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Neural Network Approach to Solving Fuzzy

Nonlinear Equations using Z-Numbers
Raheleh Jafari, Sina Razvarz, and Alexander Gegov, Member, IEEE

Abstract—In this work, the fuzzy property is described by
means of the Z-number as the coefficients and variables of
the fuzzy equations. This alteration for the fuzzy equation is
appropriate for system modeling with Z-number parameters. In
this paper, the fuzzy equation with Z-number coefficients and
variables is tended to be used as the models for the uncertain
systems. The modeling issue related to the uncertain system is
to obtain the Z-number coefficients and variables of the fuzzy
equation. Nevertheless, it is extremely hard to get the Z-number
coefficients of the fuzzy equations.

In this paper in order to model the uncertain nonlinear
systems, a novel structure of the multilayer neural network is
utilized in such a manner that it is able to obtain the Z-number
coefficients of the fuzzy equation. The suggested technique is
validated by some examples with applications.

Index Terms—Uncertain nonlinear system, fuzzy equation, Z-
number, multilayer neural network.

I. INTRODUCTION

Fuzzy polynomial interpolation can be considered as a

special case of fuzzy system modeling. Polynomials with fuzzy

coefficients can be utilized for interpolating fuzzy data [9].

Interpolation technique is extensively applied for function es-

timation [24]. In [31], the modeling of the system by utilizing

the fuzzy polynomial interpolation is described. In [35], a

systolic algorithm in order to interpolate and evaluate the

polynomials is proposed. In [46], two-dimensional polynomial

interpolation is suggested. In [37], smooth function estimation

is utilized. In [9], [42] smooth function estimation causes a

model by implementing Lagrange interpolating polynomials

at the points of product grids. Nevertheless, these approaches

may not work well when the interpolation points have uncer-

tainties.

The fuzzy polynomial is taken to be as a special form

of the fuzzy equation. Various techniques exist in order to

make the fuzzy equations. In [17] the fuzzy number with

parametric shape is utilized, also the crisp linear system is

implemented instead of the original fuzzy equation. In [1]

the homotypic analysis method is suggested. The Newton

technique is studied in [2]. The numerical solution of the fuzzy

equation by utilizing the fixed point method is investigated

in [8]. Iterative method [25], interpolation method [41] as

well as the Runge-Kutta method [32] are applied for finding

the numerical solutions of fuzzy equations. Neural network
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technique is also utilized for resolving fuzzy equations. In

[11], the neural network technique is utilized in order to solve

the fuzzy quadratic equation. In [23] the results of [11] has

been extended to the fuzzy polynomial equation. In [22], the

neural network technique is used for finding the solution of the

dual fuzzy equation. Evaluation of fully fuzzy matrix equations

by the fuzzy neural network is investigated in [30]. However,

the issue of obtaining the Z-number coefficients of nonlinear

fuzzy equations using neural network approach has not been

touched yet. Studying such an issue is a challenge since there

are some difficult points, such as accuracy, convergence and

construction issues regarding to the selected model.

Real-world information is incomplete and is generally ex-

pressed in natural language. Furthermore, this information is

oftentimes partially reliable and a degree of reliability is also

described in natural language. Accordingly, the concept of

a Z-number is a more adequate concept for the explanation

of real-world information [26], [44]. Various fields connected

to the analysis of the decisions utilize the concept of Z-

numbers. Z-number involves less complexity in calculation

when compared with nonlinear system modeling techniques.

Also in comparison with fuzzy numbers, the Z-numbers are

more accurate. To fully utilize the Z-information in real life

scenarios, more deep studies on Z-number are required [6].

There exist few works concerned with the theoretical concept

of Z-numbers [18]. [4] was a starting point in the extension of

the Z-numbers. In [45] a general framework of calculation of

a Z-number-valued function based on the Zadehs extension

principle is suggested. A theorem for transferring the Z-

number into the fuzzy number is proposed in [27]. Also,

in [44] the author has proposed a new method in order to

transfer the Z-number into the fuzzy number. An approach to

use Z-numbers for answering questions and decisions making

is considered in [26]. A distance-based measure of linguistic

Z-numbers is proposed in [40]. In [38] several techniques

of approximate evaluation of a Z-number for reducing cal-

culational complexity is suggested. In [29] decision making

under interval, set-valued, fuzzy and Z-number uncertainty is

considered. In [14] numerical solution of linear regression

based on Z-Numbers by the improved neural network is

proposed. In [3] a Z-number-based fuzzy inference system for

control of the omnidirectional soccer robot is suggested. A

general and computationally effective method to calculation

with discrete Z-numbers is proposed in [5].

This paper builds on a recent work of the authors that

presents a detailed study for finding a numerical solution of

fuzzy equations using neural networks [21]. In particular, this

paper aims to find the coefficients of a fuzzy equation in
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the context of modeling as opposed to [21] whose aim is to 
find a Z-number solution to a fuzzy equation in the context 
of control. Also, the structure of the neural network along 
with the fuzzy equations proposed in this paper is novel and 
different from the one in [21]. Finally, this paper introduces 
novel theorems in addition to the ones in [21].

The researches that have been done so far on modeling 
the nonlinear systems are mostly based on the regular fuzzy 
numbers. However, this leads to information loss that affects 
decision making. In this paper, the fuzzy equation is utilized 
in order to model the uncertain nonlinear systems, where the 
coefficients and variables are Z-numbers. Studying of previous 
works by other researchers shows that no study has been done 
for obtaining the Z-number coefficients of the fuzzy equations, 
so this paper can be considered as one of the first attempts at 
obtaining the coefficients of fuzzy equations on the basis of

Z-numbers. We introduce a novel multilayer neural network

architecture in order to estimate the Z-number coefficients of

the fuzzy equations. The backpropagation technique is utilized

for training the neural network. Some important theorems

are developed in order to estimate the upper bounds of the

modeling errors with fuzzy equations. The suggested tech-

nique is validated by some examples with applications. The

remaining of the article is organized as follows. In Section

2, some basic definitions related to the Z-numbers are given.

The proposed method for obtaining the Z-number coefficients

of the fuzzy equations is demonstrated in Section 3. Some

important theorems are given in Section 4. Some examples

with applications in mechanics are given in Section 5. Section

6 concludes the work and provides discussions on further

work.

II. NONLINEAR SYSTEM MODELING WITH FUZZY

EQUATIONS AND Z-NUMBERS

A common discrete-time nonlinear system is defined as

ϑr+1 = f [ϑr, qr] , wr = g [ϑr] (1)

where qr ∈ ℜu is the input vector, ϑr ∈ ℜl is an internal state

vector, also wr ∈ ℜm is the output vector. f , as well as g, are

generalized nonlinear smooth functions f, g ∈ C∞. Define

Wr =
[
wTr+1, w

T
r , · · ·

]T
as well as Qr =

[
qTr+1, q

T
r , · · ·

]T
.

Assume ∂W
∂ϑ

is non-singular at the instance ϑr = 0, Qr = 0,
so the following model is extracted

wr = Υ[wTr−1, w
T
r−2, · · · qTr , qTr−1, · · ·] (2)

in which Υ(·) is a nonlinear difference equation representing

the plant dynamics, qr as well as wr are calculable scalar

input and output respectively. The nonlinear system (2) is a

NARMA model. The input of the nonlinear system is defined

as

ϑr = [wTr−1, w
T
r−2, · · · qTr , qTr−1, · · ·]T (3)

the output as wr.

