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A generalization of the Choquet integral defined in
terms of the Möbius transform
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and Andrea Stupňanová

Abstract—In this work we propose a generalization of the
Choquet integral starting from its definition in terms of the
Möbius transform. We modify the product on R considered in the
Lovász extension form of the Choquet integral into a function
F , and we discuss the properties of this new functional. For
a fixed n, a complete description of all F yielding an n-ary
aggregation function with a fixed diagonal section, independently
of the considered fuzzy measure, is given, and several particular
examples are presented. Finally, all functions F yielding an
aggregation function, independently of the number n of inputs
and of the considered fuzzy measure, are characterized, and
related aggregation functions are shown to be just the Choquet
integrals over the distorted inputs.

Index Terms—Aggregation function, Fuzzy measure, Choquet
integral, Möbius transform.

I. INTRODUCTION

In recent years there has been a growing interest in the
developing of generalized forms of the Choquet integral, due
to its flexibility in many different applications. Most of these
generalizations are based on considering the usual expression
of the Choquet integral in terms of a sum of products, and
replacing the product by more general functions. The resulting
operators are quite different from the usual Choquet integral
(for instance, they do not need to be aggregation functions any
more) but have provided good results in different applications.

In this sense, it seems logical to explore further this
approach by considering other possible expressions of the
Choquet integral. The objective of this work is to propose
a new family of fuzzy measure-based aggregation function,
arising from the expression of the Choquet integral in terms
of the Möbius transform of the fuzzy measure which it is
based on. As this new class of functions covers the class of
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standard Choquet integrals, it is reasonable to expect that the
behaviour of these functions on those problems where Choquet
integrals work well will also be good. In fact, we intend to
develop an analysis of some applications in our future works.
In particular, as the Möbius transform of a given fuzzy measure
may include negative values, this generalization is appropriate
to be used in those cases where the use of negative values
may be considered as natural, as it is the case, for instance,
of neural networks (where negative weights are relevant to
represent inhibitory behaviour).

The structure of this paper is as follows. In the next section,
some necessary preliminaries are given. Section 3 brings
our main results and it deals with a generalization of the
Choquet integral based on the Möbius transform of fuzzy
measures. Section 4 contains results concerning the function F
generalizing the standard product and yielding an aggregation
function with a fixed diagonal section, independently of the
considered fuzzy measure. Finally, some concluding remarks
are given.

II. PRELIMINARIES

In what follows, we denote N = {1, . . . , n} for a positive
integer n.

Definition 2.1 ([1]): A function H : [0, 1]n → [0, 1] is
said to be an aggregation function whenever the following
conditions hold:

(A1) H is increasing1 in each argument: for each i ∈
N , if xi ≤ y, then H(x1, . . . , xi, . . . , xn) ≤
H(x1, . . . , xi−1, y, xi+1, . . . , xn);

(A2) H satisfies the boundary conditions: H(0, . . . , 0) =
0 and H(1, . . . , 1) = 1.

Formally, unary aggregation functions are just functions
H : [0, 1] → [0, 1] which are increasing and satisfy H(0) =
0, H(1) = 1. The class of all n-ary aggregations functions
will be denoted by A(n).

The concept of fuzzy measure [2], [3] is important for
defining the Choquet integral. Fuzzy measures capture the
relationship among the aggregated elements.

Definition 2.2: A function µ : 2N → [0, 1] is said to be a
fuzzy measure, if the following conditions hold:

(M1) Increasingness: if A ⊆ B ⊆ N , then µ(A) ≤ µ(B);
(M2) Boundary conditions: µ(∅) = 0 and µ(N) = 1.

The class of all fuzzy measures on 2N will be denoted by
M(n).

1By an increasing (decreasing) function we do not mean a strictly increasing
(decreasing) function.
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The Choquet integral generalizes the Lebesgue integral,
which is defined considering additive measures. The Choquet
integral, however, considers fuzzy measures. The discrete
Choquet integral [2] is defined on finite spaces as follows.

