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Extracting LPV and qLPV Structures From
State-Space Functions: A TP Model
Transformation Based Framework

Péter Baranyi

Abstract—This paper proposes a tensor product (TP) model
transformation-based framework requiring minimal human in-
tuition to numerically reconstruct linear time invariant, Takagi–
Sugeno (T–S) fuzzy model-based linear parameter varying and
quasi-linear parameter varying representations of state-space
models. The proposed framework facilitates the manipulation
of the structure of the system matrix, the parameter vector—
including state elements—and the vertex systems. The motivation
behind this capability is that all of these structural components
strongly influence the control design and the resulting control per-
formance. An important feature of the framework is that it is agnos-
tic towards the formulation of the state-space model, i.e., whether
it is given using soft-computing-based techniques or closed formu-
lae. The proposed approach is an extension of the TP model-based
control design framework and inherits all of its advantageous prop-
erties, e.g., it can be easily used to find minimal representations, in-
cluding the higher order singular value-based canonical form, and
it supports the clear formulation of complexity/accuracy tradeoffs
and allows for conversions to various types of convex representa-
tions, making for a flexible way to manipulate the weighting and
antecedent functions. This paper gives examples to show how the
framework can be used in a routine-like fashion and to highlight
how it can be applied to the problem of finding useful T–S fuzzy
model variations of a given model.

Index Terms—LMI control design, polytop model, TP model, TP
model transformation, TS model.

I. INTRODUCTION

THIS paper proposes the tensor product (TP) model trans-
formation [1]–[3]-based framework to numerically re-

construct linear time invariant (LTI), linear parameter varying
(LPV), and quasi-LPV (qLPV) representations of state-space
models such that the reconstructed models are in TP model form.
(Note that in the present discourse the TP model form is equiv-
alent to the T–S fuzzy model form [1]–[4], therefore, when-
ever this paper makes an assertion concerning the TP model, it
will also be applicable to the T–S fuzzy model.) The proposed
framework incorporates all advantageous properties of the TP
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model transformation framework, such as the ability to recon-
struct canonical [5], [6] as well as various other types of convex
TP model (or T–S fuzzy model) forms [1], [7], and the ability to
find the minimal number of vertices (or fuzzy rules) correspond-
ing to a specified approximation accuracy [1], [8]. The goal of
this proposed framework is to replace the complicated (or even
intractable) derivations of closed formulae with straightforward,
tractable numerically appealing routine-like solutions that can
be executed in a reasonable amount of time. A further goal is
that it should be irrelevant how the state-space model is given
(as a set of closed formulae, as a neural network, as a black-
box model), and indeed, the numerical steps of the proposed
framework can be executed in all of these cases.

The motivation behind exploring variations of the T–S fuzzy
model structure can be outlined as follows. Polytopic model-
based state-space control design has three key steps: A) defining
the state-space model; B) finding the optimal polytopic model
(TP model or T–S fuzzy model); and C) deriving the controller.
The crucial point is that the structure of the model obtained after
Steps A and B has a key role in determining the effectiveness of
the controller design obtained in Step C. Thus, it is important to
structure the elements of the system matrix in Step A well, since
ultimately, the ordering of the elements influences the whole
design process in a strong sense. The convex hull defined by the
polytopic structure in Step B also directly influences the design.
Therefore, the applied control design strategy must take into
account these points in order to guarantee that the best controller
is obtained for the task at hand [2], [9]–[11].

This paper proposes a TP model transformation-based solu-
tion that can be automatically executed and used to derive models
for Steps A and B. More importantly, the key novelty of the pa-
per is that it extends the TP model transformation-based control
design framework to state-space models whose matrix structure
is unknown. Further novelties of the proposed extension include
its capability of dealing with the internal structure of the ver-
tices or system matrix in a systematic way, that it allows for the
flexible manipulation of this structure in a way that considerably
improves the controller design, and that it allows for the spec-
ification and design of the external parameters and state vector
element contained in the parameter vector.

Much work has been carried out in the recent past on the
TP model transformation. Computational analyses and improve-
ments to the original formulation were recently proposed in [12]
and [13]. It was also proved in [2], [9]–[11] that linear matrix
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inequality (LMI)-based control design theories are very sensi-
tive to the properties of the convex hulls (both the shape of the
weighting functions and the number of vertices) defined by the
TP models; hence, the convex hull manipulation capability of
the TP model transformation is an important and necessary step
in LMI-based control design. Very effective convex hull manip-
ulation methods were incorporated into the TP model transfor-
mation in [7], [14], and [15]. Further useful control approaches
and applications were published in the field of control theory
[16]–[23], including in the area of sliding mode control in [18],
[24], and [25]. For further theories and applications, readers are
referred to [26]–[59].

