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Abstract homogeneous functions and
consistently influenced/disturbed

multi-expert decision making
Regivan Santiago, Benjamı́n Bedregal, Graçaliz P. Dimuro,

Javier Fernandez, Humberto Bustince and Habib M. Fardoun

Abstract—In this paper we propose a new generalization for
the notion of homogeneous functions. We show some properties
and how it appears in some scenarios. Finally we show how this
generalization can be used in order to provide a new paradigm
for decision making theory called consistent influenced/disturbed
decision making. In order to illustrate the applicability of this
new paradigm, we provide a toy example.

Index Terms—Homogeneity, abstract homogeneity, consis-
tently influenced/disturbed decision making, aggregations, pre-
aggregations.

I. INTRODUCTION

HOMOGENEITY is an analytical property that has been
investigated for a very long time [1], [2], [3], [4], [5],

[6] and continues to be a subject under investigation.
“Homogeneity is a certain invariance of an object

(a function, a set, etc.) with respect to a class
of transformations called dilations. All linear and
a lot of essentially nonlinear models of mathe-
matical physics are homogeneous (symmetric) in
some sense. Homogeneous models can be utilized
as local approximations of dynamical systems if,
for example, linearisation is too conservative, non-
informative, or simply impossible” [7, p. vii]

Homogeneity has been applied in several areas such as:
image processing [29], classification [13], [30], control [7],
economy [31], [32] and others. It is not difficult to see its
broad application, since every linear function is homogeneous.
In fusion procedures, the homogeneity of degree one implies
that contracting all the inputs by the same factor λ is equivalent
to contracting the output by λ – see [33]. In image processing
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de Informática e Matemática Aplicada — DIMAp at Universidade
Federal do Rio Grande do Norte, Natal, RN, Brazil, email:
regivan,bedregal@dimap.ufrn.br
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Matemáticas at Universidad Publica de Navarra (UPNA), Pamplona-Spain,
email: fcojavier.fernandez@unavarra.es

Humberto Bustince is with Departamento Departamento de Estadı́stica,
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the output image of an homogeneous operator of degree one
remains proportional to the intensities of the pixels of the
considered image, even if it is lightened or darkened [34].

As far as we know, the first generalization of homogeneity
is due to Ebanks [8] in 1998. He has introduced the notion
of quasi-homogeneity of associative functions, studying, in
particular, the case of t-norms [9]. This concept was also
investigated by G. Mayor et al [10], in the context of cop-
ulas [11]. Since then, homogeneity was studied in several
forms. Recently, Su et al. [12] studied the characterization
of all homogeneous/quasi-homogeneous binary aggregation
functions in terms of single-argument functions.

In the context of overlap and grouping functions [13],
[14], for example, Qiao and Hu [15] introduced the con-
cept of pseudo-homogeneous overlap and grouping functions,
which can be regarded as the generalizations of the con-
cepts of homogeneous and quasi-homogenous overlap and
grouping functions. Wang and Hu [16] studied the con-
cept of (α,B,C)-homogeneity, (B,C)-homogeneity and B-
homogeneity of overlap/grouping functions obtained by gener-
ator triples, where B,C : L2 → L are operators on a complete
lattice L and α ∈ L. In fact, in the literature, one can find
several works concerning the study of the homogeneity related
to overlap and grouping functions, as in the works by Dimuro
et al. [14], [17], [18], who studied the homogeneity property
in general and consider the influence of the homogeneity for
the overlap functions derived from the distortion of a positive
continuous t-norm (t-conorm) by a pseudo-automorphism, in
terms of their additive generator pairs.

Boczek et al. [19] studies some problems concerning the
distributivity equation related to minitive and maxitive homo-
geneity of the upper n-Sugeno integral. Boczek and Kaluszka
[20] presented the S-homogeneity property of seminormed
fuzzy integral, answering to an open problem. Mesiar et al.
[21] presented the generalized Choquet integral by means of
fusion functions satisfying some requirements and studied the
homogeneity property. Bustince et al. [22] introduced the con-
cept of d-Choquet integral (the Choquet integral generalized by
restricted dissimilarity functions) and study the homogeneity
property in this context.