Definition 2.3 ([1], [4]): Let µ : 2N → [0, 1] be a fuzzy
measure. The discrete Choquet integral is the function
Chµ : [0, 1]

n → [0, 1], defined, for all x = (x1, . . . , xn) ∈
[0, 1]n, by:

Chµ(x) =

n∑
i=1

(
x(i) − x(i−1)

)
· µ
(
A(i)

)
, (1)

where
(
x(1), . . . , x(n)

)
is an increasing permutation on the

input n-tuple x, i.e., 0 ≤ x(1) ≤ . . . ≤ x(n), where
x(0) = 0 and A(i) = {(i), . . . , (n)} is the subset of indices
corresponding to the n− i+ 1 largest components of x.
Formula (1) was generalized in several recent works replacing
the product by some appropriate bivariate function F , see [5].
As another example, considering a copula C, CC-integrals
were introduced in [6]. Observe that if C = Min, then the
Sugeno integral [7] is recovered.

The Choquet integral is an idempotent aggregation function,
i.e., Chµ(x, . . . , x) = x for all x ∈ [0, 1]. A concept closely
related to the notion of Choquet integral is that of Möbius
transform, that we recall now and which is at the core of the
present work.

Definition 2.4: Let µ : 2N → [0, 1] be a fuzzy measure. The
Möbius transform of µ is a function M : 2N → R given by

M(A) =
∑
B⊆A

(−1)|A\B|µ(B) (2)

for every A ⊆ N , where |A| denotes the cardinality of the set
A.

Möbius transform provides a different representation for a
fuzzy measure µ. Furthermore, it is invertible by means of the
so-called Zeta transform, that we recall now.

Proposition 2.1: Let µ : 2N → [0, 1] be a fuzzy measure
and let M be its Möbius transform. Then, it holds

µ(A) =
∑
B⊆A

M(B)

for every A ⊆ N .
Taking into account Proposition 2.1, the Choquet integral can
alternatively be written as follows.

Proposition 2.2: Let µ : 2N → [0, 1] be a fuzzy measure.
Then it holds

Chµ(x) =
∑
∅6=B⊆N

M(B)min
i∈B
{xi} (3)

for any x = (x1, . . . , xn) ∈ [0, 1]n.
Remark 2.3: Note that for the Möbius transformM of any

fuzzy measure µ ∈ M(n) it holds that M(∅) = 0, so we are
not loosing any relevant information by omitting this summand
in (3).

Remark 2.4: Formula (3) is known from the game theory
as the Lovász extension [8]. Indeed, the aggregation function
Chµ monotonically extends the fuzzy measure µ in the sense
that Chµ(1A) = µ(A), for any set A ⊆ N , where 1A : N →
{0, 1} is the characteristic function of A, i.e., (1A)(i) = 1 if
i ∈ A and (1A)(i) = 0 otherwise.

III. A GENERALIZATION OF THE CHOQUET INTEGRAL
EXPRESSED IN TERMS OF THE MÖBIUS TRANSFORM

In this section, we consider a possible generalization of the
formula (3) replacing the product by more general functions,
similarly as it was done with the expression (1) in [9], [5].
To obtain this generalization, we replace the product by more
general functions with some kind of regularity. In particular,
we propose the following definition.

Definition 3.1: Let n ≥ 1, µ ∈M(n) andM be the Möbius
transform of µ. Let F : R× [0, 1]→ R be a function bounded
on [0, 1]

2. We define the function IFµ : [0, 1]n → R as

IFµ (x) =
∑
∅6=B⊆N

F (M(B),min
i∈B
{xi}). (4)

Example 3.1: Taking F (u, v) = uv we recover the standard
Choquet integral.

Example 3.2: Let f : [0, 1] → [0, 1] be an increasing func-
tion. Taking F (u, v) = uf(v) we get:

IFµ (x) = Chµ(f(x1), . . . , f(xn)).

Note that IFµ is an n-ary aggregation function if and only if
f is a unary aggregation function.

In general, taking two different functions F1, F2 and a fuzzy
measure µ ∈ M(n), the corresponding functions IF1

µ , IF2
µ

need not necessarily be different, as the following proposition
illustrates.

Proposition 3.1: Let F : R × [0, 1] → R be a function
bounded on [0, 1]

2 and c ∈ R. Let Fc : R × [0, 1] → R be
a function defined by

Fc(x, y) = F (x, y) + c(x− 1

2n − 1
).

