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On Fuzzy Simulations for Expected Values of
Functions of Fuzzy Numbers and Intervals

Yuanyuan Liu, Yunwen Miao, Athanasios A. Pantelous, Jian Zhou, Ping Ji

Abstract—Based on existing fuzzy simulation algorithms, this
paper presents two innovative techniques for approximating the
expected values of fuzzy numbers’ monotone functions, which
is of utmost importance in fuzzy optimization literature. In this
regard, the stochastic discretization algorithm of Liu and Liu
(2002) is enhanced by updating the discretization procedure for
the simulation of the membership function and the calculation
formula for the expected values. This is achieved through
initiating a novel uniform sampling process and employing a
formula for discrete fuzzy numbers, respectively, as the generated
membership function in the stochastic discretization algorithm
would adversely affect its accuracy to some extent. What is
more, considering that the bisection procedure involved in the
numerical integration algorithm of Li (2015) is time-consuming
and also not necessary for the specified types of fuzzy numbers,
a special numerical integration algorithm is proposed, which
can simplify the simulation procedure by adopting the analytical
expressions of α-optimistic values. Subsequently, concerning the
extensive applications of regular fuzzy intervals, several theorems
are introduced and proved as an extended effort to apply the
improved stochastic discretization algorithm and the special
numerical integration algorithm to the issues of fuzzy intervals.
Throughout the article, a series of numerical experiments are
conducted from which the superiority of both the two novel
techniques over others are conspicuously displayed in aspects
of accuracy, stability, and efficiency.

Index Terms—Expected value, fuzzy simulation, regular fuzzy
number, regular fuzzy interval.

I. INTRODUCTION

INTUITIVELY, the expected value is a well documented
measurement of great importance both in academic litera-

ture and real-world applications. In particular, for the math-
ematical study of the mean value of fuzzy numbers, in the
relevant literature, several definitions have been proposed by
leading researchers in the field. In this direction, Dubois and
Prade [1] constructed the expected value on the foundations of
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possibility theory for a fuzzy number, and it was formulated
as an interval bounded by the expected values obtained using
the upper and lower distribution functions. Further, Heilpern
[2] introduced the concepts of expected interval and expected
value of fuzzy numbers, and the latter was calculated as the
center of the former. Lower and upper possibilistic mean
values were studied by Carlsson and Fullér [3] as well
as the relation between the interval-valued possibilistic and
probabilistic means. All the definitions above are framed upon
the possibility measure. However, the possibility alongside
with the necessity measure has been proved to have a lack of
self-duality, which might unavoidably lead to counter-intuitive
results. Thus, in this regard, Liu and Liu [4] established the
credibility measure by taking advantage of the average of the
possibility and necessity measurements to compensate for this
serious limitation. In addition, they proposed an expected value
operator utilizing the credibility measure and Choquet integral.

In real-life projects, it seems reasonable that measuring
the expected values for different functions that contain fuzzy
parameters to obtain a general evaluation, like the expected
value of the wind speed in [5] or the expected value of the
lifetime of a certain product in [6], [7]. For a single fuzzy
variable, based on the credibility measure, Xue et al. [8] de-
rived a direct formula for calculating the exact expected value
of a monotone function of a fuzzy variable with a continuous
membership function. However, the existence of a variety of
structures for the fuzzy numbers, and particularly for their
complex functions, derives further challenges on the analytical
calculation of the expected value when it is compared with
the single fuzzy number counterpart. Alternatively, the use of
fuzzy simulation methods provides us with an effective method
to approximate the expected value. In this regard, a stochastic
discretization algorithm (SDA) was employed by Liu and Liu
[4] to simulate the expected value, whose basic idea is first
transforming the continuous fuzzy numbers to discrete ones
through a stochastical generation of sample points, and then
computing the mean values for functions of these discrete
counterparts. Since its establishment, the SDA has not only
gained extensive support in the fuzzy expected value simula-
tion literature, but also played a critical role in solving fuzzy
expected value models whose target is to optimize the expected
objectives with respect to several expected constraints. The
SDA along with the SDA-based heuristic algorithms has been
widely employed in handling fuzzy expected value models
in various areas like portfolio selection with fuzzy returns
[9], [10], system reliability analysis [11], project scheduling
problem [12], amongst others.

Analogous to the SDA, Liu [13] proposed the uniform
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discretization algorithm (UDA) from the perspective of uni-
formly generating sample points, whose guiding principle is
the convergence concept of sequences for fuzzy numbers. In
practice, the UDA appears to be far more complex both as
a concept and calculation procedure. Li [14] commented that
both the SDA and UDA demonstrate good performance of
accuracy and computational time when it comes to functions
of fuzzy numbers with low dimensions, but they fail to return
satisfactory approximation values as the dimension increases
substantially. Therefore, Li [14] introduced a numerical inte-
gration algorithm (NIA) to calculate the expected values by
means of α-optimistic values of strictly monotone functions
of regular fuzzy numbers (a special type of LR fuzzy numbers
with continuous and strictly decreasing shape functions, e.g.,
triangular, normal and Gaussian fuzzy numbers in [14], [15]),
which was proved to be stable and reliable.

The fact that the SDA would return inaccurate results when
high-dimensional functions occurred was reflected by the com-
parative results of numerical experiments between the SDA
and NIA in Li [14]’s work. Miao et al. [16] further explained
the reasoning behind it, indicating that the membership degrees
utilized in the SDA were not obtained by sticking strictly
to the Zadeh’s extension principle. In addition, it is known
that the SDA is not merely designed for singular use, but can
also be served as a significant step in solving fuzzy expected
value models where the SDA is incorporated in a hybrid
intelligent algorithm (HIA). This sophisticated algorithm was
first proposed by Liu [17] and later gained great popularity in
applications (see [6], [9], [12]). However, as pointed above,
the computation of SDA was proved to be not accurate both
from the scenarios of theory and practice. In order to better
facilitate the integration of expected value simulation to HIA
for more precise solutions of fuzzy expected value models,
we try to rectify the inherent deficiencies of the SDA in
this research. Meanwhile, our work can also be viewed as a
little demonstration for the subsequent fuzzy simulation related
research.

Therefore, on the basis of Miao et al. [16], this paper pro-
poses an improved stochastic discretization algorithm (iSDA)
to generate the expected value simulation for strictly monotone
functions involving regular fuzzy numbers, in which not only
the stochastic sampling process in the SDA is substituted
by a novel uniform sampling process, but also the original
calculation formula of the expected value is replaced by
another discrete calculation formula. More specifically, a novel
simulation method of sampling and fitting membership func-
tions of strictly monotone functions that contain regular fuzzy
numbers is proposed, through which simulated membership
functions of higher accuracy are obtained comparing with
those attained from the SDA. Afterwards, some analytical
supplementaries for the NIA are carried out and a special
NIA (NIA-S) is thereby proposed so as to further simplify the
NIA when the analytical expressions of α-optimistic values of
regular fuzzy numbers appear not to be complicated enough
to derive. In addition, due to the vast number of real-world
applications for regular fuzzy intervals (i.e., a special type
of LR fuzzy intervals with continuous and strictly decreasing
shape functions, such as the trapezoidal fuzzy numbers), some

theorems about α-optimistic and α-pessimistic values, and
the expected values of strictly monotone functions of regular
fuzzy intervals are proposed and proved. On this basis, for
fuzzy intervals, the extension algorithms of the iSDA and
NIA are introduced respectively. It should be noted that the
discussions in this paper mainly focus on fuzzy numbers and
fuzzy intervals, while fuzzy variables speak for a larger range.

The rest of the paper is organized as follows. In Section II,
the concepts of the SDA and iSDA are expounded, whose per-
formances are demonstrated by three numerical experiments.
Subsequently, in Section III, the algorithm designs of the NIA
and NIA-S together with some connections and differences
between the iSDA, NIA, and NIA-S are elaborated through
other three numerical examples. Section IV introduces regular
fuzzy intervals, related theorems, and algorithms along with
the conduction of two illustrative examples of four kinds of
functions. Finally, Section V concludes the whole discussion
and provides the direction of future research.

II. IMPROVED STOCHASTIC DISCRETIZATION ALGORITHM

In 1998, Liu and Iwamura [18], [19] firstly proposed a
fuzzy simulation technique, known as stochastic discretization
simulation (SDS), which aims at calculating the possibility of
a fuzzy event. Later, SDS was extended to the SDA to simulate
the expected value, where the credibility measure of Liu and
Liu [4] is employed.

In this section, the specific contents of the SDA including its
basic principle and algorithm steps are reviewed first together
with two derived deficiencies. Then, a novel uniform sampling
method of generating membership functions of regular fuzzy
numbers, and the expected value calculation formula for a
discrete fuzzy number are successively elaborated. Based on
them, we put forward the iSDA to handle the deficiencies
derived by the SDA approach.

A. Stochastic discretization algorithm
Liu and Liu [4] defined the expected value of fuzzy numbers

in light of the credibility measure as follows.
Definition 1: (Liu and Liu [4], Liu [20]) Let ξ be a fuzzy

variable with membership function µ. Then the expected value
of ξ is defined by

E[ξ] =

∫ +∞

0

Cr{ξ ≥ r}dr −
∫ 0

−∞
Cr{ξ ≤ r}dr (1)

provided that at least one of the two integrals is finite, in which
Cr is the credibility measure (details see Appendix B) with

Cr{ξ ≥ r} =
1

2

(
sup
x≥r

µ(x) + 1− sup
x<r

µ(x)
)
,

Cr{ξ ≤ r} =
1

2

(
sup
x≤r

µ(x) + 1− sup
x>r

µ(x)
)
.

Suppose that f is an n-ary real-valued function, and ξi are
fuzzy numbers with respective membership functions µi, i =
1, 2, · · · , n. Then f(ξ), ξ = (ξ1, ξ2, · · · , ξn), is also a fuzzy
variable (Liu [17]), whose expected value is given by

E[f(ξ)] =

∫ +∞

0

Cr{f(ξ) ≥ r}dr −
∫ 0

−∞
Cr{f(ξ) ≤ r}dr.

(2)
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For the purpose of estimating E[f(ξ)] as well as for solving
a fuzzy expected value model, the following process was
proposed by Liu and Liu [4]. Randomly generate uj1, uj2,
· · · , ujn(j = 1, 2, · · · ,m) from the ε-level sets of ξ1, ξ2,
· · · , ξn, respectively, in which m is a sufficiently large in-
teger, while ε is a sufficiently small number. Denote uj =
(uj1, u

j
2, · · · , ujn) and vj = µ1(uj1)∧µ2(uj2)∧· · ·∧µn(ujn) for

j = 1, 2, · · · ,m. Accordingly, for any r ∈ R, the credibilities
Cr{f(ξ) ≥ r} and Cr{f(ξ) ≤ r} can be respectively
estimated by

ER(r) =
1

2

(
max

j=1,2,··· ,m
{vj

∣∣ f(uj) ≥ r}

+1− max
j=1,2,··· ,m

{vj
∣∣ f(uj) < r}

)
,

EL(r) =
1

2

(
max

j=1,2,··· ,m
{vj

∣∣ f(uj) ≤ r}

+1− max
j=1,2,··· ,m

{vj
∣∣ f(uj) > r}

)
.

