that
the regression loss is necessary.

B. Analysis

1) Relation Between the Prediction Errors and the Number
of Nodes in the Hidden Layer: It is well known that fewer nodes
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Fig. 6. Relation between the prediction errors and the number of nodes in the
hidden layer. (a) One-hidden-layer FNN using the sigmoid activation function.
(b) One-hidden-layer FNN using the ReLu activation function.

in a network results in a shorter training time. However, if the
number of nodes is too small, the prediction accuracy will be
negatively affected. To this end, we used an FNN with only
one hidden layer to study the relation between the prediction
errors and the number of nodes in the hidden layer. In these
experiments, the training stopped when the prediction errors
of the structured unlabeled samples no longer decreases. The
results are shown in Fig. 6. We train FNNs with 10, 50, 100,
200, 400, and 800 nodes in the hidden layer and use either the
sigmoid or ReLu activation functions. The results for the sigmoid
activation function are shown in Fig. 6(a), and the results for the
ReLu activation function are shown in Fig. 6(b).

We can see that the best number of nodes in the hidden layer is
approximately 50–100. The increase in the number of nodes has
less influence on FNNs using the sigmoid activation function
than those using the ReLu activation function. The prediction
error increases significantly as the number of nodes increases in
the FNNs using the ReLu activation function. This is because
FNNs using the sigmoid activation function are more difficult
to overfit on labeled samples. The sigmoid activation function
presents more serious problems of vanishing gradients than does
the ReLu activation function.

Another conclusion is that FNNs using the ReLu activation
function can achieve higher accuracy than those using the sig-
moid activation function if the number of nodes is properly se-
lected.

2) Relation Between Prediction Errors and λ: The parame-
ter λ is used to adjust the relative weight of the labeled samples
and the structured unlabeled samples. A larger λ results in more
weight added to the structured unlabeled samples. As the num-
ber of labeled samples is substantially smaller than the number
of structured unlabeled samples, λ should be smaller than 1 to
balance the number of structured unlabeled samples. Experi-
ments were performed to determine the proper value of λ for an
FNN with one hidden layer of 100 nodes, and the ReLu acti-
vation function was used. As shown in Fig. 7, we can see that
the prediction errors of the labeled samples increase as λ in-
creases because the regression losses and the prediction errors
of the labeled samples are highly correlated. Adding less weight
to the regression losses will surely degrade the performance of
the network on labeled samples.

The prediction errors of the structured unlabeled samples and
test samples initially decrease and then increase with increasing

Fig. 7. Relation between the prediction error and λ.

Fig. 8. Relation between prediction errors and the number of labeled samples.

λ. When λ is too small, the networks overfit the labeled sam-
ples, and when λ is too large, the decreasing structure losses
drive the learning in the wrong direction. The best value for λ is
approximately 0.01 for the FNNs used in these experiments.

3) Relation Between the Prediction Errors and Number of
Labeled Samples: Experiments were performed to study the re-
lation between the prediction errors and the number of labeled
samples. Labeled samples were randomly generated, and differ-
ent numbers of labeled samples were used in these experiments.
The structured unlabeled samples used in the training were the
same as in the experiments above. An FNN with one hidden layer
of 100 nodes was trained, and the ReLu activation function was
used. The experimental results are shown in Fig. 8.

Intuitively, the prediction errors should decrease with increas-
ing number of labeled samples, and the prediction errors do
decrease with increasing number of labeled samples. However,
the downtrend of the prediction errors becomes increasingly flat.
The reason is the distribution of the labeled samples used in the
training. To this end, we studied the relation between the predic-
tion errors and the distributions of the labeled samples below.

4) Relation Between the Prediction Errors and the Distribu-
tions of the Labeled Samples: As mentioned above, the distribu-
tion of the labeled samples in the latent space may influence the
prediction errors. To this end, experiments were performed to
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Fig. 9. Relation between the prediction errors and the distributions of the
labeled samples. (a) Distribution of the labeled samples [triangle marks in (b)]
in the latent space. (b) Relation between the prediction errors of the test samples
and the distributions of the labeled samples. The square marks represent the
results of randomly distributed labeled samples, the triangle marks represent the
results of labeled samples distributed as in the cube grids in (a), and cross marks
represent labeled samples distributed on the surfaces of the cube in (a).