Then, for any µ ∈M(n), it holds

IFµ (x) = IFcµ (x)

for all x ∈ [0, 1]
n.

Proof : Since
∑

∅6=B⊆N
c

(
M(B)− 1

2n − 1

)
= 0, the result

follows. �

Remark 3.2: Due to the Proposition 3.1, one can consider
F (0, 0) = 0 with no loss of generality.

As it can easily be seen, considering a general function
F : R × [0, 1] → R, IFµ need not be an aggregation function.
We are interested in just those functions F yielding an
aggregation function IFµ for all fuzzy measures µ ∈M(n).

Definition 3.2: Let n ≥ 1. The class Fn is defined as

Fn = {F : R× [0, 1]→ R | IFµ ∈ A(n)

for any µ ∈M(n)}.

The class F is defined as

F =
⋂
n≥1

Fn .

Clearly, the class F is not empty, since the function F (u, v) =
uv belongs there. Note that in Def. 3.1 we have required F
to be bounded on [0, 1]2. If F is not bounded, then we can
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find a fuzzy measure µ such that IFµ does not belong to the
corresponding class A(n).

Remark 3.3: Take n = 1. There exists only one fuzzy
measure µ ∈M(1) given by µ(∅) = 0 and µ({1}) = 1. So in
this case, we have

IFµ (x) = F (1, x)

for every x ∈ [0, 1]. This means that

F1 = {F : R× [0, 1]→ R | F (1, 0) = 0, F (1, 1) = 1,

F (1, x) is increasing w.r.t. x}.

Note that F ∈ F1 if and only if F (1, .) is an unary aggregation
function. Obviously, for F ∈ F1 the values of F (u, v) for
u 6= 1 are irrelevant, since the only non-empty subset of {1}
is just {1}, and µ({1}) =M({1}) = 1.

Proposition 3.4: For any n ≥ 1, the class Fn is convex.
Proof : Take F1, F2 ∈ Fn and λ ∈ [0, 1]. Let F0 = λF1+(1−
λ)F2 be a convex combination of F1 and F2 and µ ∈M(n).
Then

IF0
µ (x) = λIF1

µ (x) + (1− λ)IF2
µ (x)

Since F1, F2 ∈ Fn, both IF1
µ and IF2

µ are aggregation
functions. Taking into account that a convex combination of
aggregation functions is an aggregation function, the result
follows. �

Since the intersection of convex classes is convex, we have
the following observation.

Corollary 3.5: The class F is convex.
Example 3.3: Given n ≥ 1, consider the function Fn : R×

[0, 1]→ R given by

Fn(u, v) =
v

2n − 1
.

Then, for any fuzzy measure µ ∈M(n) we obtain

IFnµ (x)

=
1

2n − 1
(2n−1xσ(1) + 2n−2xσ(2) + · · ·+ 2xσ(n−1) + xσ(n)),

which is independent of µ, thus we can write IFnµ = IFn .
Note that IFn is a particular OWA operator, and hence it is
an aggregation function, so, for any n ≥ 1, Fn ∈ Fn.

Clearly, if n 6= m, then Fn /∈ Fm. Hence, for any n ≥ 2,
Fn /∈ F . Observe that IFn = Chµn , where µn : 2N → [0, 1]
is a symmetric fuzzy measure given by

µn(E) =
2|E| − 1

2n − 1
, E ⊆ N.

Example 3.4: According to Corollary 3.5, for any λ ∈ [0, 1]
also the function Gn : R× [0, 1]→ R given by

Gn(u, v) = λuv +
(1− λ)v
2n − 1

belongs to Fn for any n ≥ 2 and we have

IGnµ = λChµ + (1− λ)IFn .

If µ is a symmetric fuzzy measure, then IGnµ is an OWA
operator.

IV. IFµ WITH A FIXED DIAGONAL SECTION INDEPENDENT
OF FUZZY MEASURE

It turns out that a complete characterization of the class Fn
for n ≥ 2 is a difficult problem. However, in this section we
give a characterization of the subclass of Fn consisting of all
functions F yielding IFµ with the same diagonal section for
all fuzzy measures µ ∈M(n).