(3)

In equation (3), if one of the set is empty, then the maximal
value is 0. Applying the SDA, continuous fuzzy numbers are
converted to discrete counterparts. Thus, the expected value of
the function with respect to these discrete fuzzy numbers can
be derived by Eq. (2). To summarize, the steps of the SDA
are given in Algorithm 1 (see Appendix D).

Except for the initialization in Step 1 of Algorithm 1, the
SDA mainly contains two parts. The first part (see Step 2)
targets on transforming continuous fuzzy numbers to discrete
counterparts through random generation of sample points,
while the second part (see Steps 3 to 8) intends to attain
the mean value based on Eqs. (2)-(3) via the integration
simulation. Recently, some drawbacks of SDS were found
and explicitly proved in Miao et al. [16], and meanwhile,
SDS and SDA share the same stochastic sampling process,
whose membership degree µ(a)∗ for f(ξ) at a real number a
is expressed as

µ(a)∗ = max
1≤j≤m

{ min
1≤i≤n

µi(u
j
i )
∣∣ f(uj1, u

j
2, · · · , ujn) = a}.

Technically, the above equation is capable of obtaining a
satisfactory membership degree when the number of sample
points m is large enough. However, from the aspect of actual
operation of this stochastic sampling process, the general
setting of m is a relatively small quantity of 103 or 104 level
regardless of the dimension n, which does not strictly follow
the Zadeh’s extension principle in [21].

With respect to Miao et al. [16]’s theorem of fuzzy arith-
metic, a novel uniform sampling method and a novel sim-
ulation technique, namely iSDA, which concerns LR fuzzy
numbers are proposed here to improve the SDA approach.
Additionally, in the iSDA, the original calculation formula of
the expected value, as illustrated in Step 8 of Algorithm 1,
is also substituted. Both the basic principle and the iSDA are
explained in details in the following section.

B. Improved stochastic discretization algorithm

For this part, we are concerned about a specialized type of
LR fuzzy numbers (see Definitions 6 and 7 in Appendix B)

with continuous and strictly decreasing shape functions L and
R on the open intervals {x|0 < L(x) < 1} and {x|0 < R(x)
< 1} respectively, which are called regular fuzzy numbers in
[15] and utilized in [14], [15]. Three commonly used regular
fuzzy numbers are given in Examples 9-11 of Appendix C,
including the triangular, normal, and Gaussian fuzzy numbers.

As for regular fuzzy numbers ξi(i = 1, 2, · · · , n) and a
continuous and strictly monotone function f defined in [22],
the operational law for the membership function of a fuzzy
number f(ξ), ξ = (ξ1, ξ2, · · · , ξn), is given in Theorem 1 in
accordance with [16].

Theorem 1: (Miao et al. [16]) Let ξ1, ξ2, · · · , ξn be inde-
pendent regular fuzzy numbers. If the continuous function
f(x1, x2, · · · , xn) is strictly increasing in regard to x1, x2, · · · ,
xh and strictly decreasing in regard to xh+1, xh+2, · · · ,
xn, then the membership function of the fuzzy number
f(ξ1, ξ2, · · · , ξn) is

µ(x) = µ1(x1) |x=f(x1,x2,··· ,xn), (x1,x2,··· ,xn) ∈ L∪R,

where µ1 is the membership function of ξ1,

L = {(ξL1 (α),· · ·, ξLh (α), ξRh+1(α),· · ·, ξRn (α)) : 0 < α ≤ 1},

R = {(ξR1 (α),· · ·, ξRh (α), ξLh+1(α),· · ·, ξLn (α)) : 0 < α ≤ 1},
and [ξLi (α), ξRi (α)] is the α-level set of ξi, i = 1, 2, · · · , n,
i.e.,

ξLi (α) = inf{r
∣∣ Cr{ξi ≤ r} ≥ α},

ξRi (α) = sup{r
∣∣ Cr{ξi ≥ r} ≥ α}.

Based on Theorem 1, we initiate a novel uniform sampling
method to approximate the continuous fuzzy number, f(ξ),
using a discrete counterpart, f∗(ξ), ξ = (ξ1, ξ2, · · · , ξn). First,
denote the closure of the support of ξi by Si = [ai, bi] for i =
1, 2, · · · , n (the support of ξi contains all x with µξi(x) > 0).
When the range of Si is not finite, a set including the most
values is utilized to substitute Si as an alternative. Since ξi is
regular, it is easy to know that there exists one and only one
value ci ∈ Si such that µξi(ci) = 1 and ai < ci < bi. Second,
define

xLij = ai + (ci − ai)× j
k , j = 0, 1, · · · , k − 1,

xRij = bi − (bi − ci)× j
k , j = 0, 1, · · · , k − 1,

(4)

and write

XL
j = (xL1j , · · · , xLhj , xRh+1j , · · · , xRnj), j = 0, 1,· · ·, k − 1,

XR
j = (xR1j , · · · , xRhj , xLh+1j , · · · , xLnj), j = 0, 1,· · ·, k − 1,

c = (c1, c2, · · · , cn).
(5)

Afterwards, a new discrete fuzzy number, f∗(ξ), is defined as
follows

f∗(ξ) =





f(XL
j ), with membership degree µ1(xL1j),

j = 0, 1, · · · , k − 1

f(XR
j ), with membership degree µ1(xR1j),

j = 0, 1, · · · , k − 1

f(c), with membership degree 1.
(6)
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Denote L′ = {XL
0 ,X

L
1 , · · · ,XL

k−1} and R′ = {XR
0 ,X

R
1 ,

· · · ,XR
k−1}. Obviously L′ and R′ are respectively subsets of

L and R defined in Theorem 1.
It is easy to derive that the discrete fuzzy number f∗(ξ)

is in close proximity to the continuous fuzzy number f(ξ),
when k is large enough. As a consequence, the mean value
of f∗(ξ) can be reasonably viewed to be an approximation of
the expected value of f(ξ). Subsequently, by taking advantage
of the calculation formula of the expected value of discrete
fuzzy numbers in [4] and [17], the expected value of f∗(ξ) is
calculated by

E[f∗(ξ)] =

k−1∑

j=0

wjf(XL
j ) + wkf(c) +

k−1∑

j=0

wm−jf(XR
j ),

m = 2k,
(7)

where wj , j = 0, 1, · · · , 2k, are ascertained by

wj =
1

2

(
max
t≤j

µ(f(XL
t ))−max

t<j
µ(f(XL

t ))

+ max
t≥j

µ(f(XL
t ))−max

t>j
µ(f(XL

t ))
)
,

j = 0, 1, · · · , k − 1,

wk =
1

2

(
2− µ(f(XL

k−1))− µ(f(XR
k−1))

)
,

wm−j =
1

2

(
max
t≤j

µ(f(XR
t ))−max

t<j
µ(f(XR

t ))

+ max
t≥j

µ(f(XR
t ))−max

t>j
µ(f(XR

t ))
)
,

j = 0, 1, · · · , k − 1,

(8)

and µ represents the membership function of f∗(ξ) in Eq. (6).
Further, utilizing the strict monotonicity of the shape functions
of ξ1 (that is, µ1(xL1i) < µ1(xL1j) and µ1(xR1i) > µ1(xR1j) hold
for all i < j), we can simplify Eq. (8) as follows:

w0 =
1

2
µ1(xL10), wm =

1

2
µ1(xR10),

wj =
1

2

(
µ1(xL1j)− µ1(xL1(j−1))

)
, j = 1, 2, · · · , k − 1,

wk = 1− 1

2

(
µ1(xL1(k−1)) + µ1(xR1(k−1))

)
,

wm−j =
1

2

(
µ1(xR1j)− µ1(xR1(j−1))

)
, j = 1, 2, · · · , k − 1.

(9)
Therefore, a novel simulation technique, namely iSDA, to

simulate the expected value E[f(ξ)] is proposed combining
the uniform sampling process in Eqs. (4)-(6) and the ex-
pected value calculation formula for discrete fuzzy numbers
in Eqs. (7)-(9). And the detailed procedure of the iSDA is
described as follows.

Algorithm 2 (iSDA)

Step 1. Initialize the number of sample points m. Set k =
m/2, E = 0 and j = 0.

Step 2. Calculate f(XL
j ) with Eqs. (4)-(5).

Step 3. Calculate wj with Eq. (9). Reset E = E+wjf(XL
j )

and j = j + 1.

Step 4. If j < k, go to Step 2. Otherwise, reset j = 0 and
go to Step 5.

Step 5. Calculate f(XR
j ) with Eqs. (4)-(5).

Step 6. Calculate wm−j with Eq. (9). Reset E = E +
wm−jf(XR

j ) and j = j + 1.
Step 7. If j < k, go to Step 5. Otherwise, go to Step 8.
Step 8. Calculate f(c) and wk. Reset E = E + wkf(c).
Step 9. Return E as the simulation value of the expected

value E[f(ξ)].

Similarly to the SDA, the calculation procedure of the iSDA
basically consists of two parts. Steps 2 and 5 indicate the
uniform sampling process, and Steps 3, 6 and 8 represent the
expected value calculation procedure for the discrete fuzzy
number, f∗(ξ).

For demonstrating clearly the feasibility and effectiveness
of the iSDA, a series of contrast outcomes of the SDA and
iSDA considering different fuzzy variables and functions are
presented in the following two subsections. Furthermore, since
the calculation formula in Step 8 of Algorithm 1 is not easy to
be understood, and to observe the efficiency of this formula,
we specifically design an intermediate simulation algorithm,
SDA∗. It employs the same uniform sampling process with the
iSDA in Steps 2 and 5 of Algorithm 2 and utilizes the same
calculation procedure of the expected value with the SDA from
Steps 3 to 8 of Algorithm 1.

C. Comparative study between the SDA and iSDA: The case
of triangular fuzzy numbers

The comparative results between the SDA and iSDA as
well as for the SDA∗ facilitating a numerical example are
presented in this section, including the simulation accuracy,
computational time, and complexity analysis of each algo-
rithm. These algorithms together with the algorithms in the
subsequent sections in this paper are coded in C language
and operate under an identical computational condition, i.e.,
using a Personal Computer with 2.27 GHz processor speed
and 32 GB memory.

