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Interpolation with Just Two Nearest Neighbouring
Weighted Fuzzy Rules

Fangyi Li, Changjing Shang, Ying Li, Jing Yang, Qiang Shen

Abstract—Fuzzy rule interpolation (FRI) enables sparse fuzzy
rule-based systems to derive an interpolated conclusion using
neighbouring rules, when presented with an observation that
matches none of the given rules. The efficacy of FRI has been
further empowered by the recent development of weighted FRI
techniques, particularly the one that introduces attribute weights
of rule antecedents from the given rule base, removing the
conventional assumption of antecedent attributes having equal
weighting or significance. However, such work was carried
out within the specific transformation-based FRI mechanism.
This short paper reports the results of generalising it through
enhancing two alternative representative FRI methods. The resul-
tant weighted FRI algorithms facilitate the individual attribute
weights to be integrated throughout the corresponding proce-
dures of the conventional unweighted methods. With systematical
comparative evaluations over benchmark classification problems,
it is empirically demonstrated that these algorithms work effec-
tively and efficiently using just two nearest neighbouring rules.

Index Terms—Fuzzy interpolative reasoning, weighted rule
interpolation, attribute weights, nearest neighbouring rules.

I. INTRODUCTION

Fuzzy rule interpolation (FRI) plays a powerful role in
performing inference within sparse rule-based reasoning sys-
tems [1]. It facilitates the derivation of an approximate con-
sequent for an observation which has no matching rules, by
the use of its neighbouring rules. Whilst the FRI literature has
seen many methods (e.g., [2]–[4]) being proposed, most of
which share a common assumption that the rule antecedents
are of equal significance while performing rule interpolation.
A recent focus of developing FRI techniques is to relax this as-
sumption, by introducing weights to the individual antecedent
attributes, such as [5], [6]. Nevertheless, these weighted FRI
approaches require additional information for calculating the
weights other than that contained within the sparse rule base.
Besides, the resultant weights are not systematically integrated
within the internal structure of the underlying FRI algorithm.

Most recently, a weighted interpolative reasoning scheme
has been reported [7], where the weights of individual an-
tecedent attributes are learned from the given knowledge (i.e.,
the sparse rule base) in support of attribute ranking. Such
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weights are explicitly integrated with the procedures of the
popular scale and move transformation-based FRI (T-FRI) [3].
This has led to an outstanding performance in tackling clas-
sification problems, as empirically shown. In particular, an
important finding is that only two (i.e., the minimal number
of) neighbouring rules are required for the weighted T-FRI to
perform, significantly reducing the computational overheads
caused by otherwise running rule interpolation with more
rules.

Given this exciting empirical outcome for weighted T-FRI,
it is interesting to investigate whether the discovery that “least
number of neighbouring rules does better” is common to other
FRI methods if a similar weighting scheme is adopted. For-
tunately, the weights learning mechanism as proposed in [7]
is independent of the FRI process, which works by exploiting
the sparse rule base only. Inspired by this observation, this
short paper presents a further development that enhances two
other commonly used FRI algorithms (namely, those first
presented in [1] and [4]), by following the ideas of [7]. The
resultant weighted FRI methods are systematically evaluated
via addressing ten benchmark classification problems, in com-
parison with their corresponding unweighted originals. The
improvement of classification accuracies is highlighted and
more importantly, it is demonstrated that the best performance
is achieved when the number of the nearest neighbouring rules
required to perform the weighted FRI is indeed the smallest.

The rest of this paper is structured as follows. Section II
reviews the relevant background, including the weighted T-
FRI as proposed in [7] and the two selected representative
FRI methods to be enhanced with the weighting approach.
Section III presents the modification of those two FRI meth-
ods with the use of attribute weights. Section IV discusses
the systematically compared experimental results. Section V
draws the conclusion and gives an outline of further research.

II. BACKGROUND

For completion, this section first shows the basic notations
used throughout the paper, followed by a summary of the
weighted T-FRI method as proposed in [7] and then, by an
overview of the two representative FRI methods that will be
extended with the inclusion of attribute weights.

A. Basic Notations

To support a consistent illustration of FRI, without losing
generality, suppose that a (sparse) fuzzy rule base R =
{r1, r2, . . . , rN}, where multiple antecedent attributes are



1063-6706 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2019.2928496, IEEE
Transactions on Fuzzy Systems

2

involved but not individually weighted initially, and an ob-
servation o∗ are represented in the following format:
ri : if a1 is Ai

1 and a2 is Ai
2 and · · · and am is Ai

m, then
z is Bi

o∗ : a1 is A∗1 and a2 is A∗2 and · · · and am is A∗m
where aj , j = 1, 2, . . . ,m, are the rule antecedent attributes;
z is the consequent attribute; Ai

j and A∗j denote the fuzzy set
values taken by aj in the rule ri and o∗, respectively; and
Bi represents the fuzzy set value of the consequent attribute
z in ri. For simplicity, triangular membership functions are
employed for all FRI methods involved in this work, where the
fuzzy sets are represented by their characteristic points (CPs).
Namely, fuzzy values Ai

j , A∗j , Bi, and the consequent B∗ to
be computed (i = 1, 2, . . . , N, j = 1, 2, . . . ,m) are expressed
by (aij1, a

i
j2, a

i
j3), (a

∗
j1, a

∗
j2, a

∗
j3), (b

i
1, b

i
2, b

i
3), and (b∗1, b

∗
2, b
∗
3),

respectively, where the first and third CP stand for the two
extreme points of the support with a membership value of 0
and the middle one stands for the normal point of the fuzzy
set with a membership of 1.