Recall that for any n ∈ N and n-ary aggregation function
H : [0, 1]

n → [0, 1], the related diagonal section δH : [0, 1]→
[0, 1] given by

δH(x) = H(x, . . . , x)

is a unary aggregation function, i.e., δ ∈ A(1). Vice versa,
for any δ ∈ A(1) and n ∈ N, there is an n-ary aggregation
function H so that δ = δH . As a typical example, one can
consider H(x1, . . . , xn) = 1

n

∑n
i=1 δ(xi). Similarly, for any

fuzzy measure µ ∈ M(n), H given by H(x1, . . . , xn) =
Chµ(δ(x1), . . . , δ(xn)) satisfies δH = δ as Chµ is an idem-
potent aggregation function. As another example, modifying
Example 3.3, for n ∈ N one can consider H : [0, 1]

n → [0, 1]
given, for any fuzzy measure µ ∈M(n), as

H(x) = I
Fn,δ
µ (x),

where Fn,δ(u, v) =
δ(v)
2n−1 . Obviously, δH = δ, and Fn,δ ∈ Fn.

Definition 4.1: Let n ≥ 1 and δ ∈ A(1). The class Fn,δ is
defined as

Fn,δ = {F : R× [0, 1]→ R | IFµ ∈ A(n), δIFµ = δ

for any µ ∈M(n)}.

The class Fδ is defined as

Fδ =
⋂
n≥1

Fn,δ.

Observe that Fn,δ ⊂ Fn for any δ ∈ A(1) and n ∈ N, so
Fδ ⊂ F . Moreover,

F1,δ = {F |F (1, v) = δ(v)}

and ⋃
δ∈A(1)

F1,δ = F1.

We will start with characterization of the class Fn,id of all
functions F generating idempotent aggregation functions IFµ
for all µ ∈M(n), i.e.,

Fn,id = {F : R× [0, 1]→ R | IFµ ∈ A(n), δIFµ = id

for any µ ∈M(n)}.

Denote Rn the range of Möbius transforms of all possible
fuzzy measures on N = {1, . . . , n}. Recall that R2 =
[−1, 1],R3 = [−2, 1], etc.

Theorem 4.1: Let n ≥ 2. Then the following are equivalent.
(i) F ∈ Fn,id.

(ii) There is a function h : [0, 1] → R, such that, for any
(x, y) ∈ [0, 1]

2
, with x < y, it holds

− y − x
2n − 2

≤ h(y)− h(x) ≤ y − x, (5)

and, for all (u, v) ∈ Rn × [0, 1], it holds
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F (u, v) = uh(v) +
v − h(v)
2n − 1

. (6)

Proof :
(i)⇒ (ii): Let F ∈ Fn,id and µ ∈M(n) be the fuzzy measure
such that µ(N) = 1, µ(N \{n}) = a and µ(N \{n−1}) = b
for some a, b ∈ [0, 1] and vanishing otherwise. Due to the
idempotency of IFµ , we have

x = IFµ (x, . . . , x)

= F (a, x) + F (b, x) + F (1− a− b, x) + (2n − 4)F (0, x),

for all x ∈ [0, 1].
For a fixed x ∈ [0, 1], denote F (u, x) = f(u), u ∈ [−1, 1].
Then f : [−1, 1]→ R satisfies

f(a) + f(b) + f(1− a− b) + (2n − 4)f(0) = x, (7)

for any a, b ∈ [0, 1]. Thus, for any a, b ∈ [0, 1] we have

f(a) + f(1− a) + (2n − 3)f(0) = x,

f(a) + f(1− b) + f(b− a) + (2n − 4)f(0) = x,

hence,

f(1− a) + f(0) = f(1− b) + f(b− a).