Example 1: Suppose that ηi, i = 1, 2, · · · , 10, are indepen-
dent triangular fuzzy numbers listed in Table I, incorporated
in a continuous and strictly increasing function f1(x1, x2, · · · ,
x10) = x1 + x2 + · · ·+ x10. This example (see Li [14]) aims
at calculating the expected value, E[ξ], of the fuzzy number,
ξ = f1(η1, η2, · · · , η10).

Before conducting the simulation, in terms of the linearity
towards the expected value operator for independent fuzzy
numbers proved in [4], the exact value of E[ξ] can be
calculated in a straightforward manner, that is,

E[ξ] = E[η1] + E[η2] + · · ·+ E[η10] = 38.5.

With regard to Example 1, we run the SDA, SDA∗, and
iSDA, ten times and record their simulation results in Table II,
accordingly. The quantity of integration points in the SDA is
settled as 10000, while those of sample points in the three
algorithms are all set as 1000. In order to express the relative
error degree of all the results via the three algorithms, an index
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TABLE I
DIFFERENT KINDS OF REGULAR FUZZY NUMBERS UTILIZED IN EXAMPLES

Index
Triangular Fuzzy

Number
Normal Fuzzy

Number
Gaussian Fuzzy

Number
η1 T (2, 3, 4) N (0, 1) G(0, 1)
η2 T (5, 6, 8) N (0, 2) G(0, 2)
η3 T (6, 7, 8) N (1, 2) G(1, 2)
η4 T (4, 5, 6) N (2, 4) G(2, 4)
η5 T (3, 4, 6) N (4, 6) G(4, 6)
η6 T (7, 9, 10) N (5, 8) G(5, 8)
η7 T (−5,−3,−2) N (−1, 2) G(−1, 2)
η8 T (5, 6, 8) N (−3, 6) G(−3, 6)
η9 T (0, 1, 2) N (−5, 2) G(−5, 2)
η10 T (−1, 0, 2) N (−7, 7) G(−7, 7)

called “Error” is displayed on the fourth column of Table II,
which is defined as

Error =
|Simulation value− Exact value|

Exact value
× 100%. (10)

Note that the simulation value utilized in Eq. (10) during the
calculation of Error in Table II is the average value of the ten
times simulation results. From Table II, it is clear that both
the stability and accuracy of the iSDA are superior to those
of the SDA and SDA∗.

TABLE II
TEN COMPARATIVE RESULTS AMONG THE SDA, SDA∗ , AND ISDA FOR

EXAMPLE 1.

Algorithm Simulation Value of E[ξ] for Time 1-10 Deviation Error

SDA
38.8528 38.8765 38.8738

0.02 1.00%38.8918 38.8617 38.8764
38.9195 38.8955 38.8751 38.9079

SDA∗
38.4900 38.6885 38.2088

0.21 0.26%38.4986 38.0610 38.4801
38.2785 38.2741 38.7293 38.3066

iSDA
38.4990 38.4990 38.4990

0.00 0.00%38.4990 38.4990 38.4990
38.4990 38.4990 38.4990 38.4990

For demonstrating further the performance of the SDA,
SDA∗, and iSDA, their simulation values, deviation, and
computational time are obtained through the variation of the
quantity of sample points m as well as that of integration
points N . Particularly, we alter m in the SDA when N is
set to be 10000 or 20000 respectively to test whether the
increasing of sample points will positively affect the accuracy
of the final results. Accordingly, the detailed results towards
the above-mentioned experiment are displayed in Table III and
visualized in Fig. 1. It is noted that the simulation value and
the computational time listed in this table as well as in any
subsequent tables are all the average values of running the
corresponding algorithm for ten times.

Below is the detailed analysis of Table III and Fig. 1. First,
from the point of view of the derived accuracy, as shown
in Fig. 1, the results of the iSDA are steadily converged
and almost coincide with the exact value 38.5, which nearly
provide no error even when the number of integration points
m is small (e.g., m = 1000 in Table III). It can also be seen

TABLE III
COMPARATIVE RESULTS AMONG THE SDA, SDA∗ , AND ISDA FOR

EXAMPLE 1.

Algorithm

Number Number
Simulation

Error
CPU

of of
Value Time

Sample Integration
of E[ξ] (s)

Points m Points N

SDA

1000 10000 38.8831 1.00% 0.180
3000 10000 38.7269 0.59% 0.527
5000 10000 38.8252 0.84% 0.843

10000 10000 38.8618 0.94% 1.907
15000 10000 38.7456 0.64% 2.866
20000 10000 38.7887 0.75% 3.898
1000 20000 38.8902 1.01% 0.328
3000 20000 38.7277 0.59% 0.845
5000 20000 38.8238 0.84% 1.950

10000 20000 38.8492 0.91% 3.643
15000 20000 38.7456 0.64% 5.938
20000 20000 38.8043 0.79% 7.800

SDA∗

1000 1000 38.4015 0.26% 0.022
3000 3000 38.4164 0.22% 0.169
5000 5000 38.4400 0.16% 0.393

10000 10000 38.4612 0.10% 1.777
15000 15000 38.4802 0.05% 4.053
20000 20000 38.4889 0.03% 7.294

iSDA

1000 none 38.4990 0.00% 0.001
3000 none 38.4997 0.00% 0.002
5000 none 38.4998 0.00% 0.003

10000 none 38.4999 0.00% 0.004
15000 none 38.4999 0.00% 0.005
20000 none 38.5000 0.00% 0.006

38.2000 

38.4000 

38.6000 

38.8000 

39.0000 

1000 3000 5000 10000 15000 20000

Simulation value of SDA (N=10000, m alters)

Simulation value of SDA (N=20000, m alters)

Simulation value of SDA* (N=m, m alters)

Simulation value of iSDA (m alters)

Exact value

E[�]

m

Fig. 1. The visualisation of comparative results in Table III.

that under different combinations of m and N , the biggest
error of the SDA is 1.01%, and the changes of m in the
SDA do not affect positively the final results. Second, from
the stability point of view, the experimental results of the
SDA have a larger deviation, while the iSDA is quite stable
in returning the simulation values. Third, the computational
time of iSDA is hundreds of times faster than SDA. More
precisely, in Table III it is noticed that the longest time of
the SDA is 7.800s and that of the iSDA is only 0.006s. It is
known that the computational time has a strong relationship
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with the algorithm complexity, whose expressions of the SDA
and iSDA are O(mN ) and O(N ), respectively. To summarize,
the iSDA is equipped with prominent advantage speaking of
accuracy, stability, and operation speed in contrast to the SDA.

As an intermediate algorithm, the results of the SDA∗ are
listed in Table III and depicted in Fig. 1 as well. It can
be seen that both the accuracy and the computational time
of the SDA∗ are not comparable to those of the iSDA. On
the one hand, through comparing the SDA∗ with the SDA,
it reveals that the uniform sampling method is reasonable
and effective, especially reflected on the convergence of the
simulation results in the SDA∗. On the other hand, through
comparing the SDA∗ with the iSDA, the effectiveness of the
calculation formula of the expected value of discrete fuzzy
numbers in Eqs. (7)-(9) utilized in the iSDA can also be
validated. These two comparisons demonstrate the feasibility
and reliability of the two improvements for the iSDA.

D. Comparative study between different functions and fuzzy
numbers

Two more examples are given in this section to further
demonstrate the superiority of the iSDA among the other two
algorithms.

Example 2: This example targets on simulating the expected
values of the same function f1 of Example 1 using the
SDA, SDA∗, and iSDA, but the fuzzy variables included are
triangular, normal, and Gaussian fuzzy numbers, see Table I,
respectively.

The simulation results are illustrated in Table IV, in which
(m/N ) represents the number of sample or integration points
adopted in each algorithm. Since the support Si of a normal
fuzzy number N (ci, σi) or a Gaussian fuzzy number G(ci, bi)
is infinite, we respectively set Si = [ci − gσi, ci + gσi] or
Si = [ci − gbi, ci + gbi], where g is a positive integer. The
range of the support Si in a triangular fuzzy number is finite.
As it is known that ±6σ can cover a relative large range of
values to 99.99966%, then we assign three values: 1, 3, and
6 to g to observe the differences.

From Table IV, it is obvious that the iSDA is rather
accurate, reliable, and fast on the outputs. In addition, the
iSDA performs better when g = 6 in contrast to g = 1,
which reflects its sensitivity to the support Si. Comparing
with the SDA, the effect of the SDA∗ is enhanced due to
the replacement of the stochastic sampling process, but still is
far from obtaining accurate values, especially for normal and
Gaussian fuzzy numbers.

Example 3: A more complex function f2 = −(x1 ∧ x2 ∧
· · ·∧x10) is employed in this example. Calculate the expected
values of f2 of triangular, normal, and Gaussian fuzzy numbers
by the SDA, SDA∗, and iSDA, respectively.

The simulation results of Example 3 are recorded in Ta-
ble V, which share some similar conclusions with those of Ex-
ample 2. From Tables IV and V, several remarks on the three
algorithms used are outlined. First, the results of Examples 2
and 3 are similar with those derived from Example 1, as there
still exist great differences in accuracy and time between the
SDA and iSDA. Second, in terms of the parameter g, generally
the performance of the SDA is barely acceptable for g = 1,
but when g gets larger, the results become worse. Whereas
the iSDA returns the simulation results of highest accuracy at
g = 6, and the biggest error is 0.03%. Third, the SDA∗ reduces
the error rate due to the incorporated uniform sampling process
compared with the SDA. In summary, the results of three
examples demonstrates that the iSDA works better regardless
of different functions or kinds of fuzzy variables.

III. SPECIAL NUMERICAL INTEGRATION ALGORITHM

With respect to the particular case of continuous and strictly
monotone functions of regular fuzzy numbers (also called
ordinary fuzzy variables in [14]), Li [14] proposed the numer-
ical integration algorithm (NIA) to approximate the expected
values by means of the concept of α-optimistic values. In this
section, the NIA and its related principles and concepts are
primarily recalled. Subsequently, after deriving the analytical
expressions of α-optimistic values for regular fuzzy numbers,
owing to the specific features of regular fuzzy numbers, we

TABLE IV
COMPARATIVE RESULTS AMONG THE SDA, SDA∗ , AND ISDA FOR THE CASE THAT f1 = x1 + x2 + · · ·+ x10 .