The rest of this paper is organized as follows. Section II defines
the notation and the basic concepts of the TP model transforma-
tion in a modified form to better fit the proposed framework.
Section III outlines the key points of the paper. It highlights the
main goal, namely, to extend the TP model transformation to
state-space functions where the linear matrix product structure
(product of the system matrix and the state vector) is unknown.
Sections IV to VII present the novelty of this paper. These sec-
tions show how to numerically reconstruct various state-space
forms in a reasonable amount of time, even in cases when the ex-
act closed formulae are unknown, but the model can be sampled
over a grid. Section IV shows how to numerically reconstruct a
global linearization, and also shows how to make the lineariza-
tion in a given point. Section V presents one of the key points
of the paper and shows how to execute the extended TP model
transformation even in cases when we do not know the inner lin-
ear parameter dependent matrix product-based structure of the
given state-space model. Sections VI and VII give some idea of
how to manipulate the parameter space and the structure of the
system matrix. Section VIII presents some examples to show
that the MATLAB implementations of the proposed framework
are very simple. The performance of the algorithms are demon-
strated on the example of the inverted pendulum. Section IX
discusses the contrast between the proposed extension and pre-
vious solutions. Finally, Section X concludes this paper.

II. NOTATIONS AND PRELIMINARY CONCEPTS

This section provides the notations used in the paper and in-
troduces the basic concepts of the TP model transformation in a
modified and rather more compact form that is better suited to
the proposed framework.

A. Notations

The following notations are used in this paper:
1) Scalar: a;
2) Vector: a contains elements ai;
3) Matrix: A contains elements ai,j ;
4) Tensor: A contains elements ai,j,k,...;
5) x ∈ RN denotes that the vector x contains N elements,

and the values of these elements are real numbers;
6) A ∈ RI1×I2×···×IN means that the values of the N -

dimensional tensor are real numbers. In, n = 1 . . . N
denotes the number of elements in the nth dimension
of tensor A.;

7) Index i: The upper bounds of the indices are denoted by
the uppercase letter, e.g., i = 1 . . . I;

8) Interval: ω = [ωmin, ωmax];
9) Space: Ω : ω1 × ω2 × · · · × ωN is an N -dimensional

hypercube;
10) x ∈ Ω expresses the fact that vector x is within the space

Ω. The dimensions of x and Ω are the same;
11) Ωx and Ωp: We frequently define vectors x ∈ Ω and p ∈

Ω. In order to denote that these spaces of x and p are
different, we use superscript x and p as Ωx and Ωp. This
simply means that x ∈ Ωx and p ∈ Ωp;

12) � refers to a dimensionality reduced subset in general
as:

a) in the case of spaces: Θ � Ω states that Θ is a
hypercube with the same-sized intervals as Ω, but
has a smaller number of dimensions;

b) in the case of vectors: a � b, where a ∈ Θ ⊂ RN

andb ∈ Ω ⊂ RM means thatN < M andΘ � Ω;
c) in the case of tensors, A � B means, for instance,

thatA is obtained by deleting complete dimensions
from tensor B;

13) A = A[n] denotes the layout of tensor A. A is a matrix

with the size of In ×∏N
i=1,i�=n Ii, where the size of A is

I1 × I2 × · · · × IN . The column vectors of matrixA are
the vectors of the nth dimension of tensor A. For further
details, see [60];

14) S �N
n=1 Un is the TP. It defines the tensor product be-

tween tensor S and matrices U. S is the N -dimensional
core tensor and Un are matrices assigned to each dimen-
sion. For details refer to [1]–[3];

15) f(x) = S �N
n=1 wn(xn) represents the TP function x ∈

RN where wn(xn) = [wn,1(xn) wn,2(xn) . . . wn,In

(xn)] is called the weighting function system. This is
equivalent to the very frequently used transfer function
of the T–S fuzzy model given in classical form such as

y =

I1∑

i1=1

I2∑

i2=1

. . .

IN∑

iN

N∏

n=1

wn,in(xn)bi1,i2,...,iN (1)

16) Types of the weighting functions:
a) SN: Sum normalized;
b) NN: Nonnegative;
c) NO: Normalized;
d) CNO: Close to normalized;
e) RNO: Relaxed normalized;
f) INO: Inverse normalized;
g) IRNO: Inverse relaxed normalized;

for further details refer to [1] and [2].

B. Concepts

In this section, slight modifications are proposed to the basic
concepts used in the TP model transformation. This will allow us
to more easily address the key steps of the proposed extensions.

Definition 1. Grid: An equidistant hyper rectangular grid
with I dimensions is determined by space Ω = Rω1×ω2×···×ωI

and the density of the grid denoted by M : M1 ×M2 × · · · ×
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MI . Thus the grid, per dimension, is [gi,1 gi,2 . . . gi,Mi
],

where ∀i : gi,m ≤ gi,m+1, gi,1 = ωmin, gi,Mi
= ωmax.

Definition 2. Grid tensor: A grid tensor, denoted as G, con-
tains the coordinates of the hyper rectangular grid (given by
Ω and M ) in each entry. Each element of the tensor is a vec-
tor pointing to the location of one grid. Thus, gm1,m2,...,mI

=
[g1,m1

g2,m2
. . . gI,mI

], mi = 1, . . . ,Mi. A grid tensor is
obtained when we store gm1,m2,...,mI

in G. This means that
G has I + 1 dimensions and G ∈ RM1×M2×···×MI×I .

Definition 3. Multiple operations: Assume a given function
y = f(x), where y ∈ RO and x ∈ RI . The multiple operation

Y = f(∗X ) (2)

takes an input tensor X ∈ RM1×M2×···×MI×I , and returns
an output tensor Y ∈ RM1×M2×···×O whose entries are
ym1,m2,...,mI

= f(xm1,m2,...,mI
), where xm1,m2,...,mI

are the
elements of tensor X .