Denote s = 1− a, t = 1− b. Clearly, s, t ∈ [0, 1] and

f(s) + f(0) = f(t) + f(s− t). (8)

Let g = f − f(0). Then (8) can be rewritten as

g(s) = g(t) + g(s− t), (9)

for any s, t ∈ [0, 1]. Obviously, if s = t = 0, we have g(0) =
2g(0), i.e., g(0) = 0. Similarly, taking s = 0, we get 0 =
g(t) + g(−t), i.e., g is an odd function. Considering s ≥ t,
s− t = u, we obtain the Cauchy equation g(t+ u) = g(t) +
g(u) for all t, u ∈ [0, 1] such that u + t ∈ [0, 1]. Due to
the boundedness of F on [0, 1]

2, also g is bounded, therefore
g(t) = c · t for some constant c (for the proof see, e.g., [10]).
Consequently,

f(t) = c · t+ f(0). (10)

For a = b = 1
3 , formulae (7) and (10) give

x = 3 · f
(
1

3

)
+ (2n − 4)f(0) = c+ (2n − 1)f(0),

thus f(0) = x−c
2n−1 . Finally, denoting c = h(x), we obtain

F (u, x) = f(u) = u · h(x) + x− h(x)
2n − 1

,

for any x ∈ [0, 1] and u ∈ [−1, 1] = R2. We will show
the validity of (6) for all u ∈ Rn by induction. Suppose that
formula (6) holds for all u ∈ Rn−1. Observe that for any fuzzy
measure µ ∈M(n) and A ( N it holdsM(A) ∈ Rn−1. Then,
for any u ∈ Rn \ Rn−1, there is a fuzzy measure µ̃ ∈M(n)

such that for the corresponding Möbius transformM(N) = u.
Hence,

x = IFµ̃ (x, . . . , x)

= F (u, x) +
∑
∅6=A(N

(
M(A)h(x) +

x− h(x)
2n − 1

)
= F (u, x) + (1− u)h(x) + (2n − 2)

x− h(x)
2n − 1

,

which implies

F (u, x) = uh(x) +
x− h(x)
2n − 1

for all u ∈ Rn.
For proving conditions given by (5), consider

(x1, . . . , xn) ∈ [0, 1]
n such that x1 < x2 < · · · < xn.

Due to the monotonicity of IFµ it holds

IFµ (x2, x2, x3, . . . , xn) ≥ IFµ (x1, x2, x3, . . . , xn),

and hence, we obtain∑
1∈A

F (M(A), x2) ≥
∑
1∈A

F (M(A), x1).

Using (6) we get

h(x2)
∑
1∈A
M(A) + 2n−1

x2 − h(x2)
2n − 1

≥ h(x1)
∑
1∈A
M(A) + 2n−1

x1 − h(x1)
2n − 1

.

Taking the maximal fuzzy measure µ∗ defining by µ∗(A) = 1
for all ∅ 6= A ⊆ N and µ∗(∅) = 0 we have

∑
1∈AM(A) = 0

and therefore

h(x2)− h(x1) ≤ x2 − x1.

Similarly, whence

IFµ (x1, . . . , xn−1, xn) ≥ IFµ (x1, . . . xn−1, xn−1),

we have

F (M({n}), xn) ≥ F (M({n}), xn−1).

Thus, using (6)

M({n})h(xn) +
xn − h(xn)

2n − 1

≥ M({n})h(xn−1) +
xn−1 − h(xn−1)

2n − 1
.

Taking µ ∈M(n) such that µ({n}) =M({n}) = 1, we get

−xn − xn−1
2n − 2

≤ h(xn)− h(xn−1).

Summarizing, we obtain formula (5).
(ii) ⇒ (i): Applying (6), we see that, for any µ ∈ M(n), it
holds

IFµ (x, . . . , x) = h(x)
∑
∅6=A⊆N

M(A)+(2n−1)·x− h(x)
2n − 1

= x,

i.e., IFµ is an idempotent function. We will show just the
monotonicity of IFµ in the first variable, the monotonicity in
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the other variables can be shown similarly. For the sake of
simplicity, consider (x1, . . . , xn) ∈ [0, 1]

n and ε > 0 such
that x1 < x1 + ε < x2 < · · · < xn. Then

IFµ (x1 + ε, x2, . . . , xn)− IFµ (x1, x2, . . . , xn)

= (h(x1 + ε)− h(x1))
∑

1∈A⊆N

M(A)

− 2n−1
(
x1 + ε− h(x1 + ε)

2n − 1
− x1 − h(x1)

2n − 1

)

= (h(x1 + ε)− h(x1))

 ∑
1∈A⊆N

M(A)− 2n−1

2n − 1

+
2n−1

2n − 1
ε.

