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Abstract—Overlap functions are a type of aggregation func-
tions that are not required to be associative, generally used
to indicate the overlapping degree between two values. They
have been successfully used as a conjunction operator in several
practical problems, such as fuzzy rule-based classification systems
(FRBCSs) and image processing. Some extensions of overlap
functions were recently proposed, such as general overlap func-
tions and, in the interval-valued context, n-dimensional interval-
valued overlap functions. The latter allow them to be applied in
n-dimensional problems with interval-valued inputs, like interval-
valued classification problems, where one can apply interval-
valued FRBCSs (IV-FRBCSs). In this case, the choice of an
appropriate total order for intervals, like an admissible order,
can play an important role. However, neither the relationship
between the interval order and the n-dimensional interval-valued
overlap function (which may or may not be increasing for that
order) nor the impact of this relationship in the classification
process have been studied in the literature. Moreover, there is not
a clear preferred n-dimensional interval-valued overlap function
to be applied in an IV-FRBCS. Hence, in this paper we: (i)
present some new results on admissible orders, which allow us
to introduce the concept of n-dimensional admissibly ordered
interval-valued overlap functions, that is, n-dimensional interval-
valued overlap functions that are increasing with respect to an
admissible order; (ii) develop a width-preserving construction
method for this kind of function, derived from an admissible
order and an n-dimensional overlap function, discussing some of
its features; (iii) analyze the behaviour of several combinations
of admissible orders and n-dimensional (admissibly ordered)
interval-valued overlap functions when applied in IV-FRBCSs.
All in all, the contribution of this paper resides in pointing out the
effect of admissible orders and n-dimensional admissibly ordered
interval-valued overlap functions, both from a theoretical and
applied points of view, the latter when considering classification
problems.
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I. INTRODUCTION

In 2010, Bustince et al. [1] introduced the concept of overlap
functions in order to deal with the overlap problem that usually
appears in image processing. For that, overlap functions were
conceived as continuous aggregation functions [2] that are
not required to be associative. In fact, the associativity is
not a relevant property for many applications besides image
processing, such as decision making based on fuzzy preference
relations, as properly discussed by Dimuro et al. in [3], [4],
[5]. Observe that the continuity property of overlap functions
was essential for the application in image processing, in the
context where the concept was born.

Overlap functions are more general than the well known
t-norms [6], although the required continuity may be more
restrictive. In fact, there is an intersection between those two
families: any continuous positive t-norm is an overlap function
and any associative overlap function with 1 as neutral element
is a t-norm. Nevertheless, the class of overlap functions is
reacher than that of t-norms in many aspects, considering, e.g.,
the idempotency and homogeneity properties [7]. Moreover,
overlap functions are closed to the convex sum and the
aggregation by generalized composition of overlap functions,
whereas neither the convex sum of t-norms nor the aggregation
of t-norms by a t-norm results in t-norms, in general [8], [9].

Since the appearance of the concept of overlap functions,
many authors have dedicated time to the theoretical research
on their properties and related concepts, such as Qiao [10],
Qiao and Hu [11], Dimuro et al. [5], [8], [12], [13], Zhou and
Yan [14], Zhu et al. [15], Zhang et al. [16] and Cao et al.
[17]. Moreover, the application of overlap function is getting
attention mainly because the associativity is not required
during the information aggregation process, like in image
processing [18], decision making [19], [20], wavelet-fuzzy
power quality diagnosis system [21], forest fire detection [22]
and classification by generalizations of the Choquet integral
[23], [24], [25], [26], [27]. Observe that, in some of the men-
tioned applications (e.g., decision making and classification),
the continuity of overlap functions is not required.

However, overlap functions are bivariate functions, which
implies that they can only be applied in problems involving
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just two classes or objects. This becomes a serious drawback
when one faces n-dimensional problems (e.g., classification
[28]), since overlap functions may be not associative. In order
to overcome this limitation, Gómez et al. [29] introduced the
concept of n-dimensional overlap functions. More recently, De
Miguel et al. [30] defined general overlap functions by relaxing
the boundary conditions of n-dimensional overlap functions,
providing a more flexible definition.

Now, observe that in some applications there may be
uncertainty in providing either the membership grades or the
definition of membership functions [31]. To deal with this
problem, one may adopt interval-valued fuzzy sets (IVFSs)
[32], [33], [34], since it is capable to model both vagueness
(soft class boundaries) and uncertainty (with respect to the
membership function), as discussed in [35], [36], [37]. That
is the reason why IVFSs have been successfully applied in
several problems, such as game theory [38], decision making
[39], pest control [40] and, specially, classification [37].

To address the problem of working in the interval-valued
fuzzy context, Qiao and Hu [41] and Bedregal et al. [35]
introduced independently the concept of interval-valued (iv)
overlap functions. Latter, in [42], Asmus et al. introduced the
concepts of n-dimensional iv-overlap functions and general
iv-overlap functions, which were applied to compute the
interval matching degree in Interval-Valued Fuzzy Rule Based
Classification Systems (IV-FRBCSs) [43], [44].

IV-FRBCSs are Fuzzy Rule Based Classification Systems
(FRBCSs) [45] whose linguistic labels are modeled by means
of IVFSs, as in the work of Sanz et al. [37]. In IV-FRBCSs,
the ignorance/uncertainty inherent to the definition of the
membership functions, represented by IVFSs, is taken into
account in the whole reasoning process, which implies that
in the end of the classification process one needs to compare
intervals instead of numbers. To carry out this comparison,
a total order relation between intervals is needed, instead of
the usual partial orders (e.g., the product order [46]). For that,
one may use admissible orders introduced by Bustince et al.
[47], which are total orders that may be constructed by means
of aggregation functions, that is, different total orders can be
obtained by varying the aggregation functions used in their
construction. Since their definition, several works took into
account admissible orders, such as [48], [49].

When defining IV-FRBCSs, both the aggregation function
used to compute the interval matching degree and the adopted
total order play a key role, as they can change the behaviour
of the system. However, in the literature, there is not a consen-
sus regarding which are the recommended n-dimensional iv-
overlap functions to be applied to compute the interval match-
ing degree in IV-FRBCSs. Moreover, there is no previous study
concerning the relation between the chosen interval total order
and n-dimensional iv-overlap function (which may or may not
be increasing for that order), and the impact of such relation
in the whole classification process.

Considering the discussion above, in this paper we have the
following objectives:

1. To define n-dimensional admissibly ordered iv-overlap
functions, that is, n-dimensional iv-overlap functions that

are increasing with respect to an admissible order, study-
ing their properties and showing examples;

2. To introduce a construction method of n-dimensional
admissibly ordered iv-overlap functions based on n-
dimensional overlap functions and a chosen admissible
order, aiming at obtaining width-preserving iv-functions,
that is, the resulting interval is never wider than any of
the aggregated inputs, which is a desirable property in
many applications;

3. To analyze the influence of both the admissible orders and
the n-dimensional admissibly ordered iv-overlap func-
tions in IV-FRBCSs.

The paper is organized as follows. Section II presents some
preliminary concepts that are necessary for the development of
the paper. In Section III, we present new results on admissible
orders and introduce the concept of n-dimensional admissibly
ordered iv-overlap functions, studying properties and show-
ing examples. In section IV we develop a width-preserving
construction method for n-dimensional admissibly ordered iv-
overlap functions. In Section V, we analyze the influence
of the combination of admissible orders and n-dimensional
(admissibly ordered) interval-valued overlap functions, in clas-
sification problems. Section VI is the Conclusion.

