
ar
X

iv
:1

90
8.

00
63

6v
3

 [
cs

.L
G

]
 9

 J
an

 2
02

0
1

Optimize TSK Fuzzy Systems for Classification

Problems: Mini-Batch Gradient Descent with

Uniform Regularization and Batch Normalization
Yuqi Cui, Dongrui Wu and Jian Huang

Abstract—Takagi-Sugeno-Kang (TSK) fuzzy systems are flex-
ible and interpretable machine learning models; however, they
may not be easily optimized when the data size is large, and/or
the data dimensionality is high. This paper proposes a mini-
batch gradient descent (MBGD) based algorithm to efficiently
and effectively train TSK fuzzy classifiers. It integrates two novel
techniques: 1) uniform regularization (UR), which forces the
rules to have similar average contributions to the output, and
hence to increase the generalization performance of the TSK
classifier; and, 2) batch normalization (BN), which extends BN
from deep neural networks to TSK fuzzy classifiers to expedite
the convergence and improve the generalization performance. Ex-
periments on 12 UCI datasets from various application domains,
with varying size and dimensionality, demonstrated that UR and
BN are effective individually, and integrating them can further
improve the classification performance.

Index Terms—Batch normalization, mini-batch gradient de-
scent, TSK fuzzy classifier, uniform regularization

I. INTRODUCTION

Takagi-Sugeno-Kang (TSK) fuzzy systems [1] have

achieved great success in numerous applications, including

both classification and regression problems. Many optimiza-

tion approaches have been proposed for them.

There are generally three strategies for fine-tuning the TSK

fuzzy system parameters after initialization: 1) evolutionary

algorithms [2], [3]; 2) gradient descent (GD) based algorithms

[4]; and, 3) GD plus least squares estimation (LSE), repre-

sented by the popular adaptive-network-based fuzzy inference

system (ANFIS) [5]. However, these approaches may have

challenges when the size and/or the dimensionality of the

data increase. Evolutionary algorithms need to keep a large

population of candidate solutions, and evaluate the fitness

of each, which result in high computational cost and heavy

memory requirement for big data. Traditional GD needs to

compute the gradients from the entire dataset to iteratively

update the model parameters, which may be very slow, or

even impossible, when the data size is very large. The memory

requirement and computational cost of LSE also increase

rapidly when the data size and/or dimensionality increase.

Additionally, as shown in [6], ANFIS may result in significant

overfitting in regression problems.

Y. Cui, D. Wu and J. Huang are with the Key Laboratory of the Ministry of
Education for Image Processing and Intelligent Control, School of Artificial
Intelligence and Automation, Huazhong University of Science and Technol-
ogy, Wuhan 430074, China. Email: yqcui@hust.edu.cn, drwu@hust.edu.cn,
huang jan@hust.edu.cn.

D. Wu and J. Huang are the corresponding authors.

Many efforts have been spent to tackling the difficulty

in optimizing the TSK fuzzy systems on big and/or high-

dimensional data [7]–[9]. Dimensionality reduction and/or

feature selection are usually used to reduce the number of

fuzzy partitions (rules). Traditional dimensionality reduction

techniques such as principal component analysis (PCA) has

been used for TSK fuzzy system optimization [10], [11]. There

are also methods focusing on learning a sparse subspace of

the original feature space to reduce the number of antecedents

in each rule [12], [13]. Once the number of antecedents is

determined, different optimization approaches can be used to

tune the TSK fuzzy system on large datasets. For example,

Chung et al. [9] utilized the equivalence between minimum en-

closing ball and the Mamdani-Larsen fuzzy inference system

to train the latter using the former. Gacto et al. [14] proposed a

multi-objective evolutionary algorithm to optimize TSK fuzzy

systems for high-dimensional large-scale regression problems.

Mini-batch gradient descent (MBGD) [15], [16] based op-

timization, which is particularly popular in deep learning,

can also be a solution to training TSK fuzzy systems on

large and high-dimensional datasets. In each iteration, MBGD

computes the gradients from a randomly selected small batch

of data, instead of the entire dataset [17]. Different batch sizes

can be used, according to the trade-off among the available

memory, the training speed, and the expected generalization

performance. The original MBGD used a constant learning

rate to update the model’s parameters [17]. Later, Sutskever

et al. [18] found that adding a momentum to MBGD can

improve the final training performance. However, it still needs

to manually select a learning rate, and the convergence may

be very slow at the beginning. Kingma and Ba [19] proposed

the well-known Adam algorithm to automatically rescale the

gradients to achieve adaptive and individualized learning rate

for each parameter, which leads to faster convergence. How-

ever, the generalization performance of Adam may not be as

good as the momentum [20]; so, Keskar and Socher [21] also

tried to combine the advantages of momentum and Adam

to achieve both fast convergence and good generalization.

Recently, Luo et al. [22] also proposed AdaBound to improve

Adam. AdaBound uses an adaptive bound for the learning

rate of each parameter to force the optimizer to behave like

Adam at the beginning and like stochastic GD at the end. Our

very recent research [6] has found that TSK fuzzy systems

can achieve better performance with AdaBound than Adam

for regression problems.

Although MBGD-based optimization has many advantages,

http://arxiv.org/abs/1908.00636v3

2

it may be easily trapped into a local-minimum, and may face

the gradient vanishing problem. Many other techniques have

been proposed to complement MBGD for better performance.

In 2015, Ioffe and Szegedy [23] proposed the well-known

batch normalization (BN) approach to accelerate the training

of deep neural networks by reducing the internal covariate

shift1. BN normalizes the input distribution of each layer, so

it also alleviates the gradient vanishing problem. It has been

used almost ubiquitously in deep learning, and many variants

[25]–[28] have also been proposed.

This paper, following our previous research [6] on MBGD-

based optimization of TSK fuzzy systems for regression prob-

lems, considers classification problems. We use AdaBound, as

in [6], to adjust the learning rates. Additionally, we propose

two novel techniques for training TSK fuzzy systems for

classification problems, namely, uniform regularization (UR)

and BN. Our main contributions are:

1) We introduce a novel UR term to the cross-entropy loss

function in training TSK fuzzy classifiers, which forces

all rules to have similar average firing levels on the

entire dataset. Experiments show that UR can improve

the generalization performance of TSK fuzzy classifiers.

2) We extend BN from the training of deep neural networks

to the training of TSK fuzzy classifiers, and show that

it can speed up the convergence in training and improve

the generalization performance in testing.

3) We further integrate UR and BN, and show that the

combined approach outperforms each individual ones.

The remainder of this paper is organized as follows: Sec-

tion II introduces the proposed UR and BN approaches.

Section III presents the experimental results to validate the

performances of UR and BN. Section IV draws conclusions

and points out some future research directions.