Definition 4. Discretization: The discretized variant FG of
f(x), x ∈ Ω is

FG = f(∗G) (3)

where G is a grid defined to Ω with density M .
Definition 5. TP model: The following TP function-based

structure is referred to as the TP model:

y = f(p) = S
N
�

n=1
wn(pn) (4)

where y ∈ RO1×O2×···×OK , p ∈ RN , and core tensor
S ∈ RR1×R2×···×RN×O1×O2×···×OK contains the vertexes
sr1,r2,...,rN ∈ RO1×O2×···×OK and vectors wn(pn) ∈ RRn

contain the weighting functions wn,rn(pn) assigned to the
vertexes. Several beneficial properties of TP models, as well
as various types thereof have been studied in the past. Two
important research areas relevant to the topic are as follows.

1) Higher order singular value (HOSVD)-based canonical
form of TP models. Here, Rn also expresses the rank of
the function on each dimension. The TP model structure
is based on the higher order singular values, the vertexes,
and the weightings of orthonormed systems. For further
details, see [5] and [6].

2) Convex TP models. Here, the y is within the convex hull
defined by the vertexes. Various types (loose and tight)
hulls were defined, such as SN, NN, NO, CNO, RNO,
INO, ..., see [1]–[3] and [7]. It was also proved that the
manipulation of the convex hull has a crucial role in control
design theory, see [2], [9]–[11].

Polytopic form in (4) is the higher structured variant
of the frequently used formulae (in polytopic modeling)
S(p) =

∑H
h=1 wh(p)Sh, where vertexes Sh are the elements

Sr1,r2,...,rN of the core tensor S , where the multidimensional
index r1, r2, . . . , rN is replaced with its linear equivalent h =
1 . . . H =

∏N
1 Rn. Accordingly, wh(p) =

∏N
n=1 wn,rn(pn).

Method 1. TP model transformation: Assume a given func-
tion Y = f(p), where Y ∈ Ωy ⊂ RO and p ∈ Ωp ⊂ RN . The
TP model transformation numerically reconstructs the TP model
of the given function as

f(p) ≈ε S
N

�
n=1

wn(pn). (5)

The TP model transformation finds the exact TP structure, if it
exists (ε = 0), with the minimal number of vertices and weight-
ing functions. It has further variants such as the pseudo- and
multi-TP transformation, as well as other generalized TP model
transformations for different purposes [2], [3].

The TP model transformation has three steps.
Step 1: Discretization: Defining FG of f(p).
Step 2: Extracting the TP structure: FG = S �N

n=1 Un and
performing the necessary complexity tradeoff. This is done
by executing the HOSVD [60] on FG . The HOSVD results
in matrices Un and core tensor S . The matrices Un are the
singular matrices by dimensions. Further convex hull manip-
ulation can be executed by transforming Un to specialized
matrices U∗

n while S �N
n=1 Un = S∗ �N

n=1 U
∗
n as detailed

in [1]. This will control the characteristics of the weight-
ing functions determined in the next step. For instance, to
have convex combination (i.e., to determine the antecedent
membership function in the Ruspini partition), the singular
matrices are transformed to CNO type, see [1].
Step 3: Defining weighting functions wn(pn) from U∗

n.
There are two ways to reconstruct the weighting functions.
One is to simply perform linear interpolation between the
elements of the columns in matrix Un, then each column
defines one piecewise linear weighting function. This is re-
ferred to as the bilinear TP model transformation. The other
way is to recalculate the weighting functions at any given pn
(while allpi, i �= n are fixed). This requires the calculation of
f(p) for that point. Usually a combination of these two ap-
proaches is used. The weighting functions are recalculated
over a large number of points “off-line,” then a piecewise
linear function is used between the points.

III. PROBLEM OUTLINE

Assume a state-space model
[
ẋ

y

]

= f(x,u) (6)

where
[
x u

]T ∈ Ωx ⊂ RI contains the state vector x and

input u. Vector
[
ẋ y

]T ∈ RO contains output y.
The paper introduces a framework to reconstruct the LTI

representation of (6) as
[
ẋ

y

]

≈ε S

[
x

u

]

(7)

where S ∈ RO×I and ε are minimized in the least-square sense.
If it has no acceptable accuracy then the proposed framework is
also capable of reconstructing the LPV representation

[
ẋ

y

]

≈ε S(p)

[
x

u

]

(8)

of parameter dependent state-space model
[
ẋ

y

]

= f(x,u,p) (9)
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where parameter vector p ∈ Ωp ⊂ RN and ε are minimized in
the least-square sense. If the approximation error is not accept-
able (because of the nonlinearity), the paper proposes a method
to reconstruct the qLPV representation as

[
ẋ

y

]

≈ε S(p)

[
x

u

]

(10)

where vectorp contains elements of the state vector x. Thus, the
structure is still linear, however, the model belongs to the family
of nonlinear systems.

In the abovementioned cases, the parameter-varying system
matrix is given in TP model form as

S(p) = S
N
�

n=1
wn(pn) (11)

such that tensor S contains the vertex systems and vectors
wn(pn) contain the weighting functions by dimensions of p.
Once again, this is equivalent to the T–S fuzzy model, where S
contains the consequent system matrices and wn(pn) contains
the antecedent membership functions.