II. PRELIMINARIES

A. Interval Representation

Let us denote as L([0, 1]) the set of all closed subintervals of
the unit interval [0, 1]. Denote ~x = (x1, . . . , xn) ∈ [0, 1]n and
~X = (X1, . . . , Xn) ∈ L([0, 1])n. Given any X = [x1, x2] ∈
L([0, 1]), X = x1 and X = x2 denote, respectively, the left
and right projections of X . The product and inclusion partial
orders are defined for all X,Y ∈ L([0, 1]), respectively, by:

X ≤Pr Y ⇔ X ≤ Y ∧ X ≤ Y ;

X ⊆ Y ⇔ X ≥ Y ∧ X ≤ Y .
We call as ≤Pr-increasing a function that is increasing with

respect to the product order ≤Pr. The projections F−, F+ :
[0, 1]n → [0, 1] of F : L([0, 1])n → L([0, 1]) are defined,
respectively, by:

F−(x1, . . . , xn) = F ([x1, x1], . . . , [xn, xn]); (1)

F+(x1, . . . , xn) = F ([x1, x1], . . . , [xn, xn]). (2)

Given two functions f, g : [0, 1]n → [0, 1] such that f ≤ g,
we define the function f̂, g : L([0, 1])n → L([0, 1]) as

f̂, g(X1, . . . , Xn) = [f(X1, . . . , Xn), g(X1, . . . , Xn)]. (3)

Definition 1. [36] Let F : L([0, 1])n → L([0, 1]) be an ≤Pr-
increasing interval function. F is said to be representable if
there exist increasing functions f, g : [0, 1]n → [0, 1] such that
f ≤ g and F = f̂, g.

The functions f and g are the representatives of the interval
function F . When F = f̂, f , we denote simply as f̂ .

Proposition 1. [42] For each ≤Pr-increasing interval func-
tion F : L([0, 1])n → [0, 1], F is representable if and only if
F is inclusion monotonic.
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Proposition 2. [42] If an ≤Pr-increasing interval function
F : L([0, 1])n → L([0, 1]) is inclusion monotonic, then
F (X1, . . . , Xn) = F−(X1, . . . , Xn) and F (X1, . . . , Xn) =

F+(X1, . . . , Xn), for all X1, . . . , Xn ∈ L([0, 1]).
Definition 2. [50] An interval-valued negation is a function
N : L([0, 1])→ L([0, 1]) that is ≤Pr-decreasing and satisfies:
(N1) N([1, 1]) = [0, 0]; (N2) N([0, 0]) = [1, 1]. If for all
X ∈ L([0, 1]), N(N(X)) = X , N is said to be involutive.

Definition 3. [51] An interval-valued restricted equivalence
functions (IV-REF) is a function IR : L([0, 1])2 → L([0, 1])
satisfying: (IR1) IR is commutative; (IR2) IR(X,Y ) =
[1, 1] ⇔ X = Y ; (IR3) IR(X,Y ) = [0, 0] ⇔ X =
[0, 0] and Y = [1, 1], or X = [1, 1] and Y = [0, 0];
(IR4) IR(X,Y ) = IR(N(X), N(Y )); (IR5) ∀X,Y, Z ∈
L([0, 1]), X ≤Pr Y ≤Pr Z ⇒ IR(X,Y ) ≥Pr IR(X,Z)
and IR(Y,Z) ≥Pr IR(X,Z).

Some interval operations that are used in this paper are
defined, for all X,Y ∈ L([0, 1]) as: [46], [52]

Sum: X + Y = [X + Y ,X + Y ];

Product: X · Y = [X · Y ,X · Y ];

Generalized Hukuhara Division: with Y 6= 0,

X ÷H Y = [min{X/Y ,X/Y },max{X/Y ,X/Y }].

B. Admissible orders

The notion of admissible orders for intervals came from the
interest in extending the product order ≤Pr to a total order.

Definition 4. [47] Let (L([0, 1]),≤AD) be a partially ordered
set. The order ≤AD is called an admissible order if
(i) ≤AD is a total order on (L([0, 1]),≤AD);
(ii) For all X,Y ∈ L([0, 1]), X ≤AD Y whenever X ≤Pr Y .

In other words, an order ≤AD on L([0, 1]) is admissible, if
it is total and refines the order ≤Pr [47].

Example 1. The following relations on L([0, 1]) are examples
of admissible orders:
(i) The lexicographical orders with respect to the first and
second coordinate, defined, respectively, by:

X ≤Lex1 Y ⇔ X < Y ∨ (X = Y ∧X ≤ Y );

X ≤Lex2 Y ⇔ X < Y ∨ (X = Y ∧X ≤ Y ).

(ii) The order ≤XY introduced by Xu and Yager in [53],
defined by:

X ≤XY Y ⇔ X +X < Y + Y or

(X +X = Y + Y and X −X ≤ Y − Y ).

(iii) Whenever one considers the comparison of the informa-
tion quality [54] provided by the intervals X and Y in the
order of Xu and Yager, it is possible to define, as in [43]:

X ≤IQ Y ⇔ X +X < Y + Y or

(X +X = Y + Y and Y − Y ≤ X −X).

Proposition 3. [47] Let A,B : [0, 1]2 → [0, 1] be aggregation
functions (see Def. 6), such that, for all X,Y ∈ L([0, 1]), the

equalities A(X,X) = A(Y , Y ) and B(X,X) = B(Y , Y )
can hold only if X = Y . Define the relation ≤A,B on L([0, 1])
by

X ≤A,B Y ⇔ A(X,X) < A(Y , Y ) or

(A(X,X) = A(Y , Y ) and B(X,X) ≤ B(Y , Y )).

Then ≤A,B is an admissible order on L([0, 1]).

The pair (A,B) of aggregation functions that generates
the order ≤A,B in Prop. 3 is called an admissible pair of
aggregation functions [47]. Of particular interest is when the
admissible order is generated by Kα mappings [47]. For
α ∈ [0, 1], the mapping Kα : [0, 1]2 → [0, 1] is defined by:

Kα(x, y) = x+ α · (y − x). (4)

Definition 5. [47] For α, β ∈ [0, 1] such that α 6= β, the
relation ≤α,β is defined by

X ≤α,β Y ⇔ Kα(X,X) < Kα(Y , Y ) or

(Kα(X,X) = Kα(Y , Y ) and Kβ(X,X) ≤ Kβ(Y , Y )).

Then, the relation ≤α,β is an admissible order generated by
an admissible pair of aggregation functions (Kα,Kβ) [47].

Remark 1. By varying the values of α and β one can recover
some of the defined admissible orders, e.g., the lexicographical
orders ≤Lex1 and ≤Lex2, and the orders ≤XY and ≤IQ are
recovered, respectively, by ≤0,1, ≤1,0, ≤0.5,1 and ≤0.5,0.

Lemma 1. [47] For any α, β ∈ [0, 1], α 6= β, it holds that:
(i)β > α⇒≤α,β=≤α,1; (ii) β < α⇒≤α,β=≤α,0.

C. n-dimensional Overlap Functions

Definition 6. [2] An aggregation function is a mapping
A : [0, 1]n → [0, 1] that is increasing in each argument and
satisfying: (A1) A(0, . . . , 0) = 0; (A2) A(1, . . . , 1) = 1.

Definition 7. [28], [29] A function On : [0, 1]n → [0, 1]
is said to be an n-dimensional overlap function if the fol-
lowing conditions hold, for all ~x ∈ [0, 1]n: (On1) On is
commutative; (On2) On(~x) = 0 ⇔ ∏n

i=1 xi = 0; (On3)
On(~x) = 1 ⇔ ∏n

i=1 xi = 1; (On4) On is increasing; (On5)
On is continuous.

If for all x, y, z ∈ (0, 1] one has that x < y implies that
On(x, z, . . . , z) < On(y, z, . . . , z), then On is called a strict
n-dimensional overlap function. In Table I we show some
examples of n-dimensional overlap functions.

A 2-dimensional overlap function is just called overlap
function. For properties on (n-dimensional) overlap functions
and related concepts, see also: [3], [4], [9], [10], [11], [29].

D. n-dimensional Interval-valued Overlap Functions

Recently, the concepts of n-dimensional interval-valued ag-
gregation/overlap functions and general interval-valued over-
lap functions were introduced by Asmus et al. in [42]:

Definition 8. [42] A function IA : L([0, 1])n → L([0, 1])
is an n-dimensional interval-valued aggregation function
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TABLE I: Examples of n-dimensional overlap functions

Name Definition

Product OnP (~x) =
∏n
i=1 xi

Minimum OnM (~x) = min{x1, . . . , xn}
Hamacher OnHp(~x) =




0, ifx1 = . . . = xn = 0;∏n
i=1 xi(∑n

i=1

∏
j∈Nn

i
xj

)
−(n−1)

∏n
i=1 xi

, otherwise

where Nn
i = {1, . . . , n} − {i}

OB Overlap OnOB(~x) =
√

min{x1, . . . , xn} ·
∏n
i=1 xi

Geom. Mean OnGm(~x) = n
√∏n

i=1 xi

Harm. Mean OnHm(~x) =



n
1

xi
+ . . .+

1

xn

, ifxi 6= 0, ∀i ∈ {1, . . . , n};

0, otherwise

whenever the following conditions hold: (IA1) IA is ≤Pr-
increasing in each argument; (IA2) IA satisfies the bound-
ary conditions: (i) IA([0, 0], . . . , [0, 0]) = [0, 0] and (ii)
IA([1, 1], . . . , [1, 1]) = [1, 1].