Fig. 10. Error distributions of the test samples, where the gray dots represent
the predicted positions of the test samples in the latent space the red circles
represent the predicted positions of the labeled samples; the structured unlabeled
samples are not displayed. The values of the prediction errors are shown using
the color bar. (a) Error distribution of an FNN trained with 64 labeled samples
distributed on the nodes of the cubic grids. (b) Same error distribution of the test
samples as (a) from another viewpoint. (c) Error distribution of an FNN trained
with 64 randomly distributed labeled samples.

study the relation between the prediction errors and the distribu-
tions of the labeled samples. Three types of distributions of the
labeled samples were studied, and different numbers of labeled
samples were considered. An FNN with one hidden layer of 100
nodes was trained, and the ReLu activation function was used.
The structured unlabeled samples used in the training were the
same as in the experiments above.

As shown in Fig. 9(b), the Y-axis represents the average pre-
diction error of the test samples. The square marks represent
experiments using randomly distributed labeled samples, which
are the same as in the experiments in Fig. 8. To make the dis-
tributions of the labeled samples more uniform, the 3D latent
space was divided into grids, as shown in Fig. 9(a). In addition,
the labeled samples distributed on the nodes of the grids were
used in the experiments; the results are indicated with triangle
marks. To further reduce the number of labeled samples, only
the nodes on the outer surface of the cube grid were used in the
other set of experiments, and the results are denoted as cross
marks.

We can see from the results that using labeled samples with
well-designed distributions can achieve higher prediction ac-
curacies on test samples than can random distributions. Using
labeled samples distributed on the outer surface achieves similar
performance to labeled samples distributed on the nodes of the
cubic grid. The reason can be seen in Fig. 10. Fig. 10(a) and
(b) show the error distributions of the test samples of a trained

Fig. 11. Sample images from EPFL.

FNN, where the positions of the spots are the predicted posi-
tions in the latent space (the latent representation) and darker
spots represent higher prediction errors. The FNN was trained
with 64 labeled samples distributed on the nodes of a cubic grid.
Fig. 10(c) shows the error distribution of an FNN trained with
64 randomly distributed labeled samples. The same structured
unlabeled samples were used in the training of these two FNNs.
We can see that the error distributions in Fig. 10(a) and (b) are
even. In addition, the error distribution in Fig. 10(c) is uneven.
Samples with large errors accumulate on the left-hand side of the
figure. This is because these areas lack labeled samples. Without
labeled samples, the framework of the latent space is not built,
and thus, the prediction errors in these area are not reduced.

C. Experiments

We evaluate the proposed methods using the EPFL Multi-
view Car Dataset [36]. The dataset has continuous orientation
annotations available, which can be regarded as latent represen-
tations.

1) EPFL Dataset: The EPFL dataset contains 20 sequences
of images of vehicles captured at a car show where each sequence
contains images of the same instance of the vehicle captured
with various orientations. Each image is given a ground truth
orientation. We choose this dataset to test our method because
the cars contain city cars, sedans, Sport Utility Vehicle, and
concept cars, as shown in Fig. 11.

To compare our method with state-of-the-art methods, we
also use the first 10 sequences of vehicles (1179 images) for
training and evaluation, the second 10 sequences of vehicles
(1120 images) for testing. Ground truth bounding boxes that
come with the dataset are used to crop out the image regions, and
then the image regions are resized to 100× 100 pixel images.

The training set and the testing set contain completely dif-
ferent types of cars with different colors, shapes, backgrounds,
and lighting conditions. Directly using original RGB (red, green,
blue) images to train the network will lead to serious overfitting.
To reduce overfitting, the RGB image is decomposed to a gray
image, edge image, and red channel image. For the edge image,
we use the Scharr transform [37] to obtain the edge map. For the
red channel image, we first transform the RGB image to an HSV
(hue, saturation, value) image and then extract the red region by
thresholds. We choose the red channel because the taillights are
red, and the red channel images can reduce “flipping” errors
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Fig. 12. Distribution representing the 180◦.