B. Summary of Weighted T-FRI

In [7], T-FRI is extended with rules involving individual
attribute weights, which are learned from the given sparse
rule base by exploiting attribute ranking techniques. The
attribute weighting scheme is enabled by an innovative reverse
engineering procedure, which reduces the sparsity of the
given rule base by generating an artificial training decision
table. The essential idea is to reformulate all rules in the
sparse rule base into a common representation, where each
(possibly) missing value of any rule antecedent is replaced
by one of the alternative fuzzy values from its domain. All
these reformulated rules, artificial or original, are collated for
evaluation of the relative significance degrees of the individual
attributes.

In particular, the weights of the attributes are individually
measured using a certain feature ranking method (which is
implemented by modifying the feature evaluation mechanism
extracted from a given feature selection technique). It has been
shown in [7] that the underlying approach of weighted T-FRI
is robust as different types of feature selection method may be
adopted for such use without significantly affecting the level of
performance improvement over the conventional unweighted
T-FRI.

The primary motivation of introducing weights to rule an-
tecedent attributes is to minimise the adverse effect of assum-
ing all attributes having equal significance (which is typically
made in conventional FRI methods, but is often impractical).
In weighted T-FRI, individual attribute weights are integrated
with every procedure of the unweighted T-FRI algorithm,
including: the selection of the nearest neighbouring (aka. the
closest) rules, the construction of intermediate rules, and the
computation of scale and move transformation factors. Here,
the nearest rules to an unmatched observation are selected
to build the intermediate rule, based on similarity, to form
the basis upon which to perform interpolative transformations.
In implementation, all computational steps in the original T-
FRI, which involve evenly calculated average of the attribute

values, are now improved by a weighted aggregation of the
corresponding components.

Detailed computation mechanisms are however, beyond the
scope of this short paper but can be found in [7]. Note
that when all rule antecedents are assumed to be of equal
importance (i.e., all attribute weights are of the same value),
the weighted T-FRI degenerates to its original unweighted
version.

C. Outline of KH Rule Interpolation

The KH rule interpolation (named after its inventors [1])
offers an initial proposal for fuzzy interpolative reasoning
through manipulating α-cut distances. It has been subsequently
developed to address sparse rule interpolation involving mul-
tiple rules with multiple antecedent variables [8], [9].

When a given observation fails to match any rule in the
sparse rule base for firing, an interpolated consequent is
constructed basically by performing a linear aggregation of
the rule consequents of the neighbouring rules closest to
the observation. The aggregation operation complies with
the general principle of similarity-based analogical reasoning,
such that

The closer a rule’s antecedent Ai (which is a logical ag-
gregation of individual attribute values Ai

j) to the observation
o∗, the closer the rule’s consequent Bi to the outcome B∗ that
corresponds to o∗.

The similarity measure employed is specified by the use
of fuzzy distances defined between a rule antecedent and the
observation. That is, the smaller distance between Ai and o∗ is,
the more similar they are, thereby Bi is deemed to potentially
make more contribution to the consequent being sought.

Thanks to the piecewise linear property presumed by KH
interpolation, given triangular membership functions, the in-
terpolated result B∗ = (b∗1, b

∗
2, b
∗
3) can be determined with its

two α-cut (i.e., α = 0, 1), resulting in the three CPs taking
the values of

b∗t =

∑n
i=1

1√∑m
j=1 (ai

jt−a∗
jt)

2
bit∑n

i=1
1√∑m

j=1 (ai
jt−a∗

jt)
2

(1)

where n is the number of the neighbouring rules used for
interpolation, m is the number of attributes in the rule, and
t = 1, 2, 3.

D. Outline of CCL Rule Interpolation

The CCL rule interpolation (again, named after its inven-
tors [4]) offers an alternative means for fuzzy interpolative
reasoning that exploits the areas of the fuzzy sets involved
in the rules and the (unmatched) observation. The idea is to
preserve the logically consistent properties with respect to the
ratios of fuzziness, which is determined by the areas of fuzzy
sets. The core computations are summarised below in relation
to the use of triangular fuzzy membership functions.

First, the normal point b∗2 of the (to be) interpolated conse-
quent B∗ is defined by linear interpolation such that
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b∗2 =
n∑

i=1

Wib
i
2 (2)

in which n is the number of selected rules for interpolation,
and Wi is the aggregated rule weight, which is calculated by

Wi =

∑m
j=1 wij∑n

i=1

∑m
j=1 wij

, wij = 1−

∣∣∣∣∣ aij2 − a∗j2

maxaj2 −minaj2

∣∣∣∣∣
(3)

where maxaj2 and minaj2 are used for normalisation, de-
noting the maximal and minimal value within {aij2|i =
1, 2, . . . , n}.

From this, the left triangular area SL(B
∗) (i.e., the part of

the geometrical area of a triangular fuzzy set on the left hand
side of the normal point) and the right triangular area SR(B

∗),
of the fuzzy set B∗ are calculated by Eqn. (4) (see next page),
where in the subscript of SK(∗), K ∈ {L,R}.

Finally, the left and right extreme points of the support
for the interpolated result B∗ are derived from the resulting
triangular areas as follows:

b∗1 = b∗2 − 2SL(B
∗), b∗3 = b∗2 + 2SR(B

∗) (5)

III. IMPROVEMENT OF FRI WITH ATTRIBUTE WEIGHTING

In this section, the two representative unweighted FRI
methods, respectively outlined in Section II-C and II-D are
generalised by integrating the weights of rule antecedent
attributes within the underlying FRI procedures. Note that
the mechanism for learning the attribute weights AWj , j =
1, 2, . . . ,m, from the given sparse rule base remains exactly
the same as that presented in [7] and hence, is omitted here.

A. Weighted KH Rule Interpolation
The attribute weights learned from a given sparse rule

base reveal the relative significance degrees of the individual
antecedent attributes, in terms of their potential in deriving the
consequent given an observation. The main issue of embedding
such weights within an FRI method is how to adapt the original
computational mechanism of the unweighted FRI [7]. This is
in order to ensure that the individually weighted attributes
are aggregated in a way to better reflect their respective
contributions in the interpolation process of the consequent.