Definition 9. [42] A function IOn : L([0, 1])n → L([0, 1])
is an n-dimensional interval-valued (iv) overlap function if,
for all ~X ∈ L([0, 1])n and Y ∈ L([0, 1]), it satisfies: (IOn1)
IOn is commutative; (IOn2) IOn( ~X) = [0, 0]⇔∏n

i=1Xi =

[0, 0]; (IOn3) IOn( ~X) = [1, 1] ⇔ ∏n
i=1Xi = [1, 1]; (IOn4)

IOn is ≤Pr-increasing in the first component: X1 ≤Pr Y ⇒
IOn(X1, X2, . . . , Xn) ≤Pr IOn(Y,X2, . . . , Xn); (IOn5)
IOn is Moore continuous [46].

Example 2. Some examples of n-dimensional iv-overlap func-
tions, for ~X =∈ L([0, 1])n are:

1. IOnM ( ~X) =
[
min{X1, . . . , Xn},min{X1, . . . , Xn}

]
;

2. IOnPp( ~X) =
[∏n

i=1Xi
p,
∏n
i=1Xi

p
]
, for p > 0;

3. IOnMp( ~X) = IOnM ( ~X) · IOnPp( ~X).

Theorem 1. [42] Let On1, On2 : [0, 1]n → [0, 1] be n-
dimensional overlap functions such that On1 ≤ On2. Then,
the function ̂On1, On2 : L([0, 1])n → L([0, 1]), as defined in
Eq. (3), is an n-dimensional iv-overlap function.

An n-dimensional iv-overlap function IOn : L([0, 1])n →
L([0, 1]) is said to be o-representable if there exist n-
dimensional overlap functions On1, On2 : [0, 1]n → [0, 1]

such that On1 ≤ On2 and IOn = ̂On1, On2.

Theorem 2. [42] Let IOn : L([0, 1])n → L([0, 1]) be an n-
dimensional iv-overlap function. Then, IOn is o-representable
if and only if IOn is inclusion monotonic and satisfies, for
all ~X ∈ L([0, 1])n: (i) IOn( ~X) = 0 ⇔ ∏n

i=1Xi = 0; (ii)

IOn( ~X) = 1⇔∏n
i=1Xi = 1.

Corollary 1. Let IOn : L([0, 1])n → L([0, 1]) be
an n-dimensional iv-overlap function such that IOn+ :
L([0, 1])n → L([0, 1]) (Eq. (2)) is a strict n-dimensional
overlap function. Then, IOn is o-representable if and only
if it is inclusion monotonic and, for all ~X ∈ L([0, 1])n:
IOn( ~X) = 0⇔∏n

i=1Xi = 0.

Proof. It is immediate from Prop. 2 and Theorem 2.

A 2-dimensional iv-overlap function is called iv-overlap
function. For more properties on such functions, see [35], [41].

III. N-DIMENSIONAL ADMISSIBLY ORDERED
INTERVAL-VALUED OVERLAP FUNCTIONS

In this section, we define the concept of n-dimensional
admissibly ordered interval-valued overlap function, following
by some properties and examples. But first, we introduce some
new results regarding admissible orders.

Proposition 4. For all α1, α2, β1, β2 ∈ [0, 1] such that α1 6=
α2, α1 6= β1 and α2 6= β2, one has that ≤α1,β1 6=≤α2,β2 .

Proof. Consider Y = [0, 1] and α1, α2 ∈ [0, 1] such that α1 <
α2. For all X = [x, x] such that α1 < x < α2 one has that
Y ≤α1,β1

X and X ≤α2,β2
Y , for any β1 6= α1 and β2 6= α2.

The proof for the case in which α2 < α1 is analogous.

Proposition 5. For all α ∈ (0, 1) one has that ≤α,0 6=≤α,1.

Proof. For all α ∈ (0, 1), it is possible to find X,Y ∈
L([0, 1]), namely, X = [α, α] and Y = [0, 1], such that
Y <α,0 X and X <α,1 Y .

Corollary 2. For all α, β1, β2 ∈ [0, 1] such that β1 < α < β2,
one has that ≤α,β1 6=≤α,β2 .

Proof. It is immediate from Lemma 1 and Prop. 5.

From Prop. 4 and 5, and Lemma 1, it is clear that
≤α1,β1 6=≤α2,β2 , for all α1, α2, β1, β2 ∈ [0, 1] such that
α1 6= β1 and α2 6= β2, except when α1 = α2 = α, β1 < α
and β2 < α or when α1 = α2 = α, α < β1 and α < β2.

Here, we introduce the definition of n-dimensional admis-
sibly ordered interval-valued overlap function.

Definition 10. A function AOn : L([0, 1])n → L([0, 1]) is
an n-dimensional admissibly ordered interval-valued overlap
function for an admissible order ≤AD (n-dimensional ≤AD-
overlap function) if it satisfies the conditions (IOn1), (IOn2)
and (IOn3) of Def. 9 and, for all Y,X1, . . . , Xn ∈ L([0, 1]):
(AOn4) AOn is increasing for ≤AD in the first com-

ponent: X1 ≤AD Y ⇒ AOn(X1, . . . , Xn) ≤AD
AOn(Y,X2, . . . , Xn).

Remark 2. Condition (IOn5) from Def. 9 is not needed as
the continuity was only a requirement in the original definition
of overlap functions in order to enable them to be applied in
image processing [1], which is not the case here. Besides that,
the notion of continuity for admissible orders is still an open
problem, and it is not the focus of this work.

A 2-dimensional ≤AD-overlap function is called ≤AD-
overlap function.

Example 3. Some examples of ≤AD-overlap functions are:
(1) The interval minimum with respect to the order ≤IQ,
defined by

min
≤0.5,0

(X,Y ) =

{
X, if X ≤0.5,0 Y
Y, otherwise

is an ≤0.5,0-overlap function (see Prop. 6);
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(2) The interval product is an n-dimensional ≤1,0-overlap
function, that is, it is increasing with respect to the order
≤Lex2 (see Theorem 2);
(3) For a given α ∈ [0, 1] and OnOB defined in Table I, the
function AOn0.5OB defined by

AOn0.5OB(X1, . . . , Xn) =

[OnOB(K0.5(X1, X1), . . . ,K0.5(Xn, Xn))− 0.5 ·m,
OnOB(K0.5(X1, X1), . . . ,K0.5(Xn, Xn)) + 0.5 ·m],

with

m = min{X1 −X1, . . . , Xn −Xn,

OnOB(K0.5(X1, X1), . . . ,K0.5(Xn, Xn)),

1−OnOB(K0.5(X1, X1), . . . ,K0.5(Xn, Xn))},
is an n-dimensional ≤0.5,1-overlap function (see Theorem 4).

It is immediate that:

Proposition 6. The interval minimum defined, for all X,Y ∈
L([0, 1]), by

min
≤AD

(X,Y ) =

{
X, if X ≤AD Y
Y, otherwise

is an ≤AD-overlap function for any admissible order ≤AD.

The result in Prop. 6 holds for a similarly defined n-
dimensional interval minimum, that is, the function that returns
the least interval from n interval-valued inputs accordingly to
an admissible order ≤AD.

Lemma 2. Let On : [0, 1]n → [0, 1] be an n-dimensional
overlap function. Then, there exists b ∈ (0, 1) such that, for
all a ∈ (0, b), it holds that On(a, 1, . . . , 1) < On(b, 1, . . . , 1).