II. UR AND BN

This section introduces the details of the TSK fuzzy

classifier under consideration, our proposed UR for reg-

ularizing the loss function, and BN for more efficient

and effective training of the TSK fuzzy classifier. Python

implementation of our algorithm can be downloaded at

https://github.com/YuqiCui/TSK BN UR.

A. The TSK Fuzzy Classifier

Let the training dataset be D = {xn, yn}Nn=1
, in which

xn = [xn,1, ..., xn,D]T ∈ R
D×1 is a D-dimensional feature

vector, and yn ∈ {1, 2, ..., C} the corresponding class label

for a C-class classification problem.

1Recently some researchers had different opinions on why BN works. For
example, Santurkar et al. [24] argued that BN may not reduce the internal
covariate shift; instead, it helps improve the Lipschitzness of both the loss
and the gradients, and also reduces the dependency on the training hyper-
parameters, such as the learning rate and the regularization weights.

Suppose the TSK fuzzy classifier has R rules, in the

following form:

Ruler : IF x1 is Xr,1 and · · · and xD is Xr,D,

THEN y1r(x) = b1r,0 +

D
∑

d=1

b1r,d · xd and · · ·

and yCr (x) = bCr,0 +

D
∑

d=1

bCr,d · xd

(1)

where Xr,d (r = 1, ..., R; d = 1, ..., D) is the membership

function (MF) for the d-th antecedent in the r-th rule, and

bcr,0 and bcr,d (c = 1, ..., C) are the consequent parameters for

the c-th class.

Different types of MFs can be used in our algorithm, as

long as they are differentiable. For simplicity, Gaussian MFs

are considered in this paper, and the membership grade of xd

on Xr,d is:

µXr,d
(xd) = exp

(

−
(xd −mr,d)

2

2σ2

r,d

)

, (2)

where mr,d and σr,d are the center and the standard deviation

of the Gaussian MF, respectively.

The output of the TSK fuzzy classifier for the c-th class is:

yc(x) =

∑R

r=1
fr(x)y

c
r(x)

∑R

r=1
fr(x)

, (3)

where

fr(x) =

D
∏

d=1

µXr,d
(xd) = exp

(

−
D
∑

d=1

(xd −mr,d)
2

2σ2

r,d

)

(4)

is the firing level of Rule r. We can also re-write (3) as:

yc(x) =

R
∑

r=1

fr(x)y
c
r(x), (5)

where

f r(x) =
fr(x)

∑R

i=1
fi(x)

(6)

is the normalized firing level of Rule r.

Once the output vector y(x) = [y1(x), ..., yC(x)]T is

obtained, the input x is assigned to the class with the largest

yc(x).
To optimize the TSK fuzzy classifier, we need to fine-

tune the antecedent MF parameters mr,d and σr,d, and the

consequent parameters bcr,0 and bcr,d, where r = 1, ..., R,

d = 1, ..., D, and c = 1, ..., C.

B. Uniform Regularization (UR)

Mixture of experts (MoE) [29], which is functionally equiv-

alent to TSK fuzzy systems [30]–[32], is a popular machine

learning algorithm. Its model is shown in Fig. 1. It trains

multiple local experts, each taking care of only a small local

region of the input space. For a new input, the gating network

determines the activations (weights) of the local experts, and

the final output is a weighted average of the local expert

outputs.

3

Fig. 1. Mixture of experts (MoE) [29].

Although MoE has been used successfully in many applica-

tions, it may suffer from the “rich get richer” effect [33], [34]:

once an expert is slightly better than others, it is always picked

by the gating network, whereas other experts starve and are

rarely used. This is bad for the generalization performance of

the overall model.

Since MoE and TSK fuzzy systems are functionally equiv-

alent [32], TSK fuzzy systems may also suffer from the “rich

get richer” effect, i.e., only a few rules are always activated

with large firing levels, whereas others have very small firing

levels, and hence not adequately tuned in training. A remedy

to the “rich get richer” effect in TSK fuzzy systems is to force

the rules to be fired at similar degrees in the input space, so

that each rule contributes about equally to the output.

Next, we propose UR to achieve this goal.

UR forces the rules to have similar average firing levels, by

minimizing the following loss:

ℓUR =

R
∑

r=1

(

1

N

N
∑

n=1

fr(xn)− τ

)2

, (7)

where N is the number of training examples, and τ the

expected firing level of each rule, which is set to 1/C in this

paper (recall that C is the number of classes).

ℓUR can then be added to the original loss function in

MBGD-based training of TSK fuzzy classifiers, i.e., for each

mini-batch with N training samples,

L = ℓ+ αℓ2 + λ

R
∑

r=1

(

1

N

N
∑

n=1

fr(xn)−
1

R

)2

, (8)

where ℓ is the cross-entropy loss between the estimated class

probabilities [obtained by applying softmax to y(x)] and the

true class probabilities, ℓ2 the L2 regularization of the rule

consequent parameters, and α and λ the trade-off parameters.

C. Batch Normalization (BN)

BN [23] is a very powerful technique in optimizing deep

neural networks [35]–[37]. It normalizes the data distribution

in each mini-batch to accelerate the training. For a mini-batch

B = {xn}Nn=1
, the output of BN is [23]:

x
′

n = BN(xn) = γ
xn −mB
√

σ
2

B
+ ǫ

+ β, (9)

where mB and σB are the mean and the standard deviation

of the samples in the mini-batch, respectively, γ and β are

parameters to be learned during training, and ǫ is usually set

to 1e − 8 to avoid being divided by zero. During training,

exponential weighted averages of mB and σB are recorded so

that they can be used in the test phase.

Since TSK fuzzy systems and neural networks share lots of

similarity [32], we can extend BN to the optimization of TSK

fuzzy classifiers, as shown in Fig. 2. In the training phase, we

first compute the firing level of each rule using the unmodified

inputs, as in traditional TSK fuzzy systems. Then, we use BN

to normalize the inputs, according to their mean and standard

deviation in the current mini-batch. The normalized inputs are

then used to compute the rule consequents. The final output is

a weighted average of the rule consequents, the weights being

the corresponding rule firing levels.

Fig. 2. BN in training a TSK fuzzy classifier. All rule consequents share the
same BN layer.

At the testing phase, the BN operation can be merged

into the consequent layer. Assume that after training, we

obtain a BN layer with learned m = (m1, ...,mD)T , σ =
(σ1, ..., σD)T , γ and β. Then, the output yr of the r-th rule

with BN is:

yr(BN(xn)) = br,0 + γ

D
∑

d=1

br,d
xn,d −md
√

σ2

d + ǫ
+ βD, (10)

which can be re-written as:

yr(BN(xn)) = b′r,0 +

D
∑

d=1

b′r,dxn,d, (11)

where

b′r,0 = br,0 + βD − γ
D
∑

d=1

mdbr,d
√

σ2

d + ǫ
, (12)

b′r,d = γ
br,d

√

σ2

d + ǫ
. (13)

By doing this, the original architecture of the TSK fuzzy

classifier is kept unchanged.