The nonlinear system explained in (2), can be written as the

below mentioned linear-in-parameter model

wr =

γ∑

ι=1

δ∑

κ=1

aικfι (ϑr) gk (υr) (4)

where aικ is the linear parameter, fι (ϑr) as well as gk (υr)
are nonlinear functions. The variables of these functions are

quantifying input and output.

The uncertain nonlinear systems can be modeled using the

linear-in-parameter models with uncertain parameters. In this

paper, it has been assumed that the model of the nonlinear

systems (4) contains uncertainties in the aικ, ϑr as well as υr.

These uncertainties have been stated in the form of Z-numbers

[45].

Definition 1. Suppose c is: 1) normal, there is ς0 ∈ ℜ where

c(ς0) = 1, 2) convex, c(βς + (1 − β)ς) ≥min{c(ς), c(ϱ)},

∀ς, ϱ ∈ ℜ, ∀β ∈ [0, 1], 3) upper semi-continuous on ℜ,

c(ς) ≤ c(ς0) + ε, ∀ς ∈ N(ς0), ∀ς0 ∈ ℜ, ∀ε > 0, N(ς0) is

a neighborhood, 4) c+ = {ς ∈ ℜ, c(ς) > 0} is compact, so c

is a fuzzy variable, c ∈ E : ℜ → [0, 1].
The fuzzy variable c is demonstrated as

c = (c, c) (5)

in which c is the lower-bound variable also, c is the upper-

bound variable.

Definition 2. The Z-number is made up of two components

Z = [c(ς), p]. The first component c(ς) is the restriction on a

real-valued uncertain variable ς . The second component p is a

measure of the reliability of c. p can be reliability, strength of

belief, probability or possibility. The Z-number can be stated

as Z+-number, in a case c(ς) be a fuzzy number also p be the

probability distribution of ς . If c(ς), as well as p, are fuzzy

numbers, the Z-number can be stated as Z−-number.

The Z+-number contains more information when compared

with the Z−-number. In this paper, the definition of Z+-

number is utilized, i.e., Z = [c, p] , c is a fuzzy number also,

p is a probability distribution.

The most common membership functions which define the

fuzzy numbers are the triangular function

µc = H (s, u, v) =

{
ς−s
u−s s ≤ ς ≤ u
v−ς
v−u u ≤ ς ≤ v

otherwise µc = 0

(6)

and trapezoidal function

µc = H (s, u, v, w) =





ς−s
u−s s ≤ ς ≤ u
w−ς
w−v v ≤ ς ≤ w

1 u ≤ ς ≤ v

otherwise µc = 0

(7)

If c represents a fuzzy event in ℜ, the real line, then the

probability measure can be stated as

P (c) =

∫

ℜ

µc(ς)p(ς)dς (8)

where p is the probability density of ς . For discrete Z-numbers

we have

P (c) =

n∑

ι=1

µc(ςι)p(ςι) (9)

Definition 3. The α-level for fuzzy number c is stated as

[c]α = {ς ∈ ℜ : c(ς) ≥ α} (10)

where 0 < α ≤ 1, c ∈ E.
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Therefore [c]0 = c+ ={ς ∈ ℜ, c(ς) > 0}. As α ∈ [0, 1],
[c]α is bounded, cα ≤ [c]α ≤ cα. The α-level of c between cα 

and cα can be defined as

[c]α = (cα, cα) (11)

cα, as well as cα, are the function of α. We define cα =
dA(α), c

α = dB(α), α ∈ [0, 1].
Definition 4. The α-level of the Z-number Z = (c, p) is

defined as follows

[Z]α = ([c]α, [p]α) (12)

where 0 < α ≤ 1. [p]α is computed by the Nguyen’s theorem

[p]α = p([c]α) = p([cα, cα]) =
[
Pα, P

α
]

(13)

where p([c]α) = {p(ς)|ς ∈ [c]α}. Therefore, [Z]α is stated as

[Z]α =
(
Zα, Z

α
)
=

(
(cα, Pα) ,

(
cα, P

α
))

(14)

where Pα = cαp(ςα
ι
), P

α
= cαp(ςαι ), [ςι]

α = (ςα
ι
, ςαι ).

The same as with the fuzzy numbers [13], three main

operations are defined for the Z-numbers: ⊕, ⊖ and ⊙, which

indicate sum, subtract and multiply respectively. In this paper,

the proposed operations are different from the ones in [44].

Suppose Z1 = (c1, p1) as well as Z2 = (c2, p2) are two

discrete Z-numbers expressing the uncertain variables ς1 and

ς2, so,
∑n
ι=1 p1(ς1ι) = 1,

∑n
ι=1 p2(ς2ι) = 1. The following

operation is defined

Z12 = Z1 ∗ Z2 = (c1 ∗ c2, p1 ∗ p2) (15)

where ∗ ∈ {⊕,⊖,⊙}.

The operations used for the fuzzy numbers [c1]
α = [cα11, c

α
12]

and [c2]
α = [cα21, c

α
22] are stated as [13],

[c1 ⊕ c2]
α = [c1]

α + [c2]
α = [cα11 + cα21, c

α
12 + cα22]

[c1 ⊖ c2]
α = [c1]

α − [c2]
α = [cα11 − cα22, c

α
12 − cα21]

[c1 ⊙ c2]
α =

(
min{cα11cα21, cα11cα22, cα12cα21, cα12cα22}
max{cα11cα21, cα11cα22, cα12cα21, cα12cα22}

)

(16)

For the discrete probability distributions, the following relation

is defined for all p1 ∗ p2 operations

p1 ∗ p2 =
∑

ι

p1(ς1,ι)p2(ς2,(n−ι)) = p12(ς) (17)

Let us consider the procedures underlying computation of gH-

difference Z3 = Z1 ⊖gH Z2 of Z-numbers Z1 = (c1, p1) and

Z2 = (c2, p2), where Z3 = (c3, p3). The Hukuhara difference

of two fuzzy numbers c1 and c2 is defined as [7],

c1 ⊖H c2 = c3
c1 = c2 ⊕ c3

(18)

Let [c1]
α = [cα11, c

α
12] and [c2]

α = [cα21, c
α
22]. In a case that

c1 ⊖H c2 exists, the α-level can be defined as

[c1 ⊖H c2]
α = [cα11 − cα22, c

α
12 − cα21] (19)

Clearly, c1 ⊖H c1 = 0, c1 ⊖ c1 ̸= 0.

Moreover, the generalized Hukuhara difference is defined

as [10],

c1 ⊖gH c2 = c3 ⇐⇒
{

1) c1 = c2 ⊕ c3
or 2) c2 = c1 ⊕ (−1)c3

(20)

By taking into consideration the α-level, we have [c1 ⊖gH
c2]

α = [min{cα11 − cα22, c
α
12 − cα21},max{cα11 − cα22, c

α
12 − cα21}]

and if c1⊖gH c2 also, if c1⊖H c2 exists, c1⊖H c2 = c1⊖gH c2.

