
TFS-2019-0691-R2 1

FEPDS: A Proposal for the Extraction of Fuzzy
Emerging Patterns in Data Streams

Ángel M. Garcı́a-Vico, Cristóbal J. Carmona, Pedro González, Huseyin Seker and Marı́a J. del Jesus

Abstract—Nowadays, most data is generated by devices that
produce data continuously. These kinds of data can be categorised
as data streams and valuable insights can be extracted from them.
In particular, the insights extracted by emerging patterns are
interesting in a data stream context as easy, fast, reliable decisions
can be made. However, their extraction is a challenge due to the
necessary response time, memory and continuous model updates.

In this paper, an approach for the extraction of emerging
patterns in data streams is presented. It processes the instances
by means of batches following an adaptive approach. The learn-
ing algorithm is an evolutionary fuzzy system where previous
knowledge is employed in order to adapt to concept drift. A
wide experimental study has been performed in order to show
both the suitability of the approach in combating concept drift
and the quality of the knowledge extracted. Finally, the proposal
is applied to a case study related to the continuous determination
of the profiles of New York City cab customers according to their
fare amount, in order to show its potential.

Index Terms—Emerging pattern mining, Data stream mining,
Evolutionary fuzzy systems, Multi-objective evolutionary algo-
rithms.

I. INTRODUCTION

THE data continuously sent by the devices surrounding
us can be categorised as a data stream [1]. An anal-

ysis of such data could provide valuable insights into our
activities and environments. Representative examples of these
kinds of data are sensor networks, energy management and
telecommunications [2]. In this kind of application one of
the main characteristics is that data is less relevant as it
becomes older. Therefore, a continuous analysis of data is
better than a traditional static one. However, the characteristics
of data streams pose several challenges for the development of
methods. Among others, the most relevant constraints in data
stream mining are the continuous updating and adaptation of
the learning model as data arrive as underlying distributions
can change over time. This is known in the literature as
concept drift [1]. Moreover, the speed at which data arrive

A.M. Garcı́a-Vico, C.J. Carmona, P. González and M.J. del Jesus
are with the Andalusian Research Institute on Data Science and Com-
putational Intelligence, University of Jaén, 23071 Jaén (Spain) (e-mail:
{agvico|ccarmona|pglez|mjjesus}@ujaen.es)

Huseyin Seker is with the School of Computing and Digital Technologies,
Staffordshire University, ST4 2DE, Stoke-On-Trent (United Kingdom) (e-
mail: huseyin.seker@staffs.ac.uk)

This work was supported by the Spanish Ministry of Economy and
Competitiveness under the project TIN2015-68454-R (FEDER Founds) and
FPI 2016 Scholarship reference BES-2016-077738 (FEDER Founds). This
paper was written in the Department of Computer and Information Sciences,
Faculty of Engineering and Environment of The Northumbria University at
Newcastle, Newcastle-Upon-Tyne, during the research visit of A.M. Garcı́a-
Vico. Thanks to Prof. H. Seker for the invitation.

could be very high so the update of the model must be as fast
as possible.

Emerging Pattern Mining (EPM) [3], [4] is a data mining
technique framed within supervised descriptive rule discovery
(SDRD) [5]. This task is half-way between descriptive and
predictive inductions and attempts to describe relationships in
data with respect to a given property of interest. In particular,
EPM tries to describe discriminative relationships between
different values of a property of interest or the description
of emerging behaviour in data. EPM has been successfully
applied in several fields such as management [6], disease
detection [7], bioinformatics [8] and others [9]. Recently, sev-
eral approaches based on evolutionary fuzzy systems (EFSs)
have been proposed [10], [11] whose trade-off between the
generality and reliability of the patterns extracted is improved
with respect to other approaches developed for EPM [4]. In
this way, a better description of the underlying phenomena
in data is provided. This is quite relevant for data stream
mining, as an easy, accurate description of what is going on
within data is necessary in order to make decisions as fast as
possible. However, to the best of our knowledge the extraction
of emerging patterns (EPs) in data streams environments has
not been tackled so far.

This paper presents an approach for the extraction of Fuzzy
EPs in Data Streams (FEPDS), where its main components
and working scheme are shown. The quality of the patterns
extracted by FEPDS is analysed in a wide experimental study
with a set of 94 synthetic datasets together with an analysis of
the adaptation to the concept drift. In addition, the usefulness
of FEPDS is demonstrated against a real dataset. In particular,
the aim for that problem is the continuous description of the
characteristics of New York City yellow cab customers with
respect to the amount of money spent on their journeys, in
order to improve the service.

This paper is organised as follows: Firstly, the main con-
cepts related to concept drift, data streams and EPM are briefly
described in Section II. Next, Section III presents the FEPDS
algorithm, its components and its characteristics. Section IV
presents the experimental framework and the analysis of the
results. Section V presents the case study and its results.
Finally, the conclusions are shown in Section VI.

II. RELATED WORK

In this section, the main related concepts in this paper are
described such as concept drift (Section II-A), data streams
with concept drift (Section II-B), and finally, fuzzy EPM
(Section II-C).

TFS-2019-0691-R2 2

A. Concept drift

Concept drift occurs when a non-stationary target concept is
modified in the environment. Formally, a real drift is defined
by a change in time t with respect to a time t + δ on the
conditional probability of the classes given an instance x,
i.e., P (C|x)t 6= P (C|x)t+δ [12]. Specifically, two types of
drift are defined [13] considering both cause and effect of the
probability distribution associated to the data (instances and
classes):

• Real drift. It is considered when the probability distribu-
tion is modified with respect to the class but the incoming
data probability could not be modified. The change could
be visible or not from the data distribution.

• Virtual drift. It can be considered as incomplete data
representation or changes in data distribution occurring
without affecting the concept, amongst other factors.

The technology and their properties associated to the gen-
eration of stream data cause changes in data distribution over
time. These changes can be reviewed in different ways. They
can be classified as: abrupt, where a sudden drift in data
occur instantly; incremental, where data changes gradually
over time; gradual, which is a type of incremental drift with
changes in class distribution too; and recurrent where concepts
occur in a specific order again [14].

In a general way, it is important to remark that data
stream mining should be able to work from evolving streams,
regardless of classification or concept drift type. Therefore,
concept drift must be analysed and taken into account for the
design and development of data streaming algorithms.

B. Data streams with concept drift

A data stream is an unbounded, ordered sequence of in-
stances that arrive at the system throughout time at a variable
speed [15]. This simple definition of a data stream together
with drifting concepts produces a huge amount of differences
with respect to classical static datasets in data mining that must
be taken into account. For example, their structures should be
adapted with respect to the new incoming data in order to
provide the best performance and a quick response [13]. Sim-
ilarly, constraints arise and must be taken into consideration
[16], [1], [17]. For instance, there are space constraints because
it is impossible to store the whole data stream in memory
[18]. Finally, concept drift produces a significant decrease in
the performance of the learning algorithms [19]. Therefore,
mechanisms for adapting the learner to these changes must be
developed.

These aspects lead to online adaptive learning whereby data
arrive in the system and a prediction value is obtained with the
current model. In a later stage, the estimation of this prediction
is analysed and the model can be modified or confirmed. In this
way, data stream mining algorithms should determine how the
instances will be processed, how they will learn from these
instances in order to handle the concept drift and how the
quality of the model will be determined. Thus, four important
elements are defined in [12], [20]:

1) Memory. This is the element in charge of processing the
new information and forgetting the old one. For process-

ing new data these elements can be found: sequential or
online, where the instances arrive one by one and are
processed by the learning algorithm as soon as they are
available (this is known as Online active learning [21]);
and Windowing where informative data or summaries
concerning model behaviour or data distribution are
stored in a short memory. Usually, it is considered that
the most recent instances are the most representative.
These windows can be specific to the applied learner or
for general purposes, i.e. for any learning algorithm. In
addition, its size can be fixed or variable, and its position
with respect to the stream can be based on the sliding
window model [22] or on the landmark model [23].