Using (5) we have (h(x+ ε)− h(x)) ∈
[
− 1

2n−2ε, ε
]
.

Moreover, since∑
1∈A⊆N

M(A) =
∑
∅6=A⊆N

M(A)−
∑

1/∈A⊆N

M(A)

= 1−
∑

1/∈A⊆N

M(A)

∈ [0, n− 1] ,

we have∑
1∈A⊆N

M(A)− 2n−1

2n − 1
∈
[
− 2n−1

2n − 1
,− 2n−1

2n − 1
+ n− 1

]
and thus

IFµ (x1 + ε, x2, . . . , xn)− IFµ (x1, x2, . . . , xn) ∈ [0, ε] ,

i.e., IFµ (x1 + ε, x2, . . . , xn) ≥ IFµ (x1, x2, . . . , xn). As this
claim holds for any µ ∈M(n), it follows that F ∈ Fn,id. Note
that, as a by-product, we have also proved 1-Lipschitzianity
of IFµ . �

Remark 4.2: Note that, requiring the increasingness of IFµ
just along the direction defined by one of the vectors of the
canonical basis, the proof of Theorem 4.1 remains valid and
hence we recover a pre-aggregation function. This can be of
interest for a future work.

Remark 4.3: Let c ∈ R, h : [0, 1] → R be a function
fullfiling (5). Taking functions F and Fc generated via (6)
by h and hc = h+ c, respectively, we obtain

Fc(u, v) = F (u, v) + c(u− 1

2n − 1
).

Then, according to Proposition 3.1, we have IFcµ = IFµ . It
means that, for all c ∈ R, corresponding functions hc yield
the same function IFµ . Hence, among all functions hc yielding
via (6) the same aggregation function IFµ , we can choose a
function hc0 satisfying hc0(0) = 0. Note that in this case, the
range of hc0 is a subset of

[
− 1

2n−2 , 1
]
.

The following two corollaries are easy consequences of
Theorem 4.1.

Corollary 4.4: The set Fid is a singleton, Fid =
{F |F (u, v) = uv} and then, for any n ∈ N and a fuzzy
measure µ ∈M(n), IFµ = Chµ.
Note that the function h considered in Theorem 4.1 need not
be increasing, in general.

Corollary 4.5: Let h : [0, 1] → [0, 1], h(0) = 0 be an
increasing 1-Lipschitz function. Then, for any n ∈ N and
a fuzzy measure µ ∈ M(n), IFµ : [0, 1]

n → [0, 1] is an
idempotent aggregation function given by

IFµ (x1, . . . , xn)

= Chµ(h(x1), . . . , h(xn)) +
1

2n − 1

n∑
i=1

2n−i(xσ(i) − h(xσ(i)))

where F : R× [0, 1]→ R is given by

F (u, v) = uh(v) +
v − h(v)
2n − 1

,

and σ : N → N is a permutation such that xσ(1) ≤ · · · ≤
xσ(n).
If h(x) = k x, k ∈ [0, 1], then

IFµ (x) = k Chµ(x) + (1− k) OWAk,n(x),

where OWA operator OWAk,n : [0, 1]
n → [0, 1] is given by

OWAk,n(x) =
n∑
i=1

2n−i

2n − 1
xσ(i).

Note that for any fuzzy measure µ ∈ M(2), the values
of related Möbius transform M : 2{1,2} → R satisfies
M({1}),M({2}) ∈ [0, 1] and M({1, 2}) = µ({1, 2}) −
µ({1})−µ({2}) ∈ [−1, 1], and thus for n = 2 only values of
F on [−1, 1] × [0, 1] matter when defining the function IFµ .
In this case the fuzzy measure µ is completely described by
(a, b) ∈ [0, 1]

2, where a = µ({1}) and b = µ({2}). We will
write µ ∼ (a, b) and IFµ = IF(a,b).