Algorithm (m/N ) Triangular Normal Gaussian
SDA (3000/10000) g = 1 g = 3 g = 6 g = 1 g = 3 g = 6

Exact Value 38.5000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000
Simulation Value 38.7269 -3.5069 -4.2920 -7.5761 -4.3014 -5.6030 -9.2436

Error 0.59% 12.33% 7.30% 89.40% 7.54% 40.08% 131.09%
CPU Time (s) 0.527 0.476 0.479 0.498 0.468 0.498 0.495

SDA∗ (10000/10000) g = 1 g = 3 g = 6 g = 1 g = 3 g = 6

Exact Value 38.5000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000
Simulation Value 38.4612 -3.8402 -3.6853 -3.7063 -3.8285 -3.7282 -3.8002

Error 0.10% 4.00% 7.87% 7.34% 4.29% 6.80% 5.00%
CPU Time (s) 1.777 1.188 1.413 1.816 1.411 1.583 1.807

iSDA (10000/none) g = 1 g = 3 g = 6 g = 1 g = 3 g = 6

Exact Value 38.5000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000
Simulation Value 38.4999 -3.9983 -3.9995 -4.0000 -3.9985 -4.0000 -4.0000

Error 0.00% 0.04% 0.01% 0.00% 0.04% 0.00% 0.00%
CPU Time (s) 0.004 0.006 0.006 0.006 0.005 0.006 0.006
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TABLE V
COMPARATIVE RESULTS AMONG THE SDA, SDA∗ , AND ISDA FOR THE CASE THAT f2 = −(x1 ∧ x2 ∧ · · · ∧ x10).

Algorithm (m/N ) Triangular Normal Gaussian
SDA (3000/10000) g = 1 g = 3 g = 6 g = 1 g = 3 g = 6

Exact Value 3.2500 8.8300 8.8300 8.8300 8.2664 8.2664 8.2664
Simulation Value 3.4669 8.1734 12.9329 22.9128 8.0238 13.1042 23.4327

Error 6.67% 7.44% 46.47% 159.49% 2.93% 58.52% 183.47%
CPU Time (s) 0.783 0.576 0.565 0.608 0.534 0.591 0.600

SDA∗ (10000/10000) g = 1 g = 3 g = 6 g = 1 g = 3 g = 6

Exact Value 3.2500 8.8300 8.8300 8.8300 8.2664 8.2664 8.2664
Simulation Value 3.2458 7.8663 8.7163 8.7785 7.9114 8.2307 8.2065

Error 0.13% 10.91% 1.29% 0.58% 4.29% 0.43% 0.72%
CPU Time (s) 1.753 1.565 1.688 1.844 1.682 1.713 1.810

iSDA (10000/none) g = 1 g = 3 g = 6 g = 1 g = 3 g = 6

Exact Value 3.2500 8.8300 8.8300 8.8300 8.2664 8.2664 8.2664
Simulation Value 3.2500 7.8745 8.7462 8.8271 7.9176 8.2657 8.2652

Error 0.00% 10.82% 0.95% 0.03% 4.22% 0.01% 0.01%
CPU Time (s) 0.004 0.006 0.006 0.006 0.006 0.006 0.006

further propose the special numerical integration algorithm
(NIA-S) to simplify the calculation procedure of the original
NIA set forth by Li [14] (renamed as a general NIA, NIA-G
for short, in this paper for being distinguishable).

A. General numerical integration algorithm

Before introducing the calculation procedure of the NIA-
G proposed in [14], the relevant definitions and theorems are
brought in.

Definition 2: (Liu [23]) The credibility distribution of a
fuzzy variable ξ is defined as

Φ(x) = Cr{ξ ≤ x}, ∀x ∈ R. (11)

Analogously, Ψ(x) = Cr{ξ ≥ x} is denoted, and Ψ + Φ ≡ 1
if ξ is a continuous fuzzy variable, which implies that

Ψ(x) = 1− Φ(x). (12)

Definition 3: (Liu [23]) For any α ∈ (0, 1], the α-optimistic
value of a fuzzy variable ξ is

ξsup(α) = sup{r
∣∣ Cr{ξ ≥ r} ≥ α}. (13)

Theorem 2: (Li [14]) If ξ is a regular fuzzy number, for any
α ∈ (0, 1], we have that

ξsup(α) = Ψ−1(α). (14)

Assuming that the membership function, µξ, of a regular
fuzzy number ξ is known, Ψ can be deduced via µξ as follows,

Ψ(x) =

{
µξ(x)/2, if x ≥ c

1− µξ(x)/2, if x < c,
(15)

in which µξ(c) = 1.
According to the mathematical property of µξ, we know

that Ψ is continuous and strictly decreasing. Then in terms
of Eqs. (14)-(15), Li [14] designed a bisection algorithm (see
Algorithm 3 in Appendix D) to simulate ξsup(α) for any given
α ∈ (0, 1].

Now that the α-optimistic values are derived, and they can
be further utilized to obtain mean values for continuous and
strictly monotone functions of regular fuzzy numbers by the
following theorem.

Theorem 3: (Li [14]) Assume that ξ1, ξ2, · · · , ξn are inde-
pendent regular fuzzy numbers. If the function f(x1, x2, · · · ,
xn) is continuous and strictly increases in regard to x1, x2,
· · · , xh and strictly decreases in regard to xh+1, xh+2, · · · ,
xn, for any α ∈ (0, 1], the expected value of f(ξ) = f(ξ1, ξ2,
· · · , ξn) is given by

E[f(ξ)] =

∫ 1

0

f
(

(ξ1)sup(α), · · · , (ξh)sup(α),

(ξh+1)sup(1− α), · · · , (ξn)sup(1− α)
)

dα.

(16)
According to Eq. (16), Li [14] designed an integration

simulation algorithm NIA-G (see Algorithm 4 in Appendix D)
to calculate E[f(ξ)] by utilizing ξsup(α) obtained from the
bisection algorithm.

B. Special numerical integration algorithm

As a matter of fact, for the commonly used regular fuzzy
numbers, we find that deriving the analytical expressions
of their α-optimistic values is not difficult, and then the
bisection procedure in the NIA-G could be replaced by the
clear calculation formula of ξsup(α). Based upon this concept,
the NIA-S is thus put forward to improve NIA-G as follows.

As to a regular fuzzy number ξ, which is of LR-type with
continuous and strictly decreasing shape functions L and R,
in regard to Eqs. (38) and (15), we can get that

Ψ(x) =





1

2
R

(
x− c
β

)
, if x ≥ c

1− 1

2
L

(
c− x
γ

)
, if x < c.

(17)

Due to the strict monotonicity of L and R, their inverse
functions exist and are denoted by L−1 and R−1, respectively.
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Then the α-optimistic value of ξ, ξsup(α), can be derived from
Eqs. (14) and (17) as follows:

ξsup(α)=Ψ−1(α)=

{
c+ βR−1(2α), if 0 < α ≤ 0.5

c− γL−1(2− 2α), if 0.5 < α ≤ 1.
(18)

According to Eq. (18), the α-optimistic values of some com-
monly used regular fuzzy numbers enumerated in Examples 9-
11 can be respectively obtained (details see Appendix C).

Consequently, based on Theorem 3 and Eq. (18) (e.g.,
Eqs. (41)-(43)), a special NIA is then set forth by using the
analytical expressions of α-optimistic values of regular fuzzy
numbers to substitute the bisection algorithm in NIA-G. The
specific steps of NIA-S are described as follows.

Algorithm 5 (NIA-S)

Step 1. Initialize the number of integration points N . Let
E = 0 and k = 1.

Step 2. Set α = k/N . For each 1 ≤ i ≤ n, according
to the calculation formula of α-optimistic values in
Eq. (18), calculate

xi =

{
(ξi)sup(α), if 1 ≤ i ≤ h,

(ξi)sup(1− α), if h < i ≤ n.

Step 3. Reset E = E+f(x1, x2, · · · , xn)/N and k = k+1.
Step 4. If k ≤ N , go to Step 2. Otherwise, return E as the

simulation value of the expected value E[f(ξ)].

As a general rule, the clear analytical expressions of the
inverse functions of L and R are not difficult to obtain. Under
this case, the NIA-S is more suitable to be chosen for the
simulation of the expected value. But when it comes to a
situation that the inverse functions are too complex to figure
out, then the bisection algorithm is preferred to calculate the
value of Ψ−1(α) (see Algorithm 3) or the “polyfit” function
of Matlab to generate approximate functions for Ψ−1(α).

C. Comparative study with different functions of different fuzzy
numbers

In this section, three numerical examples considering the
expected values of continuous and strictly monotone functions
of regular fuzzy numbers are conducted to compare the
performance of the iSDA, NIA-G, and NIA-S based on the
accuracy, stability, and operation speed measurements.

Example 4: According to the data and function given in
Example 1, accomplish the expected value E[ξ] of the fuzzy
number ξ = f1(η1, η2, · · · , η10) by means of the iSDA, NIA-
G, and NIA-S, respectively, in which ηi, i = 1, 2, · · · , 10, are
triangular fuzzy numbers.

The final simulation results of the iSDA, NIA-G, and NIA-
S are obtained through altering the numbers of sample or
integration points and reported in Table VI. Here the small
enough number ε in the bisection part of the NIA-G is set to be
10−3 on account of the trade-off between accuracy and time.
Meanwhile, the analytical expression of the α-optimistic value
of a triangular fuzzy number in the NIA-S refers to Eq. (41).

From Table VI, we can see that along with the increasing
number of integration points N , the accuracy degrees for the
NIA-G and NIA-S are both greatly enhanced, and this point is
not obviously reflected on the iSDA. On the whole, regardless
of accuracy, stability, or operation speed, the performance of
the iSDA in Example 4 is clearly superior among all the three
algorithms compared.

Example 5: This example is designed to figure the expected
value E[ξ] of ξ = f1(η1, η2, · · · , η10) out using the iSDA,
NIA-G, and NIA-S, in which the function f1 = x1+x2+· · ·+
x10, and the fuzzy variables ηi, i = 1, 2, · · · , 10, included are
respective triangular, normal, and Gaussian fuzzy numbers in
Table I.

The simulation outcomes are summarized in Table VII, in
which (m or N ) after each algorithm represents the number
of sample or integration points involved. It is observed that
there is no g in the NIA-S since it utilizes the inverse
functions directly other than the range of the support Si. Not
surprisingly, the iSDA with the setting g = 6 still performs
better either on the accuracy or with respect to the time.

Example 6: Other conditions stay unchanged, only substitute
the function f1 in Example 5 by f2 = −(x1 ∧x2 ∧ · · · ∧x10),
and figure out the mean value E[ξ] of ξ = f2(η1, η2, · · · , η10)
using the iSDA, NIA-G, and NIA-S.

The simulation results of Example 6 are enumerated in
Table VIII for comparison purposes. Analogous to Section
II-D, the computational time does not change so much for
the iSDA, but the performance is quite well when g = 6.
The NIA-S is also effective except for its computational time
which is several times longer than that of the iSDA. Certainly,
the NIA-G is able to achieve a satisfactory result when g = 6,
nevertheless the time needed is hundreds times greater than
the iSDA.