Fig. 13. Network architecture of the proposed method.

according to our experiments. Data augmentation is also used
to reduce overfitting. Specifically, the bounding box is enlarged
left, right, top, and bottom by 5 pixels to generate four more
images for each image. When predicting the orientations on the
testing set, we average the five predictions of the original image
and the four augmented images as the final prediction.

2) CNN Architecture: The EPFL dataset contains 20 differ-
ent kinds of vehicles. Predicting the orientations of cars in this
dataset is a difficult task. CNN architectures have been proven in
the literature to have the ability to solve complex tasks. As men-
tioned above, the proposed method can also be embedded into
CNN architectures; therefore, we designed a CNN architecture
shown in Fig. 13 to solve the problem.

The gray image, edge image, and red channel image are fed
into three separate CNN blocks. In addition, the ratio of height
to width of the original image before resizing is fed into a feed-
forward block. The outputs of the four blocks are concatenated,
and then fed into a feed-forward block.

According to [38], discretization-based approaches signifi-
cantly outperform regression on continuous angles with CNN ar-
chitectures, and discretization alone will confuse the training al-
gorithm since there are small differences in appearances among
neighboring orientations. Inspired by their work, we transform
the angles to distributions on 360◦. For example, the distribution

TABLE II
COMPARISON WITH THE EXISTING METHODS ON THE EPFL DATASET

The performance is verified in MeanAE and MedianAE.

of 180◦ is

e−
(x−α)2

σ2 (6)

where x = 0, 1, ..., 359 is the index of the dimensions of the
distribution,α is the angle before transformation,σ is a manually
selected coefficient used to adjust the distribution; in this paper,
we select σ =

√
160. The distribution for α = 180◦ is shown in

Fig. 12. The outputs of the CNN architecture are thus a 360-
dimensional vector. The objective of the training is to reduce
the MSE between the outputs of the CNN and the ground truth
distributions. The predicted angles can be retrieved by finding
the highest peak of the distributions.

The advantage of transforming angles to distributions is that it
will not confuse the training algorithm, because the activations
of the neurons in the output layer are reduced gradually with the
distances to the ground truth angle, instead of discrete values of
1 and 0 s.

3) Training Details and Results: The experiment was con-
ducted using the PyTorch deep learning framework on a NVIDIA
1080Ti GPU with 12 GB memory. The parameters of the CNN
are trained by the Adam algorithm [39] with an initial learn-
ing rate of 0.001. We split the first 10 sequences of vehicles for
training and evaluation, among which 100 images are randomly
selected for evaluation and the remaining images are used for
training. We evaluate the proposed network with three different
combinations of labeled samples and structured unlabeled sam-
ples. For our approach 1, 1079 labeled samples in the first 10
sequences are used for training and the remaining 100 labeled
samples are used for evaluation. For our approach 2, we take one
out of every ten adjacent frames in the first 10 sequences as the
labeled samples, and the number of labeled samples is 123. We
randomly take subsequences with a length of 10–20 from the
first 10 sequences as the structured unlabeled samples, because
there are repeated samples, the number of unlabeled samples is
1389. For our approach 3, only the 123 labeled samples are used
without the unlabeled samples. Our approach 3 is used to ver-
ify the importance of using structured unlabeled samples with
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Fig. 14. Representative results obtained by the proposed method (our approach 2, labeled = 123, unlabeled = 1389). A ground truth orientation (yellow) and
the predicted orientation (red) are indicated in a circle. Each row contains 10 example results from a testing sequence. From left to right, images with seven frames
apart are selected, starting from the first frame.

structure loss. All three approaches use all the frames in the
second 10 sequences of the EPFL dataset for testing.

Training stops when the regression loss no longer decrease
anymore on the evaluation dataset for more than 2 epochs. The
performance of the algorithm is verified by mean absolute error
(MeanAE) and median absolute error (MedianAE) in degree
following the practice in the literature. The MedianAE evaluates
the performance of the method after removing very large errors,
also known as “flipping” errors.