2) Learning process. The learning process employed can
be based on online learners, or based on a single adap-
tive learner. The latter usually incorporates forgetting
mechanisms in order to discard old data. The idea is
to mimic the way online learners work. These kinds of
methods are interesting for controlling the complexity
of the system in order to provide a fast response. In
addition, ensembles can be employed which are able
to handle several learners containing different concepts.
Nevertheless, its complexity is higher.

3) Change monitoring. All the techniques and mechanisms
which are able to detect concept drift or change within
the distribution are considered in this component. When
feedback is immediately available, these methods can be
based on monitoring supervised indicators such as ac-
curacy, recall or sensitivity and specificity [24]. Change
monitoring elements are interesting for the detection of
real and/or virtual drift. When feedback is delayed, it
is interesting to use methods based on unsupervised
indicators such as similarity in time [25] and space [26]
of data, or based on measuring the model complexity.

4) Learning adaptation. This component is very relevant in
evolving data environments. It contains the modules and
operators for analysing and updating the structures in
order to maintain the quality of the knowledge extracted.
Two main types of adaptations in the learner can be
found: Adaptive or incremental, where the model is
adapted using forgetting mechanisms and discarding
outdated concepts; and Evolving, where both concept
drift adaptation mechanisms and model structure are
modified by means of adding or pruning components
according to the learning needs, usually processing the
instances once [27], [28]. Moreover, it is important to
remark that learning models can use different strategies
for the adaptation of their structures, such as Blind,
where the learner is triggered at regular intervals, so
no change monitoring is needed; or reactive strategies,
where the learner is triggered when a change monitoring
method throws an alarm signal, known as Informed.

Finally, the development of an evaluation strategy in order to
determine the quality of the model is necessary. In traditional
data mining, this can be determined by several mechanisms
such as cross-validation and hold-out, amongst others [29].
However, these mechanisms require a finite dataset in order

TFS-2019-0691-R2 3

to split the data into the training and test partitions. Data
streams are unbounded so the use of these kinds of techniques
is impossible. One of the most popular estimation techniques
for the evaluation of data stream models is the well-known
interleaved test-then-train method [30]. With this method, the
model performs a prediction or an evaluation of the model
using the new incoming instance or chunk. After that, once
the real value of the class for the instance or chunk is known,
the model is updated with it, i.e. it now belongs to the training
data. By means of this estimation technique we are able to
continuously evaluate the model. Recent applications of this
technique can be observed in [31], [32], [33]. In addition, other
factors such as performance or memory consumption over time
should be taken into consideration.

C. Fuzzy emerging pattern mining

The EPM was defined by Dong and Li [3], [4] as the search
for patterns whose support increases significantly from one
dataset (D1) to another (D2). In particular, D1 can be the
dataset formed by examples that belongs to one class, and D2

contains the examples that belong to the remaining classes. A
pattern is considered as emerging if and only if its growth rate
(GR) is greater than a given threshold ρ. The GR measure is
defined as in Eq. 1

GR(x) =

0, IF SupD1

(x) = SupD2
(x) = 0,

∞, IF SupD1(x) 6= 0 ∧ SupD2(x) = 0,
SupD1

(x)

SupD2
(x) , another case

(1)
where SupDi

(x) is the support of the pattern x on dataset
i (Di). EPs are represented by means of conjunctions of
attribute-value pairs, or attribute-value pairs in disjunctive nor-
mal form, which represents the discriminative characteristics
they want to describe. For the determination of D1 and D2,
these patterns are usually labelled with the class or the dataset
they try to describe.

The main purpose of EPM is the extraction of the differ-
entiating characteristics among classes or the description of
emerging trends with respect to a property of interest. In recent
years the use of fuzzy logic within SDRD is gaining special
relevance with the development of different algorithms such
as SDIGA [34], FEPM [35], NMEEFSD [36] and MOEA-
EFEP [11], amongst others. The use of fuzzy logic allows
us to handle numeric variables by means of fuzzy linguistic
labels (LLs), avoiding the loss of information produced by a
discretised representation and a knowledge description closer
to human reasoning [37]. In addition, the majority of proposals
are combined with evolutionary algorithms (EAs) [38], well
known throughout the literature as EFSs [39]. These kinds of
systems have been applied in several real-world applications
[40], [41], [42], [43], [44]. For EPM, a detailed review where
the most important EPM algorithms are classified according
to the approach used to mine EPs is presented in [4].

In EPM, the determination of the descriptive characteristics
of a pattern is based on the number of examples covered or
not covered by the patterns which belong or do not belong
to the class of the pattern. Thus, several quality measures can

be used from the SDRD framework for the determination of a
wide range of aspects. The most widely used quality measures
in EPM are outlined in Table I [4] where p are examples
correctly covered, n are incorrectly covered examples, P are
examples of the class and N are examples that do not belong
to the class.

TABLE I
QUALITY MEASURES USED IN EPM FOR THE DETERMINATION OF THE

QUALITY OF A PATTERN

Name Abbreviation Formula
Confidence [45] Conf p

p+n

Unusualness [46] WRAcc p+n
P+N

(
p

p+n
− P

P+N

)
Growth Rate [3] GR p·N

P ·n
Support Difference [46] SuppDiff p

P
− n

N
True Positive Rate [47] TPR p

P
False Positive Rate [48] FPR n

N

III. FEPDS: FUZZY EMERGING PATTERNS EXTRACTION
FROM DATA STREAM

In this section, the algorithm for the extraction of fuzzy EPs
(fEP s) in data stream mining, called FEPDS, and its main
characteristics are presented.

Briefly, the main ideas of the algorithm are: it is considered
for the learning algorithm that instances are collected from
the stream by means of batches of a predetermined size.
The algorithm employs as learning method a multi-objective
EFS for the extraction of fEP s. This learning method allows
the extraction of high-quality fEP s with a good trade-off
between generality and reliability. In addition, the use of fuzzy
logic within the learning process produces robustness against
slight changes, so a good adaptation to gradual drift can be
achieved. FEPDS follows a blind strategy, where the model
is updated using adaptive learning. Following this strategy,
the learning method is triggered for each batch of data. This
learning method also employs a specific memory structure in
order to use previously extracted knowledge to bias the current
learning process based on the history. This memory is based
on a sliding window which allows the storage of the previous
models extracted. In this way, a good adaptation to gradual
drift can be achieved as the method is regularly executed.
Finally, the evaluation of the model follows a test-then-train
approach which allows the continuous evaluation of the current
model.

Below, the main elements of FEPDS are depicted. Firstly,
the memory component of FEPDS is presented in Section
III-A. Next, in Section III-B the main concepts of the learning
adaptation process for the algorithm are described. After that,
the evolutionary learning approach of the FEPDS algorithm
for extracting fEP s and its main characteristics are shown in
Section III-C. Finally, the connections between the different
components are presented in the operational scheme of FEPDS
in Section III-D.

A. Memory component

In FEPDS it is assumed that data arrive in the system in the
form of batches of data of a fixed length. For this purpose, a

TFS-2019-0691-R2 4

process is carried out in the algorithm for collecting these
batches of data, as can be observed in Fig. 1.