Proof. By condition (On3) of Def. 7, one has that
On(x, 1, . . . , 1) < 1, for each x ∈ (0, 1), and by (On5),
we have that there exists x0 ∈ (0, 1) such that, for each y ∈
(x0, 1), it holds that On(x0, 1 . . . , 1) < On(y, 1, . . . , 1) < 1.
So, taking b = x0+1

2 we have that, for each a ∈ (0, b), it holds
that On(a, 1, . . . , 1) < On(b, 1, . . . , 1).

Remark 3. Consider X,Y ∈ L([0, 1]). Observe that whenever
X <α,β Y , with X > Y and X+α(X−X) < Y +α(Y −Y ),
then it is immediate that

α <
Y −X

(Y −X)− (Y −X)
. (5)

The following theorem presents an important result regard-
ing o-representable n-dimensional iv-overlap functions and
the conditions for them to be increasing with respect to an
admissible order ≤α,β .

Theorem 3. Let IOn : L([0, 1])n → L([0, 1]) be an o-
representable n-dimensional iv-overlap function and α, β ∈
[0, 1], α 6= β. Then, IOn is ≤α,β-increasing if and only if
α = 1 and IOn+ is a strict n-dimensional overlap function.

Proof. (⇒) Based on Lemma 2, there exists b ∈ (0, 1) such
that for all a ∈ (0, b), IOn+(a, 1, . . . , 1) < IOn+(b, 1, . . . , 1)
holds. Consider α < 1. It is possible to find X,Y ∈ L([0, 1])
such that X <α,β Y, with X < Y < Y < X and X+α(X−

X) < Y +α(Y −Y ). In fact, that is the case when X = [ b4 , b]
and Y = [ b2 ,

b
2−0.9 9 . . . 9︸ ︷︷ ︸

n−times

], for n sufficiently great.

Next, suppose that Z = [0, 1]. Then, it follows
that IOn(X,Z, . . . , Z) = [0, IOn+(X, 1, . . . , 1)] >Pr
[0, IOn+(Y , 1, . . . , 1)] = IOn(Y,Z, . . . , Z). As ≤α,β is an
admissible order, then, one has that IOn(X,Z, . . . , Z) >α,β
IOn(Y,Z, . . . , Z), showing that IOn is not ≤α,β-increasing.
By the contrapositive, if IOn is ≤α,β-increasing then α = 1.

Now, let us suppose that IOn+ is not strict. Then,
there exist x1, . . . , xn, y, z ∈ (0, 1] such that y < z and
IOn+(x1, . . . , xn−1, y) = IO+(x1, . . . , xn−1, z). As IOn is
≤α,β-increasing, one has that α = 1, and thus, by Lemma 1,
IOn is ≤1,0-increasing. Since [y, y] ≤1,0 [0, z], then:

IOn([x1, x1], . . . , [xn−1, xn−1], [y, y]) ≤1,0

IOn([x1, x1], . . . , [xn−1, xn−1], [0, z]).

As IOn is o-representable, one has that

IOn([x1, x1], . . . , [xn−1, xn−1], [y, y]) =

[IOn−(x1, . . . , xn−1, y), IOn
+(x1, . . . , xn−1, y)],

IOn([x1, x1], . . . , [xn−1, xn−1], [0, z]) =

[IOn−(x1, . . . , xn−1, 0), IOn
+(x1, . . . , xn−1, z)].

Since IOn+(x1, . . . , xn−1, y) = IOn+(x1, . . . , xn−1, z), it
follows that:

IOn([x1, x1], . . . , [xn−1, xn−1], [y, y]) ≤1,0

IOn([x1, x1], . . . , [xn−1, xn−1], [0, z])⇔
IOn−(x1, . . . , xn−1, y) ≤ IOn−(x1, . . . , xn−1, 0),

which is a contradiction as IOn−(x1, . . . , xn−1, 0) = 0 and
IOn−(x1, . . . , xn−1, y) > 0, showing that IOn is not ≤α,β-
increasing. Then, if IOn is ≤α,β-increasing then IOn+ must
be a strict n-dimensional overlap function.
(⇐) Consider X1, . . . , Xn−1, [a, b], [c, d] ∈ L([0, 1]) such that
[a, b] ≤1,0 [c, d]. Then, one has the following cases:
(i) a > c and b < d: In this case, one has that [a, b] ⊂ [c, d],
and, thus, by Theorem 2,

IOn(X1, . . . , Xn−1, [a, b]) ⊆ IOn(X1, . . . , Xn, [c, d]).

First, consider Xi 6= [0, 0] for all i ∈ {1, . . . , n}. By Prop. 2,
since IOn+ is a strict overlap function, one has that:

IOn(X1, . . . , Xn−1, [a, b]) = IOn+(X1, . . . , Xn−1, b)

< IOn+(X1, . . . , Xn−1, d) = IOn(X1, . . . , Xn−1, [c, d]).

If Xi=[0, 0] for some i ∈ {1, . . . , n}, then

IOn(X1, . . . , Xn−1, [a, b]) =

IOn(X1, . . . , Xn−1, [c, d]) = [0, 0].

Thus, for any X ∈ L([0, 1]), one concludes that

IOn(X1, . . . , Xn−1, [a, b]) ≤1,0 IOn(X1, . . . , Xn−1, [c, d]).

(ii) b ≤ d and a ≤ c: In this case, [a, b] ≤Pr [c, d], and, thus,

IOn(X1, . . . , Xn−1, [a, b]) ≤Pr IOn(X1, . . . , Xn−1, [c, d]).



1063-6706 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2021.3052342, IEEE
Transactions on Fuzzy Systems

6

Since ≤1,0 is an admissible order, one concludes that

IOn(X1, . . . , Xn−1, [a, b]) ≤1,0 IOn(X1, . . . , Xn−1, [c, d]).

Since IOn is o-representable and IOn+ is a strict overlap
function, then the result follows Lemma 1.

Now, let us show an example to illustrate Theorem 3 with a
specific o-representable n-dimensional ≤AD-overlap function.

Example 4. Let IOnPp be an n-dimensional iv-overlap func-
tion as defined in Example 2, and α, β ∈ [0, 1], α 6= β. As

IOnPp( ~X) =
[
IOn−Pp( ~X), IOn+Pp(

~X)
]

=
[
X1

p · . . . ·Xn
p, X1

p · . . . ·Xn
p
]
,

it is clear that IOn+
Pp is a strict n-dimensional overlap func-

tion. Furthermore, suppose α < 1 and consider Z = [0, 1],
X = [0.1, 0.5], Y = [0.4, 0.4 9 . . . 9︸ ︷︷ ︸

n−times
] , for n > 0, where,

clearly, X < Y and X > Y . Then, there exists a sufficiently
great n such that X <α,β Y , and, by Remark 3, Eq. (5) holds.
However, one has that

IOnPp(X,Z) = [0, 0.5p] >Pr [0, (0.4 9 . . . 9︸ ︷︷ ︸
n−times

)p]

= IOnPp(Y,Z).

As ≤α,β is an admissible order, then, it follows that
IOnPp(X,Z) >α,β IOnPp(Y,Z), showing that IOnPp is
not ≤α,β-increasing. Then, if IOnPp is ≤α,β-increasing then
α = 1. Since IOnPp is o-representable and IOn+

Pp is a strict
n-dimensional overlap function, from Theorem 3 and Lemma
1 one has that IOnPp is ≤1,β-increasing. Thus, IOnPp is
≤α,β-increasing if and only if α = 1.

IV. A CONSTRUCTION METHOD

In this section, we present a construction method to obtain
n-dimensional ≤α,β-overlap functions, with α 6= β, for a given
α and a strict n-dimensional overlap function. For the sake of
simplicity, let us denote Kα(X,X) simply as Kα(X).

Theorem 4. Let On be a strict n-dimensional overlap func-
tion, α ∈ (0, 1) and β ∈ [0, 1] such that α 6= β. Then AOnα :
L([0, 1])n → L([0, 1]) defined, for all ~X ∈ L([0, 1])n, by

AOnα( ~X) = [On(Kα(X1), . . . ,Kα(Xn))− αm,
On(Kα(X1), . . . ,Kα(Xn)) + (1− α)m],

where

m =

min{X1 −X1, . . . , Xn −Xn, On(Kα(X1), . . . ,Kα(Xn)),

1−On(Kα(X1), . . . ,Kα(Xn))},

is an n-dimensional ≤α,β-overlap function.