Notably, for the iSDA or NIA-G, when it comes to the
function f1, whatever the value g is, the simulation results are
already good enough. However, as for the function f2, only
when g = 6, a result of high accuracy can derive. The main
cause of this difference may come from the features of these
two functions, that is, f1 focuses on the overall sum while f2

aims at the minimum value only.
In summary, among the three algorithms, the iSDA, NIA-

S, and NIA-G, everyone is much better than the SDA in
accuracy, stability, or computational time, and their individual
outputs are steady, unlike that of the SDA. Generally, the iSDA
outperforms all the other algorithms in all aspects, i.e., it is
highly efficient and time-saving. The NIA-S is slightly inferior
to the iSDA from the aspect of time, but the good point is
that its calculating procedure is not related to the range of the
support (no altering of g). The main disadvantage of the NIA-
G lies on the computational time, due to the reason that there
exists a bisection circulation in its algorithm design.

IV. EXTENSIONS TO REGULAR FUZZY INTERVALS

It is clear that the regular fuzzy intervals are also of
great importance no matter in theoretical developments like
its variance research in [24] and the entropy calculation
and simulation in [25], or in practical applications like the
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TABLE VI
SIMULATION RESULTS FOR THE ISDA, NIA-G, AND NIA-S IN EXAMPLE 4

Number of iSDA NIA-G NIA-S
Sample Points or Simulation CPU Simulation CPU Simulation CPU

Integration Points N Value Time (s) Value Time (s) Value Time (s)
1000 38.4990 0.000 38.4870 0.010 38.4870 0.000
3000 38.4997 0.000 38.4957 0.046 38.4957 0.005
5000 38.4998 0.000 38.4974 0.070 38.4974 0.010

10000 38.4999 0.000 38.4987 0.140 38.4987 0.015
15000 38.4999 0.010 38.4991 0.202 38.4991 0.020
20000 38.5000 0.010 38.4994 0.265 38.4994 0.030
106 38.5000 0.330 38.5000 10.256 38.5000 0.883

TABLE VII
COMPARATIVE RESULTS AMONG THE ISDA, NIA-G, AND NIA-S FOR THE CASE THAT f1 = x1 + x2 + · · ·+ x10 .

Triangular Normal Gaussian
iSDA (10000) g = 1 g = 3 g = 6 g = 1 g = 3 g = 6

Exact Value 38.5000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000
Simulation Value 38.4999 -3.9983 -3.9995 -4.0000 -3.9985 -4.0000 -4.0000

Error 0.00% 0.04% 0.01% 0.00% 0.04% 0.00% 0.00%
CPU Time (s) 0.004 0.006 0.006 0.006 0.005 0.006 0.006

NIA-G (10000) g = 1 g = 3 g = 6 g = 1 g = 3 g = 6

Exact Value 38.5000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000
Simulation Value 38.4987 -3.9996 -3.9996 -3.9996 -3.9996 -3.9996 -3.9996

Error 0.00% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01%
CPU Time (s) 0.140 0.402 0.419 0.411 0.333 0.348 0.353
NIA-S (10000)

Exact Value 38.5000 -4.0000 -4.0000
Simulation Value 38.4987 -3.9996 -3.9996

Error 0.00% 0.01% 0.01%
CPU Time (s) 0.008 0.036 0.017

portfolio optimization in [26]. One of the representative form
of regular fuzzy interval is the commonly used trapezoidal
fuzzy number. Scholars have continued interests in updating
the fuzzy simulation of the expected value of functions that
contain trapezoidal fuzzy numbers (from [6] to [7]). In this
section, to calculate the expected value of a strictly monotone
function f of regular fuzzy intervals ξ̃1, ξ̃2, · · · , ξ̃n, the α-
optimistic value ξ̃sup(α) and α-pessimistic value ξ̃inf(α) of
regular fuzzy intervals are deduced. Then, Theorem 3 is further
extended for the case of regular fuzzy intervals. On this
basis, two extension algorithms called TiSDA and TNIA-S are
proposed to simulate the expected value E[f(ξ̃1, ξ̃2, · · · , ξ̃n)],
respectively.

A. Regular fuzzy interval

The definition of regular fuzzy intervals based on LR
fuzzy intervals (see Definitions 8 and 9 of Appendix B) is
in accordance with that of regular fuzzy numbers, which is
described as follows.

Definition 4: An LR fuzzy interval is said to be regular
if the shape functions L and R are continuous and strictly
decreasing functions on the open intervals {0 < L(x) < 1}
and {0 < R(x) < 1}, respectively.

In this paper, we consider the expected values of continuous
and strictly monotone functions of regular fuzzy intervals.

Before that, firstly, several properties of α-optimistic values
of regular fuzzy intervals are elaborated as follows.

Theorem 4: Let ξ̃ be a regular fuzzy interval. For any α ∈
(0, 1], we have that

Cr{ξ̃ ≥ ξ̃sup(α)} = α. (19)

Proof: For any α ∈ (0, 1] and α 6= 0.5, it follows from
the continuity of the distribution function and the definition of
optimistic value in Eq. (13) that

Cr{ξ̃ ≥ ξ̃sup(α)} = lim
n→∞

Cr{ξ̃ ≥ ξ̃sup(α)− 1

n
} ≥ α, (20)

Cr{ξ̃ ≥ ξ̃sup(α)} = lim
n→∞

Cr{ξ̃ ≥ ξ̃sup(α) +
1

n
} ≤ α. (21)

If α = 0.5, we have that

Cr{ξ̃ ≥ ξ̃sup(0.5)}

=
1

2

(
Pos{ξ̃ ≥ ξ̃sup(0.5)}+ 1− Pos{ξ̃ < ξ̃sup(0.5)}

)

=
1

2
(0.5 + 1− 0.5) = 0.5.

(22)
Combining Eqs. (20) and (21) together with Eq. (22), the proof
is complete.
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TABLE VIII
COMPARATIVE RESULTS AMONG THE ISDA, NIA-G, AND NIA-S FOR THE CASE THAT f2 = −(x1 ∧ x2 ∧ · · · ∧ x10).

Triangular Normal Gaussian
iSDA (10000) g = 1 g = 3 g = 6 g = 1 g = 3 g = 6

Exact Value 3.2500 8.8300 8.8300 8.8300 8.2664 8.2664 8.2664
Simulation Value 3.2500 7.8745 8.7462 8.8271 7.9176 8.2657 8.2652

Error 0.00% 10.82% 0.95% 0.03% 4.22% 0.01% 0.01%
CPU Time (s) 0.004 0.006 0.006 0.006 0.006 0.006 0.006

NIA-G (10000) g = 1 g = 3 g = 6 g = 1 g = 3 g = 6

Exact Value 3.2500 8.8300 8.8300 8.8300 8.2664 8.2664 8.2664
Simulation Value 3.2497 7.8740 8.7455 8.8252 7.9170 8.2650 8.2650

Error 0.01% 10.83% 0.96% 0.05% 4.23% 0.02% 0.02%
CPU Time (s) 0.136 0.385 0.395 0.411 0.284 0.321 0.337
NIA-S (10000)

Exact Value 3.2500 8.8300 8.2664
Simulation Value 3.2499 8.8274 8.2650

Error 0.00% 0.03% 0.02%
CPU Time (s) 0.010 0.046 0.025

Theorem 5: If ξ̃ is a regular fuzzy interval, for any α ∈
(0, 1], we obtain that

ξ̃sup(α) =

{
Ψ−1(α), if α 6= 0.5

c, if α = 0.5.
(23)

Proof: For any given α ∈ (0, 1], denote Ψ(x) = Cr{ξ̃ ≥
x} = α. Since Ψ(x) is strictly decreasing in {x ≤ c} and {x ≥
c}, for any α ∈ (0, 1] and α 6= 0.5, we have that x = Ψ−1(α).
Combining the above with Eq. (19) in Theorem 4, we get that
ξ̃sup(α) = Ψ−1(α). In addition, it follows immediately from
the definition of ξ̃sup that ξ̃sup(α) = c when α = 0.5.

According to Theorem 5, to obtain ξ̃sup(α), we need to cal-
culate Ψ(x) of regular fuzzy interval ξ̃ first. If the membership
function µξ̃ of a regular fuzzy interval ξ̃ is attained, Ψ(x) can
be deduced via µξ̃ as follows,

Ψ(x) =





1− µξ̃(x)/2, if x < c,

1

2
, if c ≤ x ≤ c

µξ̃(x)/2, if x > c.

(24)

Based on Eqs. (40) and (24), we have that

Ψ(x) =





1− 1

2
L

(
c− x
γ

)
, if x < c

1

2
, if c < x ≤ c

1

2
R

(
x− c
β

)
, if x > c.

(25)

Since the shape functions L and R are both continuous and
strictly decreasing, the inverse functions L−1 and R−1 exist.
Consequently, the analytical expression of ξ̃sup(α) of a regular
fuzzy interval in Eq. (23) is obtained as

ξ̃sup(α) =





βR−1(2α) + c, if 0 < α < 0.5

c, if α = 0.5

c− γL−1(2− 2α), if 0.5 < α ≤ 1.

(26)

Further, for better understanding of the following theorems,
the concept of α-pessimistic value is also introduced in this
section.

Definition 5: (Liu [23]) For any α ∈ (0, 1], the α-pessimistic
value of a fuzzy variable ξ is

ξinf(α) = inf{r
∣∣ Cr{ξ ≤ r} ≥ α}. (27)

Theorem 6: Let ξ̃ be a regular fuzzy interval. For any α ∈
(0, 1], we have that

Cr{ξ̃ ≤ ξ̃inf(α)} = α. (28)

Proof: Analogous to the proof of Theorem 4, we get that

Cr{ξ̃ ≤ ξ̃inf(α)} = lim
n→∞

Cr{ξ̃ ≤ ξ̃inf(α) +
1

n
} ≥ α, (29)

Cr{ξ̃ ≤ ξ̃inf(α)} = lim
n→∞

Cr{ξ̃ ≤ ξ̃inf(α)− 1

n
} ≤ α, (30)

and if α = 0.5, it yields that

Cr{ξ̃ ≤ ξ̃inf(0.5)}

=
1

2

(
Pos{ξ̃ ≤ ξ̃inf(0.5)}+ 1− Pos{ξ̃ > ξ̃inf(0.5)}

)

=
1

2
(0.5 + 1− 0.5) = 0.5.

(31)
Combining Eqs. (29) and (30) together with Eq. (31), the proof
is complete.