In Table II, we present the results from the literature and the
results of our three approaches with the same network archi-
tecture (our approach 1, our approach 2, and our approach 3).
As seen, our approach 1 obtains a relative improvement in the
MeanAE of approximately 31.8% with respect to state of the
art [40]. Our approach 2 uses only 123 labeled samples with

the regression loss and 1389 structured unlabeled samples with
the structure loss but still outperforms the state of the art [40]
by 11.6% in MeanAE. In addition, our approach 3 using only
the 123 labeled samples with the regression loss is not as good
as our approach 2, which can prove the effectiveness of the
structure loss.

The information of the numbers on the labeled samples and
the structured unlabeled samples used for training are included
in the table (labeled, unlabeled). Methods in the literature use all
the frames in the first 10 sequences in the EPFL dataset (1179
frames) and do not use any unlabeled samples.

Finally, we show the representative results in Fig. 14 with
ground truth bounding boxes overlaid on the images, and a
ground truth orientation and the predicted orientation indicated
in a circle.
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Fig. 15. Pin-in-hole assembly system. (a) Single-lug must be inserted into the
double-lugs, and the holes on the single-lug and the double-lugs must be aligned.
Cameras are used in the pin-in-hole assembly system to capture images of the
holes. (b) Real image captured by the camera when the single-lug is inserted
into the double-lugs. (c) Example of simulated images used for evaluation, both
shadows and image defects are simulated, except for the light reflections.

TABLE III
COMPARISON WITH BASELINE ON THE COAXIAL ERROR DETECTION DATASET

Performance is measured in mean distance (MD) between the
predicted center and the ground truth center. The number of la-
beled samples and structured unlabeled samples used in the train-
ing is also given.

D. Applications

Our method (FNN + PCA + full objective) is evaluated in
three challenging applications: coaxial error detection, visual
servoing, and indoor location.

1) Coaxial Error Detection: The proposed method was orig-
inally designed to solve the coaxial error detection problem in
pin-in-hole assembly tasks [52]. In automated pin-in-hole as-
sembly tasks, the coaxial error of the holes on different lugs
must be measured in a timely manner. Manual measurement
cannot meet the real-time requirement; a possible solution is
to train a neural network to measure the coaxial errors directly
from images. Traditional training methods require a large num-
ber of labeled samples; however, measuring coaxial error is a
time-consuming task, and we need to reduce the demands of
labeled samples. Therefore, the proposed method is designed to
solve the problem.

The pin-in-hole assembly system is shown in Fig. 15(a).
A representative image captured by the camera is shown in
Fig. 15(b). We construct a dataset of simulated images to eval-
uate the proposed method. An example of the simulated images
is shown in Fig. 15(c). Both shadows and image defects are sim-
ulated, except for the light reflections. The objective of the deep
neural network is to predict the position of the center of the hole
on the single lug in the image. The position of the center can be
regarded as a 2D latent representation of the image. The results
are shown in Table III. Our method shares the same network
architecture with the baseline model, except that structure loss
using structured unlabeled samples is added. With the structure
loss, the detection errors are reduced by 40.5%. Representative
results obtained by our method are shown in Fig. 16.

2) Visual Servoing: For visual servoing, we performed our
experiments on the robotic system shown in Fig. 17(a). Only
rotations were considered in these experiments. Fig. 17(b) is

Fig. 16. Representative results are obtained by the proposed method. A ground
truth center of the hole on the single-lug (blue cross) and the predicted center
(red circle) are indicated in the image.

Fig. 17. Two applications. (a) Robotic system in visual servoing tasks.
(b) Image of the flange plate used in the tasks.

the image of a flange plate captured by the camera. The flange
plate is the target used in the visual servoing. We regarded the
pose of the flange plate in the image as the target pose, where
the Eulerian angle

[
ωx ωy ωz

]�
=

[
0 0 0

]�
. A total of 125

labeled samples and 1673 structured unlabeled samples were
used to train an FNN with one hidden layer of 100 neurons. The
ReLu activation function was used in the network, and PCA was
performed for down-sampling. The original images are 54× 54
pixels, and the image vectors after PCA down-sampling are 41
dimensions column vectors. A total of 100 randomly distributed
samples were used to test the prediction errors of the network,
and the average prediction error after training for 100 epochs is
4.67◦.