We also tested two variants of BN, as shown in Fig. 3.

The TSK with global BN (TSK-MBGD-UR-GBN) approach in

Fig. 3(a) uses the BN normalized inputs in both antecedents

4

and consequents to compute the final output. In this case, the

output of TSK-MBGD-UR-GBN for Class c is:

yc(x) =
R
∑

r=1

fr(BN(x))ycr(BN(x)). (14)

The TSK with rule-specific BN (TSK-MBGD-UR-RBN) ap-

proach in Fig. 3(b) uses the raw inputs to compute the

antecedents, and rule-specific BN to compute each consequent

individually. The output of TSK-MBGD-UR-RBN for Class c
is:

yc(x) =
R
∑

r=1

f r(x)y
c
r(BNr(x)), (15)

where BNr represents the BN operation for the r-th rule.

TSK-MBGD-UR-GBN has the same computational cost as

TSK-MBGD-UR-BN, but TSK-MBGD-UR-RBN has R times

more BN parameters, and hence higher computational cost.

Both of them can be re-expressed in the original TSK archi-

tecture. We also evaluate their performances in Section III-G.

(a)

!!"#

!!"$
"

##

$#"#

$$"#

$#"$

$$"$

N

N

N

!!"%

Σ

#$

#&

!"#

!"$

!"%

!"#&#

!"$&$

!"'&'

$&"#

$&"$

!!"%

$#"%

$$"%

$&"%

!!"'

!"#

!"$

!"%

(b)

Fig. 3. (a) TSK fuzzy system with global BN (TSK-MBGD-UR-GBN); and,
(b) TSK fuzzy system with rule-specific BN (TSK-MBGD-UR-RBN).

III. EXPERIMENTS AND RESULTS

This section validates the performances of our proposed UR

and BN on multiple datasets from various application domains,

with varying size and feature dimensionality.

A. Datasets

We evaluated our proposed algorithms on 12 classification

datasets from the UCI Machine Learning Repository2. Their

characteristics are summarized in Table I. For each dataset,

we randomly selected 70% samples as the training set and the

remaining 30% as the test set for 30 times to get 30 different

data splits. We ran each algorithm on these 30 data splits and

report the average performance.

TABLE I
SUMMARY OF THE 12 DATASETS.

Index Dataset No. of Samples No. of Features No. of Classes

1 Vehicle1 846 18 4

2 Biodeg2 1,055 41 2

3 DRD3 1151 19 2

4 Yeast4 1,484 8 10

5 Steel5 1,941 27 7

6 IS6 2,310 19 7

7 Abalone7 4,177 10 3

8 Waveform218 5,000 21 3

9 Page-blocks9 5,473 10 5

10 Satellite10 6,435 36 6

11 Clave11 10,798 16 4

12 MAGIC12 19,020 10 2

1 https://archive.ics.uci.edu/ml/datasets/Statlog+%28Vehicle+Silhouettes%29
2 https://archive.ics.uci.edu/ml/datasets/QSAR+biodegradation
3 https://archive.ics.uci.edu/ml/datasets/Diabetic+Retinopathy+Debrecen

+Data+Set
4 https://archive.ics.uci.edu/ml/datasets/Yeast
5 https://archive.ics.uci.edu/ml/datasets/Steel+Plates+Faults
6 https://archive.ics.uci.edu/ml/datasets/Image+Segmentation
7 https://archive.ics.uci.edu/ml/datasets/Abalone
8 https://archive.ics.uci.edu/ml/datasets/Waveform+Database+Generator

+(Version+1)
9 https://archive.ics.uci.edu/ml/datasets/Page+Blocks+Classification
10 https://archive.ics.uci.edu/ml/datasets/Statlog+(Landsat+Satellite)
11 https://archive.ics.uci.edu/ml/datasets/Firm-Teacher Clave-

Direction Classification
12 https://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope

Some datasets contain both numerical features and cate-

gorical features. The categorical features were converted into

numerical ones by one-hot coding. We z-normalized each

feature using the mean and standard deviation computed from

the training set.

B. Algorithms

We compared nine algorithms to validate our proposed ap-

proaches. Among them, four were tree based approaches (DT,

RF, PART, and JRip), one was a TSK fuzzy system optimized

by a traditional approach (TSK-FCM-LSE), and the remaining

four were TSK fuzzy systems optimized by MBGD based

approaches (TSK-MBGD, TSK-MBGD-BN, TSK-MBGD-UR,

TSK-MBGD-UR-BN).

The details of these nine algorithms are as follows:

1) DT: Decision tree implemented in scikit-learn3 in

Python. We used 5-fold cross-validation to select the

maximum depth of the tree from {3, 4, 5, 6, 7} on the

training set. Other parameters were set by default.

2http://archive.ics.uci.edu/ml/index.php
3https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTree

Classifier.html

5

2) RF: Random forest implemented in scikit-learn4 in

Python. We set the number of trees to 20 and used 5-

fold cross-validation to select the maximum depth of

the trees from {3, 4, 5, 6, 7} on the training set. Other

parameters were set by default.

3) PART [38]: The PART (partial decision tree) classifier

implemented in RWeka5. All parameters were set by

default.

4) JRip [39]: The RIPPER (Repeated Incremental Pruning

to Produce Error Reduction) classifier implemented in

RWeka. All parameters were set by default.

5) TSK-FCM-LSE [40]: We used fuzzy c-means (FCM)

clustering to estimate the antecedent parameters, and

LSE with L2 regularization to estimate the consequent

parameters.

6) TSK-MBGD: We used MBGD and AdaBound [22] to

optimize both the antecedent and the consequent param-

eters.

7) TSK-MBGD-UR: We used MBGD, AdaBound and UR

(Section II-B) to optimize both the antecedent and the

consequent parameters. The UR weight λ in (8) was

selected from {0.1, 1, 10, 20, 50} by cross-validation on

the training set.

8) TSK-MBGD-BN: We used MBGD, AdaBound and BN

(Section II-C) to optimize both the antecedent and the

consequent parameters.

9) TSK-MBGD-UR-BN: We used MBGD, AdaBound, BN

and UR to optimize both the antecedent and the conse-

quent parameters. The UR weight λ in (8) was selected

from {0.1, 1, 10, 20, 50} by cross-validation on the train-

ing set.