The control design is typically based on the linear matrix
form (8) and 10) of the state-space transfer function (6). Since
this representation is not unique, determining how the elements
of system matrixS should be organized and structured is crucial.
Furthermore, the TP model of S(p) is also not unique—an infi-
nite number of different vertex and weighting function systems
exist to represent the same S(p). Since the further design steps
(e.g., LMI-based design) are based on the vertexes, the appro-
priate selection of the vertexes is also a crucial point. As a result,
both the internal structure of the system matrix and the vertexes
of the models strongly influence the further design steps [2],
[9]–[11].

The framework proposed in this paper provides various ways
to incorporate the TP model transformation in the process of
manipulating these important components of the TP model and
the design (see also [2]). Using the TP model transformation to
begin has the following advantages:

1) it is executable on models given by equations or soft
computing-based representations, such as fuzzy rules,
neural networks, or other black-box models. The only re-
quirement is that the model must provide an output for
each input (at least on a discrete scale);

2) it will find the minimal complexity, namely, the minimal
number of components of the TP model (or rules of the T–S
fuzzy model). If further complexity reduction is required,
it provides one of the best tradeoffs between the number
of components (fuzzy rules) and the approximation error;

3) it works like the principal component analysis in that it
determines the order of the components (fuzzy rules) ac-
cording to their importance;

4) it is capable of deriving the weighting functions or an-
tecedent fuzzy sets according to various constraints. For
instance, it can be used to define different convex hulls,
a capability which has recently been shown to play an
important role in control theory as mentioned above;

5) it is capable of transforming the given model to predefined
weighting functions (antecedent fuzzy sets), using, i.e., the
pseudo-TP model transformation;

6) it is capable of transforming a set of models simul-
taneously, while deriving common weighting functions
(antecedent fuzzy sets) for all models.

IV. TRANSFORMATION TO LINEAR STRUCTURE

The goal is to replace the function

y = f(x) (12)

with a linear mapping

y = Sx (13)

where x ∈ Ω ⊂ RI and y ∈ RO (hence, S ∈ RO×I ).
Method 2. Linearization: The goal is to find a linear mapping

S between a huge number of input–output pairs. Let these pairs
be given by the grid tensor G defined over Ω with density M and
by the corresponding outputs in

FG = f(∗G). (14)

Thus, we define S as

FG = G ×I+1 S (15)

therefore, using pseudoinverse we have

S = FG[
I + 1

]
(

G[
I + 1

]
)+

. (16)

At a more detailed level: (14) means

fm1,m2,...,mI
= f(gm1,m2,...,mI

) (17)

and (15) means

fm1,m2,...,mI
= Sgm1,m2,...,mI

(18)

for all vectors fm1,m2,...,mI
and gm1,m2,...,mI

stored in tensors
FG and G, respectively.

Since these vectors are in the (I + 1)th dimension, we can
layout these tensors in the (I + 1)th dimension and rewrite (15)
in the following form:

FG[
I + 1

] = S (G)[
I + 1

] . (19)

Thus we have arrived at (16).
As a result, we have

f(x) ≈ε Sx. (20)

The error can be evaluated, for instance, over another dense grid
H defined overΩ as ε = FH −H×I+1 SwhereFH = f(∗H).

If the error is not acceptable, one alternative approach is to
try the quasi-linear structure detailed later.

V. TRANSFORMATION TO PARAMETER-VARYING

LINEAR STRUCTURE

The goal is to replace the parameter-varying function

y = f(x,p) (21)
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y ∈ RO, x ∈ Ωx ⊂ RI , p ∈ Ωp ⊂ RN , with

y = S(p)x (22)

where S(p) is given in TP model form

S(p) = S
N

�
n=1

wn(pn). (23)

The ability to incorporate all of the advantageous properties of
the TP model transformation is highly desirable here.

Method 3: Parameter-varying linear structure
Step 1: Define discretization grid Gp to Ωp with density Mp.
Step 2: Define a linearization grid Gx fit to Ωx with density
Mx.
Step 3: Linearize f(x,p) for each pm1,m2,...,mN

of Gp by
Method 2. Namely, define a linear mapping between a suffi-
ciently large number of input–output pairs given by grid Gx

and

FGx

m1,m2,...,mN
= f(∗Gx,pm1,m2,...,mN

) (24)

in the form of

FGx

m1,m2,...,mN
= Gx ×I+1 Sm1,m2,...,mN

. (25)

As a result, we have

Sm1,m2,...,mN
=

(FGx

m1,m2,...,mN

)[
I + 1

] Ψ (26)

where

Ψ =

(

Gx[
I + 1

]
)+

. (27)

Step 4: Since the tensor SGp ∈ RMp
1 ×Mp

2 ×···×Mp
N×O×I con-

structed from Sm1,m2,...,mN
is the discretized variant of

S(p) over Gp, we can continue with the second step of the
TP model transformation (incorporating all the beneficial
properties of the TP model transformation), which results in

SGp

= S
N

�
n=1

Un (28)

and then, the third step results in

S(p) = S
N

�
n=1

wn(pn) (29)

thus, to summarize

y =

(

S
N

�
n=1

wn(pn)

)

x. (30)

Remark 1. A bilinear TP model can be derived directly
from Un, however, in order to reconstruct the weighting func-
tions over any given pn, S must be linearized again for the
appropriate p.

