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An N -Soft Set Approach to Rough Sets
José Carlos R. Alcantud, Feng Feng, and Ronald R. Yager

Abstract—The philosophy of soft sets is founded on the
fundamental idea of parameterization, while Pawlak’s rough sets
put more emphasis on the importance of granulation. As a multi-
valued extension of soft sets, the newly emerging concept called
N -soft sets can provide a finer granular structure with higher
distinguishable power. This study offers a fresh insight into rough
set theory from the perspective of N -soft sets. We reveal a
close connection between N -soft sets and rough structures of
various types. First, we show how the corresponding structures of
Pawlak’s rough sets, tolerance rough sets and multigranulation
rough sets can be derived from a given N -soft set. Conversely, we
investigate the representation of these distinct rough structures
using the corresponding notions derived from suitable N -soft
sets. The applicability of these theoretical results is highlighted
with a case study using real data regarding hotel rating. The
established two-way correspondences between N -soft sets and
diverse rough structures are constructive, which can bridge the
gap between seemingly disconnected disciplines, and hopefully
nourish the development of both rough sets and soft sets.

Index Terms—Rough set, soft set, N -soft set, tolerance relation,
tolerance rough set, multigranulation rough set.

I. INTRODUCTION

ROUGH set theory has come a long way since Pawlak
published his pioneering work [1] in 1982. The indis-

cernibility relation, which is an equivalence relation generated
from the collected data, serves as the basis of Pawlak’s rough
sets. Objects taking identical values are indiscernible in view
of the available information about them. In fact, this reveals a
fundamental fact that human knowledge and conceptualization
of objects is based on granulation of the universe of discourse.
In the literature, some developments of the classical rough
set model have been made by virtue of various granulation
structures, which are induced by customary extensions of
the indiscernibility relation. For instance, instead of using
an equivalence relation as in [1], a similarity relation [2], a
tolerance relation [3], or a general binary relation [4]–[6] can
serve for the original purpose of granulation. Furthermore, a
multiplicity of binary relations or partitions can do this work
even better, which gives rise to multigranulation rough sets
[7], [8].
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Later on, several more challenging extensions of Pawlak’s
rough sets have been put forward. The concept of covering
based rough sets, an important type of generalized rough
sets, relies on the granulation structure provided by cov-
erings of the universe of discourse [9]–[16]. The variable
precision rough set model [17] permits to represent and
address classification problems with imprecise or uncertain
information. The emergence of soft set theory [18] further
boosted the development of rough sets. Using a soft set as
the underlying granulation structure, Feng et al. [19] initiated
soft approximation spaces and soft rough sets. A preliminary
investigation regarding the combination of soft sets, fuzzy sets
and rough sets was first reported in [20]. More complicated
hybridizations such as multigranulation fuzzy rough sets [21]
and other generalizations of fuzzy rough sets [22], rough soft
sets [23], [24], multigranulation covering rough sets [25],
or fuzzy covering-based rough set models [26] have been
proposed, promoting both theories of rough sets and fuzzy
sets. Some researchers explored the fundamental relationships
among existing extensions of rough sets. For example, Zhu
[27] ascertain a connection between covering based rough sets
and generalized rough sets based on a binary relation, whereas
D’eer and Cornelis [28] are concerned with interrelationships
among a wide variety of fuzzy covering-based rough set
models.

The present study belongs to a different strand of literature
that explores the connections between rough sets and soft sets,
two different mathematical theories for modeling uncertainty.
As mentioned above, rough set approach deals with uncer-
tainly from the perspective of granularity, which uses lower
and upper approximations to capture the uncertainty caused by
indiscernibility. In contrast, soft set theory is built up on the
basis of parameterization. It relies on set-valued approximate
functions to model uncertain concepts by jointly considering
a variety of different aspects expressed by parameters. Each
parameter can only give an approximate or partial description
of the entire concept. A simple illustration of the difference
between these two theories can be found in photography. In
a nutshell, rough set theory concerns the size of pixels (i.e.,
granulation of the universe of objects), whereas soft set theory
emphasizes the camera angle from which a picture is taken
(i.e., parameterized description of the universe). Our study
does not aim at extending or hybridizing some of the existing
models as well done in [20], [25], [29], [30]. In contrast, we
endeavor to give a fresh insight into rough set theory from
the perspective of N -soft sets [31]. This idea is motivated in
spirit by Zhu’s inspiring work [27]. Note also that relationships
among several basic concepts in the theory of covering based
rough sets were examined in [32]. A more distant reference
is Bustince and Burillo’s important work [33], which shows
that vague sets can be identified with intuitionistic fuzzy sets.
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The novelty of all these influential studies does not lie in their
direct real world applications, which the authors disregard in
their papers. Instead, these theoretical works provide novel
or deeper insight into the internal configuration of existing
models in the literature.

Similarly, our paper concentrates on issues that are at the
core of theoretical foundations of various models although
we demonstrate them with real-life data. To the best of our
knowledge, there are very limited research works investigating
explicit connections between rough sets and soft sets, except
for a few earlier studies [19], [20], [34], [35]. This might be
due to the fact that the rationale of soft sets is founded on
binary divisions of the universe of discourse derived from all
relevant parameters, which falls short of the differentiation
ability required by rough sets. Precisely because many social
and decisional contexts require finer distinctions too [36]–[39],
Fatimah et al. [31] put forward N -soft sets. The distinguish-
able power provided by this model is exactly what is needed in
order to guarantee a correspondence between Pawlak’s spaces,
tolerance rough structures and even multigranulation rough
structures, with comparable notions derived from the theory
of N -soft sets. Our results mean a crossroads in the literature
that paves the way to another innovative view on rough set
theory.

We organize our research as follows. Section II recalls
some basic terminologies. Section III investigates one direction
of the interaction between rough structures and N -soft sets,
namely, how N -soft sets produce rough structures. Section
IV explains the relationship in the converse direction and
therefore, how N -soft sets can act as a representation of any
given rough structure. The techniques of proof are constructive
and both cases are illustrated with examples. At the end of
Section IV we summarize our main findings and provide a list
of examples that help us understand their operations in various
scenarios. Section V applies the new concepts in Sections
III and IV to a real case with data from characteristics of
lodging facilities. Section VI concludes the main contributions
of this study. It also points out the limitations of our work and
indicates some possible directions for future research.