Let [c3]
α = [cα31, c

α
32]. The conditions for the existence of c3 =

c1 ⊖gH c2 ∈ E are

1)

{
cα31 = cα11 − cα22 and c

α
32 = cα12 − cα21

with cα31 increasing, c
α
32 decreasing, c

α
31 ≤ cα32

2)

{
cα31 = cα12 − cα21 and c

α
32 = cα11 − cα22

with cα31 increasing, c
α
32 decreasing, c

α
31 ≤ cα32

(21)

where ∀α ∈ [0, 1]. Now we proceed to compute the gH-

difference Z3 = Z1 ⊖gH Z2 which is defined as

Z3 = (c1 ⊖gH c2, p1 − p2) (22)

where p1 and p2 are represented by discrete probability

distributions [33],

p1 = p1(ς11)
ς11

+ p1(ς12)
ς12

+ ...+ p1(ς1n)
ς1n

p2 = p2(ς21)
ς21

+ p2(ς22)
ς22

+ ...+ p2(ς2n)
ς2n

(23)

also,
∑n
ι=1 p1(ς1ι) = 1,

∑n
ι=1 p2(ς2ι) = 1.

Suppose c is a triangular function, the absolute value of the

Z-number Z = (c, p) is defined as

|Z(ς)| = (|s1|+ |u1|+ |v1|, p(|s2|+ |u2|+ |v2|)) (24)

Let c1 as well as c2 are triangular functions, the supremum

metric for Z-numbers Z1 = (c1, p1) and Z2 = (c2, p2) is

expressed as

D(Z1, Z2) = d(c1, c2) + d(p1, p2) (25)

where d(·, ·) is the supremum metrics for fuzzy sets [20].

D(Z1, Z2) has the below-mentioned properties,

D(Z1 + Z,Z2 + Z) = D(Z1, Z2)
D(Z2, Z1) = D(Z1, Z2)
D(bZ1, kZ2) = |b|D(Z1, Z2)
D(Z1, Z2) ≤ D(Z1, Z) +D(Z,Z2)

(26)

where b ∈ ℜ, Z = (c, p) is Z-number, also c is a triangle

function.

Definition 5. Suppose Z̃ is the space of Z-numbers. The

α−level of the Z-number valued function H : [0, s] → Z̃ is

defined as

H(c, α) = [H(c, α), H(c, α)] (27)

where c ∈ Z̃, for each α ∈ [0, 1].
Using the definition of Generalized Hukuhara difference,

the gH-derivative of H at c0 is defined as

d

dt
H(c0) = lim

ζ→0

1

ζ
[H(c0 + ζ)⊖gH H(c0)] (28)

In (28), H(c0 + ζ) as well as H(c0) represent symmetric

pattern with Z1 and Z2 respectively given in (20).

In this paper, the fuzzy equation (4) is used in order to

model the uncertain nonlinear system (1). Modeling with

fuzzy equation (or fuzzy polynomial ) is named as fuzzy

interpolation. Here, the fuzzy equation (4) is utilized in order

to model the uncertain nonlinear system (1), in such a way that

the output of the plant wr approaches to the desired output w∗
r ,

min
qr

∥wr − w∗
r∥ (29)
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The aim of the modeling is to find the aικ for the below 
fuzzy equation

w∗
r =

γ∑

ι=1

δ∑

κ=1

aικfι (ϑr) gk (υr) (30)

where ϑr = [wTr−1, w
T
r−2, · · · qTr , qTr−1, · · ·]T , aικ is the linear

parameter, fι (ϑr) as well as gk (υr) are nonlinear functions.

III. NEURAL NETWORK APPROACH FOR Z-NUMBER

PARAMETER APPROXIMATION

In this section, a neural network is designed in order to

demonstrate the fuzzy equation (4), see Fig. 1. The inputs

of the neural network are the Z-numbers (ϑr, p) and (υr, p),
also, the output is the Z-number (wr, p). The proposed neural

network finds (aικ, p) in such a way that the output of

the neural network (wr, p) approaches to the desired output

(w∗
r , p). Based on Definition 2, (14) and (30), the results (31)-

(34) are achieved.

The Z-number inputs (ϑr, p) as well as (υr, p) are initially

implemented to α-level as in (12), when the α−level sets of ϑr
and υr are nonnegative, i.e., 0 ≤ ϑαr ≤ ϑ

α

r and 0 ≤ υαr ≤ υαr ,

([ϑr]
α, [p]α) =

(
(ϑαr , ϑ

α
r p(ς

α
1 )), (ϑ

α

r , ϑ
α

r p(ς
α
1 ))

)

([υr]
α, [p]α) =

(
(υαr , υ

α
r p(ς

α
2 )), (υ

α
r , υ

α
r p(ς

α
2 ))

) (31)

where [ς1]
α = (ςα1 , ς

α
1 ), ς1 ∈ [ϑr]

α, [ς2]
α = (ςα2 , ς

α
2 ), ς2 ∈

[υr]
α. Afterward, we have the following relation in the first

hidden unit for 0 ≤ α ≤ 1,

([Ωι]
α
, [p]α) = h1(fι(ϑ

α
r , ϑ

α
r p(ς

α
1 )), fι(ϑ

α

r , ϑ
α

r p(ς
α
1 )))

ι = 1 · · · γ
([Ωκ]

α
, [p]α) = h2(gκ(υ

α
r , υ

α
r p(ς

α
2 )), gκ(υ

α
r , υ

α
r p(ς

α
2 )))

κ = 1 · · · δ
(32)

where h1 and h2 are identity activation functions. Also, we

have the following relation in the second hidden unit for 0 ≤
α ≤ 1,

([Ωι,κ]
α
, [p]α) = h3({

∑
ι,κ∈A(Ω

α
ι ,Ω

α
ι p(ς

α
ι
))(Ωακ ,Ω

α
κp(ς

α
κ
))

+
∑
ι,κ∈B(Ω

α

ι ,Ω
α

ι p(ς
α
ι ))(Ω

α

κ ,Ω
α

κp(ς
α
κ))

+
∑
ι,κ∈C(Ω

α
ι ,Ω

α
ι p(ς

α
ι
))(Ω

α

κ ,Ω
α

κp(ς
α
κ)),∑

ι,κ∈A′(Ω
α

ι ,Ω
α

ι p(ς
α
ι ))(Ω

α

κ ,Ω
α

κp(ς
α
κ))

+
∑
ι,κ∈B′(Ω

α
ι ,Ω

α
ι p(ς

α
ι
))(Ωακ ,Ω

α
κp(ς

α
κ
))

+
∑
ι,κ∈C′(Ω

α

ι ,Ω
α

ι p(ς
α
ι ))(Ω

α
κ ,Ω

α
κp(ς

α
κ
))})

(33)

where h3 is identity activation function. Also, A =
{ι, κ| Ωαι ≥ 0, Ωακ ≥ 0}, B = {ι, κ| Ωαι < 0, Ω

α

κ < 0},

C = {ι, κ| Ωαι < 0, Ω
α

κ ≥ 0}, A′ = {ι, κ| Ωαι ≥ 0, Ω
α

κ ≥ 0},

B′ = {ι, κ| Ωαι < 0, Ωακ < 0}, C ′ = {ι, κ| Ωαι < 0, Ωακ ≥ 0},

[ςι]
α = (ςα

ι
, ςαι ), ςι ∈ [Ωι]

α, [ςκ]
α = (ςα

κ
, ςακ), ςκ ∈ [Ωκ]

α.