VI. VARIATE THE PARAMETER DEPENDENCY

In the previous section, the parameter dependence was defined
by y = f(x,p). The goal here is to modify this dependence and
replace vectorp ∈ Ωp withv ∈ Ωv . In many cases, it is desirable
that a linear transformation T of the parameter space be used

p = Tv (31)

thus, the goal is to find the equivalent

y = f(x,v) (32)

in parameter-varying linear form. We may examine an even more
general case and replace vector p with another parameter vector
v ∈ RK , such as

p = T (v) (33)

that leads to

y = f(x,v) (34)

and execute Method 3 to reveal the parameter-varying linear
structure. In this case the discretization grid Gv is defined within
Ωv and Method 3 will numerically reconstruct

y =

(

S
K
�
k=1

wk(vk)

)

x. (35)

For instance, if we know that element p1 always acts in y =
f(x,p) as p21, then, we may choose to use v1 = p21 instead.
Consider the following example:

y = x1p
2 + x2 (36)

that can be transformed to the parameter-dependent linear form
as

y =
[
p2 1

]
[
x1

x2

]

= S(p)x. (37)

However, we may define a new parameter v = p2 as

y = x1v + x2 =
[
v 1

]
[
x1

x2

]

= S(v)x. (38)

This idea can be extended to entire sets of parameters. For in-
stance, consider the following function:

y = x1

(
p21 + p2

)
+ x2p2 (39)

one may choose to use the new parameters v1 = p21 + p2 and
v2 = p2 and obtain

y = x1v1 + x2v2 =
[
v1 v2

]
[
x1

x2

]

= S(v)x. (40)

VII. TRANSFORMATION TO QUASI-LINEAR STRUCTURE

If the above-discussed linearization leads to a larger than ac-
ceptable error ε, an alternative approach would be to search for
a quasi-linear structure.

The goal, then, is to replace the function

y = f(x) (41)

with a linear mapping

y = S(p)x (42)

where x ∈ Ω ⊂ RI and y ∈ RO (hence S ∈ RO×I ). Here, ma-
trix S(p) is a function of vector p, where p ∈ Ωp ⊂ RN is con-
structed from elements of vector x as p 	 x, hence, Ωp 	 Ωx.
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This is still a linear structure, however, it represents a nonlin-
ear mapping between x and y—hence the name quasi-linear
structure.

The following method approximatesS(p) in a polytopic form
as

S(p) = S
N

�
n=1

wn(pn). (43)

It is a crucial point to define those variables in (41) which will
be considered as parameters as well. This can usually be done
in more than a single way. For instance, consider the following
example:

y = x1x2 + x1 (44)

which can be given as

y =
[
1 p1

]
[
x1

x2

]

= S(x1)x (45)

where p1 = x1. However, another solution (leading to a com-
pletely different structure) would be to write

y =
[
p2 + 1 0

]
[
x1

x2

]

= S(x2)x (46)

where p2 = x2. This example shows that one has to select the
desired parameters before starting the numerical reconstruction.

Based on this, first we need to find the components fi(x
p
i ) of

the function as

f(x) =

I∑

i=1

fi(x
p
i )xi (47)

where vector ∀i : xp
i 	 x (p denotes that these values are in

parameter vector as well). The product with one of the ele-
ments xi of x is necessary since each element of matrix S
will be multiplied with one element of the vector x. Once
the components are defined, the elements of vectors xp

i define
the parameter pn, n = 1, . . . , N of parameter vector p. In the
above-mentioned example: f(x) = f(x1)x2 + x1 or f(x) =
f(x2)x1 + x1 = (f(x2) + 1)x1. Thus, the candidate for the pa-
rameter vector is p1 = x1 or p2 = x2.

Assume that we have the parameter vector p 	 x and the
components fi(p

p
i ), p

p
i 	 p of

f(x,p) =

I∑

i=1

fi(p
p
i )xi. (48)

Then, we execute the following method to numerically
reconstruct

S(p) = S
N

�
n=1

wn(pn). (49)

For the sake of simplicity, we extend all components fi(p
p
i )with

zero blocks of those parameters which are not in pp
i to obtain

fi(p) = fi(p
p
i ) +

∑

j

0pj (50)

where ∀j : pj is not included in pp
r , but is included in p. Thus,

we have

f(x,p) =

I∑

i=1

fi(p)xi (51)

where p 	 x.
Method 4: Reconstruct the quasi-linear structure
Step 1: Define a discretization grid Gp to Ωp 	 Ωx with
density Mp.
Step 2: Define a linearization grid Gx

m1,m2,...,mN
to each

element of Gp, where the linearization space Ωx
m1,m2,...,mN

is around gp
m1,m2,...,mN

of Gp. Obviously, the interval ωx
i of

those xi which are not selected to be a parameter can be set
arbitrarily within Ωx.
Step 3: Execute linearization according to Method 2 for each
gp
m1,m2,...,mN

∈ Gp as

FGx
m1,m2,...,mN = f(∗Gx

m1,m2,...,mN
,gp

m1,m2,...,mN
) (52)

and

Sm1,m2,...,mN
=

(
FGx

m1,m2,...,mN

)
[
I + 1

] Ψ (53)

where

Ψ =

(
(Gx

m1,m2,...,mN

)[
I + 1

]
)+

. (54)