II. PRELIMINARIES

This section reviews some terminologies and results related
to soft sets and rough sets. Along this article, U denotes
a nonempty finite set of options (namely the universe of
discourse), and EU (or simply E) denotes the set of all
parameters (associated with options in U ), called the parameter
space. The pair (U,E) is also known as a soft universe. By
∼ B we mean the complement set of B in U . For any set U ,
P(U) denotes its power set and |U | denotes the cardinality of
U . When ρ is an equivalence relation on U , the equivalence
class of u ∈ U under ρ is denoted by [u]ρ, and U/ρ is the
quotient set of U by ρ.

Definition II.1. [18] A pair S = (F,A) is called a soft set
over U , where A ⊆ E and F : A → P(U) is a set-valued
mapping, called the approximate function of the soft set S.

Definition II.2. [20] Let S = (F,A) be a soft set over U . If⋃
a∈A F (a) = U , then S is said to be a full soft set.

Definition II.3. [20] A soft set S = (F,A) over U is called
a partition soft set if {F (a) : a ∈ A} forms a partition of U .

In what follows, the collection of all soft sets over U with
parameter sets from E is denoted by S E(U). Moreover, we
denote by SA(U) the collection of all soft sets over U with
a fixed parameter set A ⊆ E. For more details regarding soft
sets, their extensions and related applications, we refer to [34],
[40]–[48].

The parameterized binary divisions of the universe of dis-
course provided by a soft set are insufficient in some daily
situations. Here are a few examples:
i) Real evidences that appear in [31] include online mo-

bile comparators, evaluations of manuscripts submit-
ted to a journal (namely, the American Sociological
Review), or rankings of movies by cinema critics.

ii) It is easy to find similar utilizations of real data that
demand a finer parameterized division of the universe
of discourse.
Figure 1 is a screen capture from the website Meta-
critic, which shows real reviews for a film (both
from professional critics and users). Figure 2 shows
how the users of that website can give approximate
descriptions of the films as well as written reviews. In
both cases, the parameterization requires more than
a binary distinction.
Figure 3 is a screen capture from the Amazon web-
site, which shows the opinions of a set of customers
on a given product. The data are retrieved by asking
the users to give an approximate description of
the products that they have purchased, which must
belong to a set of five grades as shown in Figure 4.

Fig. 1. Screen capture of data on a film at the website Metacritic
(https://www.metacritic.com/).

Fig. 2. Screen capture of data requested from the users at the website
Metacritic (https://www.metacritic.com/).

In order to investigate data with the structure of these
examples, Fatimah et al. [31] define a more powerful tool as
follows:

Definition II.4. [31] Let GN = {0, 1, . . . , N − 1} be a set
of ordered grades where N > 1 is a natural number. We say
that (F,A,N) is an N -soft set on U if F : A → 2U×GN

satisfies the condition that for each a ∈ A and u ∈ U there
exists a unique r ∈ GN such that (u, r) ∈ F (a).
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Fig. 3. Screen capture of reviews of a product from the customers of Amazon
(https://www.amazon.com/).

Fig. 4. Screen capture of data requested from the readers of a book at the
Amazon website (https://www.amazon.com/).

Note that N -soft sets extend soft sets in a natural way,
since the parameterization of the universe of options is N -
ary. An N -soft set reduces to a soft set if N = 2. Relatedly,
although we give a mathematically unequivocal formulation
that avoids imprecisions, the set of grades can be made of
abstract symbols as in the examples in this section (see also
Section V below).

This concept is less obviously related to other models:
i) N -soft sets can be regarded as the soft set-theoretic

counterpart of multi-valued information systems (also
known as knowledge representation systems). Thus the
condition in Definition II.4 is logically equivalent to the
requirement that F is a mapping (called information
function) from A × U to GN . We return to this issue
in Section V.

ii) From the perspective of L-fuzzy sets, N -soft sets whose
grades lie in GN = {0, 1, . . . , N − 1} can be viewed as
a special case of L-fuzzy soft sets with the valuation
lattice GN , which is indeed a chain with the natural
order.

In addition, multi-valued parameterizations are naturally
compatible with hesitancy. Their combination produces the
notion of hesitant N -soft sets [49]. Hybridization with hes-
itancy is not truly beneficial in the case of soft sets, for which
hesitancy is equivalent to incompleteness or full uncertainty
[43]. Note also that fuzzy N -soft sets were investigated in
[50].

In contrast to the above case, rough set theory investigates
vagueness from a different perspective. It does not aim at
producing approximate descriptions based on parameterization
of the universe of discourse as in the case of soft sets and
related extensions. In fact, rough sets put more emphasis on

granulation of the universe of discourse, which is typically
caused by indiscernibility. In Pawlak’s classical rough set
model, an approximation space consists of the universe of
discourse U and an equivalence relation on it. Using the
granulation structure derived from the given approximation
space, an arbitrary subset X of U can be described in terms of
two definable subsets, called lower and upper approximations
of X . More specifically, the formal definition of Pawlak’s
rough sets is given in the following way:

Definition II.5. [1] Let ρ be an equivalence relation on U .
The ordered pair (U, ρ) defines a Pawlak approximation space.
When X ⊆ U we define ρ(X) = {u ∈ U |[u]ρ ⊆ X}, the lower
approximation of X , and ρ(X) = {u ∈ U |[u]ρ ∩X 6= ∅}, the
upper approximation of X .

Then X ⊆ U is said to be definable if ρ(X) = ρ(X),
otherwise it is called a rough set.

Remark II.6. Rough sets are often described from the
previous concept of an information system, that defines an
indiscernibility relation IB associated with any subset B of
the attributes sets. From the equivalence relation IB , the B-
approximations of all subsets of the universe of discourse are
derived. This additional ingredient of the model is explained
for example, in [51], [52], and from a practical perspective
we consider this issue in the case study of Section V.

The rough set approach is notable in the granular computing
realm due to its feasibility and flexibility. When the universe
of discourse has an algebraic structure, we can resort to
strengthened forms of equivalence relations. For example,
(full) congruence relations improve their performance when U
is a lattice [53], [54]. But one can also generalize Definition
II.5 easily. In the following, we proceed to list some remark-
able extensions of Pawlak’s rough sets, which have further
boosted the application of Pawlak’s original idea to various
scenarios.