Example 4.1: Consider n = 2 and h : [0, 1] →
[
− 1

2 , 1
]

given by h(x) = −x2 . Then the corresponding function F

is given by F (u, v) = −u v2 + v
2 , and related IF(a,b) : [0, 1]

2 →
[0, 1] is given by

IF(a,b)(x, y)

= −ax
2

+
x

2
− by

2
+
y

2
− (1− a− b) x ∧ y

2
+
x ∧ y
2

=


(1 + b)x+ (1− b)y

2
if x ≤ y,

(1− a)x+ (1 + a)y

2
otherwise

= Ch
( 1−a2 , 1−b2 )

,

where x ∧ y = min{x, y}.
Example 4.2: For n = 2 and h(x) = kx, k ∈

[
− 1

2 , 1
]
,

denote the corresponding product-generalizing function Fk,
i.e.,

Fk(u, v) = kuv + (1− k)v
3
.

For any k ∈
[
− 1

2 , 1
]

we have the unique convex representation

k = λ · (−1

2
) + (1− λ) · 1 = 1− 3

2
λ, λ ∈ [0, 1],

i.e., λ = 2
3 (1− k). Then

hk = λh− 1
2
+ (1− λ)h1 and Fk = λF− 1

2
+ (1− λ)F1.
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Consequently, for any fuzzy measure µ : 2{1,2} → [0, 1], µ ∼
(a, b), we have

IFkµ =λ I
F− 1

2
µ + (1− λ) IF1

µ

=λCh
( 1−a2 , 1−b2 )

+ (1− λ)Ch(a,b)

=Ch
(λ+2a−3λ a

2 , λ+2b−3λ b
2 )

=Ch
(ka+ 1−k

3 , kb+ 1−k
3 )

.

Example 4.3: For n = 2, let h(x) = min
{
x, 1−x2

}
. Then

F given by F (u, v) = uh(v) + v−h(v)
3 belongs to F2,id, and

IF(a,b)(x, y)

=


Ch(a,b)(x, y) if (x, y) ∈

[
0, 13
]2
,

Ch( 1−a
2 , 1−b2 )(x, y) if (x, y) ∈

[
1
3 , 1
]2
,

(1− b)
(
x+ y

2

)
+ b

2 −
1
6 if (x, y) ∈

[
0, 13
]
×
[
1
3 , 1
]
,

(1− a)
(
x
2 + y

)
+ a

2 −
1
6 if (x, y) ∈

[
1
3 , 1
]
×
[
0, 13
]
.

Observe that IF(a,b) can be represented as a Choquet integral
based on level dependent fuzzy measure µ : 2{1,2} × [0, 1]→
[0, 1] given by

µ({1}, t) =

{
a if t ≤ 1

3 ,

1−a
2 else

,

µ({2}, t) =

{
b if t ≤ 1

3 ,

1−b
2 else

.

For more details on fuzzy dependent measures see [11]. From
another point of view, IF(a,b) can be seen as an ordinal sum

of the Choquet integrals Ch(a,b) on
[
0, 13
]2

and Ch( 1−a
2 , 1−b2 )

on
[
1
3 , 1
]2

, for more details see [12].
Remark 4.6: Note that if µ is a symmetric fuzzy measure,

i.e., if µ(A) depends on the cardinality of the set A only, then
Chµ is an OWA operator [13]. Considering our construction,
obviously IFµ is symmetric whenever µ is symmetric. Hence,
if F ∈ Fn,id and µ is symmetric, aggregation function IFµ can
be seen as a generalized OWA operator.

So far, all results in this section were related to the identity
diagonal section id. Using the same arguments, the next
characterization results for a general diagonal section δ ∈ A(1)

can be obtained, and thus we omit their proofs.
Theorem 4.7: Let δ ∈ A(1) and n ≥ 2. Then the following

are equivalent.
(i) F ∈ Fn,δ .

(ii) There is a function h : [0, 1] → R, such that for any
x, y ∈ [0, 1], x < y, it holds

− 1

2n − 2
(δ(y)− δ(x)) ≤ h(y)− h(x) ≤ δ(y)− δ(x),

(11)
and, for all (u, v) ∈ Rn × [0, 1] it holds

F (u, v) = uh(v) +
δ(v)− h(v)

2n − 1
. (12)

The next corollary is obvious.
Corollary 4.8: The set Fδ is a singleton, Fδ =

{F |F (u, v) = u δ(v)}.

Note that due to (11), if δ is continuous (Lipschitz) on some
interval I , also function h should be continuous (Lipschitz)
on I , but not vice-versa.