As the attribute weights are learned independently of the
interpolative reasoning process, all that is needed to develop
a weighted version of the KH interpolation method is to
modify its procedures that involve the use of α-cut distances by
considering the weights accordingly. This can be carried out so
that the distances are measured by taking into consideration
of the relevant significance degrees of the attributes. Thus,
the original unweighted KH interpolation can be extended
in a straightforward manner, by computing the CPs of the
interpolated consequent as per Eqn. (1) through the following
weighted calculation:

b̃∗t =

∑n
i=1

1√∑m
j=1 AWj(ai

jt−a∗
jt)

2
bit∑n

i=1
1√∑m

j=1 AWj(ai
jt−a∗

jt)
2

, t = 1, 2, 3 (6)

Note that if the assumption of attributes having equal
significance is applied, that is AWj , j = 1, 2, . . . ,m are of
the same value, the above formula degenerates to the original
version, i.e., Eqn (1). As such, this weighted KH method is a
generalised version of the original, still working as previously
in the event where no weighting scheme is applicable or
necessary.

B. Weighted CCL Rule Interpolation

The original CCL FRI procedure as per Section II-D can
be generalised in a similar manner to the above. In particular,
the attribute weights are integrated in the construction of the
normal point b∗2 and also, in the computation of the triangular
area SK(B∗) of the interpolated consequent.

In particular, the normal point b∗2 can be specified by
the weighted aggregation of rule consequents of the selected
neighbouring rules, where the rule weights Wi of Eqn. (3) are
redefined by normalising the aggregated weight of each entire
rule antecedent per rule. Note that in the original CCL method,
the aggregation of rule weights is implemented by arithmetic
average. Thus, the modified rule weight W̃i is now extended
to

W̃i =

∑m
j=1AWjwij∑n

i=1

∑m
j=1AWjwij

(7)

Intuitively, the average operation imposed over the rule
antecedents also needs to be applied to the computation
of the interpolated consequent fuzzy set. This leads to the
corresponding modification of the area of the interpolated
consequent fuzzy set, from Eqn. (4) to Eqn. (8). In this
extension, the attribute weights AWj , j = 1, 2, . . . ,m, are
different from the weighting terms wij used in the original
method which are still required to be computed in the same
way as the original. Together, they are used to construct
modified overall rule strengths. In effect, AWj adjusts wij

to better reflect the contribution of each individual antecedent
attribute in relation to its significance, towards the calculation
of the overall rule weight in deriving the consequent.

As with the weighted KH method, the above newly in-
troduced rule weight W̃i and interpolated consequent area
S̃K(B∗) also degenerate back to their original counterparts
in the unweighted version if all attribute weights are equal,
in terms of their relative significance. Indeed, in this case,
AWj = 1/m,∀j = 1, 2, . . . ,m.

IV. EXPERIMENTAL EVALUATION

This section presents a systematic experimental comparison
among the proposed weighted KH, CCL and T-FRI, against
their originals that do not involve individual attribute weights.
The comparative investigation is performed over ten bench-
mark classification problems, most of which are of multiple
class labels. The changes of classification accuracy with re-
spect to the number of nearest neighbouring rules selected
for interpolation are examined, demonstrating the efficacy of
weighted FRI algorithms.
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SK(B∗) =


(∑m

j=1 SK(A∗j )
)
×

 n∑
i=1,

∃jSK(Ai
j)>0

Wi × SK(Bi)∑m
j=1 SK(Ai

j)

 , if ∃ijSK(Ai
j) > 0

∑m
j=1 SK(A∗

j )

m , if ∀ijSK(Ai
j) = 0

(4)

S̃K(B∗) =


(∑m

j=1AWjSK(A∗j )
)
×

 n∑
i=1,

∃jSK(Ai
j)>0

AWi × SK(Bi)∑m
j=1 AWjSK(Ai

j)

 , if ∃ijSK(Ai
j) > 0

∑m
j=1AWjSK(A∗j ), if ∀ijSK(Ai

j) = 0

(8)

A. Experimental Set-up

1) Datasets: Ten benchmark classification datasets are
taken from KEEL (Knowledge Extraction based on Evolu-
tionary Learning) [10] and UCI machine learning [11] dataset
repositories, with details summarised in Table I.

TABLE I
DATASETS USED FOR CLASSIFICATION

Dataset #(Attributes) #(Classes) #(Instances)
Diabetes 8 2 768
Phoneme 5 2 5404
Magic 10 2 1902
Haberman 3 2 306
Hayes-Roth 4 3 160
Page-blocks 10 5 5472
Ecoli 7 8 336
Red Wine Quality 11 11 1599
Wireless Indoor Localisation 7 4 2000
User Knowledge Modelling 5 4 403

2) Experimental methodology: As indicated previously, the
proposed weighted KH, CCL and also T-FRI methods and their
original versions (those given in [9], [4], and [3] respectively)
adopt triangular membership functions to represent fuzzy
values. A primitive three-valued fuzzy partition (as shown in
Fig. 1) is employed after normalisation over all datasets, for
fair comparison as well as for illustrative simplicity.

Fig. 1. Membership functions defining values of antecedent attributes.

The comparative experiments are performed via 5 times
10-fold cross validation per dataset. The rule base for each
problem is learned from the training data. The classical rule
induction technique of [12] is employed to generate an initial
rule base, where 40% of the learned rules are purposefully
removed randomly, resulting in a rather sparser rule base to
better evaluate the performance of each FRI method. The
attribute weights are then derived from the resultant sparse

rule base, by the use of information gain (IG) for scoring
each individual rule antecedent. Note that only IG is employed
herein to compute attribute weights, because it has been shown
in [7] that any of the popular feature ranking methods may be
utilised to perform attribute weighting without incurring much
performance deviation.