For TSK-FCM-LSE, TSK-MBGD, TSK-MBGD-BN,

TSK-MBGD-UR and TSK-MBGD-UR-BN, we set the L2

regularization weight α = 0.05, and the number of rules

R = 20. For TSK-MBGD, TSK-MBGD-BN, TSK-MBGD-UR

and TSK-MBGD-UR-BN, we set the learning rate of

AdaBound to 0.01, following our previous work [6]. In order

to make use of all data in the training set and to reduce

overfitting simultaneously, we randomly sampled 20% data

from the training set and trained the TSK model with early

stopping five times. The maximum epoch number was 2,000,

and the patience of early stopping 40. We recorded the

number of epochs at stopping in each run, and trained the

final model with the average stopping epoch number on the

entire training set.

k-mean clustering was used in the MBGD-based algo-

rithms (TSK-MBGD, TSK-MBGD-BN, TSK-MBGD-UR, and

TSK-MBGD-UR-BN) to initialize the antecedent parameters.

We performed k-means clustering on the training set, where

k equaled R, the number of rules. We then initialized the

rule centers to the cluster centers, and randomly initialized the

standard deviation σr,d from a Gaussian distribution N (1, 0.2).
For the consequent parameters, we set the initial bias of each

rule to zero, and the attribute weight br,d (r = 1, ..., R;

4https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.Random
ForestClassifier.html

5https://cran.r-project.org/web/packages/RWeka/index.html

d = 1, ..., D) randomly from a uniform distribution U(−1, 1).

C. Performance Measures

The raw classification accuracy (RCA), which is the total

number of correctly classified test samples divided by the total

number of test samples, was used as our primary performance

measure.

Since some datasets have significant class imbalance, in

addition to the RCA, we also computed the balanced clas-

sification accuracy (BCA), which is the mean of the per-class

RCAs, as our second performance measure.

D. Experimental Results

The average test RCAs and BCAs are shown in Tables II

and III, respectively. The largest value (best performance) on

each dataset is marked in bold. To facilitate the comparison,

we also show the ranks of the RCAs and BCAs in Tables IV

and V, respectively.

The following observations can be made from the above

four tables:

1) Generally, UR improved both RCA and BCA. Comparing

TSK-MBGD with TSK-MBGD-UR, and TSK-MBGD-BN

with TSK-MBGD-UR-BN, we can conclude that gen-

erally UR improved the classification performance,

regardless of whether BN was used or not. The

average ranks in the last row of Tables IV and

V demonstrate this more clearly: the average rank

of TSK-MBGD-UR (TSK-MBGD-UR-BN) was smaller

than that of TSK-MBGD (TSK-MBGD-BN).

2) Generally, BN improved both RCA and BCA. Comparing

TSK-MBGD with TSK-MBGD-BN, and TSK-MBGD-UR

with TSK-MBGD-UR-BN, we can conclude that gen-

erally BN improved the classification performance,

regardless of whether UR was used or not. The

average ranks in the last row of Tables IV and

V demonstrate this more clearly: the average rank

of TSK-MBGD-BN (TSK-MBGD-UR-BN) was smaller

than that of TSK-MBGD (TSK-MBGD-UR).

3) Generally, integrating BN and UR achieved

further RCA and BCA improvements. Comparing

TSK-MBGD-UR-BN with TSK-MBGD, TSK-MBGD-UR

and TSK-MBGD-BN, we can conclude that

TSK-MBGD-UR-BN almost always performed the

best on both RCA and BCA, as shown in Fig. 4.

This indicated that BN and UR are somehow

complementary, and hence integrating them may

achieve better performance than using each one alone.

4) Overall, TSK-MBGD-UR-BN achieved the best perfor-

mance among the nine algorithms. The last row of Ta-

ble V shows that TSK-MBGD-UR-BN achieved the best

average BCA performance, and the last row of Table IV

shows that TSK-MBGD-UR-BN achieved the second

best average RCA performance. Interestingly, RF had

the best average rank on RCA, but only ranked the fifth

on BCA, suggesting that RF may tend to overlook the

minority classes. On the contrary, TSK-MBGD-UR-BN

performed well on both RCA and BCA.

6

TABLE II
AVERAGE RCAS OF THE NINE ALGORITHMS ON THE 12 DATASETS.

Dataset CART RF JRip PART TSK-FCM-LSE TSK-MBGD TSK-MBGD-BN TSK-MBGD-UR TSK-MBGD-UR-BN

Vehicle 0.6907 0.7407 0.6892 0.7110 0.7411 0.6970 0.7354 0.7089 0.7907

Biodeg 0.8202 0.8572 0.8222 0.8362 0.8377 0.8523 0.8531 0.8539 0.8609
DRD 0.6283 0.6589 0.6240 0.6364 0.6824 0.6623 0.6618 0.6713 0.6720
Yeast 0.5564 0.5963 0.5731 0.5340 0.5851 0.5673 0.5770 0.5722 0.5725
Steel 0.7017 0.7328 0.7135 0.7120 0.6527 0.5864 0.7110 0.7248 0.7350

IS 0.9320 0.9529 0.9481 0.9608 0.9571 0.5762 0.7557 0.8559 0.9501
Abalone 0.7170 0.7314 0.7254 0.7104 0.7323 0.5821 0.7129 0.6238 0.7306

Waveform21 0.7641 0.8369 0.7908 0.7843 0.8647 0.6779 0.8002 0.8363 0.8234
Page-blocks 0.9651 0.9688 0.9681 0.9677 0.9499 0.9375 0.9419 0.9515 0.9580

Satellite 0.8524 0.8863 0.8587 0.8592 0.8864 0.4890 0.8001 0.8929 0.8943

Clave 0.7103 0.7600 0.7344 0.7779 0.7690 0.8223 0.8427 0.8187 0.8192
MAGIC 0.8427 0.8531 0.8455 0.8488 0.8319 0.7347 0.7861 0.8574 0.8392

Average 0.7651 0.7979 0.7744 0.7782 0.7909 0.6821 0.7648 0.7806 0.8038

TABLE III
AVERAGE BCAS OF THE NINE ALGORITHMS ON THE 12 DATASETS.