Proof. Consider α ∈ (0, 1) and β ∈ [0, 1] such that α 6= β.
By Lemma 1 it is sufficient to consider the case β = 0 and
β = 1. Clearly, AOnα is well defined and commutative. Also:

Kα(AOn
α( ~X))

= On(Kα(X1), . . . ,Kα(Xn))− αm
+α(On(Kα(X1), . . . ,Kα(Xn)) + (1− α)m
−On(Kα(X1), . . . ,Kα(Xn)) + αm)

= On(Kα(X1), . . . ,Kα(Xn)).

Furthermore,

K0(AOn
α( ~X)) = On(Kα(X1), . . . ,Kα(Xn))− αm,

K1(AOn
α( ~X)) = On(Kα(X1), . . . ,Kα(Xn)) + (1− α)m.

Now, consider ~X ∈ L([0, 1])n. Then, since α 6= 0,

AOnα( ~X) = [0, 0]

⇔ Kα(AOn
α( ~X)) = 0

⇔ On(Kα(X1), . . . ,Kα(Xn)) = 0

⇔ Kα(Xi) = 0 for some i ∈ {1, . . . , n}
⇔ Xi = [0, 0] for some i ∈ {1, . . . , n}.

Therefore, AOnα satisfies (IOn2).
Consider ~X ∈ L([0, 1])n. Then, since α 6= 1,

AOnα( ~X) = [1, 1]

⇔ Kα(AOn
α( ~X)) = 1

⇔ On(Kα(X1), . . . ,Kα(Xn)) = 1

⇔ Kα(Xi) = 1 for each i ∈ {1, . . . , n}
⇔ Xi = [1, 1] for each i ∈ {1, . . . , n}.

Thus, AOnα satisfies (IOn3). In order to prove that AOnα sat-
isfies (AOn4) for ≤α,0, consider Y <α,0 Z and X ∈ L([0, 1])
such that Kα(X) = 0. Then,

On(Kα(Y ),Kα(X), . . . ,Kα(X)) = 0

= On(Kα(Z),Kα(X), . . . ,Kα(X))

and, therefore,

min{Y − Y ,X −X, . . . ,X −X,
On(Kα(Y ),Kα(X), . . . ,Kα(X)),

1−On(Kα(Y ),Kα(X), . . . ,Kα(X))} = 0

= min{Z − Z,X −X, . . . ,X −X,
On(Kα(Z),Kα(X), . . . ,Kα(X)),

1−On(Kα(Z),Kα(X), . . . ,Kα(X))}.

Hence, AOnα(Y,X, . . . ,X) = [0, 0] = AOnα(Z,X, . . . ,X).
Now take X ∈ L([0, 1]) such that Kα(X) > 0. By

definition, we have the following two cases:

1) Kα(Y ) < Kα(Z). Since On is strict, one has that

On(Kα(Y ),Kα(X), . . . ,Kα(X)) <

On(Kα(Z),Kα(X), . . . ,Kα(X))
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and, therefore,

Kα(AOn
α(Y,X, . . . ,X))

= On(Kα(Y ),Kα(X), . . . ,Kα(X)) <

On(Kα(Z),Kα(X), . . . ,Kα(X))

= Kα(AOn
α(Z,X, . . . ,X)).

So, AOnα(Y,X, . . . ,X) <α,0 AOn
α(Z,X, . . . ,X).

2) Kα(Y ) = Kα(Z) and K0(Y ) < K0(Z). Then, Y <
Z ≤ Z < Y and, therefore Y − Y > Z −Z. Thus, since

On(Kα(Y ),Kα(X), . . . ,Kα(X)) =

On(Kα(Z),Kα(X), . . . ,Kα(X)),

it holds that

m1 = min{Y − Y ,X −X, . . . ,X −X,
On(Kα(Y ),Kα(X), . . . ,Kα(X)),

1−On(Kα(Y ),Kα(X), . . . ,Kα(X))} ≥
min{Z − Z,X −X, . . .X −X,
On(Kα(Z),Kα(X), . . . ,Kα(X)),

1−On(Kα(Z),Kα(X), . . . ,Kα(X))} = m2.

Hence,

Kα(AOn
α(Y,X, . . . ,X))

= On(Kα(Y ),Kα(X), . . . ,Kα(X))

= On(Kα(Z),Kα(X), . . . ,Kα(X))

= Kα(AOn
α(Z,X, . . . ,X)),

and

K0(AOn
α(Y,X, . . . ,X))

= On(Kα(Y ),Kα(X), . . . ,Kα(X))− αm1

≤ On(Kα(Y ),Kα(X), . . . ,Kα(X))− αm2

= On(Kα(Z),Kα(X), . . . ,Kα(X))− αm2

= K0(AOn
α(Z,X, . . . ,X)).

So, AOnα(Y,X, . . . ,X) ≤α,0 AOnα(Z,X, . . . ,X).
Thus, for each α ∈ (0, 1), AOnα is an n-dimensional ≤α,0-

overlap function. The proof that AOnα satisfies (AOn4) for
≤α,1 and α ∈ (0, 1) is obtained analogously.

Now, let us see an example of a ≤α,β order and over-
lap function that do not allow for the construction of an
≤α,β-increasing o-representable iv-overlap function IO, but
in which one can obtain an ≤α,β-overlap function AOα via
the method presented in Theorem 4.

Example 5. Consider the admissible order ≤0.4,0 and be the
overlap function Op : [0, 1]2 → [0, 1] defined, for all x, y ∈
[0, 1], by Op(x, y) = x · y. From Theorem 4, for On = Op:

AOp0.4(X,Y ) = [K0.4(X) ·K0.4(Y )− 0.4 ·m,
K0.4(X) ·K0.4(Y ) + (0.6)m],

where

m = min{X −X,Y − Y ,K0.4(X) ·K0.4(Y ),

1−K0.4(X) ·K0.4(Y )}.

Now, for X = [0, 1], Y = [0.2, 0.2] and Z = [0, 0.4] one
has that Z ≤0.4,0 Y , AOp0.4(X,Z) = [0.0384, 0.1024] and
AOp0.4(X,Z) = [0.08, 0.08], meaning that

Z ≤0.4,0 y ⇔ AOp0.4(X,Z) ≤0.4,0 AOp
0.4(X,Y ),

which is expected for an ≤0.4,0-overlap function.
However, if we try to construct an (admissibly ordered) o-

representable interval-valued overlap function IOp in which
IOp− = IOp+ = Op, one can observe that IOp(X,Z) =
[0, 0.4] and IOp(X,Y ) = [0, 0.2], meaning that Y ≤0.4,0 Z
and IOp(X,Z) >0.4,0 IOp(X,Y ), proving that IOp is not an
≤0.4,0-overlap function. This happens because α 6= 1, which
fails to follow the conditions stated in Theorem 3.

Remark 4. The construction method introduced in Theorem
4 allows us to obtain different n-dimensional ≤α,β-overlap
functions with respect to any ≤α,β order. Thus, its adaptability
allows for it to be employed in various applications with
different approaches to the ranking of intervals, determined
by the choice of different α and β.

Remark 5. As stated in Theorem 4, the n-dimensional overlap
function that is the core of the construction method must
be strict. Yet, this requirement does not present itself as a
hindrance, as most n-dimensional overlap functions are, in
fact, strict. One notable exception is the minimum operator.
However, the interval minimum as show in Prop. 6 is an ≤AD-
overlap function for any admissible order ≤AD, and turns out
to be a more suitable interval representation of the minimum.

Remark 6. It is noteworthy that the width of the resulting
interval when applying AOnα is given by

m = min{X1 −X1, . . . , Xn −Xn,

On(Kα(X1), . . . ,Kα(Xn)),

1−On(Kα(X1), . . . ,Kα(Xn))}.

Thus, AOnα is a width-preserving operation, as the resulting
interval will never be wider than any of the aggregated inputs,
which is a desirable property in many applications. On the
other hand, by the way m is defined, if at least one of the
aggregated intervals is degenerate, than the resulting interval
when applying AOnα will also be degenerate.