Fig. 1. Online phase of the FEPDS algorithm where data are collected in
batch with a fixed length.

FEPDS uses a memory structure in order to store each set of
fuzzy patterns (fPS) extracted by the learning algorithm when
processing the different batches of data. It is a sliding window
(SW) of a fixed size. In this way, the memory structure
employs a first-in-first-out (FIFO) policy when the capacity
of the window is full. In particular, the size of the SW is
initialised for the storage of m fPSs, and it is assumed that
knowledge extracted more than m data batches ago is old
enough to be discarded for the complete evolutionary process.
Therefore, the algorithm forgets old knowledge while it is
able to remember the most recent for its use in the current
learning process. In this way, the recommended size of SW is
between 3 and 5, according to the execution time restrictions.
Nevertheless, it is recommended to set this size to 5 whenever
it is possible as recent knowledge with relevant information
could be lost otherwise. It is important to remark that the
patterns of the fPS included in (SWt), together with the
associated quality information for each fEP are queued as a
single element in SW .

The information in SW is employed within the learning
process. In particular, it is employed within the reward on
the token-competition-based procedure which is detailed in
Section III-C3. In this way, the procedure is able to bias
the current learning in order to provide a good adaptation to
the stream as it is influenced by good previously extracted
patterns.

B. Learning adaptation process

The adaptation to the drift in FEPDS is based on a blind
strategy with an adaptive learning approach where the model
is updated for each batch. The employment of a blind scheme
allows a good adaptation to gradual changes as it is continu-
ously adapting to the changes. The algorithm initialises fPS
and the SW structure as empty. Once the first batch is com-
pleted, data are continuously received for use in the following
stages. Meanwhile, the evolutionary learning method obtains
knowledge which is based on the current batch together with
the previous insights stored in SW , if available, and this new
fPS is incorporated into the SW structure. In this way, the
SW is incrementally updated by means of adding the previous
knowledge in the current evolutionary process. This is because
these insights contain a valuable summary of the stream. In this
way patterns that appeared frequently will have more weight in

the evolutionary process. The application of these mechanisms
to previous knowledge avoids the inclusion of non-relevant
information within the current evolutionary process.

Finally, it is very important to highlight that despite the
fact that the algorithm employs adaptive learning without the
detection of changes (blind strategy), the use of the SW brings
the algorithm some insights about past knowledge and the
behaviour of FEPDS with respect to the stream.

C. Multi-objective evolutionary learning approach

The learning algorithm within FEPDS is a multi-objective
EFS (MOEA) for obtaining fEP s. The determination of the
quality of the fEP s is necessary to properly guide the search
process. This is determined by several objectives, calculated
using quality measures such as those presented in Table I. In
particular, the objectives employed in the evolutionary process
are WRAcc and SuppDiff, as they provide a good trade-
off between generality and reliability for EPM. Moreover,
these measures allows us to properly deal with input space
drift as they contain specific elements that determine the
posterior distribution of class memberships and the distribution
of examples covered for the pattern class, respectively, which
are the main elements of real and virtual drift [49], [20].

An elite population is employed in order to store the best
fPS found so far for the current batch of data. However,
the addition of information about the evolution of the stream
is key to fitting the knowledge to the underlying phenomena
which generate the data in order to handle issues related to
the concept drift. In this way, when the elite population is
being updated, a token-competition-based procedure is applied
[50]. This procedure employs the information stored in SW to
take into consideration the evolution of the stream in order to
properly guide the search process. In the following subsection,
the main elements of the evolutionary learning algorithm of
FEPDS are presented.

1) Pattern representation: The EFS uses a “chromosome
= pattern” approach [51] whereby each individual in the
population represents a potential pattern. In FEPDS, fuzzy
logic is used for the representation of numeric variables by
means of linguistic labels (LLs). In the absence of expert
knowledge, by default, the shape of these LLs is predetermined
by means of uniform fuzzy partitions with the same number
of LLs for all the variables, as it is one of the most commonly
used strategies in these cases [52]. The memberships functions
defined in these cases are usually based on classic membership
functions such as triangular, trapezoidal, gaussian, and so on
[53]. For FEPDS, triangular membership functions have been
chosen as they are easy to define and to compute. An example
of this predefined LLs is shown in Fig. 2, where five LLs
are defined. Moreover, FEPDS allows the user to defined their
own LLs by means of introducing a Java class with the desired
membership function.

The EFS extracts patterns following a disjunctive normal
form (DNF) representation because it is a good knowledge
representation for descriptive EPs [11]. DNF patterns are
codified in the evolutionary algorithm by means of a bit-
vector genotype whose length is equal to the total number

TFS-2019-0691-R2 5

Fig. 2. Representation of a continuous variable with five linguistic labels.

of elements. The number of elements is determined by the
number of possible categories for nominal variables, while for
numerical variables it is the number of LLs used. In addition,
the consequent part is represented by an integer value which
allows the extraction of patterns for all classes in a single
execution. A fEP and its representation in FEPDS can be
observed in Fig. 3.

Genotype
X1 X2 X3 X4 Class

1 ∅ 1 1 1 1 1 ∅ ∅ ∅ ∅ ∅ ∅ 2
⇓

Phenotype
IF (X1 = (Low ∨High)) ∧ (X3 = Arts)

THEN (Class = Negative)

Fig. 3. Representation of a fuzzy DNF pattern with continuous and categorical
variables in FEPDS.

2) Genetic operators: Following the adaptive learning ap-
proach, the evolutionary algorithm employs an initialisation
procedure which incorporates the current fPS model in order
to update it. After that, the remaining individuals are randomly
initialised until the population is filled.

The genetic operators employed are the classical binary
tournament selection [54], the multi-point crossover operator
[55] and an oriented mutation operator. This mutation operator
removes a variable of a pattern or randomly changes a gene
with the same probability.

Finally, a reinitialisation operator is employed in order to
avoid falling into a local maxima. In this procedure, the
memory SW is employed when the Pareto front does not
evolve, i.e. it is not able to cover new examples, during at
least 25% of the total evaluations; and during the final stage it
is used to obtain the final fPS model. With this procedure the
elite population is updated by means of the reward following a
token-competition-based procedure which is described below.

3) Reward in the token-competition-based procedure:
FEPDS introduces a function in order to take into consid-
eration the underlying phenomena in the stream to bias the
search process. These underlying phenomena are known by
the patterns extracted in previous batches of the stream. In
this way, areas of the search space close to recently extracted
patterns are potentially interesting. Therefore, the idea of

FEPDS is to positively reinforce recently extracted patterns
in the stream as it provides relevant information about its
evolution. However, it is important to remark that usually the
older the pattern, the lesser the accuracy in the description
of the current state of the stream it has as concept drift can
occur. In this way, if a pattern was good a few moments ago,
the probability of its being a good pattern again, or the area
close to it, is very high. Nevertheless, this probability decays
as time goes by. Therefore, gradually less interest should be
given to older patterns. Reward in the token-competition-based
procedure is applied for the complete main population (Pg)
when the token-competition-based procedure is applied to the
reinitialisation process, in order to move to promising areas
of the search space. The main idea is to reward the patterns
extracted in previous stages, as they contain not only relevant
insights but the capacity to simplify the model as fewer
patterns are needed to cover the example space. Specifically,
the operator incorporates SW with the function SW (fEPi, j)
that returns a value of one if the pattern fEPi is in the set
of patterns fPSj , or zero otherwise. A value is obtained for
each individual as follows:

Divt(fEPi) =WRAcct(fEPi)+

t∑
j=t−n

SW (fEPi, j) · 2−(t−j) ·WRAccj(fEPi) (2)

where WRAcct(fEPi) is the value of the unusualness
measure in the current batch t for the pattern i, and
WRAccj(fEPi) is the unusualness of the pattern on a previ-
ous batch j. It can be observed that the accumulated reward
decreases by means of an exponential decay factor in order to
gradually forget old knowledge.