Step 4: Since tensor SGp ∈ RMp
1 ×Mp

2 ×···×Mp
N×O×I con-

structed from Sm1,m2,...,mN
is the discretized variant of

S(p) over Gp, we can continue with the second step of the
TP model transformation (incorporating all the beneficial
properties of the TP model transformation), that results in

SGp

= S
N
�

n=1
Un (55)

and finally, we have

S(p) = S
N

�
n=1

wn(pn) (56)

thus

y =

(

S
N

�
n=1

wn(pn)

)

x (57)

where pn are the elements of vector x.
Remark 2: A bilinear TP model can be derived directly from

Un, however, in order to reconstruct the weighting functions
over any given pn, S must be linearized for the appropriate p.

VIII. EXAMPLES

This section demonstrates how the above-discussed theories
may be applied to the model of the inverted pendulum. An imple-
mentation of the relevant procedures is provided in the MATLAB
language using the TPtool toolbox (which can be downloaded
through the Wikipedia page on TP model-based control). The
variables in the MATLAB code use the same notation as was
used in the previous sections.
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A. Model of the Inverted Pendulum

Assume that we have an inverted pendulum, such that the
mass of the pendulum is mp, the mass of the cart is Mc, the
length of the pendulum is l, the motor force is u, and the angle
of the pendulum is θ. The inverted pendulum has the following
state-space model representation:

ẋ = f(x, u) =

⎡

⎢
⎢
⎢
⎢
⎣

x2

f1(x, u)

x4

f2(x, u)

⎤

⎥
⎥
⎥
⎥
⎦

(58)

where x1 = θ, x2 = θ̇, x3 = s, x4 = ṡ, and

f1 =
a1 + a2

l(Mc +mp sin
2(x1))

(59)

f2 =
a3 + a4

Mc +mp sin
2(x1)

(60)

where

a1 = (Mc +mp)g sin(x1) + cos(x1)u (61)

a2 = b cos(x1)x4 −mpl sin(x1) cos(x1)x
2
2 (62)

a3 = −mpg sin(x1) cos(x1)− bx4 + u (63)

a4 = mpl sin(x1)x
2
2. (64)

LetMc = 3 kg,mp = 0.2 kg, l = 0.31 m, b = 0.1 N/ms−1. The
MATLAB code of the models is:
function DX=model(X)
th=X(1); dth=X(2); x=X(3); dx=X(4);
u=X(5); si=sin(th); co=cos(th);
Mc=3;mp=0.2;l=0.31;b=0.1;g=9.88;
s1l=l*(Mc+mp*si*si); s2l=Mc+mp*si*si;
T1=(Mc+mp)*g*si/s1l; T2=b*co*dx/s1l;
T3=-mp*l*si*co*dth*dth/s1l;
T4=-co*u/s1l;
P1=-mp*g*si*co/s2l; P2=-b*dx/s2l;
P3=mp*l*si*dth*dth/s2l; P4=u/s2l;
DX=[dth T1+T2+T3+T4 dx P1+P2+P3+P4]’;

B. Example 1: Reconstruct the Linear Structure

Assume that the equations of the above model are unknown
(the code is unknown), only the input x, u and output ẋ pairs
are available. In order to replace ẋ = f(x) with ẋ = Sx, we
execute Method 2. First, let us define a grid as
function g=Getgrid(m,M,Omega,O)
a=length(m); for i=1:a a=(m(i)-
1)*2*Omega(i)/(M-1);
g(i)=O(i)-Omega(i)+a; end

Remark 3: O defines the center of the grid. Omega defines
the intervals around these center points (thus, the value in Omega
is at the half of the interval) for each dimension.

Then, the linearization is
function S=linear(Omega,M,O)
for m1=1:M for m2=1:M for m3=1:M
for m4=1:M for m5=1:M

m=[m1 m2 m3 m4 m5];
g=(Getgrid(m,M,Omega,O))’;
G(m1,m2,m3,m4,m5,:)=g;
DXT(m1,m2,m3,m4,m5,:,:)=model(g);

end end end end end
Xu=ndim_unfold(G,6);
DXu=ndim_unfold(DXT,6);
S=DXu*pinv(Xu)

The overall algorithm can then be written as follows:
clear;
Omega=[1.6 1.6 1 1 1]; M=5;
O=[0 0 0 0 0];% center of Omega
S=linear(Omega,M,O);

The resulting S is the best approximation in least-square
sense. We may increase the grid density M as high as possi-
ble. The linearization error is quite large over Ω. For control
design purposes, let us linearize the model for θ and θ̇ ≈ 0 (the
typical stabilisation point). Let us execute the above algorithm
with Omega=[1e-10 1e-10 1 1 1]; The resulting S is

⎡

⎢
⎢
⎢
⎢
⎣

0 1 0 0 0

33.75 0 0 0.11 −1.08

0 0 0 1 0

−0.65 0 0 −0.03 0.33

⎤

⎥
⎥
⎥
⎥
⎦
. (65)

Indeed, we arrive at the same matrix when we substitute
sin(x1) ≈ 0 and cos(x1) ≈ 1 into (58). The conclusion is that,
using Method 2 we can numerically reconstruct the lineariza-
tion of the model at a global scale or over any desired point,
without analytical derivation and even in cases where the closed
formulae of the model are not given.