For 0 ≤ α ≤ 1 the output of the neural network is

([wr]
α
, [p]α)

= O({∑ι,κ∈A(Ω
α
ι,κ,Ω

α
ι,κp(ς

α
ι,κ

))(aαι,κ, a
α
ι,κp(ς

α
ι,κ

))

+
∑
ι,κ∈B(Ω

α

ι,κ,Ω
α

ι,κp(ς
α
ι,κ))(a

α
ι,κ, a

α
ι,κp(ς

α
ι,κ))

+
∑
ι,κ∈C(Ω

α
ι,κ,Ω

α
ι,κp(ς

α
ι,κ

))(aαι,κ, a
α
ι,κp(ς

α
ι,κ)),∑

ι,κ∈A′(Ω
α

ι,κ,Ω
α

ι,κp(ς
α
ι,κ))(a

α
ι,κ, a

α
ι,κp(ς

α
ι,κ))

+
∑
ι,κ∈B′(Ω

α
ι,κ,Ω

α
ι,κp(ς

α
ι,κ

))(aαι,κ, a
α
ι,κp(ς

α
ι,κ

))

+
∑
ι,κ∈C′(Ω

α

ι,κ,Ω
α

ι,κp(ς
α
ι,κ))(a

α
ι,κ, a

α
ι,κp(ς

α
ι,κ

))})

(34)

where O is identity activation function. Also, A =
{ι, κ| Ωαι,κ ≥ 0, aαι,κ ≥ 0}, B = {ι, κ| Ωαι,κ < 0, aαι,κ < 0},

C = {ι, κ| Ωαι,κ < 0, aαι,κ ≥ 0}, A′ = {ι, κ| Ωαι,κ ≥ 0, aαι,κ ≥
0}, B′ = {ι, κ| Ωαι,κ < 0, aαι,κ < 0}, C ′ = {ι, κ| Ωαι,κ <

0, aαι,κ ≥ 0}, [ςι,κ]
α = (ςα

ι,κ
, ςαι,κ), ςι,κ ∈ [Ωι,κ]

α, [ςι,κ]
α =

(ςα
ι,κ
, ςαι,κ), ςι,κ ∈ [aι,κ]

α.
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Fig. 1. Neural network structure representing the fuzzy

equation

For training the weights, a cost function is defined for the

Z-numbers. The training error is defined as follows

(er, p) = (w∗
r , p)− (wr, p) (35)

For 0 ≤ α ≤ 1 we have,

([w∗
r ]
α
, [p]α) = ((w∗

r
α, w∗

r
αp(ς∗r

α)), (w∗
r
α, w∗

r
αp(ς∗r

α)))
([wr]

α
, [p]α) =

(
(wαr , w

α
r p(ς

α
r
)), (wαr , w

α
r p(ς

α
r ))

)

([er]
α
, [p]α) =

(
(eαr , e

α
r p(ς

α
r
)), (eαr , e

α
r p(ς

α
r ))

)

(36)

where [ς∗r ]
α = (ς∗r

α, ς∗r
α), ς∗r ∈ [w∗

r ]
α, [ςr]

α = (ςα
r
, ςαr ), ςr ∈

[wr]
α, [ςr]

α = (ςα
r
, ςαr ), ςr ∈ [er]

α.

The cost function is defined as

(Φr, p) = (Φα, Pα(Φ)) + (Φ
α
, P

α
(Φ))

(Φα, Pα(Φ)) = 1
2

(
(w∗

r
α, w∗

r
αp(ς∗r

α))− (wαr , w
α
r p(ς

α
r
))
)2

(Φ
α
, P

α
(Φ)) = 1

2 ((w
∗
r
α, w∗

r
αp(ς∗r

α))− (wαr , w
α
r p(ς

α
r )))

2

(37)

where 0 ≤ α ≤ 1. Φr is a scalar function. Φr → 0 signifies

that ([wr]
α
, [p]α) → ([w∗

r ]
α
, [p]α).

The gradient technique is utilized in order to train the Z-

number weight (aι,κ, p) =
(
(aι,κ, aι,κ), p

)
.
∂(Φr,p)
∂(a

ι,κ
,p) as well
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as
∂(Φr,p)
∂(aι,κ,p)

are computed as follows

∂(Φr,p)
∂(a

ι,κ
,p) =

∂(Φα,Pα(Φ))
∂(wα

r
,wα

r
p(ςα

r
))

∂(wα

r
,wα

r
p(ςα

r
))

∂(aα
ι,κ
,aα

ι,κ
p(ςα

ι,κ
))

∂(aα
ι,κ
,aα

ι,κ
p(ςα

ι,κ
))

∂(a
ι,κ
,p)

+ ∂(Φ
α
,P

α
(Φ))

∂(wr
α,wα

r p(ς
α
r ))

∂(wr
α,wα

r p(ς
α
r ))

∂(aα
ι,κ
,aα

ι,κ
p(ςα

ι,κ
))

∂(aα
ι,κ
,aα

ι,κ
p(ςα

ι,κ
))

∂(a
ι,κ
,p)

= −
(
(w∗

r
α, w∗

r
αp(ς∗r

α))− (wαr , w
α
r p(ς

α
r
))
)∑

ι,κ∈A(Ω
α
ι,κ,

Ωαι,κp(ς
α
ι,κ

))Γ− ((w∗
r
α, w∗

r
αp(ς∗r

α))

−(wαr , w
α
r p(ς

α
r )))(

∑
ι,κ∈B′(Ω

α
ι,κ,Ω

α
ι,κp(ς

α
ι,κ

))

+
∑
ι,κ∈C′(Ω

α

ι,κ,Ω
α

ι,κp(ς
α
ι,κ)))Γ

(38)

where Γ = (1− α). Also,

∂(Φr,p)
∂(aι,κ,p)

=
∂(Φα,Pα(Φ))
∂(wα

r
,wα

r
p(ςα

r
))

∂(wα

r
,wα

r
p(ςα

r
))

∂(aαι,κ,a
α
ι,κp(ς

α
ι,κ))

∂(aαι,κ,a
α
ι,κp(ς

α
ι,κ))

∂(aι,κ,p)

+ ∂(Φ
α
,P

α
(Φ))

∂(wα
r ,w

α
r p(ς

α
r ))

∂(wα
r ,w

α
r p(ς

α
r ))

∂(aαι,κ,a
α
ι,κp(ς

α
ι,κ))

∂(aαι,κ,a
α
ι,κp(ς

α
ι,κ))

∂(aι,κ,p)

= −
(
(w∗

r
α, w∗

r
αp(ς∗r

α))− (wαr , w
α
r p(ς

α
r
))
)
(
∑
ι,κ∈B(Ω

α

ι,κ,

Ω
α

ι,κp(ς
α
ι,κ)) +

∑
ι,κ∈C(Ω

α
ι,κ,Ω

α
ι,κp(ς

α
ι,κ

)))Γ1

−((w∗
r
α, w∗

r
αp(ς∗r

α))− (wr
α, wαr p(ς

α
r )))

∑
ι,κ∈A′(Ω

α

ι,κ,

Ω
α

ι,κp(ς
α
ι,κ))Γ1

(39)

where Γ1 = (1− α).
The Z-number coefficient (aι,κ, p) is updated as

(aι,κ, p) (r + 1) = (aι,κ, p) (r)− η
∂(Φr,p)
∂(a

ι,κ
,p)

(aι,κ, p) (r + 1) = (aι,κ, p) (r)− η
∂(Φr,p)
∂(aι,κ,p)

(40)

where η is the training rate η > 0. In order to increase the

training process, a momentum term is added as

(aι,κ, p) (r + 1) = (aι,κ, p) (r)− η
∂(Φr,p)
∂(a

ι,κ
,p)

+γ
[
(aι,κ, p) (r)− (aι,κ, p) (r − 1)

]

(aι,κ, p) (r + 1) = (aι,κ, p) (r)− η
∂(Φr,p)
∂(aι,κ,p)

+γ [(aι,κ, p) (r)− (aι,κ, p) (r − 1)]

(41)

where γ > 0.
Remark 1. One of the primary advantages of the least

mean square index (37) is having a self-correcting feature

which allows operating for an arbitrarily long period without

deviating from its constraints. The corresponding gradient

algorithm is susceptible to cumulative round off errors and

is appropriate for long runs without an extra error-correction

process. It is more robust in statistics, identification as well as

signal processing [36].