Theorem 7: If ξ̃ is a regular fuzzy interval, for any α ∈
(0, 1], we have that

ξ̃inf(α) =

{
Ψ−1(1− α), if α 6= 0.5

c, if α = 0.5.
(32)

Proof: For any given α ∈ (0, 1], denote Φ(x) = Cr{ξ̃ ≤
x} = α. Since Φ(x) = Cr{ξ ≤ x} is strictly increasing in
{x ≤ c} and {x ≥ c}, for α ∈ (0, 1] and α 6= 0.5, we
have that x = Φ−1(α). Combining the above with Eq. (28) in
Theorem 6, we get ξ̃inf(α) = Φ−1(α). In terms of Eq. (12),
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we get Φ(x) = 1 − Ψ(x) = α, which follows that ξ̃inf(α) =
Ψ−1(1 − α). Besides, according to the definition of ξ̃inf that
when α = 0.5, we have ξ̃inf(α) = c.

Analogously, the analytical expression of ξ̃inf(α) in Eq. (32)
is derived based on Eq. (26) as

ξ̃inf(α) =





c− γL−1(2α), if 0 < α < 0.5

c, if α = 0.5

βR−1(2− 2α) + c, if 0.5 < α ≤ 1.

(33)

On the basis of the above analytical analyses, some regular
fuzzy intervals are illustrated in Examples 12-14, and their
corresponding α-optimistic and α-pessimistic values are de-
duced respectively in light of Eqs. (26) and (33) (details see
Appendix C).

Theorem 8: Let ξ̃ be a regular fuzzy interval. Then

ξ̃inf(α) = ξ̃sup(1− α) (34)

holds for α ∈ (0, 1] except α = 0.5. Especially, if ξ̃ is a
regular fuzzy number, Eq. (34) holds for α ∈ (0, 1].

Proof: It follows immediately from Definitions 3 and 5,
and Eqs. (23) and (32). The proof is complete.

Theorem 9: Assume that ξ̃1, ξ̃2, · · · , ξ̃n are independent
regular fuzzy intervals. Denote ξ̃ = (ξ̃1, ξ̃2, · · · , ξ̃n). If the
function f(x1, x2, · · · , xn) is continuous and strictly increases
in regard to x1, x2, · · · , xh and strictly decreases in regard to
xh+1, xh+2, · · · , xn, for any α ∈ (0, 1], we have that

f(ξ̃)sup(α) = f
(

(ξ̃1)sup(α), · · · , (ξ̃h)sup(α),

(ξ̃h+1)inf(α), · · · , (ξ̃n)inf(α)
)
.

Proof: Without loss of generality, we will merely prove
the case of h = 1 and n = 2. On the basis that ξ̃1 and ξ̃2
are independent regular fuzzy intervals, for any α ∈ (0, 1], we
have that

Cr{f(ξ̃1, ξ̃2) ≥ f((ξ̃1)sup(α), (ξ̃2)inf(α))}

≥ Cr{{ξ̃1 ≥ (ξ̃1)sup(α)} ∩ {ξ̃2 ≤ (ξ̃2)inf(α)}}

= Cr{ξ̃1 ≥ (ξ̃1)sup(α)} ∧ Cr{ξ̃2 ≤ (ξ̃2)inf(α)}
= α ∧ α
= α.

Then again, since the function f is continuous, for any ε > 0,
there exists a real number δ > 0 such that if

|x1 − (ξ̃1)sup(α)|+ |x2 − (ξ̃2)inf(α)| ≤ δ,

we have |f(x1, x2)−f((ξ̃1)sup(α), (ξ̃2)inf(α))| < ε. By taking
advantage of the independence, we get

Cr{f(ξ̃1, ξ̃2) ≥ f((ξ̃1)sup(α), (ξ̃2)inf(α)) + ε}

≤ Cr{{ξ̃1 ≥ (ξ̃1)sup(α) + δ} ∪ {ξ̃2 ≤ (ξ̃2)inf(α)− δ}}

= Cr{ξ̃1 ≥ (ξ̃1)sup(α) + δ} ∨ Cr{ξ̃2 ≤ (ξ̃2)inf(α)− δ}
< α.

Eventually, we obtain that

f(ξ̃)sup(α) = f((ξ̃1)sup(α), (ξ̃2)inf(α)).

The proof is complete.
Theorem 10: Let ξ̃ be a regular fuzzy interval. If its expected

value exists, then

E[ξ̃] =

∫ 1

0

ξ̃inf(α)dα =

∫ 1

0

ξ̃sup(α)dα. (35)

Proof: Denote ξ̃ = (c, c, γ, β)LR. Providing that c ≥ 0,
it follows from the definition of the expected value operator
in Eq. (1) and the credibility distribution in Eq. (11) that

E[ξ̃] =

∫ +∞

0

Cr{ξ̃ ≥ x}dx−
∫ 0

−∞
Cr{ξ̃ ≤ x}dx

=

∫ c

0

(1− Φ(x))dx+

∫ c

c

(1− Φ(x))dx

+

∫ +∞

c

(1− Φ(x))dx−
∫ 0

−∞
Φ(x)dx

=

∫ c

0

xdΦ(x) +

∫ +∞

c

xdΦ(x) +

∫ 0

−∞
xdΦ(x)

=

∫ 0.5

Φ(0)

Φ−1(α)dα+

∫ 1

α↓0.5
Φ−1(α)dα

+

∫ Φ(0)

0

Φ−1(α)dα

=

∫ 1

0

Φ−1(α)dα =

∫ 1

0

ξ̃inf(α)dα.

(36)
Combining with Theorem 8, then Eq. (36) can be further
written as

E[ξ̃] =

∫ 1

0

ξ̃inf(α)dα =

∫ 1

0

ξ̃sup(1− α)dα

= −
∫ 0

1

ξ̃sup(α)dα =

∫ 1

0

ξ̃sup(α)dα.

Similar proof procedure can be provided to derive Eq. (35)
if c ≤ 0. The proof is complete.

Using the results presented in Theorems 9 and 10, the
calculation formula of the expected values of strictly monotone
functions of regular fuzzy intervals is provided in Theorem 11.

Theorem 11: Suppose that ξ̃1, ξ̃2, · · · , ξ̃n are independent
regular fuzzy intervals. If the function f(x1, x2, · · · , xn) is
continuous and strictly increases in regard to x1, x2, · · · , xh
and strictly decreases in regard to xh+1, xh+2, · · · , xn, for any
α ∈ (0, 1], the expected value of f(ξ̃) = f(ξ̃1, ξ̃2, · · · , ξ̃n) is

E[f(ξ̃)] =

∫ 1

0

f
(

(ξ̃1)sup(α), · · · , (ξ̃h)sup(α),

(ξ̃h+1)inf(α), · · · , (ξ̃n)inf(α)
)

dα.

Proof: The proof derives directly from Theorems 9
and 10, thus it is omitted.

Notably, on the basis of Theorem 8, Theorem 11 will be
directly transformed into Theorem 3 as the version for obtain-
ing expected values of functions of a series of independent
regular fuzzy numbers.
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As illustrated in this paper, regular fuzzy numbers can be
observed as a special case of regular fuzzy intervals. This
means all the definitions and theorems raised in this section
for regular fuzzy intervals also hold for regular fuzzy numbers,
which is consistent with the results presented in Li [14].

B. Simulation algorithms

For the purpose of carrying out the expected values of
strictly monotone functions of regular fuzzy intervals, we
extend the iSDA and NIA-S from regular fuzzy numbers to
their relevant interval versions, called TiSDA and TNIA-S.

First, the basic concept of the TiSDA resembles that of
the iSDA except that we do not consider the interval range
where the membership degree equals to 1 in regular fuzzy
intervals. Analogously, discretize a continuous regular fuzzy
interval according to the extended version of Theorem 1 in
[16] at first place. Without loss of generality, as to a regular
fuzzy interval ξ̃i, its closure of the support is denoted by
Si = [ai, bi]. Since ξi is a regular fuzzy interval, there exists
an interval [ci, ci] ∈ Si such that their membership degrees
correspond to 1 and ai < ci < ci < bi. Then, equally divide
the left part of ci and the right part of ci in Si (i.e., [ai, ci]
and [ci, bi]) into k pieces, respectively. Setting the jth point
of the left part as xLij and the (k− j)th point of the right part
as xRij for i = 1, 2, · · · , n, we get

xLij = ai + (ci − ai)× j
k , j = 0, 1, · · · , k − 1,

xRij = bi − (bi − ci)× j
k , j = 0, 1, · · · , k − 1.

(37)

The forms of XL
j and XR

j of regular fuzzy intervals are
identical to those in Eq. (5), in which xLij and xRij refer to
Eq. (37). Additionally, c = (c1, · · · , ch, ch+1, · · · , cn) and
c = (c1, · · · , ch, ch+1, · · · , cn) are included in the discretiza-
tion procedure. Similarly to Eq. (6), the discrete fuzzy interval
f∗(ξ̃) is defined, where f(XL

j ) and f(XR
j ) are with mem-

bership degrees µ1(xL1j) and µ1(xR1j) for j = 0, 1, · · · , k − 1,
respectively and f(c) and f(c) are with the membership
degree 1.

Next, figure out the mean value for f∗(ξ̃). We only need to
replace wkf(c) in Eq. (7) by wk1f(c) + wk2f(c), where

wk1 =
1

2

(
1− µ1(xL1,k−1)

)
, wk2 =

1

2

(
1− µ1(xR1,k−1)

)
.

The calculation of other wj for j = 1, 2, · · · ,m are based on
Eq. (9).

As a result, through substituting Steps 2 and 5 of the iSDA
in Algorithm 2 with the above discretization procedure of
regular fuzzy intervals and replacing “Reset E = E+wkf(c)”
in Step 8 by “Reset E = E + (wk1f(c) + wk2f(c))”, we
constitute a new simulation algorithm TiSDA for regular fuzzy
intervals. It is noted that there are some differences between
the iSDA and TiSDA. The peak value c in the iSDA is
extended to c and c in TiSDA. Meanwhile, the number of
discrete points in the iSDA is 2k+1, while that of the TiSDA
is 2k + 2.

Further, on the basis of Theorem 11 and the analytical
expressions of ξ̃sup(α) in Eq. (23) and ξ̃inf(α) in Eq. (32), the
TNIA-S is proposed to approximate mean values for strictly

monotone functions of regular fuzzy intervals, which shares
similar concept with the NIA-S. Likewise, when the inverse
functions for L and R are not easy to derive in some situations,
we can complete them with the aid of the “polyfit” function
in Matlab or take advantage of the bisection algorithm (see
Algorithm 3) to obtain Ψ−1(α) directly.

C. Comparative study among the SDA, TiSDA, and TNIA-S

Two numerical examples regarding the widely used trape-
zoidal fuzzy number and other two regular fuzzy intervals are
implemented in this section to indicate the efficiencies of the
TiSDA and TNIA-S. Since the SDA is suitable for simulating
mean values of general functions containing all kinds of fuzzy
numbers, here the simulation results of the SDA are also taken
into account for the purpose of comparison.