C. Example 2: Extended TP Model Transformation

If the simple replacement of the model with ẋ = Sx is
not enough, because of strong nonlinearities, we may execute
Method 3 to find the qLPV representation. Method 3 generates
the TP model (or a T–S fuzzy model)-based qLPV representa-
tion. This example demonstrates how the proposed extension
to the TP model transformation can be used in cases where the
state vector x, input u, and ẋ, and hence, the size of the system
matrix, are known as in Example 1; however, the components
of the qLPV structure, such as the elements of the parameter-
dependent system matrix S(p) and parameter vector p are not
known, so that the matrix S(p) cannot be sampled directly.

Assume again that we have ẋ = f(x, u), and the goal is to
extract

ẋ = S(p)

[
x

u

]

. (66)

Let us extend the algorithm so that we can perform linearization
at each gridpoint over a linearization grid. In order to achieve
more stable computation, we use the pseudoinverse at the grid-
point O. Thus, a small modification in the MATLAB function
LINEAR is necessary: G(m1,m2,m3,m4,m5,:)=O;
Then, the algorithm is:
D=3; r=1e-10; M=10; LOmega=[r r r r r];
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Omega=[1.6 1.6 1 1 1]; O=[0 0 0 0 0];
for m1=1:M for m2=1:M for m3=1:M
for m4=1:M for m5=1:M

m=[m1 m2 m3 m4 m5];
g=(Getgrid(m,M,Omega,O))’;
S=linear(LOmega,D,g);
ST(m1,m2,m3,m4,m5,:,:)=S;

end end end end end
Remark 4: LOmega and r define the linearization subspace

for each grid. D is the sampling density for the linearization.
Next, we extract the convex TP model form

with SNNN-type weighting functions and vertexes
[S,U,sv]=hosvd(ST,[1 1 1 1 1 0 0],1e-11);
for i=1:5 Uc{i}=genhull(U{i},’snnn’);
figure(i); plot(Uc{i},’LineWidth’,3);
Ucp{i}=pinv(Uc{i});
end
Sc=tprods(S,Ucp);

The SNNN weighting functions are determined in cell U and
the related vertexes are stored in Sc. Thus, finally we obtain

f(x, u) = f(x, u,p)

[
x

u

]

= S �
n
Wn(pn)

[
x

u

]

(67)

where p1 = x1, p2 = x2, p3 = x3, p4 = x4, and p5 = u.

D. Example 3: Varying the Components of the Vertexes

This example shows how we can easily modify the structure of
the pendulum model and generate various alternative T–S fuzzy
models in a few minutes without any analytical derivation of
closed formulae. Exploring such variations will allow us to find
the best option for further design steps. The state-space model
of (58) is

ẋ =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 0 0 0

0 t1/x2 + t2 0 bt3 t3

0 0 0 1 0

0 v1/x2 + v2 0 −b/h2 1/h2

⎤

⎥
⎥
⎥
⎥
⎦

[
ẋ

u

]

(68)

where

h1 = l(Mc +mp sin
2(x1)) (69)

h2 = Mc +mp sin
2(x1) (70)

t1 = (Mc +mp)b sin(x1)/h1 (71)

t2 = mpl sin(x1) cos(x1)x2/h1 (72)

t3 = cos(x1)/h1 (73)

v1 = −mpg sin(x1) cos(x1)/h2 (74)

v2 = mpl sin(x1)x2/h2. (75)

Its MATLAB code is
function S=modelS(P)
dth=P(2); si=sin(P(1)); co=cos(P(1));
Mc=3;mp=0.2;l=0.31;b=0.1;g=9.88;
s1l=l*(Mc+mp*si*si); s2l=Mc+mp*si*si;
T1=(Mc+mp)*g*si/s1l; T2=b*co/s1l;
T3=-mp*l*si*co/s1l; T4=-co/s1l;

Fig. 1. Weighting functions of p1 and p2, see Example 3.

P1=-mp*g*si*co/s2l; P2=-b/s2l;
P3=mp*l*si*dth*dth/s2l; P4=1/s2l;
S=[0 1 0 0 0; 0 T1/dth+T3 0 T2 T4;
0 0 0 1 0; 0 P1/dth+P3 0 p2 p4];

The nonlinearity is caused by x1 and x2. We can execute the
TP model transformation (in order to avoid division by zero, the
number of grids are set to an even number) as follows:
M=50; Omega=[1.6 1.6]; O=[0 0];
for m1=1:M for m2=1:M

m=[m1 m2];
g=(Getgrid(m,M,Omega,O))’;
ST(m1,m2,:,:)=modelS(g);

end end
[S,U,sv]=hosvd(ST,[1 1 0 0],1e-11);
for i=1:2 Uc{i}=genhull(U{i},’snnn’);
figure(i); plot(Uc{i},’LineWidth’,3);
Ucp{i}=pinv(Uc{3});
end
Sc=tprods(S,Ucp);

In the end, we arrive at the weighting functions depicted in
Fig. 1. Thus, the T–S fuzzy model of the pendulum is

ẋ = S(p1, p2)

[
x

u

]

= S
2
�
n
Wn(pn)

[
x

u

]

(76)

where p1 = x1 and p2 = x2. The number of rules are 3× 5 =
15. Various alternative parameter-dependent system matrices
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can be derived, for instance

ẋ =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 0 0 0

t1/x1 t2 0 bt3 t3

0 0 0 1 0

v1/x1 v2 0 −b/h2 1/h2

⎤

⎥
⎥
⎥
⎥
⎦

[
ẋ

u

]

. (77)

By applying the TP model transformation, all the different T–S
fuzzy models can easily be derived from the differently struc-
tured system matrices. The type of the convex hull defined by
the vertices, namely the type of the weighting functions, can also
be manipulated easily, as mentioned in Section II.