Tolerance relations are binary relations which are reflexive
and symmetric, but not necessarily transitive. They have
been used to define generalized approximations spaces and
tolerance relation based rough sets since [29]. Their origi-
nal motivation comes from incomplete symbolic information
systems in which attribute values may be either unknown or
missing. The need for avoiding transitivity has a long tradition
in other disciplines like behavioral decision making [55]–
[57]. Generalized approximation spaces can be defined from
tolerance relations by the expressions given in Definition II.5.

Multigranularity stands out among the most valuable char-
acteristics that have been added to Pawlak’s original concept.
Qian et al. [7] developed this successful model in order to
account for the cases where a variety of sources furnish
granulations. Their extension is twofold: an optimistic and
a pessimistic model reduce to the standard Pawlak’s model
when there is one source of granularity. We recall them in
Definitions II.7 and II.9, respectively.

Definition II.7. [7], [8] Let {P̂1, . . . , P̂m} be a collection of
partitions of U . For each subset X of U we define
XO∑

P̂i
= ∪{P ⊆ X|P ∈ P̂i for some i},
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X
O∑
P̂i =∼ (∼ X)O∑

P̂i
.

Then XO∑
P̂i

and X
O∑
P̂i are called the optimistic multi-

lower approximation and the optimistic multi-upper approxi-
mation of X , respectively.

When XO∑
P̂i

= X (resp. X
O∑
P̂i = X), we say that X

is lower definable, (resp., upper definable), in the optimistic
multigranulation rough set model.

Finally, X is a definable set in the optimistic multigranu-
lation rough set model when X is both lower definable and
upper definable in the optimistic multigranulation rough set
model.

By inspiration of Definition II.5, Definition II.7 can be
rewritten by way of a collection of equivalence relations as
well. In order to do that, we just need to redefine optimistic
multi-lower and multi-upper approximations in the following
terms:

Definition II.8. Let {ρ1, . . . , ρm} be a collection of equiva-
lence relations over U . For each subset X of U we define
XO∑

ρi
= ∪{[u]ρi | [u]ρi ⊆ X for some i},

X
O∑
ρi =∼ (∼ X)O∑ ρi

.

Definition II.9. [7], [8] Let {P̂1, . . . , P̂m} be a collection of
partitions of U . For each subset X of U we define
XP∑

P̂i
= ∪{P ⊆ X|P ∈ P̂i for every i},

X
P∑
P̂i =∼ (∼ X)P∑

P̂i

Then XP∑
P̂i

and X
P∑
P̂i are called the pessimistic multi-

lower approximation and the pessimistic multi-upper approx-
imation of X , respectively.

When XP∑
P̂i

= X (resp. X
P∑
P̂i = X), we say that X

is lower definable, (resp., upper definable), in the pessimistic
multigranulation rough set model.

Finally, X is a definable set in the pessimistic multigranu-
lation rough set model when X is both lower definable and
upper definable in the pessimistic multigranulation rough set
model.

Definition II.9 can also be rewritten if we define pessimistic
multi-lower and multi-upper approximations in terms of a
collection of equivalence relations as follows:

Definition II.10. Let {ρ1, . . . , ρm} be a collection of equiva-
lence relations over U . For each subset X of U we define
XP∑

ρi
= ∪{[u]ρi | [u]ρi ⊆ X for every i},

X
P∑
ρi =∼ (∼ X)P∑ ρi

.

Soft sets are already linked to rough structures by concepts
like the next two definitions:

Definition II.11. [19], [20] Let S = (f,A) be a soft set over
U . Then the pair P = (U, S) is called a soft approximation
space, which induces the following two operations:

apr
P
(B) = {u ∈ U | ∃e ∈ A (u ∈ f(e) ⊆ B)},

aprP (B) = {u ∈ U | ∃e ∈ A (u ∈ f(e), f(e) ∩B 6= ∅)},

where B is a subset of U . We refer to apr
P
(B) and aprP (B)

as the lower and upper soft rough approximations of B in

P , respectively. If apr
P
(B) = aprP (B), the set B is said to

be soft definable; otherwise it is called a Feng-soft rough set
(briefly, FSRS).

Definition II.12. [58] Let S = (F,A) ∈ S E(U). Define the
mapping η : U →P(A) as

η(y) = {e ∈ A | y ∈ F (e)}

for all y ∈ U . For any B ⊆ U , we refer to

Bη = {x ∈ B | η(x′) 6= η(x) for all x′ ∈∼ B},

Bη = {x ∈ U | η(x′) = η(x) for some x′ ∈ B}

as the lower and upper modified soft rough approximations
of B, respectively. If Bη = Bη , B is said to be modified
soft-definable; otherwise it is called a modified soft rough set
(briefly, MSRS).

III. ROUGH STRUCTURES INDUCED BY N -SOFT SETS

The links that we show in this section will be better
understood if we use N -soft sets in their tabular form. The
reader is referred to [31], [50] for details about the intuitive
process that transforms N -soft sets into tables and vice versa.
In order to make this paper self-contained, we refer to the
following example concerning faculty appointments.

Example III.1. Faculty appointments to senior positions in
research institutions involve careful evaluations and decision
making. Candidates can be judged by various attributes such
as “research productivity” (a for brevity), “managerial skills”
(b for brevity) and “academic leadership qualities” (c for
brevity).

Suppose that O = {o1, o2, o3, o4, o5} are the final candi-
dates who apply to a senior faculty position at X University.
Among the set of attributes P or “evaluation of candidates
by selection panel”, a subset A ⊆ P consisting of a, b, c
described above determines the choice. As a result, the re-
cruiting panel produces a 5-soft set S = (F,A, 5) with the
graded parameterized description of the candidates as shown
in Table I.

TABLE I
THE 5-SOFT SET IN SECTION III

(F,A, 5) a b c
o1 2 2 2
o2 1 2 3
o3 3 3 3
o4 4 1 2
o5 1 2 3

This description can be easily matched with Definition II.4.
For example, we interpret the elements in the first line as
(o1, 2) ∈ F (a), (o1, 2) ∈ F (b) and (o1, 2) ∈ F (c). Similarly,
(o2, 1) ∈ F (a) and so forth.

Now we are ready to define standard rough structures as
well as multigranulation rough structures associated with any
N -soft set.