Example 7: Assume that η̃i, i = 1, 2, · · · , 10, are inde-
pendent trapezoidal fuzzy numbers summarized in Table IX
involved in two continuous and strictly monotone functions
f2 = −(x1 ∧ x2 ∧ · · · ∧ x10), and f3 = x1 + · · ·+ x5 − x6 −
· · · − x10. We need to accomplish the expected value E[ξ̃] of
the fuzzy number ξ̃j = fj(η̃1, η̃2, · · · , η̃10), j = 2, 3.

TABLE IX
DIFFERENT KINDS OF REGULAR FUZZY INTERVALS UTILIZED IN

EXAMPLES

Index
Trapezoidal

Two regular fuzzy intervals
fuzzy number

η̃1 A(2, 3, 5, 8) B(2, 3, 5, 8) C(2, 3, 5, 8)
η̃2 A(4, 6, 7, 9) B(4, 6, 7, 9) C(4, 6, 7, 9)
η̃3 A(5, 6, 7, 8) B(5, 6, 7, 8) C(5, 6, 7, 8)
η̃4 A(2, 4, 5, 6) B(2, 4, 5, 6) C(2, 4, 5, 6)
η̃5 A(3, 5, 6, 9) B(3, 5, 6, 9) C(3, 5, 6, 9)
η̃6 A(6, 7, 9, 10) B(6, 7, 9, 10) C(6, 7, 9, 10)
η̃7 A(−5,−3,−2,−1)
η̃8 A(2, 6, 8, 9)
η̃9 A(0, 1, 2, 4)
η̃10 A(−1, 0, 2, 5)

Initially, we obtain the exact value of E[ξ̃3] on the basis of
the linearity of the expected value operator E, that is,

E[ξ̃3] = E[η̃1] + · · ·+E[η̃5]−E[η̃6]− · · · −E[η̃10] = 12.75.

While the exact values of E[ξ̃2] is a little more challenging
to derive, which are calculated with Matlab and recorded in
Table X.

The approximation results of the SDA, TiSDA, and TNIA-
S are also listed in Table X, in which (m/N ) indicates
the numbers of sample or integration points involved in the
experiment. Similarly as before, the outputs of the SDA are
unsteady, and thus the average values of ten times outputs
are taken in the table, while the simulation results of the
TiSDA and TNIA-S are identical every time. As to the two
types of functions in Example 7, it is explicit that the TiSDA
and TNIA-S are reliable and stable no matter the accuracy
or the operation speed. In contrast, the largest error degree
of the SDA is 3.45% when it comes to the function f2

and the time consumed is hundreds of times larger than the
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TABLE X
COMPARATIVE RESULTS AMONG THE SDA, TISDA, AND TNIA-S FOR

THE CASE OF f2 AND f3 .

f2 f3
Algorithm −(x1∧x2∧· · ·∧x10) x1 + x2 + · · · − x10

SDA (3000/10000)
Exact Value 2.7500 12.7500

Simulation Value 2.8448 12.6033
Error 3.45% 1.15%

CPU Time (s) 0.551 0.585
TiSDA (10000/none)

Exact Value 2.7500 12.7500
Simulation Value 2.7500 12.7500

Error 0.00% 0.00%
CPU Time (s) 0.001 0.000

TNIA-S (none/10000)
Exact Value 2.7500 12.7500

Simulation Value 2.7499 12.7477
Error 0.00% 0.02%

CPU Time (s) 0.007 0.008

other two algorithms. Although both the TiSDA and TNIA-
S return satisfactory simulation results at the end, the overall
performance of the TiSDA is still better than the TNIA-S. It
is expected that the accuracy of the TNIA-S will be further
enhanced as the number of integration points N rises, but
the time needed will grow as well which surely decreases its
competitiveness. Overall, the TiSDA outperforms the SDA in
every aspects, and it is able to compute a precise enough value
in a relatively short time period.

Example 8: Three types of regular fuzzy intervals of Ex-
amples 12-14 are listed in Table IX, which are respectively
incorporated in a continuous and strictly increasing function
f4 =

√
x2

1 + x2
2 + · · ·+ x2

6, xi ≥ 0, i = 1, 2, · · · , 6, and
another continuous and strictly monotone function f5 =
x1x2x3/(x4x5x6). Calculate the corresponding expected value
of E[ξ̃] of the fuzzy number ξ̃ = f4(η̃1, η̃2, · · · , η̃6) or ξ̃ =
f5(η̃1, η̃2, · · · , η̃6) for three types of regular fuzzy intervals.

Six kinds of outputs of three regular fuzzy intervals under
two continuous and strictly monotone functions are clearly il-
lustrated in Table XI. Firstly, as to different functions, the SDA
returns better computations in f4 than f5 for the former two
regular fuzzy intervals. Combining this with the two functions
f2 and f3 in Example 7, we know that the SDA is not reliable
when encountering different functions. In contrast, the TiSDA
and TNIA-S are more dependable, flexible, and adaptable to
changeable functions, and can both return perfect simulation
results. Secondly, as to different regular fuzzy intervals, it is
explicit that the error degree in the SDA becomes larger as the
form of the membership function gets complicated, especially
in C(a, b, c, d). This situation also happens in the TiSDA and
TNIA-S. However, their simulation outcomes are still quite
satisfactory. The performances of the TiSDA and TNIA-S in
this example are comparable as well whereas the TiSDA is
more time-saving, which are consistent with previous analyses
in numerical examples.

V. CONCLUSION

The regular fuzzy numbers which include triangular, normal
and Gaussian fuzzy numbers, and the regular fuzzy intervals
which contain trapezoidal fuzzy numbers are appeared in
many real-world applications. In the corresponding literature,
there exist two mainstream fuzzy simulation algorithms in
approximating mean values for fuzzy numbers. The first one,
namely SDA, was proposed by Liu and Liu [4], and it follows
the concept that stochastically discretize continuous fuzzy
numbers. The SDA is capable of simulating the expected value
for general functions containing different fuzzy numbers. The
second algorithm, namely NIA-G, was formulated by Li [14],
and it is based on the integration simulation and the bisection
procedure.

In this paper, we put forward two novel simulation tech-
niques of calculating expected values for strictly monotone
functions of regular fuzzy numbers. First, the iSDA was pro-
posed to revise the stochastic discretization procedure and the
calculation formula of the expected value of the SDA. These
two parts were substituted by a novel uniform sampling pro-
cess that we initiated and another calculation formula applying
to discrete fuzzy numbers, respectively. Second, the NIA-S
took advantage of the analytical expressions of α-optimistic
values of regular fuzzy numbers directly in its algorithm design
to replace the bisection procedure in NIA-G. From the results
obtained for the regular fuzzy numbers, we observed that
although the iSDA and NIA-S are based on distinct simulation
concepts, they both performed better in accuracy, stability,
and computational time when they compared with SDA. In
addition, as to regular fuzzy intervals, the iSDA and NIA-
S were extended to the TiSDA and TNIA-S according to a
series of regular fuzzy interval related theorems, respectively.
These novel theorems are not only the foundation of this paper,
but also will serve future research. The simulation results
demonstrated that either the TiSDA or TNIA-S outperforms
the SDA. Besides, it is noted that the continuous and strictly
monotone functions f in the examples of this paper are simple.
For every f , whether it is challenging to write the expression
of f , we are able to conduct the expected value simulation
using the proposed novel techniques.

Although significant progress has been conducted on im-
proving the existing simulation algorithms of the expected
values for fuzzy numbers and intervals, future research is
also required. First, since the fuzzy numbers incorporated in
our examples are of the same type, like triangular, normal,
or Gaussian fuzzy numbers, it is worth exploring that the
simulation results of the expected value of different type of
fuzzy numbers. Second, the inclusive functions are restricted to
strictly monotone functions. However, not all the applications
in practice satisfy this condition, some of them may follow
monotone or other types of functions. Finally, in this paper,
the novel simulation algorithms are not only designed for
expected value models, but it should be also extended to cover
other fuzzy simulations approaches, such as calculating the
credibility of fuzzy events or critical values.



IEEE TRANSACTIONS ON FUZZY SYSTEMS 14

TABLE XI
COMPARATIVE RESULTS AMONG THE SDA, TISDA, AND TNIA-S FOR THE CASE OF f4 AND f5 OF THREE REGULAR FUZZY INTERVALS.

Algorithm Trapezoidal fuzzy number B(a, b, c, d) C(a, b, c, d)
SDA (3000/10000) f4 f5 f4 f5 f4 f5

Exact Value 14.8960 0.9464 15.2597 0.9596 15.7620 1.0014
Simulation Value 14.9497 1.8682 15.2901 2.0975 14.9121 2.3484

Error 0.36% 97.40% 0.20% 118.58% 5.39% 134.51%
CPU Time (s) 0.176 0.137 0.233 0.162 0.228 0.159

TiSDA (10000/none) f4 f5 f4 f5 f4 f5
Exact Value 14.8960 0.9464 15.2597 0.9596 15.7620 1.0014

Simulation Value 14.8956 0.9464 15.2597 0.9596 15.7566 1.0013
Error 0.00% 0.00% 0.00% 0.00% 0.03% 0.01%

CPU Time (s) 0.001 0.000 0.002 0.001 0.002 0.001
TNIA-S (none/10000) f4 f5 f4 f5 f4 f5

Exact Value 14.8960 0.9464 15.2597 0.9596 15.7620 1.0014
Simulation Value 14.8956 0.9465 15.2593 0.9597 15.7594 1.0015

Error 0.00% 0.01% 0.00% 0.01% 0.02% 0.01%
CPU Time (s) 0.004 0.002 0.007 0.002 0.009 0.003
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SUPPLEMENTARY MATERIAL

APPENDIX A
ACRONYMS UTILIZED IN THIS PAPER

TABLE XII
THE ACRONYMS OF ALGORITHMS AND FUZZY VARIABLES

Acronyms for algorithms
SDS: stochastic discretization simulation (Liu and Iwamura (1998) [18])
SDA: stochastic discretization algorithm (Liu and Liu (2002) [4])
HIA: hybrid intelligent algorithm (Liu (2002) [17])
UDA: uniform discretization algorithm (Liu (2006) [13])
NIA-G: general numerical integration algorithm (Li 2015 [14])
iSDA: improved stochastic discretization algorithm
SDA∗: an intermediate algorithm between SDA and iSDA
NIA-S: special numerical integration algorithm
TiSDA: extended version of iSDA for regular fuzzy intervals
TNIA-S: extended version of NIA-S for regular fuzzy intervals
Acronyms for fuzzy variables
T (a, b, c): triangular fuzzy number
N (c, σ): normal fuzzy number
G(c, b): Gaussian fuzzy number
A(a, b, c, d): trapezoidal fuzzy number
B(a, b, c, d), C(a, b, c, d): two specified regular fuzzy intervals

APPENDIX B
SOME PRELIMINARIES

The credibility measure was proposed based on the possibil-
ity measure and the necessity measure, which are introduced
as follows.