Learning algorithm

1) Step 1: Select the training rates η > 0, γ > 0, also the

stopping criterion Φ > 0. The initial Z-number vector

A = (a1,1, ..., aι,κ) is chosen arbitrarily. The initial

learning iteration is r = 1, and the initial learning error

is Φ = 0.

2) The following steps should be repeated for α =
α1, ..., αm, till all the training data are implemented

a) Forward computation: Compute the α-level of the

Z-number output wr using the α-level of the Z-

number input vectors (ϑr, υr), and the Z-number

connection weight A.

b) Back-propagation: Adjust Z-number parameters

aι,κ, ι = 1, ..., γ, κ = 1, ..., δ, utilizing the cost

function for the α-level of the Z-number output

wr, and the Z-number target output w∗
r .

c) Stopping criterion: Compute the cycle error Φr,
Φ = Φ+Φr. r = r+ 1. In a case that Φ > Φ, let

Φ = 0, a new training cycle is begun. Go to (a).

IV. UPPER BOUNDS OF THE MODELING ERRORS

This section extends some important estimation theorems

into fuzzy equation modeling. Initially, the modeling error is

defined for Z-numbers.

Definition 6. The distance between two Z-numbers, ψ, φ ∈
Z̃, is described as the Hausdorff metric DH [ψ, φ],

DH [ψ, φ] = max{sup(a1,c1)∈ψ inf(a2,c2)∈ϕ(d(a1, a2)

+d(c1, c2)), sup(a1,c1)∈ϕ inf(a2,c2)∈ψ(d(a1, a2) + d(c1, c2)}
(42)

d(a, c) is the supremum metrics defined for fuzzy sets.

Lemma 1. Let ϖ ⊂ Z̃ is a compact set, in this case, ϖ

is uniformly support-bounded, i.e. there exists a compact set

Ψ ⊂ ℜ, in such a way that ∀ψ ∈ ϖ,

Supp(ψ) ⊂ Ψ. (43)

Lemma 2. Suppose ψ,φ ∈ Z̃, also α ∈ (0, 1], in this

case the following is concluded: (i) if f, g : ℜ → ℜ
are continuous, [f(ψ)g(φ)]α = f([ψα])g([φα]) holds; (ii) if

f, g : ℜ → ℜ are continuous, so f(Supp(ψ))g(Supp(φ)) =
Supp(f(ψ))Supp(g(φ)).

proof. As (i) concludes from [43], so just (ii) will be

proved. Initially, f(D1)g(D2) = f(D1)g(D2) is shown

for D1, D2 ⊂ ℜ. As f(D1)g(D2) ⊂ f(D1)g(D2), also

f(D1)g(D2) is closed by the continuity of f as well as g,

therefore, f(D1)g(D2) ⊂ f(D1)g(D2). Also, for randomly

given θ ∈ f(D1)g(D2), there exists a sequence {ancn|n ∈
N} ⊂ ℜ, a, c ∈ ℜ, in such a way that ancn → ac (n →
+∞), θ = f(a)g(c). Since f as well as g are contin-

ues so, limn→+∞f(an)g(cn) = f(a)g(c) = θ. However,

f(an)g(cn) ∈ f(D1)g(D2), therefore, θ ∈ f(D1)g(D2).
So f(D1)g(D2) ⊂ f(D1)g(D2). Hence f(D1)g(D2) =
f(D1)g(D2).
Since,

Supp(f(ψ))Supp(g(φ) = {θ ∈ ℜ|(f(ψ)g(φ))(θ) > 0}
f(Supp(ψ))g(Supp(φ)) = fg

(
{ac ∈ ℜ|ψφ(ac) > 0}

)

(44)

the following is concluded

f(Supp(ψ))g(Supp(φ)) = fg({ac ∈ ℜ|ψφ(ac) > 0})
= {fg(ac) ∈ ℜ|ψφ(ac) > 0}

(45)

As, {θ ∈ ℜ|(f(ψ)g(φ))(θ) > 0} = {fg(ac)|ψφ(ac) > 0}, so

Supp(f(ψ))Supp(g(φ)) = f(Supp(ψ))g(Supp(φ)) (46)

Lemma 3. Suppose G ⊂ ℜ is a compact set, also f1g1 as

well as f2g2 are continuous on G, ζ > 0, in addition

|f1(a)g1(c)− f2(a)g2(c)| < ζ, ∀a, c ∈ G (47)

Hence |supa,c∈G1
f1(a)g1(c)−supa,c∈G1

f2(a)g2(c)| < ζ is

valid for each compact set G1 ⊂ G.
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proof. As G1 is a compact set also, f1g1 as well as f2g2 
are continuous on G1, so there exist a0, c0 ∈ G1, â0, ĉ0 ∈ G1, 
in such a way that

f1(a0)g1(c0) = supa,c∈G1
f1(a)g1(c)

f2(â0)g2(ĉ0)) = supa,c∈G1
f2(a)g2(c)

(48)

Let |f1(a0)g1(c0)− f2(â0)g2(ĉ0))| ≥ ζ, so

f1(a0)g1(c0)− f2(â0)g2(ĉ0)) ≤ −ζ,
or f1(a0)g1(c0)− f2(â0)g2(ĉ0)) ≥ ζ

(49)

In the first case of (49), since f1(â0)g1(ĉ0) ≤ f1(a0)g1(c0),

f1(â0)g1(ĉ0)− f2(â0)g2(ĉ0))
≤ f1(a0)g1(c0)− f2(â0)g2(ĉ0)) ≤ −ζ
⇒ |f1(â0)g1(ĉ0)− f2(â0)g2(ĉ0))| ≥ ζ

(50)

holds, that contradicts (47). In the second case (49), as

f2(a0)g2(c0)) ≤ f2(â0)g2(ĉ0)), the following is obtained

f1(a0)g1(c0)− f2(a0)g2(c0))
≥ f1(a0)g1(c0)− f2(â0)g2(ĉ0)) ≥ ζ

⇒ |f1(a0)g1(c0)− f2(a0)g2(c0))| ≥ ζ

(51)

that contradicts (47). Hence, (49) is not correct,

so −ζ < f1(a0)g1(c0) − f2(â0)g2(ĉ0)) < ζ,

hence |f1(a0)g1(c0) − f2(a0)g2(c0))| < ζ, i.e.

| supa,c∈G1
f1(a)g1(c) − supa,c∈G1

f2(a)g2(c)| < ζ . The

proof is finalized.

Theorem 1. Suppose fg : ℜ → ℜ is a continuous function,

so for each compact set ϖ ⊂ Z̃0 (the set of all the bounded Z-

number set) also χ > 0, there exists aικ ∈ Z̃0, ι = 1, 2, ..., γ,

κ = 1, 2, ..., δ, in such a manner that

d(f(ϑ̃)g(υ̃),
∑γ
ι=1

∑δ
κ=1 fι(ϑ)gκ(υ)aικ) < χ

∀ϑ, υ ∈ ϖ, ∀ϑ̃, υ̃ ∈ ℜ (52)

in which χ is a finite number.

proof. The subsequent results will lead to the proof of the

Theorem.