Dataset CART RF JRip PART TSK-FCM-LSE TSK-MBGD TSK-MBGD-BN TSK-MBGD-UR TSK-MBGD-UR-BN

Vehicle 0.6936 0.744 0.6939 0.7131 0.7443 0.7010 0.7380 0.7127 0.7930

Biodeg 0.7973 0.8306 0.7899 0.8122 0.8205 0.8368 0.8318 0.8390 0.8439
DRD 0.634 0.6624 0.6227 0.6422 0.6845 0.6642 0.6634 0.6717 0.6729
Yeast 0.3998 0.4867 0.5203 0.4889 0.5102 0.4951 0.5184 0.4946 0.5332

Steel 0.7005 0.6937 0.7129 0.7267 0.6319 0.5933 0.7258 0.7245 0.7515

IS 0.932 0.9529 0.9481 0.9607 0.9571 0.5762 0.7557 0.8559 0.9501
Abalone 0.5319 0.5362 0.5371 0.5280 0.5402 0.4567 0.5236 0.4791 0.5402

Waveform21 0.7637 0.8365 0.7905 0.7844 0.8645 0.6784 0.8003 0.8362 0.8233
Page-blocks 0.7986 0.7385 0.8192 0.8162 0.6003 0.5129 0.5609 0.6033 0.671

Satellite 0.8204 0.8480 0.8308 0.834 0.8558 0.4337 0.7651 0.8679 0.8700
Clave 0.4701 0.4878 0.4985 0.6507 0.4825 0.5876 0.6468 0.6374 0.6421

MAGIC 0.8058 0.8108 0.8052 0.8135 0.7886 0.6325 0.7128 0.8225 0.7934

Average 0.6956 0.7190 0.714 0.7309 0.7067 0.5974 0.6869 0.7120 0.7404

TABLE IV
RCA RANKS OF THE NINE ALGORITHMS ON THE 12 DATASETS.

Dataset CART RF JRip PART TSK-FCM-LSE TSK-MBGD TSK-MBGD-BN TSK-MBGD-UR TSK-MBGD-UR-BN

Vehicle 8 3 9 5 2 7 4 6 1
Biodeg 9 2 8 7 6 5 4 3 1
DRD 8 6 9 7 1 4 5 3 2
Yeast 8 1 4 9 2 7 3 6 5
Steel 7 2 4 5 8 9 6 3 1

IS 6 3 5 1 2 9 8 7 4
Abalone 5 2 4 7 1 9 6 8 3

Waveform21 8 2 6 7 1 9 5 3 4
Page-blocks 4 1 2 3 7 9 8 6 5

Satellite 7 4 6 5 3 9 8 2 1
Clave 9 7 8 5 6 2 1 4 3

MAGIC 5 2 4 3 7 9 8 1 6

Average 7.0 2.9 5.8 5.3 3.8 7.3 5.5 4.3 3.0

TABLE V
BCA RANKS OF THE NINE ALGORITHMS ON THE 12 DATASETS.

Dataset CART RF JRip PART TSK-FCM-LSE TSK-MBGD TSK-MBGD-BN TSK-MBGD-UR TSK-MBGD-UR-BN

Vehicle 9 3 8 5 2 7 4 6 1
Biodeg 8 5 9 7 6 3 4 2 1
DRD 8 6 9 7 1 4 5 3 2
Yeast 9 8 2 7 4 5 3 6 1
Steel 6 7 5 2 8 9 3 4 1

IS 6 3 5 1 2 9 8 7 4
Abalone 5 4 3 6 1 9 7 8 2

Waveform21 8 2 6 7 1 9 5 3 4
Page-blocks 3 4 1 2 7 9 8 6 5

Satellite 7 4 6 5 3 9 8 2 1
Clave 9 7 6 1 8 5 2 4 3

MAGIC 4 3 5 2 7 9 8 1 6

Average 6.8 4.7 5.4 4.3 4.2 7.3 5.4 4.3 2.6

7

TABLE VI
p-VALUES OF NON-PARAMETRIC MULTIPLE COMPARISONS ON THE RCAS AND BCAS.

Metric CART RF JRip PART TSK-FCM-LSE TSK-MBGD TSK-MBGD-BN TSK-MBGD-UR

TSK-MBGD-BN
RCA 0.0097 0.0628 0.1368 0.3239 0.2723 0.0000 - -
BCA 0.1547 0.1627 0.4508 0.0981 0.4518 0.0000 - -

TSK-MBGD-UR
RCA 0.0001 0.3740 0.0090 0.0460 0.2452 0.0000 0.1146 -
BCA 0.0036 0.2900 0.0912 0.4420 0.0921 0.0000 0.0731 -

TSK-MBGD-UR-BN
RCA 0.0000 0.2113 0.0002 0.0025 0.0404 0.0000 0.0094 0.1409
BCA 0.0000 0.0291 0.0021 0.0730 0.0022 0.0000 0.0013 0.0986

10 4 6 7 5 3 8 1 12 11
Sorted Dataset Index

0.4

0.6

0.8

1

1.2

R
C

A

TSK-MBGD TSK-MBGD-BN
TSK-MBGD-UR TSK-MBGD-UR-BN

(a)

10 4 6 7 5 3 8 1 12 11
Sorted Dataset Index

0.4

0.6

0.8

1

1.2

B
C

A

TSK-MBGD TSK-MBGD-BN
TSK-MBGD-UR TSK-MBGD-UR-BN

(b)

Fig. 4. (a) RCAs and (b) BCAs of the four MBGD-based TSK fuzzy
classifiers on the 12 datasets. Datasets were sorted according to the RCAs
of the TSK-MBGD model. The indices along the horizontal axis denote the
dataset indices in Table I.

E. Statistical Analysis

To further evaluate the performance improvement of our

proposed TSK-MBGD-UR-BN over others, we also performed

non-parametric multiple comparison tests on the RCAs and

BCAs using Dunn’s procedure [41], with a p-value correction

using the False Discovery Rate method [42]. The results are

shown in Table VI, where the statistically significant ones are

marked in bold.

Table VI demonstrates that our proposed BN and

UR can significantly improve the generalization perfor-

mance of the traditional MBGD optimization for TSK

fuzzy classifiers. TSK-MBGD-UR-BN statistically signifi-

cantly outperformed CART, JRip, PART, TSK-MBGD and

TSK-MBGD-BN on RCA, and also statistically significantly

outperformed CART, JRip, TSK-FCM-LSE, TSK-MBGD and

TSK-MBGD-BN on BCA. Although the performance improve-

ment of TSK-MBGD-UR-BN over RF and TSK-MBGD-UR

were not statistically significant, they were quite close to the

threshold, especially for the BCA.

F. Effect of UR

As mentioned in Section II-B, using MBGD to optimize the

TSK fuzzy system may face the “rich get richer” problem.

To demonstrate this, Fig. 5 shows the average normalized

firing levels of the rules on the entire dataset after the four

MBGD-based TSK models were trained, on three represen-

tative datasets. For TSK-MBGD, a few “richest” rules had

much larger average firing levels than others, and hence the

rules contributed significantly differently to the output. BN

may help alleviate this problem a little bit, as the average

normalized rule firing levels in TSK-MBGD-BN were more

uniform than those in TSK-MBGD, which also resulted in

better classification performances, as demonstrated in the pre-

vious subsection. However, UR had the most direct effect on

alleviating the “rich get richer” problem, as TSK-MBGD-UR

(TSK-MBGD-UR-BN) had much more uniform average nor-

malized rule firing levels than TSK-MBGD (TSK-MBGD-BN),

and hence also better classification performance.