V. ANALYSIS OF THE INFLUENCE OF THE STUDIED
CONCEPTS IN IV-FRBCSS

The objective of this section is to analyze the behaviour
of different admissible orders and n-dimensional (admissibly
ordered) iv-overlap functions applied on the interval-valued
fuzzy reasoning method (IV-FRM) of an IV-FRBCS. In order
to do that, first we are going to review the main points of
FRBCSs and IV-FRBCSs, highlighting the steps where we
apply our new theoretical results.

A. Interval-Valued Fuzzy Rule-based Classification Systems

A classification problem is composed by P training exam-
ples ~xp = (xp1, . . . , xpn), p ∈ {1, . . . , P} where xpi is the
value of the i-th variable of the p-th example. Each example
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belongs to one of M classes in C={C1, . . . , CM}. The learned
classifier aims to identify the class of new testing examples.

FRBCSs are one most frequently adopted technique to deal
with classification problems. They provide a good balance
between accuracy and interpretability, since the antecedents of
their rules are composed of linguistic labels, while still pro-
viding accurate results [44]. We adopt the following structure
for the fuzzy rules:

RuleRj : Ifx1 isAj1 and . . . andxn isAjn (6)
thenClass = C ′j withRWj ,

where Rj is the label of the j-th rule, x = (x1, . . . , xn) is an n-
dimensional example vector, Aji is the fuzzy set representing
the linguistic term of the j-th rule in the i-th antecedent, C ′j ∈
C is a class label, and RWj ∈ [0, 1] is the rule weight [55].
Specifically, we consider the computation of the rule weight
using the fuzzy confidence value or certainty factor, given by:

RWj =

∑
xp∈C′j Aj(xp)∑P
p=1Aj(xp)

, (7)

where Aj(xp) is the matching degree of the pattern xp with
the antecedent part of the fuzzy rule Rj , computed as

Aj(xp) = c(Aj1(xp1), · · · , Ajn(xpn)), (8)

where c is an n-dimensional conjunction operator and j ∈
{1, . . . , L}.

IV-FRBCSs are FRBCSs where some of the linguistic labels
(or all of them) are modelled using IVFSs. Furthermore, the
FRM must work with intervals instead of numbers to take
into account the degree of uncertainty throughout the whole
inference process (see Section V-B).

B. New Interval-valued Fuzzy Reasoning Method

In this paper, we apply our new theoretical results in the
IVTURS algorithm1, which is a state of the art IV-FRBCS. Its
learning process is composed of three steps:
1) To build an IV-FRBCS. This step involves the following
tasks:
• The generation of an initial FRBCS by applying FARC-
HD [56], whose first learning stage is based on the Apriori
algorithm [57] that builds fuzzy rules using the support and
confidence (Eq. (7)). In this process, the product t-norm is
usually used as the conjunction operator c in Eq. (8). In this
present paper, we propose to replace the product t-norm by
different n-dimensional overlap functions On. Those functions
are considered in the construction of the n-dimensional (ad-
missibly ordered) iv-overlap functions used in the IV-FRM
(described in the sequence). This change is important because
in this manner we can learn different fuzzy rules (resulting in
different IV-FRBCSs) depending on the function On.
• Modelling the linguistic labels of the learned FRBCS by
means of IVFSs;
• The generation of an initial IV-REF for each variable of the
problem.
2) To apply an optimization approach with a double purpose:

1For an in-depth look at each step of the IVTURS algorithm, see [43].

• To learn the best values of the IV-REFs’ parameters;
• To apply a rule selection process in order to decrease the
system’s complexity.

Once the interval-valued fuzzy rules composing the system
have been created, let us modify the mechanism for classifying
new examples. Thus, let ~xp = (xp1, . . . , xpn) be a new
example to be classified, L being the number of rules in the
rule base and M being the number of classes of the problem.
The steps of the new IV-FRM are the following:
(1) Interval matching degree: It represents the strength of
the activation of the if-part of the rules for each xp. We
use an IV-REF IR to compute the similarity between the
interval membership degrees (of each variable of the pat-
tern to the corresponding IVFS) and the ideal membership
degree [1, 1], and then, we apply an interval-valued function
FO : L([0, 1])n → L([0, 1]), for j ∈ {1, ..., L} as follows:
[
Aj(xp),Aj(xp)

]
=

FO

(
IR
([
Aj1(xp1),Aj1(xp1)

]
, [1, 1]

)
, . . . ,

IR
([
Ajn(xpn),Ajn(xpn)

]
, [1, 1]

))
,

with FO being an interval conjunction operator that can be
defined in two different ways:
a) IOn, an o-representable n-dimensional iv-overlap function;
b) AOnα, an n-dimensional ≤α,β-overlap function, with ≤α,β
being the same order applied in Step (4) of the IV-FRM.

As we have mentioned previously, FO is defined based
on the n-dimensional overlap function On applied as the
conjunction operator when generating the initial FRBCS.
(2) Interval association degree: For the class of each rule, the
interval matching degree is weighted with the corresponding
iv-rule weight IRW k

j ∈ L([0, 1]), through an interval-valued
function FP : L([0, 1])n → L([0, 1]), resulting in:
[
bkj , b

k
j

]
= FP

([
Aj(xp),Aj(xp)

]
,
[
IRW k

j , IRW
k
j

])
, (9)

with k = 1, . . . ,M , j = 1, . . . , L and FP being defined
according to the function FO applied to obtain the interval
matching degree in Step (1), resulting in two possibilities:
a) If FO = IOn, then FP = IOnP = ÔnP (representable
interval product overlap), with Onp shown in Table I;
b) If FO = AOnα, then FP = AOnαP (admissibly or-
dered interval product overlap), with AOnαP being an n-
dimensional ≤α,β-overlap function defined through the con-
struction method presented in Theorem. 4 considering Onp as
shown in Table I and the same α as the one in the chosen
≤α,β order to be applied in Step (4) of the IV-FRM.

For the rule weight, we utilize the interval-valued confidence
value as in [58]. The resulting equation is shown as follows:

IRWj =

∑

xp∈C′j

[
Aj(xp),Aj(xp)

]
÷H

P∑

p=1

[
Aj(xp),Aj(xp)

]
.

(3) Interval pattern classification soundness degree for all
classes: We aggregate the interval association degrees of each
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class (obtained in Step (2)) in which the upper bound is greater
than 0 by applying an interval-valued aggregation function IA:

[
Yk, Yk

]
= IA

([
bkj , b

k
j

]
, j = 1, . . . , L and bkj > 0

)
,

with k = 1, . . . ,M .
(4) Classification: A decision function F is applied over
the interval soundness degree of the system for the pattern
classification for all classes, given by:

F
([
Y1, Y1

]
, . . . ,

[
YM , YM

])
= arg max

k=1,...,M

([
Yk, Yk

])
.

The last step of the IV-FRM consists of selecting the
maximum interval soundness degree. To avoid a stalemate,
the usage of a total order for intervals is preferred in this step.
So, we use an admissible order ≤α,β as defined in Def. 5.

One can observe that there are many possibilities of configu-
ration of this new IV-FRM, based on the chosen functions FO,
FP and the admissible order ≤α,β . However, as some of those
choices are interconnected, we first decide on the admissible
order ≤α,β to be used in Step (4), as it determines the α
applied in the construction of the n-dimensional ≤α,β-overlap
functions when FO = AOnα and FP = AOnαP .

Notice that the interval-valued function FO plays a key
role because it determines the choice of: 1) the n-dimensional
overlap function On used in the rule learning process; 2) the
interval-valued function FP used in Step (2) of the IV-FRM.

C. Experimental Framework

To analyze the behaviour of a classification system when
applying different n-dimensional (admissibly ordered) iv-
overlap functions and different admissible orders, we have
selected 31 real-world data-sets from the KEEL reposi-
tory [59], which are publicly available on the webpage
(http://www.keel.es/dataset.php). Table II summarizes the
properties of the selected data-sets, showing for each data-
set the number of attributes (Atts.), the number of examples
(Ex.), and the number of classes (Class.). We must point out
that the magic, page-blocks, penbased, ring, satimage, shuttle,
and twonorm data-sets have been stratified sampled at 10%
in order to improve the learning process efficiency. Missing
values from bands, cleaveland and wisconsin data-sets have
been removed before the experimentation.