Suppose fg : ℜ → ℜ, fg can be extended by the extension

principle to the Z-number function that is stated as fg : Z̃0 →
Z̃, also

f(ψ1)(ω1)g(ψ2)(ω2) =
∨
f(ϑ)=ω1

∨
g(υ)=ω2

{ψ1(ϑ)}{ψ2(υ)},
∀ψ1, ψ2 ∈ Z̃0, ω1, ω2 ∈ ℜ

(53)

fg is termed as the extended function. Furthermore, cc(ℜ) is

the set of bounded closed intervals of ℜ. Clearly

ψ1, ψ2 ∈ Z̃0 =⇒ ∀α ∈ (0, 1], [ψ1]
α, [ψ2]

α ∈ cc(ℜ)
(54)

Also,

Supp(ψ1), Supp(ψ2) ∈ cc(ℜ) (55)

Hence,
Supp(ψ1) = [s1(ψ1), s2(ψ1)]
Supp(ψ2) = [s1(ψ2), s2(ψ2)]

(56)

Theorem 2. If fg : ℜ → ℜ is a continuous function, so

for each compact set ϖ ⊂ Z̃0, τ > 0 also arbitrary ε > 0,

there exists aικ ∈ Z̃0, ι = 1, 2, ..., γ, κ = 1, 2, ..., δ, in such a

way that

d(f(ϑ)g(υ),

γ∑

ι=1

δ∑

κ=1

fι(ϑ)gκ(υ)aικ) < τ, ∀ϑ, υ ∈ ϖ (57)

in which, τ is termed as a finite number. The lower as well

as the upper limits of the α-level set of Z-number function

approach to τ , however, the center approaches to ε.

proof. Since ϖ ⊂ Z̃0 is a compact set, so by implementing

Lemma 1, Ψ ⊂ ℜ is the compact set corresponding to ϖ.

Furthermore, ∀ε > 0, also using the results of [12], there

exists aικ ∈ ℜ, ι = 1, 2, ..., γ, κ = 1, 2, ..., δ, in such a way

that

|f(ϑ)g(υ)−
γ∑

ι=1

δ∑

κ=1

fι(ϑ)gκ(υ)aικ| < ε, ∀ϑ, υ ∈ Ψ (58)

If f̃(ϑ)g̃(υ) =
∑γ
ι=1

∑δ
κ=1 fι(ϑ)gκ(υ)aικ, where ϑ, υ ∈ ℜ,

hence

|f(ϑ)g(υ)− f̃(ϑ)g̃(υ)| < ε, ∀ϑ, υ ∈ Ψ (59)

Theorem 3 will lead to the validation of (57).

Theorem 3. Suppose ϖ ⊂ Z̃0 is compact, also Ψ is the

corresponding compact set of ϖ and fg, f̂ ĝ : ℜ → ℜ are the

continuous functions that,

|f(ϑ)g(υ)− f̂(ϑ)ĝ(υ)| < ζ, ∀ϑ, υ ∈ Ψ (60)

where ζ > 0. So, ∀ψ1, ψ2 ∈ ϖ, d(f(ψ1)g(ψ2) −
f̂(ψ1)ĝ(ψ2)) ≤ ζ.

proof. Assume ψ ∈ Z̃ also α ∈ (0, 1]. Since fg as well

as f̂ ĝ are continuous, then [f(ψ1)g(ψ2)]
α = f([ψα1 ])g([ψ

α
2 ]),

and [f̂(ψ1)ĝ(ψ2)]
α = f̂([ψα1 ])ĝ([ψ

α
2 ]) are valid by Lemma 2.

Hence, the following result is obtained using [34],

DH([f(ψ1)g(ψ2)]
α − [f̂(ψ1)ĝ(ψ2)]

α)

= DH(f([ψα1 ])g([ψ
α
2 ])− f̂([ψα1 ])ĝ([ψ

α
2 ]))

= sup|n|=1{|s(n, f([ψα1 ])g([ψα2 ]))− s(n, f̂([ψα1 ])ĝ([ψ
α
2 ]))|}

(61)

Since n ∈ ℜ: |n| = 1, the following is valid,

|s(n, f([ψα1 ])g([ψα2 ]))− s(n, f̂([ψα1 ])ĝ([ψ
α
2 ]))|

= | sup{nj|j ∈ f([ψα1 ])g([ψ
α
2 ])}

− sup{nj|j ∈ f̂([ψα1 ])ĝ([ψ
α
2 ])}|

= | sup{nf(ϑ)g(υ)|ϑ ∈ [ψ1]
α, υ ∈ [ψ2]

α}
− sup{nf̂(ϑ)ĝ(υ)|ϑ ∈ [ψ1]

α, υ ∈ [ψ2]
α}|

(62)

Also, taking into consideration the conditions in the theorem,

the following is obtained

|nf(ϑ)g(υ)− nf̂(ϑ)ĝ(υ)| = |f(ϑ)g(υ)− f̂(ϑ)ĝ(υ)|
< ζ, ∀ϑ ∈ [ψ1]

α, υ ∈ [ψ2]
α (63)

Hence, using (61), (62) as well as Lemma 3, the following

relation is extracted which proves the theorem,

DH([f(ψ1)]
α[g(ψ2)]

α, [f̂(ψ1)]
α[ĝ(ψ2)]

α) < ζ

⇒ d(f(ψ1)g(ψ2), f̂(ψ1)ĝ(ψ2))

= supα∈(0,1]{DH([f(ψ1)]
α[g(ψ2)]

α, [f̂(ψ1)]
α)[ĝ(ψ2)]

α)}
≤ ζ

(64)
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V. NUMERICAL EXAMPLES

In this section, some examples with applications are given 
to show how to apply fuzzy equations to model uncertain 
nonlinear systems.

Example 1 In order to produce electricity from sun the 
photo voltaic cells (PV cells) are used. The PV cells are 
designed in a parallel form. According to the changes in the 
position of sun and climate situation the sun radiation changes 
and causes the changes in the produced current and voltage by 
PV cells. The total produced power of power station is defined 
as [19],

O = φ1I1V1 ⊕ φ2I2V2 ⊕ φ3I3V3 ⊕ φ4I4V4 (65)

where I1 =
√
2ϑ, I2 = ϑ2, I3 = ϑ

2 , I4 = ϑ are the currents

and V1 = eυ , V2 = 2υ, V3 =
√
υ, V4 =

√
3υ are the voltages

produced by PV cells. ϑ and υ are the elapsed time. φ1, φ2, φ3,

and φ4 are the characteristic coefficients of the PV cells, which

are satisfied in the triangular Z-number uncertainty,

φ1 = [(2, 5, 7), p(0.81, 0.9, 0.95)],
φ2 = [(1, 4, 8), p(0.72, 0.85, 0.9)],
φ3 = [(3, 6, 8), p(0.82, 0.86, 0.91)],
φ4 = [(6, 8, 11), p(0.82, 0.85, 0.92)]

(66)

The diodes and buck-boost convector are utilized in order to

connect the PV cell to ultra capacitor and energy storage, see

Figure 2.