The complete population is ordered with the Divt values
(from high to low) and the token competition operator is
applied afterwards [40]. In this way, individuals with the
highest diversity values will exploit its niches by seizing as
many tokens as they can. The operator allows us to obtain
a fPS where all patterns cover at least one example of the
dataset not yet covered by other stronger patterns, i.e., with
a better Divt value. In order to complete the population of
the next generation (Pg+1) the new individuals are generated
through the guided reinitialization procedure [11], with the
objective of searching into other promising areas of space so
that the algorithm can cover all the examples.

The reward component incorporated into the algorithm
allows an adaptation for the possible drift changes.

D. Operational scheme of FEPDS

In Fig. 4 a graphical representation of the working scheme
of FEPDS is presented. In addition, Alg. 1 presents the pseudo-
code of FEPDS in order to ease its understanding. Firstly,
FEPDS uses a test-then-train evaluation approach (lines 6-8).
The evolutionary learning algorithm updates fPS for each
batch of data while the test-then-train approach allows us the
evaluation of the previous insights gained against the current

TFS-2019-0691-R2 6

Data
Stream

Learning
Method

batch 1 batch 2

training
training

test

fPS1 SW1

batch n-1

training

test

SWn-2

batch n

training

test

SWn-1

fPS1

SW1

fPS1

fPS1

fPS2

SW2

fPS1
fPS2

fPSn-2 fPSn-1

fPSn-1

SWn-1
fPSn-5

fPSn

SWn

fPSn-4
fPSn-3

fPSn-1

fPSn-2

Memory

fPSn-4

fPSn-3
fPSn-2

fPSn

fPSn-1

Fig. 4. General working schema of the FEPDS algorithm.

batch of data. Therefore, fPS1 is evaluated with the second
batch, fPS2 with the third, and so on.

After that, following the blind adaptive learning strategy,
the algorithm is executed for each batch of data. Once the
batch is completed (lines 3-5), and the current fPS has been
tested against this batch (line 7), the evolutionary learning
process is triggered for updating the current fPS following
the adaptive learning approach (lines 9-27). The evolutionary
learning algorithm starts the initial population P0 using the
initialisation operator that includes the current fPS model
(line 10). Next, P0 is evaluated to determine its quality
(line 11). Then the evolutionary process begins (lines 13-
24), until a maximum number of generations is reached or
a new batch is available. Within this process, Pg creates
an offspring population Offg by means of the application
of the genetic operators (line 14), while Offg is evaluated
afterwards (line 15). These populations are joined together
and the fast non-dominated sorting algorithm [56] is applied
(lines 16-17). Finally, the application of the reinitialisation is
checked. If the population is stagnated, Pg+1 is filled by means
of the reward in the token-competition-based procedure (line
19), which makes use of SW . Otherwise, Pg+1 is filled by
introducing the first k whole fronts or the first k individuals
of a front if there is no room for the whole front (line 21). At
the end of the evolutionary process, the reward in the token-
competition-based procedure is applied once again to filter
overlapped patterns, boosting those ones which are able to
remain in time (line 25). Finally, the updated fPS is stored
in SW which follows a first-in-first-out (FIFO) strategy and
the updated fPS is returned (lines 26-27). It is important to
remark that the whole process is repeated until the end of the
data stream.

Algorithm 1 Operational scheme of the FEPDS algorithm.
1: t ← 0
2: repeat
3: while Batch size is less than n do
4: Collect data from the stream.
5: end while
6: if fPSt 6= ∅ then
7: Test fPSt against current batch.
8: end if
9: g ← 0

10: Pg ← Initialisation(fPSt)
11: Evaluate(Pg)
12: t ← t+ 1
13: while g < maxGens and no new batch is available

do
14: Offg ← GeneticOperators(Pg)
15: Evaluate(Offg)
16: Rg ← Pg ∪Offg
17: F ← DominanceSorting(Rg)
18: if ParetoFront(F) does not evolve then
19: Pg+1 ← RewardInTokenCompetition(F , SW)
20: else
21: Pg+1 ← FillByFronts(F)
22: end if
23: g ← g + 1
24: end while
25: fPSt ← RewardInTokenCompetition(F ,SW)
26: Add fPSt in SW
27: return fPSt
28: until The end of the stream

TFS-2019-0691-R2 7

IV. EXPERIMENTAL STUDY

A complete experimental study is carried out in order to
determine the quality of the proposed algorithm. The aim of
this study is threefold: firstly, the adaptation of FEPDS to
concept drift is analysed. After that, a second study where the
quality of the knowledge is analysed is carried out. Finally,
the scalability of the proposal is analysed in order to test
its stability in the long run. These studies are shown in this
section. Firstly, the experimental framework is presented in
Subsection IV-A. Then the method is analysed for concept
drift adaptation in Subsection IV-B. The quality of the insights
extracted is analysed in Subsection IV-C. Finally, a scalability
analysis of FEPDS is presented in Subsection IV-D.

A. Experimental framework

In this section, the details of the experimental framework are
shown in order to ease the reproducibility of this study. First,
the datasets employed are presented. Next, the parameters
employed by FEPDS are shown. Finally, the quality measures
employed for determining the quality of the insights are
presented. For further information and tools to reproduce this
study, please refer to our GitHub repository1.

a) Datasets: For the first study, datasets were artificially
generated using the MOA software [57]. Two sets of three
datasets each were generated, one set containing an abrupt
drift and the other containing a gradual drift. In both cases,
drifts occur every 50.000 instances. For gradual drift, the size
of the change window is 10.000. All datasets were generated
using 500.000 instances, so 9 changes were produced.

For the second and third study, a set of 94 artificial datasets
with one million instances was generated using several streams
generators from MOA. For each dataset five different streams
were generated changing its random seed. In this way, results
can be averaged in order to avoid biases.

b) Parameters: A good trade-off between quality and
performance is key in data stream mining environments. In
this way, FEPDS contains two types of parameters: the ones
related to the data stream and its processing, and the ones
related with the evolutionary learning method proposed. The
parameters that influences the processing of the stream are the
data chunk size and the SW size. Data chunk size has been
set to 2500 instances, according to the results presented in
Section IV-D. It is also considered an optimal SW size of 5,
according to the recommendations presented previously, due
to the size of this experimental study.

Parameters related to the evolutionary algorithm are
crossover and mutation probabilities, population size, number
of LLs and number of generations. The crossover and mutation
probabilities, and the population size has been set to 0.6, 0.1
and 50 respectively. These values have been considered as
a standard within the majority of experimental studies for
the SDRD task using evolutionary algorithms. On the other
hand, the number of LLs and the number of generations
have been determined by means of a complete experimental
study. The latter it is really important in this study as it

1https://github.com/SIMIDAT/FEPDS

significantly influences the balance between the quality of the
knowledge and performance. The complete study is available
at https://simidat.ujaen.es/papers/FEPDS. According to this
results, the number of LLs and generations was set to 3 and
60 respectively.