For testing, each new observation is checked against the
rules in the rule base first, the consequent is calculated by
aggregating the outcomes of firing the matched rules. If
however, no matching is found, FRI methods are applied to
derive an interpolated consequent (only one FRI method is
applied at once of course, weighted or not).

Further to the comparative studies carried out between
weighted FRI methods and their original unweighted ones, a
series of experiments are conducted to investigate the variation
of classification accuracy in relation to the number n of
the nearest neighbouring rules selected for interpolation. For
consistency, as with the work in [7], five different cases are
compared regarding the cases where n is set to 2, 3, 4, 5, 6,
respectively (whilst it makes little sense, both computationally
and intuitively, to use any larger number of rules for interpo-
lation). Also, for fair comparison, the selection scheme for the
nearest neighbouring rules as described in [13] is employed to
determine the closest rules that are required to implement the
interpolation, across all six (three weighted and three original)
methods compared.

B. Results and Discussion

1) Effectiveness of weighted FRI: Table II shows the classi-
fication accuracies calculated by averaging the 5 times 10-fold
cross validation, for each of the six methods: three originals
and three extended methods enhanced with the weighting
scheme. The performances of weighted methods are directly
compared against those of their originals, where two nearest
neighbouring rules to the testing observation are selected for
interpolation (unless otherwise stated). The results are pre-
sented in the column of Weighted and that of Ori, respectively.

As indicated previously, a significant portion (40%) of rules
are randomly removed from the original learned rule base for
each classification problem, in order to thoroughly compare the
performance of weighted interpolation against the unweighted.
In so doing, more opportunities may be generated for those



1063-6706 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2019.2928496, IEEE
Transactions on Fuzzy Systems

5

TABLE II
AVERAGE CLASSIFICATION ACCURACIES (%) BY INTERPOLATION WITH

TWO NEAREST NEIGHBOURING RULES

Dataset FRI Sparser Rule Base Full Rule Base
Ori Weighted Ori Weighted

Diabetes
T-FRI 61.19 68.98 63.85 65.13
KH 59.07 65.11 62.37 62.87
CCL 60.92 66.83 63.91 64.61

Phoneme
T-FRI 53.89 65.85 65.51 66.18
KH 58.07 60.79 64.22 64.41
CCL 63.21 66.48 65.83 65.93

Magic
T-FRI 63.86 69.16 69.03 69.60
KH 64.39 67.17 69.37 69.71
CCL 65.71 68.43 69.51 69.74

Haberman
T-FRI 72.49 77.19 74.02 74.54
KH 69.21 73.39 72.99 73.52
CCL 70.91 74.77 73.93 74.46

Hayes-Roth
T-FRI 46.87 61.00 55.25 56.62
KH 47.75 58.00 54.87 56.75
CCL 46.37 55.75 55.50 56.75

Page-blocks
T-FRI 66.77 72.13 69.78 69.80
KH 65.18 69.93 70.13 70.15
CCL 66.71 72.07 69.76 69.76

Ecoli
T-FRI 59.52 65.96 62.50 65.86
KH 59.89 64.04 62.71 65.81
CCL 61.56 65.90 63.12 66.31

Red Wine
Quality

T-FRI 52.98 57.37 52.54 53.89
KH 52.52 53.92 52.25 53.62
CCL 52.73 53.33 52.44 53.32

Wireless
Indoor
Localization

T-FRI 76.36 79.89 79.34 80.03
KH 77.50 78.85 79.90 80.87
CCL 75.59 77.18 78.84 79.85

User
Knowledge
Modeling

T-FRI 74.85 82.54 74.97 78.24
KH 69.63 75.24 71.14 73.96
CCL 70.53 74.22 71.52 74.18

Average
T-FRI 62.87 70.01 66.68 67.99
KH 62.32 66.64 65.99 67.17
CCL 63.42 67.50 66.43 67.49

observations that find no rules to match. However, for potential
practical applications, it is also desirable to investigate how
much better the proposed methods do their job than their
originals if more rules are available. For this purpose, Table II
shows not only the comparative results obtained when the
FRI methods are applied using artificially created sparser rule
bases, but also the outcomes when they work with the entire
learned rule bases.

As reflected in this table, by comparing the two right-most
columns, not very significant improvement is gained by the
weighted FRI methods if the full rule bases are employed.
This can be expected as most new observations may match
certain rules to fire in the first place. However, when the
number of samples requiring interpolation becomes large, as
per the situation of running a sparser rule base, each of
the three weighted FRI methods significantly outperforms its
corresponding unweighted method for almost all datasets.

Table III lists the (rounded) average numbers of testing
samples that are unmatched by the sparse rule bases and
those unmatched by the original rules. Despite the fact that
there are significantly larger numbers of unmatched rules in
the cases where a sparse rule base is employed, the average
classification accuracies (across the ten datasets) obtained
using the weighted methods beat those achievable using the
full original rule bases. From the perspective of obtaining im-

proved classification accuracy rates, this clearly demonstrates
the potential of the present work.

TABLE III
AVERAGE NUMBER OF TESTING SAMPLES FOR INTERPOLATION

Dataset
Samples Requiring Samples Requiring

Interpolation in Interpolation in
Sparser Rule Base / Total Full Rule Base / Total

Diabetes 58 / 77 31 / 77
Phoneme 259 / 540 52 / 540
Magic 96 / 190 45 / 190
Haberman 10 / 31 2 / 31
Hayes-Roth 9 / 16 3 / 16
Page-blocks 207 / 547 8 / 547
Ecoli 21 / 33 15 / 33
Red Wine 144 / 160 99 / 160
Quality
Wireless Indoor 146 / 200 78 / 200
Localization
User Knowledge 28 / 40 18 / 40
Modeling

More particularly, the average improvements of the
weighted T-FRI, weighted KH and weighted CCL on all
ten datasets over the unweighted ones are measured to be
7.14%, 4.32%, and 4.08%, respectively. This is statistically
significance as verified by pairwise t-tests, which result in
low p values as listed in the third column of Table IV. Again,
these results show that the weighted FRI methods significantly
enhance the interpolative performance of the unweighted ones,
and that such superior performance is attained under the con-
dition that only two nearest neighbouring rules are employed
for interpolation.