Buck- boost 

convertor 
Ultra capacitor & 

Energy Storage 

i1(t) 

i2(t) 

i3(t) 

v3(t) 

v2(t) 

v1(t) 

i4(t) 

v4(t) 

Fig. 2. PV cells in power station

Four types of inputs are utilized for training the neural

network, where weights are considered as the Z-number pa-

rameters of (65). The input data are given as

ϑ =





[(2, 6, 7), p(0.7, 0.8, 0.9)],
[(11, 14, 19), p(0.7, 0.8, 0.91)],
[(9, 11, 13), p(0.8, 0.86, 0.9)],
[(1, 2, 3), p(0.8, 0.9, 0.95)]





υ =





[(1, 2, 5), p(0.7, 0.8, 0.89)],
[(10, 12, 14), p(0.8, 0.9, 0.94)],
[(9, 11, 15), p(0.7, 0.8, 0.92)],
[(3, 6, 7), p(0.8, 0.9, 0.95)]





The inputs, ϑ, and υ are implemented to (65), and the

corresponding outputs data are obtained as

O =





[(607.54, 643.87, 695.12), p(0.7, 0.8, 0.91)],
[(3788.76, 4011.86, 4457.16), p(0.7, 0.82, 0.9)],
[(2453.52, 2874.83, 3287.77), p(0.8, 0.86, 0.9)],
[(887.76, 921.65, 966.88), p(0.8, 0.9, 0.95)]





Table 1. Estimation of Z-number coefficients

with neural network method

r φ1

1 [(6.27, 9.17, 11.19), p(0.6, 0.8, 0.85)]
2 [(5.91, 8.75, 10.64), p(0.72, 0.8, 0.87)]
...

...

70 [(2.02, 5.01, 7.03), p(0.81, 0.9, 0.95)]

r

1
2
...

70

φ2

[(5.36, 8.28, 12.35), p(0.71, 0.8, 0.86)]
[(4.89, 7.77, 11.85), p(0.8, 0.86, 0.9)]

...

[(1.06, 4.05, 8.03), p(0.85, 0.9, 0.94)]

r

1
2
...

70

φ3

[(7.43, 10.49, 12.37), p(0.6, 0.81, 0.87)]
[(6.82, 9.91, 11.87), p(0.7, 0.8, 0.92)]

...

[(3.04, 6.06, 8.05), p(0.82, 0.86, 0.91)]

r

1
2
...

70

φ4

[(10.23, 12.19, 15.29), p(0.6, 0.7, 0.8)]
[(9.81, 11.74, 14.79), p(0.71, 0.8, 0.85)]

...

[(6.04, 8.08, 11.07), p(0.82, 0.85, 0.92)]

These input-output pairs have been utilized for training the

neural network. The weights are φ1, φ2, φ3, and φ4. The

learning rates are η = 0.01 and γ = 0.01. The neural network

starts from,

φ1(0) = [(6.50, 9.50, 11.50), p(0.26, 0.27, 0.28)],
φ2(0) = [(5.50, 8.50, 12.50), p(0.28, 0.29, 0.298)],
φ3(0) = [(7.50, 10.50, 12.50), p(0.16, 0.18, 0.20)],
φ4(0) = [(10.50, 12.50, 15.50), p(0.32, 0.33, 0.38)]

(67)

Using equation (14) for the first iteration (r = 1) and at α-cut=
0, the reliability of (6.50, 9.50, 11.50) is obtained as below,

Pα = (6.50)(0.01) = 0.065

P
α
= (11.50)(0.03) = 0.345

(68)

where the probability density of 6.50 is 0.01 and the probabil-

ity density of 11.50 is 0.03 as a supposition. Table 1 demon-

strates the training outcomes. It can be seen that the Z-number

coefficients approach to their actual quantity after 70 iterations.

In this Table, r is taken to be the number of iterations. In order

to obtain a minor estimated error, the number of iterations

should be increased. Table 2 shows the accuracy of the neural

network method in obtaining the Z-number coefficients (for

α = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1). In order to

compare our outcomes, the fuzzy cubic spline (FCS) method

is used [16], [28]. In general, the major advantage of FCS

technique is its calculation simplicity. The results of the FCS
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method is demonstrated in Table 3. Both the neural network 
based algorithm (the proposed method in this paper) and 
the FCS technique can estimate the solutions of the fuzzy 
equations. The approximated errors of the neural network 
based algorithm are less than the FCS method.

Table 2. The accuracy of the neural network method

in obtaining the Z-number coefficients for r=70

α Error

0 [(0.00406, 0.00677), p(0.7, 0.8, 0.9)]
0.1 [(0.00341, 0.00691), p(0.8, 0.85, 0.9)]
0.2 [(0.00346, 0.00527), p(0.8, 0.9, 1)]
0.3 [(0.00685, 0.01252), p(0.75, 0.8, 0.9)]
0.4 [(0.00573, 0.00716), p(0.8, 0.9, 1)]
0.5 [(0.00481, 0.00702), p(0.7, 0.8, 0.9)]
0.6 [(0.00352, 0.00572), p(0.75, 0.8, 0.9)]
0.7 [(0.00333, 0.00532), p(0.75, 0.8, 0.9)]
0.8 [(0.00252, 0.00513), p(0.8, 0.92, 1)]
0.9 [(0.00281, 0.00551), p(0.8, 0.92, 1)]
1 [(0.00385, 0.00524), p(0.75, 0.8, 0.9)]

Table 3. Estimation of Z-number coefficients

with FCS method

r φ1

1 [(6.07, 9.02, 11.11), p(0.6, 0.81, 0.87)]
2 [(5.84, 8.91, 10.81), p(0.7, 0.8, 0.92)]
...

...

110 [(2.11, 5.13, 7.09), p(0.81, 0.9, 0.95)]

r

1
2
...

110

φ2

[(5.11, 8.01, 12.09), p(0.71, 0.82, 0.92)]
[(4.76, 7.69, 11.79), p(0.72, 0.8, 0.92)]

...

[(1.16, 4.15, 8.13), p(0.8, 0.85, 0.95)]

r

1
2
...

110

φ3

[(7.11, 10.09, 12.06), p(0.6, 0.8, 0.85)]
[(6.83, 9.81, 11.76), p(0.8, 0.86, 0.9)]

...

[(3.19, 6.14, 8.16), p(0.82, 0.9, 0.94)]

r

1
2
...

110

φ4

[(10.03, 12.02, 15.05), p(0.7, 0.8, 0.87)]
[(9.83, 11.81, 14.74), p(0.71, 0.8, 0.9)]

...

[(6.16, 8.18, 11.19), p(0.82, 0.85, 0.92)]

In order to change the Z-number into the fuzzy number, the

following formula is utilized,

ν =

∫
φπP (φ)dφ∫
πP (φ)dφ

(69)

Let Z = [(6.27, 9.17, 11.19), p(0.6, 0.8, 0.85)], so

Zν = (6.27, 9.17, 11.19; 0.7) therefore, Z ′ =
(
√
0.7 6.27,

√
0.7 9.17,

√
0.7 11.19). The results of Table

1 and Table 3 based of fuzzy numbers are demonstrated in

Table 4 and Table 5, respectively.

Table 4. Estimation of fuzzy number coefficients

with neural network method

r φ1 φ2

1 (5.24, 7.67, 9.36) (4.48, 6.92, 10.33)
2 (4.94, 7.32, 8.91) (4.09, 6.51, 9.91)
...

...
...

70 (1.69, 4.19, 5.88) (0.88, 3.38, 6.71)

r

1
2
...