Lima et al. In [23] studied the pseudo-homogeneity of t-
subnorms and, in [24], Lima et al. introduced the concept of
h-pseudo homogeneity discussing this notion on some classes
of nullnorms. Amarante [25] studied the positive homogeneity
of Mm-OWA operators, proposed as generalization of OWA
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operators. In [26], Jurio et al. constructed weak homogeneity
from a kind of interval homogeneity, in order to apply this
concept to image segmentation.

Concerning interval-valued contexts, Lima et al. [27] in-
troduced an interval extension of homogeneous and pseudo-
homogeneous t-norms and t-conorms. Bedregal et al. [28]
introduced interval-valued overlap functions and generalized
interval-valued OWA operators with interval weights derived
from them, studying the homogeneity property.

In this paper we propose a novel generalization of homo-
geneity, which differs from the works in the literature by
providing more flexibility in the choice of its parameters. We
show that this generalization occurs in many fields, for exam-
ple in areas like fuzzy connectives and weak non-decreasing
functions [35], [36]. We investigate some properties of this
generalization and how it relates with known concepts. Finally,
we show how it can be used to propose a new paradigm for de-
cision making theory, called consistently influenced/disturbed
decision making.

The structure of this paper is as follows. In section II we
recall some basic concepts and results that will be of interest
for the remainder of this paper. Section III is devoted to review
the notion of homogeneity. Our definition of abstract homo-
geneity and the verification of some properties are provided in
sections IV and V. In section VI we investigate the relation of
abstract homogeneity with aggregation functions. In section
VII we propose the use of abstract homogeneous functions
in multi-expert decision making as the basis to formalize
the notion of consistently influenced/disturbed multi-expert
decision making. We finish the paper with some final remarks
and a list of references.

II. NOTATION AND PRELIMINARIES

In this section we review some basic concepts and notations
that are used in this paper. Sometimes we use the following
vector notations: ~x for (x1, . . . , xn), ~0 for (0, . . . , 0) and ~1 for
(1, . . . , 1).

A. Automorphisms and Fuzzy negations

Definition 1 [37], [38] A function ϕ : [0, 1] → [0, 1] is said
to be an automorphism on [0, 1] whenever it is continuous,
strictly increasing, ϕ(0) = 0 and ϕ(1) = 1. Given functions
f, g : [0, 1]n → [0, 1], g is the conjugated of f if there is
an automorphism ϕ such that g = fϕ and fϕ(x1, . . . , xn) =
ϕ−1(f(ϕ(x1), . . . , ϕ(xn))).

Definition 2 [39], [40] A function N : [0, 1] → [0, 1] is
called fuzzy negation if : (N1) N is decreasing and (N2)
N(0) = 1 and N(1) = 0. If N(N(x)) = x, then N is called
strong. Given a function f , the application: fN (x1, . . . , xn) =
N(f(N(x1), . . . , N(xn))) is called the N -dual of f .

The function NZ(x) = 1 − x is generally called standard
negation or Zadeh negation. It is a strong negation.

Theorem 3 [41] A function N : [0, 1] → [0, 1] is a strong
negation if and only if there exists an automorphism ϕ such
that N(x) = ϕ−1(NZ(ϕ(x))).

B. Aggregation and Pre-Aggregation Functions

We recall the notion of aggregation functions [42], [43],
[44], [45]; t-norms/t-conorms [9]; overlap/grouping functions
[13], [14], [17], [18], [29], [34], [46], [47], [48]; weak [35],
[36] and directional [49] monotonicity; and pre-aggregation
functions [50], [51].

Remark 4 In what follows we assume: (1) N+ = N\{0} and
(2) for any function f : A → B and S ⊆ A, the restriction
of f to S is the function f � S : S → B, such that for all
x ∈ S,

(
f � S

)
(x) = f(x).

Definition 5 An increasing n-ary function A : [0, 1]n →
[0, 1], n ≥ 1, is called aggregation if A(~0) = 0 and
A(~1) = 1. It is averaging (or a mean) if for every ~x ∈ [0, 1]n,
min(~x) ≤ A(~x) ≤ max(~x). We denote by An the set of
all n-ary aggregation functions. An extended aggregation is
a function A :

⋃
n∈N+

[0, 1]n → [0, 1] such that for every n ≥ 1,

the restriction A(n) =
(
A � [0, 1]n

)
is also an aggregation,

with the convention A(x) = x for n = 1.