IEEE TRANSACTIONS ON FUZZY SYSTEMS 5

A. Pawlak’s rough structures induced by N -soft sets

Suppose that (F,A,N) is an N -soft set on U . Each attribute
a in the set of parameters A induces an equivalence relation
∼a by

u ∼a v ⇔ ∃r ∈ GN such that {(u, r), (v, r)} ⊆ F (a) (1)

Therefore, a induces a Pawlak approximation space (U,∼a)
as in Definition II.5. In intuitive terms, we can derive this
equivalence relation (or the partition that it induces) from the
column corresponding to a in the tabular representation: two
alternatives are related (or belong to the same equivalence class
in the partition) if and only if their grade under that column
is the same. For illustration, let us reconsider the running
Example III.1.

Example III.2. In the situation of Example III.1,

• attribute a induces the equivalence relation ∼a whose
equivalence classes form the partition
P̂1 = {{o1}, {o3}, {o4}, {o2, o5}},

• attribute b induces the equivalence relation ∼b whose
equivalence classes form the partition
P̂2 = {{o3}, {o4}, {o1, o2, o5}}, and

• attribute c induces the equivalence relation ∼c whose
equivalence classes form the partition
P̂3 = {{o1, o4}, {o2, o3, o5}}.

If we look at the joint information in (F,A,N), then we
are endowed with a collection of equivalence relations (or
partitions), one for each attribute. This family of relations
{∼a}a∈A produces the equivalence relation defined as

u ∼ v ⇔ u ∼a v for every a ∈ A (2)

Therefore (F,A,N) itself defines a Pawlak approximation
space (U,∼) in a uniquely determined fashion. We call it
the Pawlak approximation space derived from (F,A,N). The
following example illustrates this procedure.

Example III.3. In the running Example III.1, the construction
in (2) allows one to canonically associate a Pawlak’s rough
set (O,∼) with the 5-soft set (F,A, 5) on O. The relation ∼
that we obtain coincides with ∼a, because we know o2 ∼a o5,
o2 ∼b o5, o2 ∼c o5 and no other pair of options verifies this
triple relationship.

More generally, every subset B of A defines an equivalence
relation IB that we call the B-indiscernibility relation induced
by (F,A,N):

uIBv ⇔ u ∼a v for every a ∈ B (3)

With the assistance of IB , for every subset of U we can
define its B-lower and B-upper approximation derived from
(F,A,N). Section V illustrates the computation of indiscerni-
bilities and rough approximations derived from N -soft sets.

It is worth noting that the above ideas are also associated
with the following notions initiated in [59].

Definition III.4. [59] A soft set (σ,A) over U ×U is called
a soft binary relation on U .

Definition III.5. [59] A soft binary relation (σ,A) is called
a soft equivalence relation on U if for every a ∈ A, σ(a) is
an equivalence relation on U whenever it is nonempty.

Soft equivalence relations are helpful for the exploration of
algebraic structures. For instance, Bera et al. investigated soft
congruence relations over lattices in [54].

Remark III.6. It is clear that any N -soft set S = (F,A,N)
on U induces a soft equivalence relation (σS , A) on U , with
σS given by

σS(a) =∼a= {(u, v) ∈ U × U | u ∼a v}, for all a ∈ A.

For instance, the 5-soft set S = (F,A, 5) in Example III.1
produces in a natural way a soft equivalence relation (σS , A)
on the set O, with σS defined as

σS(a) = 4O ∪ {(o2, o5), (o5, o2)},
σS(b) = 4O ∪ {(o1, o2), (o2, o1), (o1, o5),

(o5, o1), (o2, o5), (o5, o2)},
σS(c) = 4O ∪ {(o1, o4), (o4, o1), (o2, o3),

(o3, o2), (o2, o5), (o5, o2), (o3, o5), (o5, o3)},

where 4O = {(oi, oi)}5i=1 is the identity relation on O.
Conversely, we can associate an N -soft set (which is in

general not unique) with each soft equivalence relation on
U , and then obtain its Pawlak approximation space as shown
above in this section. In conclusion, Pawlak’s approximation
spaces can also be constructed from each soft equivalence
relation on a set.

B. Tolerance based rough structures induced by N -soft sets

When (F,A,N) is an N -soft set on U , the relation

uτv ⇔ u ∼a v for some a ∈ A (4)

is obviously reflexive and symmetric. It may fail to be transi-
tive, hence we can only assure that it is a tolerance relation.
Every option defines a class of referent options to which it is
similar [29]: for each u ∈ U , R(u) = {v ∈ U : uτv} = {v ∈
U : vτu}. When we use these classes the expressions in
Definition II.5 produce the tolerance-based lower and upper
approximations derived from (F,A,N), for the subsets of
U . Consequently they define the tolerance rough structure
induced by (F,A,N).

Example III.7. In the situation of Example III.1, the toler-
ance relation defined by S = (F,A, 5) is the reflexive and
symmetric relation that satisfies

o1τo2, o1τo4, o1τo5, o2τo3, o2τo5, and o3τo5.

We can observe that it is intransitive, because o1τo2, o2τo3,
but o1τo3 is false. Or alternatively, because o1τo5, o5τo3, but
o1τo3 is false.

The classes of referent options to which every option is
similar are
• R(o1) = {o1, o2, o4, o5}.
• R(o2) = {o1, o2, o3, o5}.
• R(o3) = {o2, o3, o5}.
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• R(o4) = {o1, o4}.
• R(o5) = {o1, o2, o3, o5}.

Let us consider X = {o2, o3, o5}. Then its tolerance-based
lower approximation derived from S is

{x ∈ U | R(x) ⊆ X} = {o3}

and its tolerance-based upper approximation derived from S
is

{x ∈ U | R(x) ∩X 6= ∅} =
⋃
oi∈X

R(oi) = {o1, o2, o3, o5}.

C. Multigranular rough structures induced by N -soft sets

Section III-A explains how the N -soft set (F,A,N) induces
a collection of equivalence relations (or a soft equivalence
relation). This collection has a cardinality which is less than
or equal to |A|. It is only natural to use them in order to
define optimistic multi-lower and multi-upper approximations
associated with (F,A,N) in terms of Definition II.8. And
of course, (F,A,N) also defines pessimistic multi-lower and
multi-upper approximations in terms of Definition II.10.

Definition III.8. Let S = (F,A,N) be an N -soft set on U
which induces the soft equivalence relation (σS , A) on U such
that σS(a) =∼a for all a ∈ A.

The optimistic multi-lower and multi-upper approximations
associated with the N -soft set S = (F,A,N) are constructed
from the soft equivalence relation (σS , A) by recourse to the
corresponding expressions in Definition II.8 as follows:

XO
S = ∪{[u]σS(a) | ∃a ∈ A ([u]σS(a) ⊆ X)}

and
X
O

S =∼ (∼ X)OS .