Visual servoing tasks were performed using the trained net-
work. Specifically, the pose of the flange plate relative to the
target pose is directly predicted from each captured image. In
addition, rotations are performed to make the flange plate reach
the target pose. Table IV shows the initial and final positioning
errors of 20 experiments. Although the average prediction error
of the trained network is 4.67◦, the final positioning error is less
than 2◦ because the final positioning error is determined by the
prediction errors near the target pose. Fig. 18 shows the graphs
plotted for one of the experiments. We can see that the proposed
method achieves quick convergence.

3) Indoor Localization: We adapted our method to the task of
indoor localization. In this task, we want to estimate the location
of the camera based on the captured images. The simulation
scene is shown in Fig. 19. In addition, training samples were
gathered by capturing images using a virtual camera. The virtual



LIU et al.: SELF-SUPERVISED LEARNING FOR SPECIFIED LATENT REPRESENTATION 57

TABLE IV
THE EXPERIMENTAL RESULTS OF VISUAL SERVOING TASKS

Fig. 18. Self-supervised-learning-based visual servoing on a flange plate.
(a) Rotational errors. (b) Prediction errors of the current pose relative to the
target pose.

Fig. 19. Indoor scene used for indoor localization task.

camera can move in a rectangular area of 4 m × 2 m. The height
and orientation of the virtual camera are fixed.

A total of 231 labeled samples, 1864 structured unlabeled
samples, and 100 test samples were gathered. An FNN with
one hidden layer of 100 nodes was trained. The ReLu activa-
tion function was used in the FNN, and PCA was performed on
the samples before training. 54× 54 pixels original images are
down-sampled by PCA to 35 dimensions column vectors. The

Fig. 20. Real trajectory (red) and the predicted trajectory (green) by the trained
FNN.

average prediction error after training is 0.1m. The trained FNN
was further used to predict the trajectory of the virtual cam-
era. The results are shown in Fig. 20. The red trajectory is the
real trajectory along which the virtual camera moves. Images
were captured along the trajectory, and then, the positions of
the virtual camera were predicted by the trained FNN using the
captured images as the inputs. The green trajectory in Fig. 20
is the predicted trajectory. The predicted trajectory is in good
agreement with the real trajectory.

V. CONCLUSION

We have presented a specified latent representation method
from raw images using neural networks with only a few labeled
samples. These labeled samples are used to set up the frame-
work of the latent space using the regression loss with super-
vised learning; meanwhile, these labeled samples are mapped
to the framework nodes in the latent space. However, the pre-
diction accuracy of the shape between framework nodes is low.
Then, a large number of structured unlabeled samples are used
to shape the free space between the framework nodes using the
structure loss with the proposed self-supervised learning tech-
nique. Different network architectures embedded with our pro-
posed method are studied. Car orientation detection, coaxial er-
ror detection, visual servoing, and indoor localization are used to
demonstrate the generality of our proposed method. The results
show that our proposed self-supervised learning method pos-
sesses the advantages of supervised learning and unsupervised
learning for a specified latent representation.

The limitation of the proposed method is that the unlabeled
samples we use must have specific structure information; how-
ever, most available datasets on the Internet are not organized
in structures [53]. This limitation could be mitigated by gen-
erating structured unlabeled samples, for example, extracting
structure information from videos by correlating adjacent frames
[54]–[56]. Our future work will focus on solving data shortage
with structure information by extracting structure information in
videos and constructing dataset. Besides, frame sequences can
be regarded as time series, Hidden Markov Model (HMM) could
be applied to characterize the frame sequences, where the latent
representations are the hidden states in HMM [57], [58]. We
will explore learning methods for latent representations based
on HMM in our future work.
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