Example 6 The arithmetic mean: M(~x) = 1
n

n∑
i=1

xi and the

geometric mean: G1(~x) = (Πn
i=1xi)

1
n are averaging aggre-

gations.

Note that every averaging aggregation function is idempo-
tent.

Definition 7 An associative and commutative bivariate ag-
gregation function A : [0, 1]2 → [0, 1] is called a t-norm
whenever A(x, 1) = x. On the other hand, it is called a t-
conorm whenever A(x, 0) = x.

The minimum, the product and the Łukasiewicz conjunction
defined, respectively, by: TM (x, y) = min{x, y}, TP (x, y) =
x · y, and TŁ(x, y) = max{x + y − 1, 0} are examples
of t-norms. Examples of t-conorms are: the maximum, the
probabilistic sum and the Łukasiewicz disjunction, defined
by: SM (x, y) = max{x, y}, SP (x, y) = x + y − xy, and
SŁ(x, y) = min{x+ y, 1}, respectively.

Definition 8 [52], [53], [54], [55] A fuzzy implication is a
bivariate function I : [0, 1]2 → [0, 1] such that: (I1) if x ≤ y,
then I(y, z) ≤ I(x, z); (I2) if y ≤ z, then I(x, y) ≤ I(x, z);
(I3) I(0, 0) = 1; (I4) I(1, 1) = 1; and (I5) I(1, 0) = 0.

Example 9
1) IŁ(x, y) = min(1, 1− x+ y)
2)

IG(x, y) =

{
1 , if x ≤ y
y
x , otherwise

Definition 10 [13], [48], [56] An overlap function is a bivari-
ate function O : [0, 1]2 → [0, 1], such that for all x, y ∈ [0, 1]:
(O1) O(x, y) = O(y, x); (O2) O(x, y) = 0 if and only if
x · y = 0; (O3) O(x, y) = 1 if and only if x = y = 1; (O4) O
is increasing; and (O5) O is continuous.
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Example 11 O(x, y) = xp · yp, for p > 0.

Definition 12 A grouping is a bivariate function G : [0, 1]2 →
[0, 1] such that for all x, y ∈ [0, 1]: (G1) G(x, y) = G(y, x);
(G2) G(x, y) = 0 if and only if x = y = 0; (G3) G(x, y) = 1
if and only if x = 1 or y = 1; (G4) G is increasing; and (G5)
G is continuous.

Example 13 G(x, y) = 1−
√

(1− x)(1− y).

Definition 14 Given a grouping function G (res. an overlap
O) and a pair of continuous negations N1 and N2, s.t.
Ni(x) = 0 iff x = 1 and dually Ni(x) = 1 iff x = 0. The
function GN1,N2

= N1(G(N2(x), N2(y))) is called the dual
grouping (res. overlap) with respect to N1 and N2.

Example 15 Let O(x, y) =
√
x · y, then G(x, y) =

ONZ ,NZ (x, y) = NZ(O(NZ(x), NZ(y))) = 1 −√
(1− x)(1− y).

Definition 16 [35], [36] A function F : [0, 1]n → [0, 1] is
weakly increasing if for all points (x1, . . . , xn) ∈ [0, 1]n and
for all c > 0 such that (x1 + c, . . . , xn + c) ∈ [0, 1]n,

F (x1 + c, . . . , xn + c) ≥ F (x1, . . . , xn).

Dually we define weakly decreasing functions.

Definition 17 [49] Let ~r = (r1, . . . , rn) be a real n-
dimensional vector ~r 6= ~0. A function F : [0, 1]n → [0, 1]
is ~r-increasing if for all points (x1, . . . , xn) ∈ [0, 1]n and for
all c > 0 such that (x1 + cr1, . . . , xn + crn) ∈ [0, 1]n it holds

F (x1 + cr1, . . . , xn + crn) ≥ F (x1, . . . , xn).