In a similar fashion, the pessimistic multi-lower and multi-
upper approximations associated with S = (F,A,N) can be
constructed from (σS , A) by recourse to the corresponding
expressions in Definition II.10.

Let us show how these elements operate in the following
example.

Example III.9. In the running Example III.1, let us consider
X = {o2, o3, o5} as in Example III.7. Then X is definable in
the optimistic multigranulation rough set model derived from
(F,A, 5) because
XO
S = ∪{P ⊆ X|P ∈ P̂1 or P ∈ P̂2 or P ∈ P̂3} = X ,

O −X = {o1, o4} thus (O −X)OS = {o1, o4}, and

X
O

S = O − (O −X)OS = O − {o1, o4} = X .
However X is not definable in the pessimistic multigranula-

tion rough set model derived from the 5-soft set (F,A, 5) since
XP
S = ∪{P ⊆ X|P ∈ P̂1 and P ∈ P̂2 and P ∈ P̂3} = ∅.

In fact, there is no definable set of options in the pessimistic
multigranulation rough set model derived from (F,A, 5): no
subset belongs to all the partitions derived from the 5-soft set
(F,A, 5) hence for all Y ⊆ O, Y PS = ∅ and Y

P

S = Y .

IV. N -SOFT SETS AS REPRESENTATIONS OF ROUGH
STRUCTURES

This section explores the reverse processes to the construc-
tions in section III. We show that Pawlak’s spaces, tolerance
rough structures and multigranulation rough structures can
be explained by corresponding notions derived from suitable
N -soft sets over the universe of discourse.

It is worth noting that soft sets and binary relations are
closely related as shown by the following theorem.

Theorem IV.1. [19] Let S = (F,A) be a soft set over U .
Then S induces a binary relation ρS ⊆ A×U , which is defined
by

(x, y) ∈ ρS ⇔ y ∈ F (x)

for all x ∈ A and y ∈ U .
Conversely, let ρ be a binary relation from A to U . Define

a set-valued mapping Fρ : A→P(U) by

Fρ(x) = {y ∈ U : (x, y) ∈ ρ}

for all x ∈ A. Then Sρ = (Fρ, A) is a soft set over U .
Moreover, we have that SρS = S and ρSρ = ρ.

The relation ρS is called the canonical relation of the soft
set S, and the soft set Sρ is called the canonical soft set of
the binary relation ρ.

Theorem IV.2. [19] Let R be an equivalence relation on U ,
SR = (FR, U) the canonical soft set of R and P = (U, SR)
a soft approximation space. Then for all X ⊆ U,

R∗X = apr
P
(X) and R∗X = aprP (X).

Thus in this case, X ⊆ U is a (Pawlak) rough set if and only
if X is a soft P -rough set.

The following statement can be derived from Theorem IV.2,
which puts Pawlak’s rough sets in relation with very simple
N -soft sets. We give an illustrative example below in Example
IV.7.

Theorem IV.3. Let (U, ρ) be a Pawlak approximation space.
Let A = {ρ} and N = |U/ρ|. Then there exists an N -soft set
(F,A,N) on U such that (U, ρ) is the Pawlak approximation
space derived from (F,A,N).

Proof: Let U/ρ = {[u0]ρ, [u1]ρ, . . . , [uN−1]ρ} and GN =
{0, 1, . . . , N − 1}. Then we define F : A→ 2U×GN by

(u, ri) ∈ F (ρ)⇔ u ∈ [uri ]ρ,

where u ∈ U and ri ∈ GN . It is routine to check that the
procedure explained in section III-A produces (U, ρ) from
(F,A,N).

And in turn, the next theorem generalizes the aforemen-
tioned [19, Theorem 4.4] to tolerance rough sets:

Theorem IV.4. Let τ be a tolerance relation on U . Then there
is an N -soft set (F,A,N) on U such that the upper and lower
approximations defined by τ coincide with the corresponding
approximations in the tolerance rough set model derived from
(F,A,N).
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Proof: We need to justify that the process in section III-B
generates the upper and lower approximations defined by τ .
It is known that we can write τ as a union of a finite number
of equivalence relations on U (cf., [60] for a statement of the
problem of finding the minimal number of equivalence rela-
tions that are needed). From this representation, the conclusion
is trivial by an appeal to the technique of proof of Theorem
IV.3.

Indeed if τ = ∪i∈Iρi and ρi is an equivalence relation
for each i, then we take A = I and for each i ∈ A
we order U/ρi = {[u0]ρi , [u1]ρi , . . . , [uNi−1]ρi} in any ar-
bitrary manner. Let N = max{Ni : i ∈ I} and R =
{0, 1, . . . , N − 1}. Then we define F : A → 2U×R, where
R = {0, 1, . . . , N − 1}, by the expression: (u, ri) ∈ U × R
is such that (u, ri) ∈ F (a) if and only if u ∈ [ui]ρa (or
alternatively, uρaui). It is routine to check that the procedure
explained in section III-B produces the upper and lower
approximations of (U, τ) from (F,A,N).

In order to make this paper self-contained, we now proceed
to give two explicit (although not necessarily efficient) solu-
tions to the problem solved in Theorem IV.4. We do this in
the following constructive proof of this result.

Proof: (An alternative proof of Theorem IV.4). We select
the set of subsets of U defined as
E = {Y ⊆ U : Y maximal w.r.t. the property {u, v} ⊆ Y ⇒
uτv}
or alternatively the larger set of subsets of U
E = {{u, v} ⊆ U : uτv, u 6= v}.

Now each element e ∈ E defines an equivalence relation
Re by the expression: for all x, y ∈ U ,

xRey ⇔ either x = y or {x, y} ⊆ E.

A routine checking ensures that for all x, y ∈ U , xRy if
and only if there exists e ∈ E such that xRey. With this
representation of τ we proceed as in the original proof.

We can gain more intuition if we consider the problem in
graph-theoretical terms. Then any tolerance relation τ can be
visualized as an undirected graph. Its vertices are the elements
of U and an edge joins u and v (we also say that u and v are
adjacent) if and only if uτv. The tolerance relation is transitive
(i.e., an equivalence relation) if and only if its graph is a vertex
disjoint union of complete graphs (i.e., of graphs for which
every two distinct vertices are adjacent). A clique is a subset
of vertices of an undirected graph such that every two distinct
vertices in the clique are adjacent. A clique that cannot be
extended by adding more adjacent vertices is a maximal clique.
For more on cliques and their interaction with fuzzy structures,
see the application to political sciences in [61]. Based on the
above observation, the fact that a tolerance relation τ can be
written as a union of a finite number of equivalence relations
on U reduces to the intuitive observation that we can find
graphs that are a vertex disjoint union of complete graphs,
with the property that every edge of the graph associated with
τ is an edge of at least one of these complete graphs. For
illustration, we consider the following example.