According to the results presented, the number of LLs
and the number of generations has been set to 3 and 60,
respectively, as they provide a good balance between quality
of results and execution time.

c) Quality measures: The confidence is the conditional
probability of the class, given the pattern [49]. When a real
concept drift occurs, the average confidence of the extracted
fPS could be significantly affected. Therefore, the confidence
is analysed in order to determine the behaviour and robustness
of the algorithm with respect to real concept drift in the first
study. In addition, it is interesting to determine the execution
time in order to determine whether the concept drift affects
the efficiency.

For the second study, the quality measures shown in the
results tables are the ones related to the description of the
main characteristics of descriptive patterns in EPM [4], i.e.
the average number of patterns (nr) and the average number
of variables (nv) needed to measure the conciseness of the
model extracted; the average WRAcc needed to compute the
novelty and reliability; the average GR, Conf and FPR needed
to estimate the reliability; and the average TPR needed to
calculate the generality. It is important to remark that the
results shown are the average of five executions using different
seeds in the stream generators.

Finally, for the scalability analysis, the results presented in
Table III are related to the average execution time and memory
consumption per data chunk on all the analysed data streams.
In addition, Figure 6 presents a chart for a specific dataset in
order to determine its behaviour through the execution of the
method in order to determine its stability.

d) Run environment: The studies were performed on a
computation cluster composed of 8 nodes with 2 x Intel Xeon
CPU 3065 at 2.33GHz and 7 GB of RAM each one, running
Rocks Cluster 6.1.1 Sand Boa.

B. Concept drift adaptation analysis

Fig 5 shows the performance of FEPDS in terms of average
confidence of the patterns extracted on each data chunk against
different concept drifts. In fact, Figs. 5a, 5c and 5e contain an
abrupt drift while Figs. 5b, 5d and 5f present a gradual one. It
is important to remark that each drift is marked with a dashed,
vertical line on each plot.

In all the datasets analysed the performance after the first
drift changes significantly. After this point the algorithm is able
to recover rapidly from the drift. In general, the performance
of the algorithm remains stable regardless of the concept drift.
Therefore, the knowledge extracted is robust against this type
of concept drift. This fact can be produced by the employment
of fuzzy logic on numerical variables. The use of fuzzy logic
allows us to handle some uncertainty which is useful when
the concept changes as it provides a tolerance level for small
or gradual changes without affecting performance. In addition,

TFS-2019-0691-R2 8

0 50 100 150 200

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Block

C
o

n
fi
d

e
n

c
e

6
0

0
8

0
0

1
0

0
0

1
2

0
0

E
x
e

c
.
ti
m

e
 (

m
s
)

Confidence
Exec. time (ms)
Concept drift

(a)

0 50 100 150 200

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Block

C
o

n
fi
d

e
n

c
e

6
0

0
8

0
0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

E
x
e

c
.
ti
m

e
 (

m
s
)

Confidence
Exec. time (ms)
Concept drift

(b)

0 50 100 150 200

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Block

C
o

n
fi
d

e
n

c
e

6
0

0
8

0
0

1
0

0
0

1
2

0
0

E
x
e

c
.
ti
m

e
 (

m
s
)

Confidence
Exec. time (ms)
Concept drift

(c)

0 50 100 150 200

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Block

C
o

n
fi
d

e
n

c
e

6
0

0
8

0
0

1
0

0
0

1
2

0
0

E
x
e

c
.
ti
m

e
 (

m
s
)

Confidence
Exec. time (ms)
Concept drift

(d)

0 50 100 150 200

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Block

C
o

n
fi
d

e
n

c
e

5
0

0
6

0
0

7
0

0
8

0
0

9
0

0
1

0
0

0
1

1
0

0

E
x
e

c
.
ti
m

e
 (

m
s
)

Confidence
Exec. time (ms)
Concept drift

(e)

0 50 100 150 200

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Block

C
o

n
fi
d

e
n

c
e

6
0

0
8

0
0

1
0

0
0

1
2

0
0

1
4

0
0

E
x
e

c
.
ti
m

e
 (

m
s
)

Confidence
Exec. time (ms)
Concept drift

(f)

Fig. 5. Confidence and execution time performance of FEPDS on different
datasets with concept drift. (a), (c), (e) are datasets with an abrupt drift, while
(b), (d), (f) are datasets with a gradual drift.

the evolutionary process includes a learning stage that is able
to provide a fast adaptation to the change. This tolerance level,
together with the evolutionary process, allows the extraction
of robust patterns with a good trade-off between their quality
and their adaptability to changes.

Finally, it can be observed that the adaptive learning ap-
proach is not significantly affected by concept drifts in terms
of execution time. In fact, the execution time is in general
close to 600ms, which is fast enough to provide a real-time
response.

C. Quality analysis

Table II presents the average fEP quality across the data
stream, together with the average complexity of the extracted
fPS. From this table, an analysis of the different aspects of
EPM is depicted below:

TABLE II
AVERAGE RESULTS OF FEPDS.

nr nv WRACC CONF GR TPR FPR
2.38 3.62 0.75 0.78 0.99 0.69 0.18

• Complexity of the model. This is measured by nr and
nv . In general, the fPS extracted is simple. In fact, it
is composed of almost one fEP per class, with a low
number of variables. This simplicity allows a fast analysis
of the insights extracted, which is key in the data stream
mining context.

• Interest. This is determined by WRAcc. The results
extracted are of great interest. This is due to the high
trade-off between the generality, in terms of covered
instances, and the reliability, according to the amount
of correctly covered instances. Therefore, the fEP s
could be interesting for the experts as they are a good
approximation of the underlying phenomena in the data.

• Generality. This is determined by TPR. In general the
fEP s extracted contains a high generalisation capacity
as each one is able to cover 69% of all positive instances.
Therefore, the insights extracted by the proposed algo-
rithm concern a high number of target instances.

• Reliability. This aspect is determined by CONF, GR and
FPR. 78% of instances covered by each fEP are covered
correctly. In addition, the high GR percentage indicates
that almost all the patterns extracted are EPs on test data.
In addition, although the amount of FPR is high, its ratio
to TPR determines that the average fEP extracted by the
proposed method contains a high discriminative power
and it is trustworthy.

In EPM it is necessary to search for a good trade-off
between three objectives: simplicity, generality and reliability.
The average fPS extracted by FEPDS is simple enough to
perform a fast analysis which is relevant in the data stream
mining context. Although the model is simple, it does not
concern its reliability as the patterns extracted contains a
high discriminative power together with a high confidence.
In addition, the fPS extracted is able to cover a large amount
of target instances. Therefore, using the insights extracted,
experts are able to extract interesting, efficient conclusions
about the underlying phenomena in data.

D. Processing speed and scalability analysis

It is assumed that a data stream mining algorithm is de-
ployed in lifelong environments. Therefore, it is desirable that
the processing time of these algorithms is below the arriving
rate of instances in order to assert the stability of the system.
In addition, memory consumption should remain immutable
throughout time.

Table III presents the average runtime and memory con-
sumption for each data chunk on the analysed data streams.
If data chunks arrive every two seconds, FEPDS is able
to process instances at approximately 5 KHz. In fact, the
complexity scales up linearly but slowly with respect to the
instance rate. Therefore, FEPDS is fast enough to provide a

TFS-2019-0691-R2 9

TABLE III
AVERAGE EXECUTION TIMES (IN MILLISECONDS) AND MEMORY

CONSUMPTION (IN MEGABYTES) OF FEPDS WITH DIFFERENT DATA
BLOCK SIZE.