Dually, we define ~r-decreasing functions.

Definition 18 A function PA : [0, 1]n → [0, 1] is said to be a
n-ary pre-aggregation function [50], [51] if the following con-
ditions hold: (PA1) PA is ~r-increasing and (PA2) PA(~0) = 0
and PA(~1) = 1. If F is a pre-aggregation function and ~r-
increasing, then F is also called a ~r-pre-aggregation function.
PA is an internal pre-aggregation function [57] whenever for
all ~x ∈ [0, 1]n, PA(~x) = xj for some j ∈ {1, . . . , n}.

Definition 19 Let be a tuple ~x = (x1, . . . , xn) ∈ [0, 1]n,
k(i, ~x) be the number of occurences of xi in ~x – i.e. k(i, ~x) =
#{j : xi = xj , 1 ≤ j ≤ n}; where # denotes the cardinality
of a set – and m = max{k(i, ~x) : 1 ≤ i ≤ n}, the multimode
of ~x is the set of all modes of ~x, i.e. mmode(~x) = {xi :
k(i, ~x) = m}.

Example 20 For ~x = (0.2, 0.3, 0.5, 0.7, 0.3, 0.9, 0.7),
k(2, ~x) = #{2, 5} = 2, m = max{1, 2} = 2 and
mmode(~x) = {0.3, 0.7}.

Example 21 Let Pfin([0, 1]) be the set of all non-empty
finite subsets of [0, 1] and ch : Pfin([0, 1]) → [0, 1] a
choice function (i.e., ch({x1, . . . xk}) ∈ {x1, . . . xk}). If
{x1, . . . xn} ∈ Pfin([0, 1]) and k ≤ 1 − max(x1, . . . xn),

ch({x1, . . . , xn}) + k = ch({x1 + k, . . . , xn + k}), then
the composed function (ch ◦ mmode) is an internal pre-
aggregation.

III. HOMOGENEITY

Definition 22 Consider γ ∈ [0,+∞[. A function F :
[0, 1]n → [0, 1] is said to be homogeneous of order γ whenever
for every λ, x1, . . . , xn ∈ [0, 1],

F (λx1, . . . , λxn) = λγF (x1, . . . , xn)

We consider 00 = 0.

Example 23
1) A constant function is homogeneous of order 0.
2) The maximum and the minimum are 1-homogeneous

functions.
3) The n-dimensional product Πn(x1, . . . , xn) = Πn

i=1xi
is homogeneous of order n.

4) Given γ > 0, the function Gγ : [0, 1]n → [0, 1] given by
Gγ(~x) = (Πn

i=1xi)
γ
n is homogeneous of order γ.

A. Homogeneity and Aggregations

Let Hnγ be the family of all n-ary γ-homogeneous functions
and AHγn the family of all n-ary γ-homogeneous aggregation
functions.

Remark 24 On the usual definition of homogeneous functions
either one considers λ > 0 or the point ~0 is discarded from the
domain. However, since we are also interested in homogeneous
aggregation functions, we consider both λ = 0 and ~0. Observe
that whenever an aggregation function A is homogeneous of
order γ, we have that

A(~0) =

{
A(0 · x1, . . . , 0 · xn) = 0γ ·A(~x) = 0 if γ > 0
A(0 · x1, . . . , 0 · xn) = 00 ·A(~x) = 0 if γ = 0,

which is one of the boundary conditions (A2). Hence, we do
not lose any generality.

Theorem 25 Consider A1, . . . , Am ∈ AHnγ for some γ ≥
0. Then, for every A ∈ AHmη (with η ≥ 0), it holds
that A(A1, . . . , Am) ∈ AHnγη, where: A(A1, . . . , Am)(~x) =
A(A1(~x), . . . , Am(~x)). In particular, if we take η = 1, it is
immediate that A(A1, . . . , Am) ∈ AHnγ .

Proof: It follows from a straightforward calculation. �

For all A1, A2 ∈ AHnγ let be the functions A1 ∨ A2, A1 ∧
A2 : [0, 1]n → [0, 1] s.t. A1∨A2(~x) = max{A1(~x), A2(~x)}
and A1∧A2(~x) = min{A1(~x), A2(~x)}.