Example 4.4: Consider the greatest diagonal section δ∗ ∈
A(1),

δ∗(x) =

{
0 if x = 0

1 otherwise
= 1]0,1](x).

Then, applying Theorem 4.7, the function F given by (12)
belongs to Fn,δ∗ if and only if h = k · 1]0,1], where k ∈
[− 1

2n−2 , 1]. Then for any fuzzy measure µ ∈M(n), we have

IFµ (x) = k · µ(supp x) + (1− k)2
|supp x| − 1

2n − 1
,

where supp x = {i ∈ N |xi > 0} is the support of x, and
|supp x| is its cardinality. Note that, if
• k = 1, then IFµ (x) = µ(supp x),
• k = − 1

2n−2 , then IFµ = 1
2n−2 (2

|supp x|− 1−µ(supp x)),

• k = 0, then IFµ (x) =
2|supp x|−1

2n−1 for any fuzzy measure
µ ∈M(n) and the function h is continuous (though δ∗ is
not).

Note that though for any fuzzy measure µ ∈M(n) and F ∈
Fn,δ the related function IFµ : [0, 1]

n → [0, 1] is an aggregation
function, in general, it need not extend the pseudo-boolean
function b(1E) = µ(E), E ∈ 2N . In fact, for F given by (12)
we have

IFµ (1E) = h(1)µ(E) +
2|E| − 1

2n − 1
(1− h(1)),

where h(0) = 0 is considered. Evidently, only if h(1) = 1
(maximal possible value for h), then IFµ (1E) = µ(E). For
the minimal possible value h(1) = − 1

2n−1 , we have

IFµ (1E) =
2|E| − 1− µ(E)

2n − 2
= µn(E),

compare Example 3.3.

V. CONCLUDING REMARKS

We have characterized functions F leading, for some fixed
diagonal section δ ∈ A(1), to an aggregation function IFµ with
δIFµ = δ, independently of fuzzy measure µ. It is obvious
that, for any δ ∈ A(1), the class Fn,δ is contained in Fn, i.e.,⋃
δ∈A(1)

Fn,δ ⊂ Fn. A natural open problem arises: Are there
some functions F : R×[0, 1]→ R such that, for a fixed n ≥ 2,
the function IFµ : [0, 1]

n → [0, 1] is an aggregation function,
for any fuzzy measure µ ∈M(n), but with different diagonal
sections for some pair µ1 6= µ2 of fuzzy measures? In another
words, is the system

⋃
δ∈A(1)

Fn,δ a proper subset of Fn? The
next example gives a positive answer to this question.

Example 5.1: Define F : R× [0, 1]→ R by

F (u, v) =

{ v
3 if u > −1
2v2−v

3 if u ≤ −1
.

Let n = 2. For any fuzzy measure µ ∈M(2) different from the
greatest fuzzy measure µ∗ given by m∗(∅) = 0 and m∗(A) =
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1 otherwise, the range of the related Möbius transform M is
contained in ]− 1, 1], and thus

IFµ (x, y) =
2min{x, y}+max{x, y}

3

is an OWA operator (which is idempotent, i.e., with diagonal
δ = id). On the other hand

IFµ∗(x, y) =
x

3
+
y

3
+

2(min{x, y})2 −min{x, y}
3

=
2(min{x, y})2 +max{x, y}

3
.

Evidently, IFµ∗ is an aggregation function, but the related
diagonal δ 6= id,

δ(x) =
2x2 + x

3
.

The above example shows that a complete description of
classes Fn, n ≥ 2, is still missing and it is an interesting
topic for the further research.

Note that recently some alternative approaches to general-
ization of the Choquet integral related to the Möbius transform
were introduced and studied. For example, in [14], the formula
(3) was modified replacing the minimum operator. In particu-
lar, considering the product instead of minimum, the Owen
(multilinear) extension of fuzzy measures is obtained [15].
A related approach introducing and studying the inclusion-
exclusion integrals was given in [16], see also [17]. In this
case, a Möbius-like transformation of the interaction operator
(generalizing both the minimum and the product over a fixed
set of coordinates) is considered. As an interesting open
problem one can study the generalization of the inclusion-
exclusion integrals replacing the product considered there by
some other appropriate function.
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