Block size Exec. Time (ms) Memory (MB)
2500 1134.57 ± 30.76 273.41 ± 2.29
5000 1420.16 ± 40.66 299.19 ± 2.12
7500 1629.15 ± 52.36 310.16 ± 9.32
10000 2024.45 ± 88.07 324.04 ± 3.08
12500 2319.50 ± 111.02 326.85 ± 15.78
15000 2187.56 ± 130.64 329.48 ± 5.59

real-time response on a huge set of problems. Finally, it can
be observed that memory consumption is low enough to be
executed on many commodity hardware.

1 2 5 10 20 50 100 200 500

50
0

10
00

15
00

20
00

25
00

35
00

Block

E
xe

c.
 ti

m
e

(m
s)

2500
5000
7500
10000
12500
15000
Stable line

(a)

1 2 5 10 20 50 100 200 500

20
0

30
0

40
0

50
0

Block

M
em

or
y

(M
B

)

2500
5000
7500
10000
12500
15000

(b)
Fig. 6. Scalability analysis for the AG-c1-1 data stream with respect to
different data block size. (a) processing time, (b) memory consumption.

Finally, Fig. 6 shows the performance in terms of execution
time and memory consumption for the artificial data stream
AG-c1-1 employed in this study with different batch sizes. The
graphs are presented using logarithmic scale with respect to the
number of blocks. In terms of execution time, the algorithm
remains stable, i.e., it is below the data chunk arriving rate
represented as the stable line, after the processing of the first
blocks of data due to memory and instructions caching. On
the other hand, memory consumption remains stable with some
variations due to the triggering of the Java garbage collector. In
conclusion, FEPDS is an alternative for permanent deployment
in lifelong environments.

V. A CASE STUDY: DETERMINATION OF PROFILES OF NEW
YORK CITY CAB CUSTOMERS ACCORDING TO THEIR FARE

AMOUNT

One of the most popular images of New York City (NYC)
is its yellow cab. The fleet is regulated by the NYC Taxi
& Limousine Commission (NYC-TLC), which is formed of
13587 medallion cabs. One of the characteristics of these
vehicles is that to be picked-up by one of them the passenger
must hail the driver in the street. Therefore, no previous
booking is needed before travelling.

In this case study the characteristics of passengers with
respect to their fare amount is analysed. The idea is to
continuously analyse the behaviour of people in order to
improve the service.

A. Characteristics of data

The data analysed consist of all the records in 2017 of
the journeys made by the yellow cabs2. Moreover, basic data
formatting and data cleaning procedures have been carried out
such as removing outliers and inconsistencies, unnecessary
variables, and so on. To reproduce this preprocessing, please
refer to our repository.

The final dataset is composed of almost 100 million in-
stances with 10 variables each. It contains a class value that
represents the amount of money spent on each journey. As
can be observed, the amount of money spent is a numerical
variable, therefore it must be discretised in order to be handled
by FEPDS. This process was carried out by means of an
expert criterion, determining the following intervals: [0, 15),
[15, 30), [30, ∞], which correspond to low, medium and high
fares. Finally, a brief description of each nominal (nom) and
numerical (num) variable in the dataset is presented in Table
IV.

TABLE IV
DESCRIPTION OF VARIABLES USED IN NYC-TLC TAXIS DATA.

Name Type Description
passenger count num Passengers in the journey
RateCodeID nom The rate in effect during the journey
store and fwd flag nom Connection with the server
payment type nom The type of payment made
extra nom Extra surcharges (Rush & overnight)
tip amount num The amount of money spend on tips
tolls amount num The amount of money spend on tolls
PUBorough nom The pick-up zone
DOBorough nom The drop-off zone
total amount nom The total fare of the journey

B. Extraction of emerging patterns in NYC-TLC data stream
by FEPDS

TABLE V
AVERAGE RESULTS OF FEPDS ON THE NYC TAXIS DATASET.

nr nv WRACC CONF GR TPR FPR
3.00 3.63 0.78 0.62 1.00 0.72 0.16

Table V presents the average quality results for each in-
dividual fEP for each data chunk analysed, except for nr
and nv which correspond the whole set of patterns extracted
for that data chunk. An analysis of these results is presented
below:

• Complexity of the models. FEPDS constantly returns
three fEP s, which means that the method extracts only
one fEP for each class. On the other hand, the average
number of variables of each pattern is low. Therefore,
experts are able to perform a fast, easy analysis of the
knowledge extracted.

• Interest. The results extracted show an excellent average
WRAcc value of 0.78. This means that the patterns
extracted contain an excellent trade-off between the cov-
erage of the target instances and their reliability. In fact,

2https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

TFS-2019-0691-R2 10

this interest can be observed in the high TPR value
together with an acceptable confidence value. This fact is
due to the use of the reward in the TC-based procedure
evaluation function making it possible to keep those rele-
vant patterns while the evolutionary process searches for
other interesting knowledge in order to adapt to potential
changes. Therefore, the patterns extracted by FEPDS are
very interesting for the expert because they present an
excellent trade-off between generality and reliability.

• Generality. On average, 72% of the target instances
are covered for each pattern, as can be observed from
the TPR. This is quite relevant for the experts as the
knowledge extracted is able to provide a wide view of
the general behaviour of customers, so better decisions
can be carried out.

• Reliability. Firstly, it can be observed that all the patterns
extracted are EPs because the GR value is 1. In addition,
the ratio between the TPR and the FPR of the extracted
fEP s is high, so they have a great discriminative power.
On the other hand, the confidence level is high enough
to trust on the knowledge extracted, especially when the
level of generality is very high. Therefore, the patterns
extracted present reliable descriptions which allows the
experts to extract robust conclusions from them.

Additionally, the most repeated patterns extracted through-
out the stream are presented together with their average quality
measures. The idea is to determine recurrent patterns in the
stream analysed so a general profile can be extracted.

Table VI presents the two most repeated patterns throughout
the stream for each class. In general, the quality of these
patterns is very good, highlighting the high levels of GR and
WRACC, which means that the patterns are highly discrimina-
tive. In this way, we can trust in the reliability of the patterns
extracted.

Several conclusions can be extracted from this table. For
example, it can be observed that many of the cheapest journeys
are produced within the working area of Manhattan. For
medium fares, it can be observed that the destinations are
usually residential or leisure areas of Manhattan. On the other
hand, for the highest fares it can be observed that users are
usually picked up in those areas where people usually work.
Therefore, from these results the day-to-day lives of people
can be observed, where first they go to their workplace and
then they return home. Finally, it is important to remark on
the presence of the payment by card on those journeys with
medium and high fares.

VI. CONCLUDING REMARKS

This paper presents an algorithm for extracting fEPs in
data stream environments. FEPDS processes stream by means
of a batch strategy where instances are collected. Once a
batch is completed, the learning method of the algorithm
updates the fPS model using the data of the current batch.
Specifically, the algorithm is based on a blind strategy with
adaptive learning whereby the model is updated for each
batch. In addition, FEPDS uses a learning method based on a
multi-objective evolutionary algorithm able to extract pattern

models with a very good trade-off between the simplicity of
the model and its reliability. This learning method employs
the fPSs obtained in previous stages by means of a memory
structure based on a sliding window (SW) in order to reward
patterns that sometimes appear in the window. Finally, the
algorithm uses a test-then-train evaluation where the model
is continuously evaluated against unseen instances in order to
determine the quality of the knowledge extracted.