2) Efficiency of weighted FRI: The previous work on
weighted T-FRI (see [7]) produced a surprising and very
positive result, discovering that the use of the minimum
number of nearest neighbouring rules does better for such
rule interpolation. Inspired by that discovery, this part of the
experimental investigation systematically looks into the effect
of varying the number of neighbouring rules used for inter-
polation across all three weighted methods. The investigation
is carried out for all aforementioned ten datasets, using five
different numbers of closest rules.

Note that attribute weights can also be exploited to help
modify the selection procedure for the nearest neighbouring
rules (see [7] for details). Thus, in order to thoroughly ex-
amine the implication of the weighting scheme upon both
the procedure for closest rules selection and that for rule
interpolation, the experiments on classification results are
herein purposefully designed to cover the following all four
cases, for each particular FRI approach (be it T-FRI, KH or
CCL): unweighted selection with unweighted interpolation,
unweighted selection with weighted interpolation, weighted
selection with unweighted interpolation, and weighted selec-
tion with weighted interpolation. These are denoted as Sw̄Iw̄,
Sw̄Iw, SwIw̄ and SwIw respectively. Of course, if the number
of neighbouring rules is set to two, then the first and the last
become exactly the same as those denoted by Ori and Weighted
as previously given in Table II that run on a sparse rule base.

Tables V, VI and VII (with Tables VI and VII being the
continuations of Table V due to the limit of the physical space)
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TABLE IV
P-VALUE IN STATISTICAL PAIRWISE t-TEST

Dataset FRI Ori vs. Weighted n = 2 vs. n = 3
(n = 2) (Weighted FRI)

Diabetes
T-FRI 8.50× 10−6 4.58× 10−4

KH 1.44× 10−6 0.0254
CCL 3.84× 10−6 3.16× 10−5

Phoneme
T-FRI 3.26× 10−6 1.20× 10−4

KH 6.60× 10−6 0.1156
CCL 1.29× 10−4 5.36× 10−4

Magic
T-FRI 4.02× 10−5 0.0211
KH 1.68× 10−5 0.6869
CCL 6.14× 10−7 0.0719

Haberman
T-FRI 1.77× 10−5 0.0018
KH 1.88× 10−4 0.0074
CCL 3.48× 10−5 9.40× 10−4

Hayes-Roth
T-FRI 1.66× 10−5 0.0300
KH 2.98× 10−7 0.0155
CCL 2.91× 10−5 0.1575

Page-blocks
T-FRI 1.62× 10−5 1.29× 10−4

KH 8.26× 10−5 6.82× 10−5

CCL 2.50× 10−5 7.24× 10−4

Ecoli
T-FRI 1.84× 10−6 5.96× 10−5

KH 2.80× 10−4 6.22× 10−4

CCL 5.24× 10−5 1.52× 10−4

Red Wine
Quality

T-FRI 2.03× 10−6 0.0025
KH 0.0559 0.0152
CCL 0.0423 0.2836

Wireless
Indoor
Localization

T-FRI 1.79× 10−5 0.0019
KH 9.55× 10−4 0.0089
CCL 0.0020 0.1940

User
Knowledge
Modeling

T-FRI 1.50× 10−5 2.26× 10−4

KH 0.0026 0.0075
CCL 0.0030 8.13× 10−4

present the results of this set of experiments, with the exam-
ined range of n set to {2, 3, . . . , 6}. This is partly to facilitate
direct comparison with the state-of-the-art results provided
in [7], and partly to reflect the practical consideration where
using more than six closest rules to perform interpolation is
of little intuitive appeal, both in terms of computational com-
plexity and of classification result interpretability. Over this
entire range, the accuracies obtained by the use of weighted
interpolation generally outperform those by the unweighted
for all three FRI approaches. That is in most cases, the results
achieved by Sw̄Iw are improved over Sw̄Iw̄, while SwIw does
better than SwIw̄. These improvements further demonstrate the
effectiveness of the weighted FRI methods proposed here.

Figure 2 plots the changing trend of classification accuracy
in relation to the number of neighbouring rules used. As n
goes up from the minimum (i.e., n = 2), the accuracies
drop, sometimes sharply, for all three weighted FRI methods
with the weighted interpolation supported by weighted rule
selection (i.e., SwIw). This behaviour of weighted FRI for the
Magic and Red Wine Quality datasets is slightly less obvious,
but increasing n does not help to improve the classification
performance either.