Example IV.5. Let us consider U = {x, y, z, t, u}. A toler-
ance relation τ is defined on U as follows: xτyτx, zτyτz,

zτuτz, zτtτz, tτuτt, plus wτw for each w ∈ U . We can
visualize it as an undirected graph. Consider
E = {Y ⊆ U : Y maximal w.r.t. the property {u, v} ⊆ Y ⇒
uτv},
then E = {{x, y}, {y, z}, {z, t, u}} is identified with the
maximal cliques of the graph, and Figure 5 shows their visual
representation (however for the sake of simplicity, all loops
like xτx are omitted).

Corresponding to these cliques we define three respective
equivalence relations R1, R2, R3, namely:

1) wR1w
′ ⇔ w = w′∨{w,w′} = {x, y}, for each w,w′ ∈

U .
2) wR2w

′ ⇔ w = w′∨{w,w′} = {y, z}, for each w,w′ ∈
U .

3) wR3w
′ ⇔ w = w′ ∨ {w,w′} ⊆ {z, t, u}, for each

w,w′ ∈ U .
These equivalence relations ensure that for all w,w′ ∈ U ,

wτw′ if and only if there is i ∈ {1, 2, 3} with wRiw′.
Finally, from these relations we define (G,B, 4) where A =
{a1, a2, a3} according to Table II. Then the process in section
III-B produces the upper and lower approximations defined by
τ , because for each w,w′ ∈ U , wτw′ if and only if w ∼ai w′
for some ai ∈ A. That is, we retrieve the original tolerance
relation from the 4-soft set that we have constructed.

To conclude this section, we show how N -soft sets can be
used to represent any given multigranulation rough structure
in the sense of Section III-C.

Fig. 5. Cliques of the graph associated with the tolerance relation τ in
Example IV.5.

Theorem IV.6. Let {ρ1, . . . , ρm} be a collection of equiv-
alence relations over U . Then there is an N -soft set
(F,A,N) on U such that the optimistic, respectively pes-
simistic, multi-lower and multi-upper approximations derived
from {ρ1, . . . , ρm} coincide with the corresponding optimistic,
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TABLE II
THE 4-SOFT SET IN EXAMPLE IV.5

(G,B, 4) a1 a2 a3
x 0 0 0
y 0 1 1
z 1 1 2
t 2 2 2
u 3 3 2

respectively pessimistic, multi-lower and multi-upper approx-
imations associated with (F,A,N).

Proof: We need to justify that the process in Section III-C
generates the optimistic, respectively pessimistic, multi-lower
and multi-upper approximations derived from {ρ1, . . . , ρm}
for a suitably chosen N -soft set on U . The argument benefits
from the proof of Theorem IV.3.

Let us define A = {a(1), . . . , a(m)} and for each i ∈
{1, . . . ,m} we order U/ρi = {[u0]ρi , [u1]ρi , . . . , [uNi−1]ρi}
in any arbitrary manner. Let N = max{Ni : i ∈ I} and
GN = {0, 1, . . . , N−1}. Then we define F : A→ 2U×GN by
the expression: (u, ri) ∈ U×GN is such that (u, ri) ∈ F (a(j))
if and only if u ∈ [ui]ρj (or alternatively, uρjui). It is
routine to check that the procedure detailed in Definition III.8
produces the optimistic, respectively pessimistic, multi-lower
and multi-upper approximations derived from {ρ1, . . . , ρm}.

Example IV.7. Let us consider U = {x, y, z, t, u}. The
equivalence relation ρ1 is defined on U as follows:
U/ρ1 = {[u0]ρ1 = {x, y}, [u1]ρ1 = {z}, [u2]ρ1 = {t, u}}

where we choose u0 = x, u1 = z, u2 = t as representatives
of the equivalence classes by ρ1.

Then (U, ρ1) is the Pawlak approximation space derived
from (F1, {ρ1}, 3) where F1 : {ρ1} → 2U×G3 is defined as
F1(ρ1) = {(x, 0), (y, 0), (z, 1), (t, 2), (u, 2)}.

Consider now the equivalence relation ρ2 defined on U as
follows:
U/ρ2 = {[u′0]ρ2 = {x, u}, [u′1]ρ2 = {y, z, t}}

where we choose u′0 = x, u′1 = y as representatives of the
equivalence classes by ρ2.

Then (U, ρ2) is the Pawlak approximation space derived
from (F2, {ρ2}, 2) where F2 : {ρ2} → 2U×G2 is defined as
F (ρ2) = {(x, 0), (u, 0), (y, 1), (z, 1), (t, 1)}.

Let A = {a(1), a(2)} and S = (F1, A1, 3) be a 3-soft set
as shown in Table III.

TABLE III
THE 3-SOFT SET IN EXAMPLE IV.7

(F1, A1, 3) a(1) a(2)
x 0 0
y 0 1
z 1 1
t 2 1
u 2 0

Observe that S produces the soft equivalence relation
(σS , A) on the set U given by

σS(a(1)) = 4U ∪ {(x, y), (y, x), (t, u), (u, t)},
σS(a(2)) = 4U ∪ {(x, u), (u, x), (y, z), (z, y), (y, t), (t, y),

(z, t), (t, z)},
Then the optimistic, respectively pessimistic, multi-lower

and multi-upper approximations derived from {ρ1, ρ2} co-
incide with the corresponding optimistic, respectively pes-
simistic, multi-lower and multi-upper approximations associ-
ated with S = (F1, A1, 3). For example, let X = {x, y, u}.
Then a routine application of Definition II.8 yields
XO∑

ρi
= ∪{[w]ρi | [w]ρi ⊆ X for some i} = {x, y} ∪

{x, u} = X , and
X
O∑
ρi =∼ (∼ X)O∑ ρi

= {x, y, t, u}.
We obtain the same conclusion if we use Definition III.8

instead: XO
S = X , and X

O

S =∼ (∼ X)OS = {x, y, t, u}.