FEPDS has been tested in an experimental study. Firstly,
the adaptability of the proposed algorithm to different kinds
of concept drifts was analysed. The conclusion is that FEPDS
is able to adapt the model properly with respect to abrupt
and gradual drift without decreasing performance in terms of
execution time. The quality of the insights extracted by FEPDS
contains an interesting ratio between the coverage of target
instances and their reliability, together with a fPS that can be
analysed easily. In addition, the proposed algorithm provides
a great scalability and performance in terms of execution
time and memory consumption. This allows its deployment
in lifelong environments.

Finally, a case study was carried out. In particular, the
profile of the customers of the New York City taxis according
to their fare amount was analysed. In general, the results
extracted by FEPD are of a high quality. In particular, the
generality of each individual pattern is highlighted. Moreover,
an analysis of recurrent patterns was carried out, from which
slightly recurrent behaviours such as payment by card on
medium or high fares and the daily travel to work of new
yorkers have been extracted.

REFERENCES

[1] J. Gama, Knowledge discovery from data streams. CRC Press, 2010.
[2] I. Žliobaitė, M. Pechenizkiy, and J. Gama, “An overview of concept drift

applications,” in Big Data Analysis: New Algorithms for a New Society.
Springer, 2016, pp. 91–114.

[3] G. Dong and J. Li, “Efficient mining of emerging patterns: Discovering
trends and differences,” in Proceedings of the Fifth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
New York, NY, USA: ACM, 1999, pp. 43–52.

[4] A. M. Garcı́a-Vico, C. J. Carmona, D. Martı́n, M. Garcı́a-Borroto,
and M. J. del Jesus, “An overview of emerging pattern mining in
supervised descriptive rule discovery: Taxonomy, empirical study, trends
and prospects,” WIREs: Data Mining and Knowledge Discovery, vol. 8,
no. 1, 2018.

[5] P. Kralj-Novak, N. Lavrac, and G. I. Webb, “Supervised Descriptive
Rule Discovery: A Unifying Survey of Constrast Set, Emerging Pattern
and Subgroup Mining,” Journal of Machine Learning Research, vol. 10,
pp. 377–403, 2009.

[6] G. Li, R. Law, H. Q. Vu, J. Rong, and X. R. Zhao, “Identifying emerging
hotel preferences using emerging pattern mining technique,” Tourism
management, vol. 46, pp. 311–321, 2015.

[7] Y. Yu, K. Yan, X. Zhu, and G. Wang, “Detecting of PIU Behaviors
Based on Discovered Generators and Emerging Patterns from Computer-
Mediated Interaction Events,” in Proc. of the 15th International Confer-
ence on Web-Age Information Management, vol. 8485, 2014, pp. 277–
293.

[8] J.-P. Métivier, A. Lepailleur, A. Buzmakov, G. Poezevara, B. Crémilleux,
S. O. Kuznetsov, J. L. Goff, A. Napoli, R. Bureau, and B. Cuissart,
“Discovering structural alerts for mutagenicity using stable emerging
molecular patterns,” Journal of chemical information and modeling,
vol. 55, no. 5, pp. 925–940, 2015.

[9] C.-H. Weng and C.-K. H. Tony, “Observation of sales trends by mining
emerging patterns in dynamic markets,” Applied Intelligence, pp. 1–15,
2018.

TFS-2019-0691-R2 11

TABLE VI
MOST REPEATED PATTERNS FOR EACH CLASS AND THEIR AVERAGE QUALITY THROUGHOUT THE NYC-TLC DATA STREAM.

Pattern Repetitions nv WRACC CONF GR TPR FPR
R1: IF DOBorough = (Downtown, Midtown, Central Park, Uppertown) THEN LOW [0,15) 4633 1 0.76 0.86 2.29 0.93 0.42
R2: IF DOBorough = (Downtown, Midtown, Central Park) THEN LOW [0,15) 3340 1 0.78 0.88 2.97 0.88 0.32
R3: IF DOBorough = (Uppertown, Other, Central Park) THEN MEDIUM [15,30) 448 1 0.71 0.59 4.03 0.59 0.16
R4: IF payment type = credit card & tip amount = LL3 THEN MEDIUM [15,30) 199 2 0.71 0.84 15.10 0.45 0.03
R5: IF PUBorough = (Central Park, Midtown, Downtown, Other) THEN HIGH [30, ∞) 630 1 0.85 0.23 16.72 0.78 0.08
R6: IF payment type = credit card & tip amount = (LL4, LL6) THEN HIGH [30, ∞) 341 2 0.87 0.38 33.47 0.76 0.02

[10] A. M. Garcı́a-Vico, P. González, M. J. del Jesus, and C. J. Carmona, “A
first approach to handle emergining patterns mining on big data prob-
lems: The evaefp-spark algorithm,” in IEEE International Conference
on Fuzzy Systems, 2017, pp. 1–6.

[11] A. M. Garcı́a-Vico, C. J. Carmona, P. González, and M. J. del Jesus,
“MOEA-EFEP: Multi-objective evolutionary algorithm for extracting
fuzzy emerging patterns,” IEEE Transactions on Fuzzy Systems, vol. 26,
no. 5, pp. 2861 – 2872, 2018.

[12] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM Comput. Surv., vol. 46, no. 4,
pp. 44:1–44:37, 2014.

[13] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and M. Woźniak,
“Ensemble learning for data stream analysis: A survey,” Information
Fusion, vol. 37, pp. 132–156, 2017.

[14] A. Sayuri-Iwashita and J. Papa, “An overview on concept dripft learn-
ing,” IEEE Access, vol. 7, pp. 1532–1547, 2019.

[15] M. M. Gaber, “Advances in data stream mining,” Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, vol. 2, no. 1, pp. 79–
85, 2012.

[16] A. Bifet, “Adaptive learning and mining for data streams and frequent
patterns,” Ph.D. dissertation, Universitat Politècnica de Catalunya, 2009.

[17] M. Sayed-Mouchaweh and E. Lughofer, Learning in non-stationary
environments: methods and applications. Springer Science & Business
Media, 2012.

[18] S. Ramı́rez-Gallego, B. Krawczyk, S. Garcı́a, M. Wozniak, and F. Her-
rera, “A survey on data preprocessing for data stream mining: Current
status and future directions,” Neurocomputing, vol. 239, pp. 39–57, 2017.

[19] G. I. Webb, L. K. Lee, B. Goethals, and F. Petitjean, “Analyzing
concept drift and shift from sample data,” Data Mining and Knowledge
Discovery, vol. 32, no. 5, pp. 1179–1199, 2018.

[20] I. Khamassi, M. Sayed Mouchaweh, M. Hammami, and K. Ghédira,
“Discussion and review on evolving data streams and concept drift
adapting,” Evolving Systems, vol. 9, no. 1, pp. 1–23, 2018.

[21] E. Lughofer, “On-line active learning: A new paradigm to improve
practical useability of data stream modeling methods,” Information
Sciences, pp. 356–376, 2017.

[22] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data
streams,” in Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2001, pp.
97–106.

[23] J. Gama and G. Castillo, “Learning with local drift detection,” in
Proceedings of the Second International Conference in Advanced Data
Mining and Applications, ADMA, Xi’an, China, August 14-16, 2006, pp.
42–55.

[24] I. Khamassi and M. Sayed Mouchaweh, “Drift detection and monitoring
in non-stationary environments,” in 2014 IEEE Conference on Evolving
and Adaptive Intelligent Systems, EAIS 2014, Linz, Austria, June 2-4,
2014, 2014, pp. 1–6.

[25] A. Shaker and E. Lughofer, “Self-adaptive and local strategies for a
smooth treatment of drifts in data streams,” Evolving Systems, vol. 5,
no. 4, pp. 239–257, 2014.