70

φ3 φ4

(6.21, 8.77, 10.34) (8.55, 10.19, 12.79)
(5.71, 8.29, 9.93) (8.21, 9.82, 12.37)

...
...

(2.54, 5.07, 6.73) (5.05, 6.76, 9.26)

Table 5. Estimation of fuzzy number coefficients

with FCS method

r φ1 φ2

1 (5.07, 7.54, 9.29) (4.27, 6.71, 10.11)
2 (4.88, 7.45, 9.04) (4.01, 6.43, 9.86)
...

...
...

110 (1.76, 4.29, 5.93) (0.97, 3.47, 6.81)

r

1
2
...

110

φ3 φ4

(5.94, 8.44, 10.09) (8.39, 10.05, 12.59)
(5.71, 8.21, 9.83) (8.22, 9.88, 12.33)

...
...

(2.66, 5.13, 6.82) (5.15, 6.84, 9.36)

The Z-number Z = (c, p) =
[(6.27, 9.17, 11.19), p(0.6, 0.8, 0.85)] and the fuzzy number

(5.24, 7.67, 9.36) are compared and the results are shown in

Figure 3. It can be noticed from this figure that the Z-number

has an advantage to fuzzy number in having more and various

information, also the solution generated by Z-number is

more precise. The membership function for the restriction

in the Z-number is in probability form and is stated as

µcZ = (6.27, 9.17, 11.19).

5.24 6.27 7.67 9.17 9.36 11.19 

 !"!"

1 

R 

Fig. 3. Comparison between Z-number and fuzzy number

Example 2 In order to transfer the food and astronaut to space

station two space shuttles are used. During the traveling, the
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weights and velocities of the shuttles change. By reaching the 
shuttles to the space station, the collision occurs between shut-

tles and station. The produced momentum after the collision 
is defined as [15],

S = A1M1V1 ⊕A2M2V2 (70)

where M1 =
√
ϑ,M2 = ϑ2 are the masses, and V1 =√

2υ, V2 = υ are the velocities of shuttles. A1, and A2 are

the characteristic coefficients of the momentum of shuttles.

Shuttle 1 
Shuttle 2 

International Space Station 

Fig. 4. International space station

The real parameters are stated as

A1 = [(1, 5, 8), p(0.71, 0.8, 0.9)],
A2 = [(7, 13, 16), p(0.8, 0.9, 95)]

(71)

Two types of inputs are utilized for training the neural network,

where weights are considered as the Z-number parameters of

(70). The input data are given as

ϑ =

{
[(2, 4, 8), p(0.8, 0.9, 0.95)],
[(8, 10, 12), p(0.7, 0.8, 0.9)]

}

υ =

{
[(3, 5, 9), p(0.7, 0.8, 0.9)],
[(7, 10, 13), p(0.8, 0.9, 0.96)]

}

The inputs, ϑ, and υ are implemented to (70), and the

corresponding outputs data are obtained as

S =

{
[(401.32, 452.87, 500.01), p(0.7, 0.8, 0.91)],
[(1307.76, 1798.86, 2065.23), p(0.7, 0.82, 0.9)]

}

These input-output pairs have been utilized for training

the neural network. The weights are A1, and A2. The

learning rates are η = 0.01, and γ = 0.01, also

α = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. The neural

network starts from,

A1(0) = [(5.50, 9.48, 12.37), p(0.20, 0.22, 0.23)],
A2(0) = [(11.46, 17.50, 20.39), p(0.26, 0.27, 0.28)]

(72)

We use neural network method to approximate A1 and A2. The

comparison results between the neural network method and the

FCS method are shown in Figure 5. In this figure, it can be

seen that the estimated errors of the neural network method are

less when compared with the FCS method. Furthermore, the

neural network method approaches to the real solution more

faster than the FCS method. The FCS method initially is not

robust.
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Fig. 5. Estimated errors of neural network method and FCS

method

Example 3 Consider the following system where all the input

and output data are designed as Z-numbers [39],

e(r) = γcos(ζ∆tr)

y(r + 1) = ∆t2[e(r)−βy3(r)]−y(r−1)+δy(r)
(1+κ∆t)

(73)

with δ = κ∆t−α∆t2+2, where ∆t, κ, α, β, γ are Z-number

parameters, and ζ is a random variable. (73) is the discrete-

time version of the well-known Duffing equation with,

∆t = [(0.03, 0.05, 0.06), p(0.6, 0.8, 0.86)]
κ = [(0.1, 0.3, 0.5), p(0.6, 0.7, 0.87)]
α = [(−4.2,−4,−3.8), p(0.6, 0.8, 86)]
β = [(0.8, 1, 1.2), p(0.7, 0.8, 0.85)]
γ = [(0.2, 0.5, 0.7), p(0.7, 0.8, 0.85)]

(74)

ζ being a random variable uniformly distributed in the interval

[0.1, 2.9] with mean E{ζ} = 1.5, and the initial conditions

being y(0) = y(1) = 1. By substituting the value of Z-number

parameters in (73) and choosing ζ randomly, ζ = 2.1053, the

following relation is extracted

y(r + 1) = C1cos(pr)− C2y
3(r)− C3y(r − 1) + C4y(r)

(75)

where,

p = ζ∆t = [(0.06315, 0.10526, 0.12631), p(0.7, 0.8, 0.9)]

C1 = ∆t2γ
1+κ∆t = [(0.00017, 0.00123, 0.00251), p(0.8, 0.85, 0.9)]

C2 = ∆t2β
1+κ∆t = [(0.00069, 0.00246, 0.00430), p(0.7, 0.8, 0.9)]

C3 = 1
1+κ∆t = [(0.97087, 0.98522, 0.99700), p(0.8, 0.85, 0.9)]

C4 = δ
1+κ∆t = [(1.94798, 1.99507, 2.03900), p(0.7, 0.8, 0.9)]

(76)

The neural network is performed with training of r = 50 and

starts from,

C1(0) = [(2.00036, 2.00141, 2.00271), p(0.16, 0.18, 0.20)]
C2(0) = [(3.00193, 3.00372, 3.00555), p(0.32, 0.33, 0.38)]
C3(0) = [(3.11021, 3.12451, 3.13619), p(0.26, 0.27, 0.28)]
C4(0) = [(4.13722, 4.18437, 4.22831), p(0.20, 0.22, 0.23)]

(77)
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The learning rates are η = 0.01 and γ = 0.01. The accuracy 
of the neural network method in obtaining the Z-number 
coefficients is demonstrated in Figure 6 which is compared 
with the FCS method. In this figure, it can be seen that the 
estimated errors of the neural networks based algorithm are 
less when compared with the FCS method.

0 10 20 40 50 
0 

0.25 

1 

1.5 

2 

2.5×102 

T
h

e
 c

o
s
t 

fu
n

c
ti

o
n

 

Number of iterations 

30 40 

Error of neural network 

Error of fuzzy cubic spline 

0.5 

0.75 

1.25 

1.75 

2.25 

30 

Fig. 6. Estimated errors of neural network method and FCS

method

VI. CONCLUSION

In this paper, the classical fuzzy equation is modified in

such a way that its coefficients and variables are Z-numbers.

In order to obtain the Z-number coefficients of the fuzzy

equations, a novel structure of the multilayer neural network

is utilized. The structure of the suggested multilayer neural

network is based on the fuzzy equation. For training the neural

network, the backpropagation learning approach is used. Also,

some important theorems in order to support the proposed

method are given. Future work is to study the stability of the

training algorithm.
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