Suppose that ξ is a fuzzy variable, µ is the membership
function of ξ, and r is a real number. Then the fuzzy event
{ξ ≤ r} has the following possibility [27] and necessity [28],

Pos{ξ ≤ r} = sup
x≤r

µ(x),

Nec{ξ ≤ r} = 1− Pos{ξ > r} = 1− sup
x>r

µ(x).

To overcome the absence of self-duality in the possibility
or necessity measure, the credibility measure was further
proposed by Liu and Liu in [4] as follows,

Cr{ξ ≤ r} =
1

2

(
Pos{ξ ≤ r}+ Nec{ξ ≤ r}

)
.

The definition of LR fuzzy numbers is due to Dubois and
Prade [1], and it derives as follows.

Definition 6: (Dubois and Prade [29]) A shape function L
(or R) is a decreasing function from R+ → [0, 1] such that

(1) L(0) = 1;

(2) L(x) < 1, ∀x > 0;

(3) L(x) > 0, ∀x < 1;

(4) L(1) = 0 [or L(x) > 0, ∀x and L(+∞) = 0].

Definition 7: (Dubois and Prade [1]) A fuzzy number ξ is
of LR-type if there exist shape functions L (for left) and R (for
right), and scalers γ > 0, β > 0 with membership function

µξ(x) =





L

(
c− x
γ

)
, if x ≤ c

R

(
x− c
β

)
, if x > c,

(38)

where the real number c is called the mean value or peak of ξ,
and γ and β are called the left and right spreads, respectively.
Symbolically, ξ is denoted by (c, γ, β)LR.

A generalized definition for the fuzzy intervals together with
the LR fuzzy intervals were proposed by Dubois and Prade
[30], which are reviewed as follows.

Definition 8: (Dubois and Prade [30]) A fuzzy interval ξ̃ is
a quantity with a quasi-concave membership function µ, i.e.,
a convex fuzzy subset of the real line R such that

µ(z) ≥ min{µ(x), µ(y)}, ∀x, y ∈ R, z ∈ [x, y]. (39)

Definition 9: (Dubois and Prade [30]) A fuzzy interval ξ̃
is of LR-type if there exist shape functions L (for left), R
(for right) and four parameters (c, c) ∈ R2

⋃{−∞,+∞}, γ >
0, β > 0 with membership function

µξ̃(x) =





L

(
c− x
γ

)
, if x ≤ c

1, if c < x ≤ c

R

(
x− c
β

)
, if x > c,

(40)

and the fuzzy interval is represented as ξ̃ = (c, c, γ, β)LR.
It is obtained that when c = c, an LR fuzzy interval is

turned to be an LR fuzzy number, which means an LR fuzzy
number can be regarded to be a degradation form to an LR
fuzzy interval.

APPENDIX C
SOME COMMONLY USED REGULAR FUZZY NUMBERS AND

INTERVALS WITH THEIR α-OPTIMISTIC AND
α-PESSIMISTIC VALUES

Three commonly used regular fuzzy numbers are utilized in
the numerical examples of this paper, including the triangular,
normal, and Gaussian fuzzy numbers.

Example 9: When the shape functions L and R are written
by the following form,

L(x) = R(x) = max{0, 1− x},
the corresponding LR fuzzy number is a triangular fuzzy
number, whose membership function is determined by the
triplet (a, c, b) with a < c < b as

µT (x) =





x− a
c− a , if a ≤ x ≤ c
x− b
c− b , if c < x ≤ b

0, otherwise,

and we can also denote ξ = (c, c−a, b−c)LR or ξ ∼ T (a, c, b).
Based on Eq. (17), its α-optimistic value is obtained as

ξT sup(α) =

{
2αc+ (1− 2α)b, if 0 < α ≤ 0.5

(2α− 1)a+ (2− 2α)c, if 0.5 < α ≤ 1.
(41)
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Example 10: When the shape functions L and R are written
by the following form,

L(x) = R(x) = 2
(

1 + exp(πx/
√

6)
)−1

,

the corresponding LR fuzzy number is a normal fuzzy number,
whose membership function is known as

µN (x) = 2
(

1 + exp
(
π|x− c|/

√
6σ
))−1

, x ∈ R, σ > 0,

which can also be denoted by ξ = (c, σ, σ)LR or ξ ∼ N (c, σ).
Based on Eq. (17), its α-optimistic value is obtained as

ξN sup(α) = c+(ln(1−α)−lnα)
√

6σ/π, α ∈ (0, 1). (42)

Example 11: When the shape functions L and R are written
by the following form,

L(x) = R(x) = e−x
2

,

the LR fuzzy number is a Gaussian fuzzy number, whose
membership function is expressed as

µG(x) = e−( x−c
b )2 , x ∈ R, b > 0,

and can also be represented by ξ = (c, b, b)LR or ξ ∼ G(c, b).
Based on Eq. (17), its α-optimistic value is obtained as

ξG sup(α) =





c+ b
√
− ln(2α), if 0 < α ≤ 0.5

c− b
√
− ln(2− 2α), if 0.5 < α < 1.

(43)
The following are three regular fuzzy intervals adopted for

numerical examples in this paper.
Example 12: When the shape functions L and R are

L(x) = R(x) = max{0, 1− x},
the corresponding LR fuzzy interval ξ̃ is a trapezoidal fuzzy
number. The membership function of a trapezoidal fuzzy
number ξ̃ with a < b < c < d is

µA(x) =





x− a
b− a , if a ≤ x < b

1, if b ≤ x ≤ c
d− x
d− c , if c < x ≤ d

0, otherwise,

(44)

which is denoted by ξ̃ ∼ A(a, b, c, d), and is illustrated in
Fig. 2.

Further, in light of Eqs. (26) and (33), the α-optimistic
and α-pessimistic values of a trapezoidal fuzzy number ξ̃ ∼
A(a, b, c, d) are derived as follows,

ξ̃A sup(α) =

{
d− 2(d− c)α, if 0 < α ≤ 0.5

2b− a− 2(b− a)α, if 0.5 < α ≤ 1
(45)

ξ̃A inf(α) =

{
a+ 2(b− a)α, if 0 < α ≤ 0.5

2c− d+ 2(d− c)α, if 0.5 < α ≤ 1,
(46)

which are depicted in Figs. 3 and 4, respectively.
Example 13: When the shape functions L and R are

L(x) = max{0, 1− x}, R(x) = max{0, 1− x2},
a new LR fuzzy interval ξ̃ is established, whose membership
function with a < b < c < d is

µB(x) =





x− a
b− a , if a ≤ x < b

1, if b ≤ x ≤ c

(x+ d− 2c)(d− x)

(d− c)2
, if c < x ≤ d

0, otherwise,

(47)

which is denoted by ξ̃ ∼ B(a, b, c, d). Similarly, its α-
optimistic and α-pessimistic values are respectively derived
as

ξ̃B sup(α) =

{
c+ (d− c)

√
1− 2α, if 0 < α ≤ 0.5

2b− a− 2(b− a)α, if 0.5 < α ≤ 1
(48)

ξ̃B inf(α) =

{
a+ 2(b− a)α, if 0 < α ≤ 0.5

c+ (d− c)
√

2α− 1, if 0.5 < α ≤ 1.
(49)

Example 14: When the shape functions L and R are

L(x) = max{0, 1− x2}, R(x) = e−x,

another new LR fuzzy interval ξ̃ is built, whose membership
function with a < b < c < d is

µC(x) =





(2b− a− x)(x− a)

(b− a)2
, if a ≤ x < b

1, if b ≤ x ≤ c

e
c−x
d−c , if c < x ≤ d

0, otherwise,

(50)

which is written as ξ̃ ∼ C(a, b, c, d). Correspondingly, we get

ξ̃C sup(α) =

{
c− (d− c) ln(2α), if 0 < α ≤ 0.5

b− (b− a)
√

2α− 1, if 0.5 < α ≤ 1
(51)

ξ̃C inf(α) =

{
b− (b− a)

√
1− 2α, if 0 ≤ α ≤ 0.5

c− (d− c) ln(2− 2α), if 0.5 < α < 1.
(52)
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µ(x)

Fig. 2. The membership function of
A(a, b, c, d) in Eq. (44).
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Fig. 3. The ξ̃sup(α) value of A(a, b, c, d) in
Eq. (45).
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Fig. 4. The ξ̃inf(α) value of A(a, b, c, d) in
Eq. (46).

APPENDIX D
ALGORITHMS: SDA AND NIA-G

The detailed steps of stochastic discretization algorithm
(SDA) are illustrated as follows.

Algorithm 1 (SDA of Liu and Liu [4])

Step 1. Initialize the numbers of sample points m and inte-
gration points N , and a sufficient small number ε.
Set E = 0.

Step 2. Randomly generate uj1, u
j
2, · · · , ujn from the ε-level

sets of ξ1, ξ2, · · · , ξn, respectively, and denote uj =
(uj1, u

j
2, · · · , ujn) for j = 1, 2, · · · ,m.

Step 3. Identify the minimal and maximal values p =
f(u1)∧f(u2)∧· · ·∧f(um) and q = f(u1)∨f(u2)∨
· · · ∨ f(um), respectively.

Step 4. Randomly generate a real number r from [p, q].
Step 5. If r ≥ 0, reset E = E + ER(r).
Step 6. If r < 0, reset E = E − EL(r).
Step 7. Repeat the 4th to 6th steps for N times.
Step 8. Return E[f(ξ)] = p ∨ 0 + q ∧ 0 + E · (q − p)/N .

The detailed steps of general numerical integration algo-
rithm (NIA-G) incorporating a bisection algorithm are pre-
sented as follows.

Algorithm 3 (Bisection Algorithm of Li [14])

Step 1. Initialize a small enough number ε > 0, and [a, b]
such that Ψ(a) > α > Ψ(b).

Step 2. Denote d = (a+ b)/2.
Step 3. If Ψ(d) > α, reset a = d. If Ψ(d) < α, reset b = d.

Otherwise, stop and return d.
Step 4. If |Ψ(b) − Ψ(a)| ≤ ε, return (a + b)/2. Otherwise,

go to Step 2.

Algorithm 4 (NIA-G of Li [14])

Step 1. Initialize the number of integration points N . Set
E = 0 and k = 1.

Step 2. Let α = k/N . Using Algorithm 3, for each 1 ≤ i ≤
n, calculate

xi =

{
(ξi)sup(α), if 1 ≤ i ≤ h

(ξi)sup(1− α), if h < i ≤ n.

Step 3. Reset E = E+f(x1, x2, · · · , xn)/N and k = k+1.
Step 4. If k ≤ N , go to Step 2. Otherwise return E as the

simulation value of the expected value E[f(ξ)].