The observation that the results of SwIw with any FRI
approach when n = 2 beat those when n = 3 is further
validated by pairwise t-test in Table IV, with p values shown
in the fourth column of this table. These experimental results
indicate that the reduction of classification accuracies when the
number of the nearest neighbouring rules is increased from 2 to

TABLE V
AVERAGE CLASSIFICATION ACCURACIES (%) VS. NUMBER OF NEAREST

NEIGHBOURING RULES USED FOR DIFFERENT FRI

Dataset FRI n Sw̄Iw̄ Sw̄Iw SwIw̄ SwIw

Diabetes

T-FRI

2 61.19 66.50 63.69 68.98
3 63.64 63.77 62.44 63.09
4 65.15 67.13 63.87 66.00
5 64.68 65.41 63.12 65.02
6 65.12 66.76 64.21 65.90

KH

2 59.07 63.81 60.21 65.11
3 63.52 63.49 61.95 62.03
4 63.00 64.67 61.77 63.08
5 64.46 64.51 62.50 62.87
6 64.28 65.37 62.45 63.49

CCL

2 60.92 64.90 62.71 66.83
3 62.24 62.63 59.87 60.31
4 63.65 64.74 61.80 63.15
5 63.39 63.65 61.72 61.56
6 64.01 65.00 61.93 63.28

Phoneme

T-FRI

2 53.89 56.43 62.15 65.85
3 55.09 55.22 58.57 62.37
4 54.78 57.08 61.09 64.51
5 55.59 56.74 57.75 64.52
6 56.11 58.51 60.86 65.33

KH

2 58.07 59.53 59.21 60.79
3 59.50 59.50 59.38 59.38
4 59.58 59.78 59.47 59.42
5 59.34 59.40 59.35 59.39
6 60.03 60.12 59.91 60.19

CCL

2 63.21 64.31 65.68 66.48
3 58.84 60.82 60.59 62.33
4 63.57 64.05 64.44 64.83
5 60.22 63.27 60.81 63.79
6 63.90 65.06 64.49 65.32

Magic

T-FRI

2 63.86 67.86 65.46 69.16
3 67.79 67.97 67.53 67.95
4 67.37 68.90 67.30 68.95
5 68.91 69.02 68.28 68.90
6 68.78 69.61 68.23 69.45

KH

2 64.39 66.29 65.01 67.17
3 66.79 66.78 67.00 67.05
4 66.95 66.91 66.89 67.00
5 67.45 67.47 67.31 67.44
6 67.45 67.43 67.18 67.43

CCL

2 65.71 67.62 66.48 68.43
3 67.58 67.78 67.57 67.81
4 67.41 68.03 67.16 67.79
5 68.48 68.29 68.17 67.91
6 67.83 68.22 67.31 67.73

Haberman

T-FRI

2 72.49 74.44 75.36 77.19
3 72.94 73.39 73.53 74.56
4 74.38 74.77 74.19 74.25
5 74.32 74.83 74.12 74.71
6 74.25 74.58 74.58 74.44

KH

2 69.21 70.26 72.28 73.39
3 72.29 71.69 72.88 71.30
4 72.21 72.35 72.35 72.42
5 72.16 71.64 72.55 71.36
6 72.69 71.90 72.29 71.95

CCL

2 70.91 72.36 73.13 74.77
3 71.77 72.62 72.15 72.68
4 72.48 72.88 71.83 72.29
5 71.97 72.30 72.09 72.29
6 72.09 71.97 71.90 71.90

3 is statistically significant for almost all FRI methods across
all datasets.

Examining the results of Tables V-VII more closely, as
highlighted in bold for each of the ten datasets, the best
performance of each FRI across the four implementations
(namely, Sw̄Iw̄, Sw̄Iw, SwIw̄, and SwIw) over the entire range
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Fig. 2. Accuracy variation with number of neighbouring rules.

of n studied, is generally achieved using SwIw with n = 2.
However, for the conventional Sw̄Iw̄ FRI methods where no
weighting scheme is employed, the accuracy increases with
n. This forms a sharp contract between the weighted and
unweighted approaches.

There are exceptional cases to observe. Particularly, the
results show that the Sw̄Iw FRI method can do better than
the rest if a large number (e.g., n = 5 or n = 6) of
rules are used. Such situations occur mostly when the KH
weighted interpolation method is employed with rules taken by
unweighted selection. Nonetheless, the interpolation procedure
is still weighted in these cases; this again demonstrates the
effectiveness of weighting upon rule antecedent attributes. Be-
sides, there is little win of Sw̄Iw over SwIw. Yet, such minor
win is obtained at the expense of much more computational
overheads as more rules are involved in the interpolation pro-
cedure, as shown below. This finding is of great importance in
practical application of FRI since it empirically confirms that
weighted FRI methods only require two (i.e., the least number
of) nearest neighbouring rules to perform rule interpolation,
significantly enhancing the algorithm efficiency.

3) Further analysis – Confusion matrix: The analysis of
the confusion matrices has also been conducted for each of
the three weighted FRI methods regarding the use of two or
three nearest neighbouring rules. To save space, Tables VIII-X
present the outcomes for the Diabetes dataset as an example
case study, since the general trends for the others are similar.
The comparison in each of these tables helps explain why
the overall classification accuracy may dramatically decrease
as n increases from 2 to 3. As reflected by these results,
the adverse variation of the overall accuracy when n = 3
appears to be caused by the significant increase of false
positives and the considerable reduction of true negatives. Of
course, such situations must be minimised in any realistic
application, especially for instance in medical diagnosis as is
indeed the case concerning this dataset. Both increase in false
positives and reduction in true negatives will usually cause
undue anxiety of the patient, and in worse scenarios, may
even cause missing the correct diagnosis of other disease(s)
that the patient may be suffering from the given symptoms.

4) Further analysis – Run time: Results so far have demon-
strated that weighted FRI methods (that involve additional
computation in both rule selection and rule interpolation
procedures) generally outperform their originals. However, a
question may be raised as to how much extra computation
effort is required to attain such improved performance, despite
the recognition that learning the weights themselves is an
offline task. This final experimental study therefore, addresses
the natural concern regarding the run time performance of the
weighted methods.