Note that we set τ = 1/C in (8), where C = 6 for Satellite,

C = 4 for Vehicle, and C = 2 for Biodeg. However, the

actual average normalized rule firing levels were not exactly

τ on these datasets. Our experiments showed that although UR

cannot guarantee the average normalized rule firing levels to

be around τ , it can indeed make the rules fired more uniformly.

Why may making the rules fired more uniformly help

improve the generalization performance? In [32] we pointed

out that a TSK fuzzy system may be functionally equivalent

to an adaptive stacking ensemble model, in which each rule

can be viewed as a base learner, and the aggregation weights

equal the corresponding rule firing levels. When the rule firing

levels are more uniform, generally more rules are utilized in

computing the output, i.e., more base learners are used in

the stacking ensemble model, which may help improve the

generalization performance.

To demonstrate this, we computed the entropy of the nor-

malized rule firing levels for each input example:

E = −
R
∑

r

f r log fr, (16)

where fr is the normalized firing level of the r-th rule.

Generally, a larger entropy means more rules were fired.

Fig. 6 shows the histogram of the entropy distributions

on the Satellite dataset. When training TSK fuzzy systems

without UR, many samples had close to zero E, i.e., all

except one rule had firing levels close to zero. When UR was

added, the number of examples with close to zero E decreased

significantly, i.e., more rules with larger firing levels were used

in computing the output.

G. Effect of BN

We also used the Satellite dataset to analyze the effect of

BN.

8

1 2 4 6 8 10 12 14 16 18 20
Sorted Rule Index

0

0.05

0.1

0.15

0.2
A

vg
 N

or
m

. R
ul

e
Fi

ri
ng

 L
ev

el
TSK-MBGD
TSK-MBGD-BN

TSK-MBGD-UR
TSK-MBGD-UR-BN

(a)

1 2 4 6 8 10 12 14 16 18 20
Sorted Rule Index

0

0.05

0.1

0.15

0.2

0.25

A
vg

 N
or

m
. R

ul
e

Fi
ri

ng
 L

ev
el

TSK-MBGD
TSK-MBGD-BN

TSK-MBGD-UR
TSK-MBGD-UR-BN

(b)

1 2 4 6 8 10 12 14 16 18 20
Sorted Rule Index

0

0.1

0.2

0.3

0.4

A
vg

 N
or

m
. R

ul
e

Fi
ri

ng
 L

ev
el

TSK-MBGD
TSK-MBGD-BN

TSK-MBGD-UR
TSK-MBGD-UR-BN

(c)

Fig. 5. Average normalized rule firing levels of TSK-MBGD, TSK-MBGD-BN,
TSK-MBGD-UR and TSK-MBGD-UR-BN on (a) Satellite, (b) Vehicle, and (c)
Biodeg datasets.

0 0.5 1 1.5 2
0

200

400

600

800

N
um

be
r

of
 S

am
pl

es

TSK-MBGD TSK-MBGD-UR

(a)

0 0.5 1 1.5 2
0

100

200

300

400

500

N
um

be
r

of
 S

am
pl

es

TSK-MBGD-BN TSK-MBGD-UR-BN

(b)

Fig. 6. Histogram of the normalized rule firing level entropy E

of (a) TSK-MBGD and TSK-MBGD-UR, and, (b) TSK-MBGD-BN and
TSK-MBGD-UR-BN, on the Satellite dataset.

We set the UR weight λ = 1 and recorded the training

loss and test BCA in the first 20 training epochs. This

process was repeated 10 times, and the average results are

shown in Figs. 7(a) and 7(b), respectively. BN resulted in

smaller training losses and better generalization performances

in testing.

There is still no agreement on theoretically why BN is

helpful in optimizing deep neural networks [24]; thus, it is

also challenging to analyze theoretically why BN can help

the optimization of TSK fuzzy systems. Nevertheless, we

performed an empirical study to peek into this, by recording

the L1 norm of the antecedent parameters’ gradients and the

L1 norm of the consequent parameters’ gradients in the first 20

training epochs on the Satellite dataset. The results are shown

in Figs. 7(c) and 7(d), respectively. BN significantly increased

the gradients of both antecedent and consequent parameters.

With the same learning rate, this can expedite the convergence.

3 4 6 8 10 12 14 16 18 20
Epoch

0.4

0.6

0.8

1

T
ra

in
in

g
L

os
s

TSK-MBGD
TSK-MBGD-BN

TSK-MBGD-UR
TSK-MBGD-UR-BN

(a)

3 4 6 8 10 12 14 16 18 20
Epoch

0.8

0.81

0.82

0.83

0.84

T
es

t B
C

A

TSK-MBGD
TSK-MBGD-BN

TSK-MBGD-UR
TSK-MBGD-UR-BN

(b)

3 4 6 8 10 12 14 16 18 20
Epoch

0.9

1

1.1

1.2

1.3

A
nt

ec
ed

en
t G

ra
d.

TSK-MBGD
TSK-MBGD-BN

TSK-MBGD-UR
TSK-MBGD-UR-BN

(c)

3 4 6 8 10 12 14 16 18 20
Epoch

3

4

5

6

7

8

C
on

se
qu

en
t G

ra
d.

TSK-MBGD
TSK-MBGD-BN

TSK-MBGD-UR
TSK-MBGD-UR-BN

(d)

Fig. 7. (a) Training loss, (b) test BCA, (c) L1 norm of the antecedent param-
eters’ gradients, and (d) L1 norm of the consequent parameters’ gradients, in
the first 20 training epochs on the Satellite dataset. The horizontal axis starts
from 3 epochs so that the differences among the curves can be more clearly
visualized.

We also evaluated the performances of the

9

two BN variants introduced in Section II-C. The

BCAs of TSK-MBGD-UR, TSK-MBGD-UR-BN,

TSK-MBGD-UR-GBN and TSK-MBGD-UR-RBN are shown

in Table VII. TSK-MBGD-UR-BN performed the best, and

TSK-MBGD-UR-GBN the worst. Since TSK-MBGD-UR-RBN

had more parameters to optimize, its training was not as

stable as TSK-MBGD-UR-BN and TSK-MBGD-UR-GBN.

Therefore, TSK-MBGD-UR-BN is the best choice.

TABLE VII
AVERAGE BCAS OF THE THREE BN VARIANTS ON THE 12 DATASETS.