E. Example 4: Modifying the Parameter Space

This example shows that the parameter space of the model
can also readily be changed. Let us have p1 = sin(x1), p2 =
cos(x2), p3 = x2, and let us change the first line of function
MODELS accordingly, as follows:
function S=modelS(P)
dth=P(3); si=P(1); co=P(2);

We then execute the TP model transformation to derive CNO-
type weighting functions as follows:
M=50; Omega=[1.6 1.6 0.6]; O=[0 0 0];
for m1=1:M for m2=1:M for m3=1:M

m=[m1 m2 m3];
g=(Getgrid(m,M,Omega,O))’;
ST(m1,m2,:,:)=modelS(g);

end end
[S,U,sv]=hosvd(ST,[1 1 1 0 0],1e-11);
for i=1:3 Uc{i}=genhull(U{i},’cno’);
figure(i); plot(Uc{i},’LineWidth’,3);
Ucp{i}=pinv(Uc{3});
end
Sc=tprods(S,Ucp);

Finally, we obtain the weighting function depicted in Fig. 2.
Thus, we can express the T–S fuzzy model as follows:

ẋ = S(p1, p2, p3)

[
x

u

]

= S
3

�
n
Wn(pn)

[
x

u

]

. (78)

Indeed, the dimensionality of the model has increased, but at the
same time the number of antecedents in the different dimensions
are reduced, and only 18 rules remain. Therefore, it is much
easier to manipulate the weighting functions for further control
design purposes, i.e., to obtain a CNO-type derivation. We
can go further and define the following setting p1 = sin(x1),
p2 = cos(x1), p3 = x2, and p4 = 1/x2. The resulting weight-
ing functions are depicted in Fig. 3. The number of rules is 24,
however, the most simple qLPV model is obtained. Again,
we may define a number of variations easily using the pre-
sented framework and see which one leads to the best control
performance.

IX. COMPARISON TO OTHER SOLUTIONS

If we compare the proposed TP model transformation-based
framework to its previous version, the most important difference
to highlight is that the proposed version is applicable to a con-
siderably larger class of models. Namely, the previous version

Fig. 2. Weighting functions of p1, p2, and p3, see Example 4.

was applicable to

ẋ = S(x,p, u)

[
x

u

]

(79)

where the linear matrix structure is already determined, but the
current, extended version is applicable to

ẋ = f(x, u,p) (80)

or even to

x = f(x, u) (81)

where the elements of x, ẋ, u, and the dimensionality of S(p)
are available; however, the inner structure of the system matrix
S(p) is not known and the parameter vector is not revealed. This



508 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 28, NO. 3, MARCH 2020

Fig. 3. Weighting functions of p1, p2, p3, and p4, see Example 4.

means that the proposed version of the TP model transformation
offers a very powerful way to extract various alternative T–S
fuzzy models of a given dynamic model.

One of the most frequently used approaches to convert
a given dynamic model to a T–S fuzzy model is the sec-
tor nonlinearity method. Many of the publications dealing
with T–S fuzzy control use the sector nonlinearity method
to convert the dynamic equations to the T–S fuzzy model. If
we compare the proposed method to the sector nonlinearity
method, the most important difference is that the TP model
transformation provides various features to manipulate all
the parameters of the T–S fuzzy model, i.e., the shape of
the antecedents, the number of fuzzy rules, and the convex
hull defined by the vertexes. It provides an exact HOSVD-
based canonical form and complexity tradeoff. The sector
nonlinearity based solution is not equipped with such important
features. Since the manipulation of the parameters of the T–S
fuzzy model is a crucial step, as mentioned in the introduction,
the manipulation power of the TP model transformation plays a
crucial role in control design. A further important point is that the
TP model transformation has a well developed, tractable numer-
ical implementation based on the numerical implementations
of HOSVD. Thus, in contrast to the sector nonlinearity method,
it is executable automatically with minimal human interaction
and has all the same benefits as the HOSVD does for tensors.

X. CONCLUSION

This paper was based on the observation that an identified
state-space model can have an infinite number of T–S fuzzy or
TP model representations. Such representations can differ in the
structure of the model, and in the construction of the parameter
vector—especially if elements of the state vector are involved—
and the location of the vertexes in the polytopic form. The selec-
tion of the representation strongly influences the control design.
Therefore, we were required to derive a huge set of variations
to see which one of them leads to the best solution. This paper
proposed an effective tool to readily define such variations, and
placed the tool into the context of the TP model transformation-
based control design framework, which allows for the principled
use of the tool as part of a broader toolset for controller design.
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