[26] H. Toubakh and M. Sayed-Mouchaweh, “Hybrid dynamic data-driven
approach for drift-like fault detection in wind turbines,” Evolving Sys-
tems, vol. 6, no. 2, pp. 115–129, 2015.

[27] E. Lughofer, “Evolving fuzzy systems fundamentals, reliability, inter-
pretability, useability, applications,” in Handbook on Computational In-
telligence: Volume 1: Fuzzy Logic, Systems, Artificial Neural Networks,
and Learning Systems. World Scientific, 2016, pp. 67–135.

[28] I. Škrjanc, J. A. Iglesias, A. Sanchis, D. Leite, E. Lughofer, and
F. Gomide, “Evolving fuzzy and neuro-fuzzy approaches in clustering,
regression, identification, and classification: A survey,” Information
Sciences, vol. 490, pp. 344–368, 2019.

[29] N. Japkowicz and M. Shah, Evaluating learning algorithms: a classifi-
cation perspective. Cambridge University Press, 2011.

[30] A. Wald, Sequential analysis. Courier Corporation, 1973.
[31] M. Pratama, C. Za’in, A. Ashfahani, Y. S. Ong, and W. Ding, “Au-

tomatic construction of multi-layer perceptron network from streaming
examples,” in Proceedings of the 28th ACM International Conference
on Information and Knowledge Management, 2019, pp. 1171–1180.

[32] M. Pratama, W. Pedrycz, and G. I. Webb, “An incremental construction
of deep neuro fuzzy system for continual learning of non-stationary data
streams,” IEEE Transactions on Fuzzy Systems, In Press.

[33] M. Pratama, M. de Carvalho, R. Xie, E. Lughofer, and J. Lu, “Atl:
Autonomous knowledge transfer from many streaming processes,” in
Proceedings of the 28th ACM International Conference on Information
and Knowledge Management, 2019, pp. 269–278.

[34] M. J. del Jesus, P. González, F. Herrera, and M. Mesonero, “Evolutionary
Fuzzy Rule Induction Process for Subgroup Discovery: A case study in
marketing,” IEEE Transactions on Fuzzy Systems, vol. 15, no. 4, pp.
578–592, 2007.

[35] M. Garcı́a-Borroto, J. Martı́nez-Trinidad, and J. Carrasco-Ochoa, “Fuzzy
emerging patterns for classifying hard domains.” Knowledge and Infor-
mation Systems, vol. 28, no. 2, pp. 473–489, 2011.

[36] C. J. Carmona, P. González, M. J. del Jesus, and F. Herrera, “NMEEF-
SD: Non-dominated Multi-objective Evolutionary algorithm for Extract-
ing Fuzzy rules in Subgroup Discovery,” IEEE Transactions on Fuzzy
Systems, vol. 18, no. 5, pp. 958–970, 2010.

[37] E. Hüllermeier, “Fuzzy methods in machine learning and data mining:
Status and prospects,” Fuzzy Sets and Systems, vol. 156, no. 3, pp. 387–
406, 2005.

[38] D. E. Goldberg, Genetic Algorithms in search, optimization and machine
learning. Addison-Wesley Longman Publishing Co., Inc., 1989.

[39] F. Herrera, “Genetic fuzzy systems: taxomony, current research trends
and prospects,” Evolutionary Intelligence, vol. 1, pp. 27–46, 2008.

[40] C. J. Carmona, V. Ruiz-Rodado, M. J. del Jesus, A. Weber,
M. Grootveld, P. González, and D. Elizondo, “A fuzzy genetic
programming-based algorithm for subgroup discovery and the applica-
tion to one problem of pathogenesis of acute sore throat conditions in
humans,” Information Sciences, vol. 298, pp. 180–197, 2015.

[41] A. Starkey, H. Hagras, S. Shakya, and G. Owusu, “A multi-objective
genetic type-2 fuzzy logic based system for mobile field workforce area
optimization,” Information Sciences, vol. 329, pp. 390–411, 2016.

[42] O. Castillo, L. Cervantes, J. Soria, M. Sánchez, and J. Castro, “A gener-
alized type-2 fuzzy granular approach with applications to aerospace,”
Information Sciences, vol. 354, pp. 165–177, 2016.

[43] M. Antonelli, D. Bernardo, H. Hagras, and F. Marcelloni, “Multiob-
jective evolutionary optimization of type-2 fuzzy rule-based systems
for financial data classification,” IEEE Transactions on Fuzzy Systems,
vol. 25, no. 2, pp. 249–264, 2017.

[44] M. Babaei and M. Sheidaii, “Desirability-based design of space struc-
tures using genetic algorithm and fuzzy logic,” International Journal of
Civil Engineering, vol. 15, no. 2, pp. 231–245, 2017.

[45] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From data mining to
knowledge discovery: an overview,” in Advances in knowledge discovery
and data mining. Menlo Park, CA, USA: AAAI/MIT Press, 1996, pp.
1–34.

[46] C. J. Carmona, M. J. del Jesus, and F. Herrera, “A Unifying Analysis
for the Supervised Descriptive Rule Discovery via the Weighted Relative
Accuracy,” Knowledge-Based Systems, vol. 139, pp. 89–100, 2018.

[47] W. Kloesgen, “Explora: A Multipattern and Multistrategy Discovery
Assistant,” in Advances in Knowledge Discovery and Data Mining.
Menlo Park, CA, USA: American Association for Artificial Intelligence,
1996, pp. 249–271.

[48] D. Gamberger and N. Lavrac, “Expert-Guided Subgroup Discovery:
Methodology and Application,” Journal Artificial Intelligence Research,
vol. 17, pp. 501–527, 2002.

[49] M. Garcı́a-Borroto, O. Loyola-González, J. F. Martı́nez-Trinidad, and
J. A. Carrasco-Ochoa, “Evaluation of quality measures for contrast

TFS-2019-0691-R2 12

patterns by using unseen objects,” Expert Systems with Applications,
vol. 83, pp. 104 – 113, 2017.

[50] K. S. Leung, Y. Leung, L. So, and K. F. Yam, “Rule Learning in
Expert Systems Using Genetic Algorithm: 1, Concepts,” in Proc. of
the 2nd International Conference on Fuzzy Logic and Neural Networks,
K. Jizuka, Ed., 1992, pp. 201–204.

[51] M. L. Wong and K. S. Leung, Data Mining using Grammar Based
Genetic Programming and Applications. Norwell, MA, USA: Kluwer
Academics Publishers, 2000.

[52] O. Cordón, F. Herrera, and P. Villar, “Analysis and guidelines to obtain
a good uniform fuzzy partition granularity for fuzzy rule-based systems
using simulated annealing,” International Journal of Approximate Rea-
soning, vol. 25, no. 3, pp. 187 – 215, 2000.

[53] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and
Applications. Prentice Hall, 1995.

[54] B. L. Miller and D. E. Goldberg, “Genetic Algorithms, Tournament
Selection, and the Effects of Noise,” Complex System, vol. 9, pp. 193–
212, 1995.

[55] J. H. Holland, Adaptation in Natural and Artificial Systems, 2nd ed.
University of Michigan Press, 1975.

[56] K. Deb, A. Pratap, S. Agrawal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions Evolu-
tionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[57] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “MOA: massive
online analysis,” Journal of Machine Learning Research, vol. 11, pp.
1601–1604, 2010. [Online]. Available: https://moa.cms.waikato.ac.nz/