Dataset
TSK-MBGD TSK-MBGD TSK-MBGD TSK-MBGD

-UR -UR-BN -UR-GBN -UR-RBN

Vehicle 0.7127 0.7930 0.7261 0.7679
Biodeg 0.8390 0.8439 0.8422 0.8440

DRD 0.6717 0.6729 0.6636 0.6650
Yeast 0.4946 0.5332 0.4352 0.5339

Steel 0.7245 0.7515 0.7332 0.7219
IS 0.8559 0.9501 0.9115 0.8938

Abalone 0.4791 0.5402 0.4924 0.5275
Waveform21 0.8362 0.8233 0.8232 0.8334
Page-blocks 0.6033 0.6710 0.5912 0.6333

Satellite 0.8679 0.8700 0.8679 0.8216
Clave 0.6374 0.6421 0.6090 0.6442

MAGIC 0.8225 0.7934 0.8319 0.8318

Average 0.7121 0.7404 0.7106 0.7265

H. Effect of the Batch Size

The batch size is an important hyper-parameter in MBGD-

based optimization. It determines the memory requirement

and the convergence speed in training. A larger batch size

leads to faster convergence but also requires more memory.

In [43], the authors analyzed the effect of the batch size

on the generalization performance. Their results showed that

using a larger batch size causes degradation in the model

generalization performance, because it tends to converge to

a shaper minimum, which makes the model sensitive to noise.

A similar finding was presented in [44] that a smaller batch

size leads to more stable and reliable training. However, since

we used the mean, standard deviation and mean firing level

of each batch to compute the losses, too small batch size may

also lead to poor performance.

We validated our model on the Satellite dataset with batch

size varying from 16 to 2,048. The test RCAs and BCAs

averaged over 30 runs are shown in Fig. 8. The test perfor-

mance decreased with too small or too large batch sizes. For

TSK-MBGD-UR-BN, it seems that a batch size within [64,

256] is a good choice.

16 32 64 128 256 512 1024 2048
Batch Size

0.7

0.75

0.8

0.85

0.9

R
C

A

0.65

0.7

0.75

0.8

0.85

B
C

A

Fig. 8. Average RCAs and BCAs of TSK-MBGD-UR-BN on the Satellite
dataset, using different batch sizes.

IV. CONCLUSIONS AND FUTURE RESEARCH

TSK fuzzy systems are powerful and frequently used ma-

chine learning models, for both regression and classifica-

tion. However, they may not be easily applicable to large

and/or high-dimensional datasets. Our very recent research

[6] proposed an MBGD-based efficient and effective training

algorithm (MBGD-RDA) for TSK fuzzy systems for regres-

sion problems. This paper has proposed an MBGD-based

algorithm, TSK-MBGD-UR-BN, to train TSK fuzzy systems

for classification problems. It can deal with both small and

big data with different dimensionalities, and may be the only

algorithm that can train a TSK fuzzy classifier on big and

high-dimensional datasets. TSK-MBGD-UR-BN integrates two

novel techniques, which are also first proposed in this paper:

1) UR, which is a regularization term in the loss function

to ensure that all rules are fired similarly on average,

and hence to improve the generalization performance.

2) BN, which normalizes the inputs in computing the rule

consequents to speedup the convergence and to improve

the generalization.

Experiments on 12 UCI datasets from various domains,

with varying size and feature dimensionality, demonstrated

that each of UR and BN has its own unique advantages,

and integrating them can achieve the best classification per-

formance. TSK-MBGD-UR-BN, together with MBGD-RDA

proposed in [6], shall greatly promote the applications of TSK

fuzzy systems in both classification and regression, especially

for big data problems.

The proposed TSK-MBGD-UR-BN also has some limita-

tions, which will be addressed in our future research. First,

for very high dimensional data, fuzzy partitions of the input

space become very complicated, and numeric underflow may

happen when the product t-norm is used. Further research shall

consider rules that automatically select the most relevant at-

tributes as the antecedents. Second, we shall investigate how to

improve the interpretability of data-driven TSK fuzzy systems.

This is also partially linked to the first problem, as reducing

the number of antecedents can improve the interpretability of

the rules.

REFERENCES

[1] A.-T. Nguyen, T. Taniguchi, L. Eciolaza, V. Campos, R. Palhares, and
M. Sugeno, “Fuzzy control systems: Past, present and future,” IEEE

Computational Intelligence Magazine, vol. 14, no. 1, pp. 56–68, 2019.

[2] Y. Shi, R. Eberhart, and Y. Chen, “Implementation of evolutionary fuzzy
systems,” IEEE Trans. on Fuzzy Systems, vol. 7, no. 2, pp. 109–119,
1999.

[3] D. Wu and W. W. Tan, “Genetic learning and performance evaluation
of interval type-2 fuzzy logic controllers,” Engineering Applications of

Artificial Intelligence, vol. 19, no. 8, pp. 829–841, 2006.

[4] L.-X. Wang and J. M. Mendel, “Back-propagation of fuzzy systems
as nonlinear dynamic system identifiers,” in Proc. IEEE Int’l Conf. on

Fuzzy Systems, San Diego, CA, Sep. 1992, pp. 1409–1418.

[5] J. S. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,”
IEEE Trans. on Systems, Man, and Cybernetics, vol. 23, no. 3, pp. 665–
685, 1993.

[6] D. Wu, Y. Yuan, J. Huang, and Y. Tan, “Optimize TSK fuzzy
systems for big data regression problems: Mini-batch gradient descent
with regularization, DropRule and AdaBound (MBGD-RDA),” IEEE

Trans. on Fuzzy Systems, 2020, in press. [Online]. Available:
https://arxiv.org/abs/1903.10951

https://arxiv.org/abs/1903.10951

10

[7] Y. Jin, “Fuzzy modeling of high-dimensional systems: complexity reduc-
tion and interpretability improvement,” IEEE Trans. on Fuzzy Systems,
vol. 8, no. 2, pp. 212–221, 2000.

[8] Y. Deng, Z. Ren, Y. Kong, F. Bao, and Q. Dai, “A hierarchical fused
fuzzy deep neural network for data classification,” IEEE Trans. on Fuzzy

Systems, vol. 25, no. 4, pp. 1006–1012, 2016.

[9] F.-L. Chung, Z. Deng, and S. Wang, “From minimum enclosing ball to
fast fuzzy inference system training on large datasets,” IEEE Trans. on

Fuzzy Systems, vol. 17, no. 1, pp. 173–184, 2008.

[10] M. Nilashi, O. Bin Ibrahim, N. Ithnin, and N. H. Sarmin, “A multi-
criteria collaborative filtering recommender system for the tourism
domain using Expectation Maximization (EM) and PCA–ANFIS,” Elec-

tronic Commerce Research and Applications, vol. 14, no. 6, pp. 542–562,
2015.