Fig. 6. Relationships among soft sets, rough sets and their extensions. The
connections without a legend are known from the existing literature.

To summarize the main results in Section III and Section
IV, we inventory the known and newly presented relationships
among soft sets, rough sets and their extensions with Figure 6.
The meaning of the symbols or abbreviations used in Figure
6 is as follows:
• A −→ B means “B is a generalization of A”;
• A 99K B means “B can be derived from A”;
• “M-rough set” stands for “multigranulation rough sets”;
• “S-rough set” stands for “soft rough sets”;
• “T-rough set” stands for “tolerance rough sets”.
It is also worth listing the practical situations from previous

sections that put these elements into action. Example III.2
and Example III.3 clarify the procedures in Section III-A.
Example III.7 sheds light on the purpose of Section III-B. Then
Example III.9 shows how the elements of Section III-C take
effect. In the opposite direction, Example IV.5 demonstrates
the technique in Theorem IV.4, which is more general than
that of Theorem IV.3. Example IV.7 illustrates both Theorem
IV.3 and Theorem IV.6. In addition, the first part of Section V
below refers to Sections III-A and III-B, and its second part
revisits the performance of Theorem IV.4. Let us therefore
present a fully developed case study in Section V.
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V. A CASE STUDY

This section is intended to emphasize the applicability of
our results with real data. We illustrate the concepts that
we have developed in Sections III and IV with a real-
life example incorporating data from the website of Trivago
(https://www.trivago.co.uk).

Trivago N.V. is a transnational technology company offers
internet-related services in the hotel field. Hotels are catego-
rized according to up to 10 attributes (a shorter description
with 5 attributes is available too). For the sake of conciseness
we will develop our example with respect to six lodging
facilities in a North European capital. We have extracted data
from the website of Trivago, and the hotel name information
is anonymized in Figure 7 for privacy protection.

The attributes produce parameterized descriptions of the
universe of hotels U = {h1, . . . , h6}. These hotels are evalu-
ated in terms of linguistic terms in L = {OK,F,G, V G,E}.
These non-numerical values stand for “Okay”, “Fair”, “Good”,
“Very Good”, and “Excellent”, as provided by the recom-
mender of Trivago.

The starting point of rough set theory is usually the in-
discernibility relation. However it is also common to define
the fundamental concepts of the theory from data like those
we have succinctly described above. In that case we input
an information system which is a pair I = (U, Ã) where
Ã is the set of attributes [51]. Every attribute is identified
with a mapping ã : U −→ Vã and Vã is the domain of
attribute ã (in our case study we can fix Vã = L for every
ã in the set of ten attributes). Now for each subset A of Ã,
the information system induces an equivalence relation on U
called A-indiscernibility relation [8], [29], [51]. Informally,
elements are indiscernible with respect to a list of available
attributes A (hence belong to the same equivalence class) when
their descriptions in terms of the attributes in A coincide.

For example, let us select the attributes “Service” (a),
“Value for money” (b), “Facilities” (c), and “Food” (d) to form
A = {a, b, c, d}. The equivalence classes derived from A (also
called A-elementary granules) are

IA = {{h1, h6}, {h2}, {h3}, {h4}, {h5}}.

Their unions are the A-definable sets. And they produce the
A-lower and A-upper approximations of subsets of U .

Similarly, if B = {a, c} then the corresponding indis-
cernibility relation produces the equivalence clases (or B-
elementary granules)

IB = {{h1, h6}, {h2, h5}, {h3}, {h4}}.

In what follows, the main contribution in Sections III and
IV will be illustrated.

1) Illustration of Section III: Table IV summarizes the
information system I1 = (U,A) coded from the data about the
six hotels, when the attributes are restricted to A = {a, b, c, d}
as mentioned above.

The information system I1 = (U,A) in turn can be associ-
ated with a 5-soft set (H,A, 5). To that purpose we codify the
information in the standard notation for the set of grades, by
replacing “OK” with 0, “F” with 1, and so forth. The result

Fig. 7. Screen capture of data about hotels in a North European capital from
the website Trivago (https://www.trivago.co.uk).
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TABLE IV
AN INFORMATION SYSTEM I1 = (U,A) OBTAINED FROM A REAL-LIFE

DATA SET REGARDING SIX HOTELS.

Hotels
Parameters

Service Value for money Facilities Food

h1 E G VG VG

h2 VG G G VG

h3 E VG E VG

h4 VG F VG OK

h5 VG F G F

h6 E G VG VG

appears in Table V. We are ready to compute the elements
defined in Section III for this 5-soft set. Section III-A defines
four Pawlak’s rough structures associated with (H,A, 5), one
for each attribute:
• attribute a induces the equivalence relation ∼a whose

equivalence classes form the partition
P̂1 = {{h1, h3, h6}, {h2, h4, h5}},

• attribute b induces the equivalence relation ∼b whose
equivalence classes form the partition
P̂2 = {{h1, h2, h6}, {h3}, {h4, h5}},

• attribute c induces the equivalence relation ∼c whose
equivalence classes form the partition
P̂3 = {{h3}, {h2, h5}, {h1, h4, h6}}, and

• attribute d induces the equivalence relation ∼d whose
equivalence classes form the partition
P̂4 = {{h4}, {h5}, {h1, h2, h3, h6}}.

TABLE V
THE 5-SOFT SET ASSOCIATED WITH I1 = (U,A).

(H,A, 5) a b c d
h1 4 2 3 3
h2 3 2 2 3
h3 4 3 4 3
h4 3 1 3 0
h5 3 1 2 1
h6 4 2 3 3

In order to obtain the Pawlak approximation space (U,∼)
derived from the 5-soft set that describes our problem, we set
∼ by the expression in (2). The definition hi ∼ hj if and only
if hi ∼e hj for each e ∈ A produces an equivalence relation
whose equivalence classes are

{{h1, h6}, {h2}, {h3}, {h4}, {h5}}.

which as the theory prescribes, coincide with the equivalence
classes derived from A in the original information system I .

If B = {a, c} then (3) produces the B-indiscernibility
relation induced by (H,A, 5). One readily checks that its
equivalence classes coincide with the B-elementary granules
computed above from the original information system. Let

us fix X = {h1, h2, h5}. Then the B-lower approximation
of X induced by (H,A, 5) is {h2, h5} and the B-upper
approximation of X induced by (H,A, 5) is {h1, h2, h5, h6}.