A fivefold cross-validation model has been applied in order
to carry out the different experiments. This was done by split-
ting the data-set into five random partitions of data, employing
a combination of four of them (80%) to train the system and
the remaining one (20%) to test it. This process is carried out
5 times, changing the testing partition in each iteration. The
performance measure was done through the accuracy rate.

The set-up of the IVTURS classifier is as recommended in
[43], but we apply our new theoretical developments described
in Sections V-A and V-B. We study the behaviour of the
classifier using several combinations of the new theoretical
concepts, as shown in Table III. Looking at Table III, we can
clearly observe that the interval-valued conjunction operator
(FO) used in Step (1) the IV-FRM determines the overlap
function (On) used when generating the initial fuzzy rules

TABLE II: Summary of the employed datasets

id Data-set Atts. Ex. Class.
app appendicitis 7 106 2
bal balance 4 625 3
ban banana 2 5300 2
bds bands 19 365 2
bup bupa 6 345 2
clv cleveland 13 297 5
con contraceptive 9 1473 3
eco ecoli 7 336 8
gla glass 9 214 7
hab haberman 3 306 2
hay hayes-hoth 4 160 3
ion ionosphere 33 351 2
iri iris 4 150 3
led led7digit 7 500 10
mag magic 10 19020 2
new newthyroid 5 215 3
pag pageblocks 10 5472 5
pen penbased 16 10992 10
pho phoneme 5 5404 2
pim pima 8 768 2
rin ring 20 7400 2
sah saheart 9 462 2
sat satimage 36 6435 7
shu shuttle 9 58000 7
spe spectfheart 44 267 2
tit titanic 3 2201 2
two twonorm 20 7400 2
veh vehicle 18 846 4
win wine 13 178 3
wis wisconsin 9 683 2
yea yeast 8 1484 10

TABLE III: Configuration schemes for the used classifiers

Classifier identifier On FO FP

REP-Prod OnP IOnP = ÔnP IOnP = ÔnP

REP-Min OnM IOnM = ÔnM IOnP = ÔnP

REP-Hp OnHp IOnHp = ÔnHp IOnP = ÔnP

REP-OB OnOB IOnOB = ÔnOB IOnP = ÔnP

REP-Gm OnGm IOnGm = ÔnGm IOnP = ÔnP

REP-Hm OnHm IOnHm = ÔnHm IOnP = ÔnP

ADM-Prod OnP AOnαP FP = AOnαP

ADM-Min OnM min≤α,β AOnαP

ADM-Hp OnHp AOnαHp AOnαP

ADM-OB OnOB AOnαOB AOnαP

ADM-Gm OnGm AOnαGm AOnαP

ADM-Hm OnHm AOnαHm AOnαP

as well as the interval product (FP ) used in the Step (2) of
the IV-FRM. We must point out in the case of ADM-Min,
min≤α,β is simply the n-dimensional interval minimum with
respect to the ≤α,β order at hand, as in Def. 6. Finally, for
each combination we check the influence of the admissible
order used in Step (4) of the IV-FRM. Specifically, we test
three linear orders for intervals: ≤Lex1 (α = 0, β = 1), ≤IQ
(α = 0.5, 0) and ≤Lex2 (α = 1, β = 0)2.

To give statistical support to our analysis, we use the aligned
Friedman ranks test [60] to detect statistical differences among
a group of results and report the obtained ranks of each method
(with lower ranks being preferable). Next, we apply the Holm’s
post-hoc test [61] to compare the best ranking method with
the other considered methods. Finally, we apply a Wilcoxon

2To respect Theorem 4, in all experiments with ADM classifiers we consider
α = 0 + 1−10 and α = 1− 1−10, for ≤Lex1 and ≤Lex2, respectively.
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TABLE IV: Results in testing for the different methods

Method ≤Lex1 ≤IQ ≤Lex2
REP-Prod 78.96 79.67 79.17

REP-Min 78.92 79.52 79.51

REP-Hp 79.08 79.34 79.35

REP-OB 79.00 79.83 79.33

REP-Gm 79.14 79.48 79.57

REP-Hm 79.19 79.39 79.41

ADM-Prod 79.49 79.14 79.19

ADM-Min 79.22 79.39 79.40

ADM-Hp 79.28 79.47 79.54

ADM-OB 79.25 79.57 79.64

ADM-Gm 79.17 79.93 79.49

ADM-Hm 78.93 79.23 79.16

Signed-Ranks test [62] in order to do pairwise comparisons.
This selection of tests is suggested in [63], where it is shown
that its use in machine learning is highly recommended.

D. Discussion of the Results

In Table IV we show the averaged results in testing for
all the possible combinations among the three orders (by
columns) and the configurations shown in Table III (by rows).
The result we show is the averaged behaviour of the system in
the 31 datasets considered in the study. For each admissible
order, we highlight in bold face the best result, that is, the
best n-dimensional (admissibly ordered) overlap function. The
detailed results, that is, the results in all the datasets (in all
the partitions) for all the combinations can be queried on the
webpage (https://github.com/tiagoasmus/TestingResults-Adm-
Overlaps/find/master?q=).

By looking at the highlighted results in Table IV, we see
that, for each admissible order, the best performing configura-
tion of the algorithm (regarding the global mean) was based on
an ≤AD-overlap function (ADM-Prod, ADM-Gm and ADM-
OB). Furthermore, it appears that both the admissible order
and the (interval-valued) conjunction operators have an impact
on the accuracy obtained by each classifier.

In first place we studied if there are differences in the accu-
racy for a given method when we vary the chosen admissible
order. In order to do so, we applied the aligned test to compare
the three total orders for each configuration. The obtained
ranks, as well as the Adjusted P-Values (APVs, presented in
brackets) provided by the Holm’s post hoc test are shown in
Table V, where we have highlighted in bold-face the best rank
(the least one) and we have stressed with an asterisk (*) those
cases in which there are statistical differences (using α = 0.05)
between the control method (the one associated with the best
rank) and the method in the corresponding total order.

From the results in Table V, one can observe:
1) The order ≤Lex1 is the control method for only one
configuration (ADM-Prod), being the worst ranking method in
most cases, with statistical differences in several comparisons;
2) Although the order ≤Lex2 is considered the control method
in six configurations, in all those cases there are no significant

TABLE V: Average Rankings of the algorithms (Aligned
Friedman) - Comparing ≤α,β orders

Method ≤Lex1 ≤IQ ≤Lex2
REP-Prod 55.16 (0.011)* 36.11 (-) 49.73 (0.047)*

REP-Min 57.94 (0.033)* 41.55 (0.996) 41.52 (-)

REP-Hp 52.29 (0.466) 44.60 (0.944) 44.11 (-)

REP-OB 57.81 (0.001)* 33.73 (-) 49.47 (0.022)*

REP-Gm 56.24 (0.065) 41.60 (-) 43.16 (0.819)

REP-Hm 51.32 (0.567) 45.71 (0.799) 43.9677 (-)

ADM-Prod 43.05 (-) 48.95 (0.771) 49.00 (0.771)

ADM-Min 47.11 (1.000) 48.61 (1.000) 45.27 (-)

ADM-Hp 49.69 (0.9230) 46.66 (0.9230) 44.65 (-)

ADM-OB 52.58 (0.4129) 44.50 (0.9325) 43.92 (-)

ADM-Gm 57.95 (0.002)* 35.13 (-) 47.92 (0.062)

ADM-Hm 45.00 (0.079) 40.89 (-) 45.11 (0.538)

TABLE VI: Average Rankings of the algorithms (Aligned
Friedman)

Group REP Group ADM
Method Rank APV Method Rank APV
REP-Prod 84.82 0.453 ADM-Prod 100.74 0.186

REP-Min 98.24 0.250 ADM-Min 99.02 0.187

REP-Hp 104.61 0.112 ADM-Hp 97.03 0.187

REP-OB 74.57 - ADM-OB 87.65 0.302

REP-Gm 92.11 0.399 ADM-Gm 73.52 -

REP-Hm 106.65 0.095 ADM-Hm 103.05 0.154

differences with respect to the order ≤IQ, with both orders
presenting similar ranks;
3) The order ≤IQ is the control method in five configurations,
and in two of those cases, it presents statistical differences
versus ≤Lex2 (and a low APV for ADM-Gm). Furthermore, it
produces comparable results with the other orders even when
it is not the control method.