[11] C. K. Lau, K. Ghosh, M. A. Hussain, and C. R. C. Hassan, “Fault
diagnosis of Tennessee Eastman process with multi-scale PCA and
ANFIS,” Chemometrics and Intelligent Laboratory Systems, vol. 120,
pp. 1–14, 2013.

[12] Z. Deng, K.-S. Choi, Y. Jiang, J. Wang, and S. Wang, “A survey on soft
subspace clustering,” Information Sciences, vol. 348, pp. 84–106, 2016.

[13] Z. Deng, K.-S. Choi, F.-L. Chung, and S. Wang, “Enhanced soft
subspace clustering integrating within-cluster and between-cluster in-
formation,” Pattern Recognition, vol. 43, no. 3, pp. 767–781, 2010.

[14] M. J. Gacto, M. Galende, R. Alcalá, and F. Herrera, “METSK-HDe:
A multiobjective evolutionary algorithm to learn accurate TSK-fuzzy
systems in high-dimensional and large-scale regression problems,” In-
formation Sciences, vol. 276, pp. 63–79, 2014.

[15] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Boston,
MA: MIT press, 2016.

[16] S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv preprint arXiv:1609.04747, 2016.

[17] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in Proc. Int’l Conf. on Computational Statistics. Paris, France:
Springer, Aug. 2010, pp. 177–186.

[18] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance
of initialization and momentum in deep learning,” in Proc. Int’l Conf.

on Machine Learning, Atlanta, GA, Jun. 2013, pp. 1139–1147.

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int’l Conf. on Learning Representations, San Diego, CA, May
2015.

[20] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, “The
marginal value of adaptive gradient methods in machine learning,” in
Proc. Advances in Neural Information Processing Systems, Long Beach,
CA, Dec. 2017, pp. 4148–4158.

[21] N. S. Keskar and R. Socher, “Improving generalization performance by
switching from Adam to SGD,” arXiv preprint arXiv:1712.07628, 2017.

[22] L. Luo, Y. Xiong, Y. Liu, and X. Sun, “Adaptive gradient methods
with dynamic bound of learning rate,” in Proc. Int’l Conf. on Learning
Representations, New Orleans, LA, May 2019.

[23] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. Int’l Conf.

on Machine Learning, Lille, France, Jul. 2015.

[24] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, “How does batch nor-
malization help optimization?” in Proc. Advances in Neural Information

Processing Systems, Montral , Canada, Dec. 2018, pp. 2483–2493.

[25] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv
preprint arXiv:1607.06450, 2016.

[26] L. Fan, “Revisit fuzzy neural network: Demystifying batch normalization
and ReLU with generalized hamming network,” in Proc. Advances in

Neural Information Processing Systems, Long Beach, CA, Dec. 2017,
pp. 1923–1932.

[27] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep
network learning by exponential linear units (ELUs),” arXiv preprint

arXiv:1511.07289, 2015.

[28] Y. Wu and K. He, “Group normalization,” in Proc. European Conf. on

Computer Vision, Munich, Germany, Sep. 2018, pp. 3–19.

[29] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive
mixtures of local experts,” Neural Computation, vol. 3, no. 1, pp. 79–87,
1991.

[30] H. Bersini and G. Bontempi, “Now comes the time to defuzzify neuro-
fuzzy models,” Fuzzy Sets and Systems, vol. 90, no. 2, pp. 161–169,
1997.

[31] H. Andersen, A. Lotfi, and L. Westphal, “Comments on ‘functional
equivalence between radial basis function networks and fuzzy inference
systems’ [and author’s reply],” IEEE Trans. on Neural Networks, vol. 9,
no. 6, pp. 1529–1532, 1998.

[32] D. Wu, C.-T. Lin, J. Huang, and Z. Zeng, “On the functional equivalence
of TSK fuzzy systems to neural networks, mixture of experts, CART,
and stacking ensemble regression,” IEEE Trans. on Fuzzy Systems,
2020, in press. [Online]. Available: https://arxiv.org/abs/1903.10572

[33] T. Shen, M. Ott, M. Auli, and M. Ranzato, “Mixture models for
diverse machine translation: Tricks of the trade,” arXiv preprint
arXiv:1902.07816, 2019.

[34] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton,
and J. Dean, “Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer,” arXiv preprint arXiv:1701.06538, 2017.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. on Computer Vision and Pattern

Recognition, Las Vegas, NV, Jun. 2016, pp. 770–778.
[36] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv

preprint arXiv:1605.07146, 2016.
[37] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely

connected convolutional networks,” in Proc. IEEE Conf. on Computer
Vision and Pattern Recognition, Honolulu, HI, Jul. 2017, pp. 4700–4708.

[38] E. Frank and I. H. Witten, “Generating accurate rule sets without global
optimization,” in Proc. Int’l Conf. on Machine Learning, San Francisco,
CA, Jul. 1998.

[39] W. W. Cohen, “Repeated incremental pruning to produce error reduc-
tion,” in Proc. Int’l Conf. on Machine Learning, Tahoe City, CA, Jun.
1995.

[40] J.-S. R. Jang, C.-T. Sun, and E. Mizutani, “Neuro-fuzzy and soft
computing-a computational approach to learning and machine intelli-
gence,” IEEE Trans. on Automatic Control, vol. 42, no. 10, pp. 1482–
1484, 1997.

[41] O. J. Dunn, “Multiple comparisons using rank sums,” Technometrics,
vol. 6, no. 3, pp. 241–252, 1964.

[42] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate:
A practical and powerful approach to multiple testing,” Journal of the

Royal Statistical Society: Series B, vol. 57, no. 1, pp. 289–300, 1995.
[43] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P.

Tang, “On large-batch training for deep learning: Generalization gap
and sharp minima,” in Proc. Int’l Conf. on Learning Representations,
Toulon, France, Apr. 2017.

[44] D. Masters and C. Luschi, “Revisiting small batch training for deep
neural networks,” arXiv preprint arXiv:1804.07612, 2018.

http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1712.07628
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1511.07289
https://arxiv.org/abs/1903.10572
http://arxiv.org/abs/1902.07816
http://arxiv.org/abs/1701.06538
http://arxiv.org/abs/1605.07146
http://arxiv.org/abs/1804.07612

	I Introduction
	II UR and BN
	II-A The TSK Fuzzy Classifier
	II-B Uniform Regularization (UR)
	II-C Batch Normalization (BN)

	III Experiments and Results
	III-A Datasets
	III-B Algorithms
	III-C Performance Measures
	III-D Experimental Results
	III-E Statistical Analysis
	III-F Effect of UR
	III-G Effect of BN
	III-H Effect of the Batch Size

	IV Conclusions and Future Research
	References