Section III-B defines the tolerance-based rough structure
derived from the 5-soft set (H,A, 5). It arises from the
tolerance relation τ such that hiτhj if and only if hi ∼e hj for
some e ∈ A. Simple computations show that τ is the reflexive
and symmetric relation that satisfies

h1τh2, h1τh3, h1τh4, h1τh6; h2τhj (j = 1, . . . , 6);

h3τh6, h4τh5, and h4τh6.

2) Illustration of Section IV: Now suppose that we are in
possession of information relating to which options are similar
to others [62, Section 3.1]. In particular, we know that when
we represent this relationship by a tolerance relation T , one
has the non-trivial similarities

h1 T h3, h1 T h4, h1 T h6, h2 T h4, h2 T h5, h3 T h6, h4 T h5

in addition to its reverse similarities

h3 T h1, h4 T h1, h6 T h1, h4 T h2, h5 T h2, h6 T h3, h5 T h4

and the diagonal part hi T hi (i = 1, . . . , 6).
Using the techniques developed in Section IV, we can

represent T by an undirected graph whose maximal cliques are
shown in Figure 8. From these maximal cliques, we can define
three equivalence relations, whose partitions are as follows:

{ {h1, h3, h6}, {h2}, {h4}, {h5} },

{ {h1, h4}, {h2}, {h3}, {h5}, {h6} },

{ {h2, h4, h5}, {h1}, {h3}, {h6} }.

Fig. 8. Cliques of the graph associated with the tolerance relation T .
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Then it can be easily checked that the union of these
three relations results in the given tolerance relation T . To
conclude, these equivalence relations in turn define a 5-soft
set (H ′, A′, 5) with A′ = {a1, a2, a3} as shown in Table VI.

Moreover, it is worth noting that we can retrieve the original
tolerance relation T when we apply the concepts of section
III-B to the 5-soft set(H ′, A′, 5).

TABLE VI
THE 5-SOFT SET (H′, A′, 5) IN SECTION V

(H ′, A′, 5) a1 a2 a3
h1 0 0 0
h2 1 1 1
h3 0 2 2
h4 2 0 1
h5 3 3 1
h6 0 4 3

Remark V.1. It should be noted that the above-mentioned
binary relation T is not artificially given. In fact, it is the
tolerance relation derived from another information system
similar to I1 = (U,A), by considering the attributes “Rooms”,
“Cleanliness”, “Comfort” and “Building”, which are actually
used by the recommender of Trivago (see the screen capture
in Figure 7). Specifically, hiThj means that the descriptions
of hotels hi and hj by at least one of these attributes are
identical. Nevertheless, the observer does not need to know
whether similarities come from this source of information, or
are a primitive concept.

As emphasized in Section III-B, uniqueness of the represen-
tation of rough structures by N -soft sets is not guaranteed.
Actually, two different proofs of Theorem IV.4 give rise to two
distinct procedures for producing representations of tolerance-
based rough structures. The construction based on maximal
cliques is more efficient. In particular, the above calculation
shows that the tolerance-based rough structure, originally de-
rived from four real attributes (i.e., “Rooms”, “Cleanliness”,
“Comfort” and “Building”), can be equivalently represented
by only three artificial parameters a1, a2 and a3.

Lastly, since the relationships between multigranulation
rough structures and N -soft sets have been well illustrated by
Example III.9 and Example IV.7, we omit similar discussions
in this case study.

VI. CONCLUSION

This study has shown that abundant mutual connections
exist between various rough structures and N -soft sets. The
methods used for establishing these interrelationships are
constructive; hence we can move from one setting to the other
in a definite manner. Each of the methods is applicable when
the structure of the uncertain data corresponds to its input. In
a concrete situation, Section III provides methodologies that
apply to data in the form of an N -soft set, whereas the methods
of Section IV are applicable when the information pertains to
the realm of granular computing. The precise details of these
dual ideas are as follows:

i) Various types of rough structures can be derived
from a given N -soft set with the approach proposed
in Section III. We give three detailed constructions
that are applicable when the information takes the
form of an N -soft set. They produce Pawlak’s rough
sets, tolerance rough sets, and multigranulation rough
sets, respectively. In this way we have established
a blueprint for the subsequent analysis of rough sets
in terms of multi-valued approximate descriptions.

ii) A more challenging task is the converse problem,
that is, the possibility of employing N -soft sets as a
uniform representation of several granular knowledge
structures. Results from [19] help anticipate the abil-
ity of N -soft sets with a single attribute to represent
rough sets (cf., Theorem IV.3). Here we made further
improvement upon this insight, and overcame the
limitations of soft sets as a tool for giving approx-
imate descriptions. We benefited from an integrated
use of combinatorial and graph-theoretic techniques
in order to represent tolerance rough structures by
means of N -soft sets (cf., Theorem IV.4). In par-
ticular, two feasible ways to achieve this goal derive
from the alternative proofs of Theorem IV.4. The first
construction takes advantage of the maximal cliques
of the graph of the relation and is more efficient. The
second one is simpler to understand. It shows that
we can take all the vertices separately, and then each
edge induces one equivalence relation. At the same
time, the fundamental relationship that Theorem IV.3
embodies is at the core of our representation of
multigranulation rough structures by virtue of N -
soft sets. To be precise, Theorem IV.6 is applicable
when the data take the form of a multigranulation
rough structure. It assures the existence of an N -soft
set that produces this configuration by the routine
implementation of the techniques in Section III-C.

These results are helpful for bridging the gap between
diverse types of rough structures and N -soft sets. Hopefully
they can also help to visualize rough structures in a new
intuitive manner. In addition, we can safely claim that more
relationships are yet to come because the theory of N -soft
sets is complemented with other models with a richer structure
[49], [50]. Meanwhile, it must be pointed out that our work has
some limitations which should be overcome in ensuing studies.
Our investigation is mainly theoretical and it does not produce
new techniques by itself for promoting practical applications,
such as decision making or clustering analysis. Despite the
weakness of not being directly applicable to solve practical
problems, it could be used to pass on useful techniques or
tools from one setting to another. In that case, the feasibility
of the transformed mechanisms should be further verified by
conducting comparative analysis or cross-validation. Admit-
tedly, these challenges are beyond the scope of our theoretical
investigation. In the future, one can try to overcome these
difficulties or establish more abundant connections between
N -soft sets and other soft computing models such as fuzzy
sets, intuitionistic fuzzy sets or neutrosophic sets [63].
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