In summary, we can conclude that ≤Lex1 is not a suitable
choice and ≤IQ is providing a robust behaviour regardless of
the configuration. For these reasons, we decided to investigate
the behaviour of our classifiers by varying the n-dimensional
(admissibly ordered) iv-overlap functions used in the IV-FRM,
taking in consideration the admissible order ≤IQ.

To do it, we divided the methods into two groups, based
on the interval conjunction operator (FO) applied in Step (1)
of the IV-FRM: representable (REP) and admissibly ordered
(ADM) n-dimensional iv-overlap functions. We applied the
Aligned Friedman and Holm’s tests to compare the six n-
dimensional (admissibly ordered) iv-overlap function belong-
ing to each group. The results obtained for the functions of
groups REP and ADM are shown in Tables VI, with the best
ranking method in each group highlighted in bold-face.

From the results presented in Table VI, one can observe:
1) The behaviours of the representable n-dimensional iv-
overlap functions are similar, but REP-OB seems to be the
best option among its group;
2) Though there are not statistical differences among the n-
dimensional admissibly ordered iv-overlap functions, ADM-
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TABLE VII: Pairwise comparisons via Wilcoxon test

Comparison R+ R− p-value
REP-OB vs ADM-Gm 230 266 0.649

REP-Prod vs ADM-Gm 195 301 0.285

Gm stands out as it obtains low APVs versus the remained
functions in its group, except for ADM-OB.

An interesting observation is that both control methods
(REP-OB and ADM-Gm) and their respective interval con-
junction operations (IOnOB and AOn0.5Gm) are based on
non-associative operations (OB overlap and geometric mean),
pointing out that n-dimensional overlap functions and their
interval extensions are suitable to be applied in IV-FRBCS.

Next, we carry out a pairwise comparison between the
two representatives of each group (control methods), using
the Wilcoxon test. We also compare the best performing
method overall (ADM-Gm) with the original IVTURS (which
is obtained using the REP-Prod configuration and the order
≤IQ). The results for of these two last pairwise comparisons
can be seen in Table VII.

As first indicated by the global means and afterwards
confirmed by the statistical analysis, the combination of the
admissible order ≤IQ and the n-dimensional ≤IQ-overlap
function AOn0.5Gm in the ADM-Gm method produces the most
accurate classification results. It does not statistically improve
the performance over all other configurations, but in the light
of the obtained results, we can recommend it as the best option
for this type of IV-FRBCS.

VI. CONCLUSION

In this paper, we presented new results regarding admissible
orders and defined the concept of n-dimensional admissibly
ordered interval-valued overlap functions. A width-preserving
construction method for this type of function for a given
admissible order was also presented, which allowed us to
define different n-dimensional ≤AD-overlap functions to be
applied in the IV-FRM of IVTURS.

On the application side, our experimentation made clear the
impact of the chosen admissible order on IV-FRBCSs, with the
order ≤IQ presenting itself as the most robust one. We also
conclude that n-dimensional (admissibly ordered) interval-
valued overlap functions, particularly the non-associative ones,
are recommended to be applied on the IV-FRM of an IV-
FRBCSs, with a special mention to the n-dimensional ≤IQ-
overlap function AOn0.5Gm.

All of the aforementioned contributions aimed to address:
(i) the theoretical and applied gap in the literature regarding
the configuration possibilities of IV-FRBCSs; (ii) the charac-
teristics of the applied interval-valued functions and related
interval orders.

As future work, we intend to further research on the effect of
different n-dimensional interval-valued aggregation functions
(such as the ones studied in this paper) in the interval pattern
classification soundness degree for all classes (Step (3) of
the IV-FRM). Particularly, the relation between such interval
functions applied in this third stage and the admissible orders

chosen for the decision making in the classification phase (last
stage of the IV-FRM).
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and A. Pradera, “Overlap indices: Construction of and application to
interpolative fuzzy systems,” IEEE Transactions on Fuzzy Systems,
vol. 23, no. 4, pp. 1259–1273, Aug 2015.



1063-6706 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2021.3052342, IEEE
Transactions on Fuzzy Systems

12

[21] D. H. Nolasco, F. B. Costa, E. S. Palmeira, D. K. Alves, B. R. Bedregal,
T. O. Rocha, R. L. Ribeiro, and J. C. Silva, “Wavelet-fuzzy power quality
diagnosis system with inference method based on overlap functions:
Case study in an AC microgrid,” Engineering Applications of Artificial
Intelligence, vol. 85, pp. 284 – 294, 2019.

[22] S. Garcia-Jimenez, A. Jurio, M. Pagola, L. D. Miguel, E. Barrenechea,
and H. Bustince, “Forest fire detection: A fuzzy system approach based
on overlap indices,” Applied Soft Comp., vol. 52, pp. 834 – 842, 2017.

[23] G. P. Dimuro, J. Fernández, B. Bedregal, R. Mesiar, J. A. Sanz, G. Lucca,
and H. Bustince, “The state-of-art of the generalizations of the Choquet
integral: From aggregation and pre-aggregation to ordered directionally
monotone functions,” Information Fusion, vol. 57, pp. 27 – 43, 2020.

[24] G. P. Dimuro, G. Lucca, B. Bedregal, R. Mesiar, J. A. Sanz, C.-T.
Lin, and H. Bustince, “Generalized CF1F2-integrals: From Choquet-
like aggregation to ordered directionally monotone functions,” Fuzzy
Sets and Systems, vol. 378, pp. 44 – 67, 2020.

[25] G. Lucca, G. P. Dimuro, J. Fernández, H. Bustince, B. Bedregal, and
J. A. Sanz, “Improving the performance of fuzzy rule-based classifi-
cation systems based on a nonaveraging generalization of CC-integrals
named CF1F2

-integrals,” IEEE Transactions on Fuzzy Systems, vol. 27,
no. 1, pp. 124–134, Jan 2019.

[26] G. Lucca, J. A. Sanz, G. P. Dimuro, B. Bedregal, and H. Bustince, “A
proposal for tuning the α parameter in CαC-integrals for application in
fuzzy rule-based classification systems,” Natural Computing., vol. 19,
pp. 533–546, 2020.

[27] G. Lucca, J. A. Sanz, G. P. Dimuro, B. Bedregal, H. Bustince, and
R. Mesiar, “CF-integrals: A new family of pre-aggregation functions
with application to fuzzy rule-based classification systems,” Information
Sciences, vol. 435, pp. 94 – 110, 2018.

[28] M. Elkano, M. Galar, J. Sanz, A. Fernández, E. Barrenechea, F. Her-
rera, and H. Bustince, “Enhancing multi-class classification in FARC-
HD fuzzy classifier: On the synergy between n-dimensional overlap
functions and decomposition strategies,” IEEE Transactions on Fuzzy
Systems, vol. 23, no. 5, pp. 1562–1580, 2015.
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[59] J. Alcalá-Fdez, L. Sánchez, S. Garcı́a, M. Jesus, S. Ventura, J. Garrell,
J. Otero, C. Romero, J. Bacardit, V. Rivas, J. Fernández, and F. Herrera,
“KEEL: a software tool to assess evolutionary algorithms for data mining
problems,” Soft Computing, vol. 13, no. 3, pp. 307–318, 2009.

[60] J. L. Hodges and E. L. Lehmann, “Ranks methods for combination of in-
dependent experiments in analysis of variance,” Annals of Mathematical
Statistics, vol. 33, pp. 482–497, 1962.

[61] S. Holm, “A simple sequentially rejective multiple test procedure,”
Scandinavian Journal of Statistics, vol. 6, pp. 65–70, 1979.

[62] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics,
vol. 1, pp. 80–83, 1945.

[63] S. Garcı́a, A. Fernández, J. Luengo, and F. Herrera, “A study of statis-
tical techniques and performance measures for genetics–based machine
learning: Accuracy and interpretability,” Soft Computing, vol. 13, no. 10,
pp. 959–977, 2009.



1063-6706 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2021.3052342, IEEE
Transactions on Fuzzy Systems

13

Tiago da Cruz Asmus received the M.Sc. de-
gree in computational modelling from the Univer-
sidade Federal do Rio Grande, Brazil. In 2014,
he became an Assistant Teacher in Departamento
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