Corollary 26 If A1, A2 ∈ AHnγ and γ ≥ 0, then
A1∨A2, A1∧A2 ∈ AHnγ .

Corollary 27 For all A ∈ AHnγ and some γ > 0, min(~x)γ ≤
A(~x) ≤ max(~x)γ .

As a consequence we have the following:
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Theorem 28 For γ > 0, (AHnγ ,≤) is a bounded lattice, with
top and bottom elements given, respectively, by the functions
A>, A⊥ : [0, 1]n → [0, 1] defined by: A>(~x) = max{~x}γ and
A⊥(~x) = min{~x}γ .

Proof: Firstly, we show that, for all A1, A2 ∈ AHnγ , it
holds that sup{A1, A2} = A1∨A2. From corollary 26, for
all A1, A2 ∈ AHnγ , one has that A1∨A2 ∈ AHnγ , and it is
immediate that A1, A2 ≤ A1∨A2, since for all ~x ∈ [0, 1]n,
one has that A1(~x) ≤ max{A1(~x), A2(~x)} = A1∨A2(~x),
and similarly for A2. Now, consider that there exists A3 ∈
AHnγ such that A1, A2 ≤ A3 and A1∨A2 6≤ A3. Then
there exists ~x ∈ [0, 1]n such that: A3(~x) < A1∨A2(~x) =
max{A1(~x), A2(~x)}.

Now, suppose that max{A1(~x), A2(~x)} = A1(~x). It
follows that A3(~x) < A1(~x), which is a contradiction with
the fact that A1 ≤ A3. A similar contradiction is obtained
whenever one considers that max{A1(~x), A2(~x)} = A2(~x).
So, A1∨A2 ≤ A3 and sup{A1, A2} = A1∨A2.
Analogously one proves that inf{A1, A2} = A1∧A2.
This proves that (AHnγ ,≤) is a lattice. Finally, for
λ ∈ [0, 1] and ~λx = (λx1, . . . , λxn), one has that:
A>( ~λx) = max{ ~λx}γ = λγ max{~x}γ = λγA>(~x), and,
thus, A> ∈ AHnγ . Similarly, one proves that A⊥ ∈ AHnγ . By
corollary 27, one has that A⊥ ≤ A ≤ A>, for all A ∈ AHnγ .

�

Proposition 29 Let A : [0, 1]n → [0, 1] be a γ-homogeneous
aggregation function. Then A(x, . . . , x) = xγ for every x ∈
[0, 1]. Here we assume 00 = 0.

Proof: Straight from the homogeneity. �

IV. ABSTRACT HOMOGENEITY

In this section we propose a generalization for homogeneity
called abstract homogeneity. In a nutshell we replace the op-
eration of multiplication by a general function and investigate
the consequences of this abstraction. We focus on the case of
homogeneous functions of order 1.

Definition 30 Let be the functions g : [0, 1]2 → [0, 1] and
F : [0, 1]n → [0, 1] and an automorphism ϕ : [0, 1] → [0, 1].
A partial function F is said to be abstract homogeneous with
respect to g and ϕ or just (g, ϕ)-homogeneous if for every
λ, x1, . . . , xn ∈ [0, 1], s.t.

(
g(λ, x1), . . . , g(λ, xn)

)
∈ [0, 1]n,

F
(
g(λ, x1), . . . , g(λ, xn)

)
= g
(
ϕ(λ), F (x1, . . . , xn)

)
,

if ϕ is the identity function, then g is called g-homogeneous
instead of (g, ϕ)-homogeneous.

Note that this is a generalization of Def. 22.

Proposition 31 Let F : [0, 1]n → [0, 1] be a homogeneous
function of order γ ∈ [0,+∞[. Then it is (g, ϕ)-homogeneous
for g(x, y) = x · y and ϕ(x) = xγ .

Proof: Straightforward. �

The next examples assume the identity automorphism.

Example 32
1) Consider the arithmetic mean:

M(x1, . . . , xn) =
x1 + · · ·+ xn

n
.