Table XI lists the average testing times recorded for all three
weighted FRI methods (i.e., in the form of SwIw) and their
originals (namely, Sw̄Iw̄), when dealing with the final five
problems given in Table I. The tests are carried out in relation
to the increase of the number of the nearest neighbouring
rules employed. Note that these five cases are selected because
they each involve more classes and hence, are more difficult
to classify (whilst saving the space otherwise required to
present similar results for the other five). As expected, there
is indeed an increase in time consumption when exploiting
more nearest neighbouring rules for all FRI methods (weighted
or not). The use of fewer rules will thus be more efficient.
However, as can be seen from this table, there is no significant
increase in the time cost by a weighted FRI as compared
to that by its original where no weights are involved, while
using the same number of rules for interpolation. This once
again demonstrates the efficacy of the proposed weighted FRI
techniques and supports the outcome that least neighbouring
rules do better with attribute weighted FRI.

V. CONCLUSION

This short paper has further developed the state-of-the-art
work on fuzzy rule interpolation (FRI) [7], by extending the
weighted transformation-based FRI to two other classical FRI
methods, namely the KH [1] and CCL [4] algorithms. The
work introduces weights into rule antecedent attributes within
these FRI procedures. The extensions have been systematically
evaluated on ten benchmark classification problems, demon-
strating the superior performance of these extended methods
over their originals. Very importantly, as illustrated by the
experimental analysis, the weighted FRI methods only require
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TABLE VI
AVERAGE CLASSIFICATION ACCURACIES (%) VS. NUMBER OF NEAREST

NEIGHBOURING RULES USED FOR DIFFERENT FRI (CONTINUED)

Dataset FRI n Sw̄Iw̄ Sw̄Iw SwIw̄ SwIw

Hayes-Roth

T-FRI

2 46.87 47.00 60.37 61.00
3 48.75 48.75 55.75 56.37
4 50.50 50.50 53.99 53.37
5 52.50 52.37 55.75 55.87
6 51.87 52.37 54.75 54.87

KH

2 47.75 48.50 57.12 58.00
3 49.75 49.62 52.37 51.62
4 51.37 52.00 51.87 52.12
5 51.00 51.37 51.87 52.50
6 51.12 51.12 51.50 51.50

CCL

2 46.37 47.12 55.25 55.75
3 48.25 49.00 51.87 53.25
4 50.62 50.37 53.00 52.24
5 52.37 51.62 53.00 52.37
6 50.87 51.12 51.50 51.87

Page-blocks

T-FRI

2 66.77 66.76 72.12 72.13
3 60.54 59.26 61.25 60.23
4 65.45 65.37 64.99 64.91
5 66.81 65.66 66.57 65.49
6 64.97 64.28 64.39 63.85

KH

2 65.18 65.12 69.86 69.93
3 57.83 57.83 58.22 58.23
4 59.39 58.02 59.11 57.82
5 60.30 60.14 60.11 59.93
6 59.44 58.83 59.00 58.58

CCL

2 66.71 66.68 72.03 72.07
3 74.67 63.77 74.63 64.63
4 71.80 66.05 72.27 65.92
5 68.08 65.86 68.31 65.86
6 70.02 65.06 69.12 64.71

Ecoli

T-FRI

2 59.52 61.38 64.34 65.96
3 56.56 56.50 55.77 55.71
4 52.87 52.51 52.15 51.85
5 49.04 48.93 48.99 49.11
6 47.38 47.85 46.06 46.24

KH

2 59.89 59.82 63.92 64.04
3 56.50 56.50 55.77 55.77
4 53.40 53.11 52.09 51.97
5 49.52 49.53 49.17 49.12
6 48.44 48.50 47.07 47.08

CCL

2 61.56 61.68 65.60 65.90
3 56.50 56.50 55.71 55.77
4 52.87 52.81 52.34 52.46
5 49.10 49.22 49.17 49.29
6 47.37 47.37 46.06 46.07

Red Wine
Quality

T-FRI

2 52.98 55.64 54.55 57.37
3 53.29 53.28 53.17 53.14
4 53.23 54.24 53.27 54.11
5 53.33 53.39 52.69 52.85
6 53.68 54.19 53.10 53.42

KH

2 52.52 52.83 53.22 53.92
3 53.26 53.23 53.14 53.07
4 53.43 53.84 53.48 53.78
5 53.29 53.29 52.68 52.62
6 53.81 54.13 53.29 53.28

CCL

2 52.73 52.74 53.24 53.33
3 52.62 53.14 52.14 52.89
4 53.56 53.14 53.37 52.99
5 53.84 54.54 53.29 53.68
6 53.87 53.87 52.95 52.55

the least number (i.e., 2) of the nearest neighbouring rules
to perform interpolation, thereby ensuring their efficacy in
practical applications.

Such improved performances of the extended methods are
attainable owing to the use of the relative significance degrees,
or weights, of the individual rule antecedents to guide the

TABLE VII
AVERAGE CLASSIFICATION ACCURACIES (%) VS. NUMBER OF NEAREST

NEIGHBOURING RULES USED FOR DIFFERENT FRI (CONTINUED)

Dataset FRI n Sw̄Iw̄ Sw̄Iw SwIw̄ SwIw

Wireless
Indoor
Localisation

T-FRI

2 76.36 78.32 77.94 79.89
3 77.22 77.22 76.93 76.93
4 75.12 75.45 74.56 74.91
5 74.41 74.50 73.92 74.02
6 76.47 77.00 75.92 76.44

KH

2 77.50 78.02 78.37 78.85
3 77.22 77.22 76.93 76.94
4 75.50 75.89 75.03 75.25
5 74.52 75.10 74.06 74.79
6 79.33 79.62 79.06 79.06

CCL

2 75.59 76.24 76.12 77.18
3 76.82 76.95 76.53 76.89
4 75.37 76.12 74.66 75.58
5 76.36 77.12 75.89 76.82
6 76.11 76.33 75.47 75.76

User
Knowledge
Modeling

T-FRI

2 74.85 78.91 77.03 82.54
3 74.44 75.54 63.84 69.55
4 76.18 78.91 66.17 69.15
5 76.29 79.16 61.55 68.50
6 77.92 79.95 61.10 66.85

KH

2 69.63 71.51 72.68 75.24
3 74.69 74.69 64.89 68.21
4 74.05 74.39 65.73 69.05
5 76.09 76.68 62.94 68.01
6 75.78 76.02 62.04 66.90

CCL

2 70.53 69.73 70.64 74.22
3 73.64 71.91 63.84 66.02
4 73.99 72.05 63.19 66.65
5 74.80 74.34 60.60 66.06
6 75.64 74.54 59.50 64.42

TABLE VIII
CONFUSION MATRIX OF WEIGHTED T-FRI WITH n = 2 AND n = 3

NEAREST NEIGHBOURING RULES

Classified (n = 2) Classified (n = 3)
Positive Negative Positive Negative

Actual Positive 23.12% 11.76% 21.09% 13.79%
Negative 19.26% 45.82% 24.34% 40.75%

TABLE IX
CONFUSION MATRIX OF WEIGHTED KH WITH n = 2 AND n = 3

NEAREST NEIGHBOURING RULES

Classified (n = 2) Classified (n = 3)
Positive Negative Positive Negative

Actual Positive 20.70% 14.19% 19.99% 14.89%
Negative 20.74% 44.34% 23.57% 41.51%

TABLE X
CONFUSION MATRIX OF WEIGHTED CCL WITH n = 2 AND n = 3

NEAREST NEIGHBOURING RULES

Classified (n = 2) Classified (n = 3)
Positive Negative Positive Negative

Actual Positive 18.14% 16.73% 18.92% 15.95%
Negative 16.49% 48.60% 23.65% 41.44%

selection of the nearest neighbouring rules for interpolation.
These weights are derived from ranking attributes using the
given sparse rule base only, and the weighting scheme has
proven to be effective [7]. The interpolation processes are
modified by the weights as well, thereby reflecting different
contributions made by different attributes in deriving the inter-
polated consequents. This differs from the existing approaches
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TABLE XI
AVERAGE TESTING TIME (SEC) VS. NUMBER OF NEAREST NEIGHBOURING RULES

Dataset Methods Number of Closest Rules (n)
2 3 4 5 6

Page-blocks

T-FRI Sw̄Iw̄ 0.1881 0.1930 0.1953 0.2013 0.2049
SwIw 0.1876 0.1924 0.1961 0.2045 0.2063

KH Sw̄Iw̄ 0.1794 0.1813 0.1915 0.1940 0.1971
SwIw 0.1829 0.1839 0.1910 0.1941 0.1972

CCL Sw̄Iw̄ 0.1789 0.1784 0.1833 0.1881 0.1887
SwIw 0.1814 0.1813 0.1854 0.1922 0.1925

Ecoli

T-FRI Sw̄Iw̄ 0.0165 0.0203 0.0192 0.0207 0.0206
SwIw 0.0162 0.0199 0.0192 0.0217 0.0207

KH Sw̄Iw̄ 0.0166 0.0200 0.0175 0.0201 0.0198
SwIw 0.0164 0.0197 0.0177 0.0199 0.0184

CCL Sw̄Iw̄ 0.0181 0.0182 0.0188 0.0209 0.0199
SwIw 0.0184 0.0198 0.0184 0.0213 0.0201

Red Wine
Quality

T-FRI Sw̄Iw̄ 0.1673 0.1735 0.1733 0.1782 0.1819
SwIw 0.1649 0.1722 0.1729 0.1773 0.1799

KH Sw̄Iw̄ 0.1687 0.1695 0.1736 0.1754 0.1784
SwIw 0.1692 0.1713 0.1753 0.1747 0.1777

CCL Sw̄Iw̄ 0.1609 0.1612 0.1632 0.1647 0.1684
SwIw 0.1625 0.1625 0.1634 0.1685 0.1688

Wireless
Indoor
Localization

T-FRI Sw̄Iw̄ 0.1594 0.1704 0.1694 0.1775 0.1735
SwIw 0.1592 0.1723 0.1709 0.1788 0.1742

KH Sw̄Iw̄ 0.1695 0.1692 0.1706 0.1755 0.1741
SwIw 0.1660 0.1695 0.1682 0.1762 0.1723

CCL Sw̄Iw̄ 0.1639 0.1629 0.1610 0.1655 0.1668
SwIw 0.1643 0.1640 0.1639 0.1699 0.1691

User
Knowledge
Modeling

T-FRI Sw̄Iw̄ 0.0265 0.0351 0.0300 0.0323 0.0309
SwIw 0.0264 0.0346 0.0301 0.0338 0.0313

KH Sw̄Iw̄ 0.0268 0.0305 0.0294 0.0322 0.0301
SwIw 0.0268 0.0304 0.0292 0.0319 0.0302

CCL Sw̄Iw̄ 0.0256 0.0312 0.0284 0.0306 0.0289
SwIw 0.0256 0.0317 0.0281 0.0309 0.0292

where all attributes are treated equally.
The conjecture that “least number of neighbouring rules do

better with weighted FRI” has been demonstrated with sub-
stantial and consistent empirical results. It would be beneficial
to further verify this notion through theoretical analysis also.
This forms an important next step to reinforce the current
research. Also, the experimental investigations carried out have
not used any sophisticated representation means for fuzzy
values, nor any complicated fuzzy rule generation mechanism.
However, any optimisation of these aspects will help further
improve the classification accuracy. This is omitted herein,
as what has been concerned with is the relative performance
given common settings for the running of both the extended
and their original methods. Naturally, it would be interesting
to examine how the extensions may perform with optimised
fuzzy quantities and rules. In addition, it would be useful to ap-
ply the resultant weighted interpolative inference mechanisms
to real-world problems, such as medical risk analysis [14] and
serious crime investigation [15] where only sparse knowledge
is available.
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