If g(x, y) = x+y
2 , then

g
(
λ,M(x1, . . . , xn)

)
= M

(
g(λ, x1), . . . , g(λ, xn)

)
for every λ ∈ [0, 1]. So, M is g-homogeneous.

2) If g(x, y) =
√
xy, then for λ ∈ [0, 1],

max(
√
λx1, . . . ,

√
λxn) =

√
λmax(x1, . . . , xn)

and

min(
√
λx1, . . . ,

√
λxn) =

√
λmin(x1, . . . , xn) .

So both max and min are g-homogeneous.

The next example will be used in our toy algorithm at the
end of this paper.

Example 33 Consider the multimode function of Def. 19,
the choice function max and the weighted average function
ga(x, y) = a·x+(1−a)·y, for 0 ≤ a ≤ 1. Then max ◦mmode
is ga-homogeneous for any a ∈ [0, 1].

In fact, for any ~x ∈ [0, 1]n, λ ∈ [0, 1] and x1, . . . , xn ∈

[0, 1], let be: λn =

n︷ ︸︸ ︷
(λ, . . . , λ), λ · {x1, . . . , xn} = {λ ·

x1, . . . , λ ·xn}, and λ+{x1, . . . , xn} = {λ+x1, . . . , λ+xn}.
Then mmode(λ · ~x) = λ ·mmode(~x) and mmode(λn + ~x) =
λ + mmode(~x). Hence, λ · a + (1 − a) · mmode(~x) =
mmode((λ·a)n+(1−a)·~x) = mmode(λ·a+(1−a)·x1, . . . , λ·
a+ (1− a) · xn) = mmode(ga(λ, x1), . . . , ga(λ, xn)). There-
fore max(mmode(ga(λ, x1), . . . , ga(λ, xn))) = max(λ · a +
(1− a) ·mmode(~x)) = λ · a+ max((1− a) ·mmode(~x)) =
λ · a+ (1− a) ·max(mmode(~x)) = ga(λ,max(mmode(~x))).

Proposition 34 Let be a bijection ρ : [0, 1] → [0, 1] and a
vector

−−−−−→
gρ(λ, x) = (gρ(λ, x1), . . . , gρ(λ, xn)). If F : [0, 1]n →

[0, 1] is g-homogeneous, then F ρ is gρ-homogeneous, where
gρ(x, y) = ρ−1(g(ρ(x), ρ(y))).

Proof:

F ρ(
−−−−−→
gρ(λ, x)) = ρ−1(F (ρ(gρ(λ, x1)), . . . , ρ(gρ(λ, xn))))

= ρ−1(F (ρ(ρ−1(g(ρ(λ), ρ(x1)))), . . . ,

ρ(ρ−1(g(ρ(λ), ρ(xn)))) ))

= ρ−1(F (g(ρ(λ), ρ(x1)), . . . , g(ρ(λ), ρ(xn))))

= ρ−1(g(ρ(λ), F (ρ(x1), . . . , ρ(xn)))) – g-homogeneity

= ρ−1(g(ρ(λ), ρ(ρ−1(F (ρ(x1), . . . , ρ(xn))))))

= ρ−1(g(ρ(λ), ρ(F ρ(x1, . . . , xn))))

= gρ(λ, F ρ(x1, . . . , xn))

�
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Lemma 35 Let be a function g : [0, 1]2 → [0, 1] and a
bijective function ρ : [0, 1]→ [0, 1] s.t.

ρ(g(x, y)) = g(ρ(x), ρ(y)), (1)

then ρ−1(g(x, y)) = g(ρ−1(x), ρ−1(y)).

Proof: Observe that g(ρ−1(x), ρ−1(y)) =
ρ−1(ρ(g(ρ−1(x), ρ−1(y)))). By hypothesis it is equal to
ρ−1(g(ρ(ρ−1(x)), ρ(ρ−1(y)))) = ρ−1(g(x, y)). �

Proposition 36 For every bijection ρ, if F is g-homogeneous
and ρ(g(x, y)) = g(ρ(x), ρ(y)), then F ρ is also g-
homogeneous.

Proof: Given a bijection ρ, suppose that F is g-homogeneous
and g satisfies (1), then for

−−−−→
g(λ, x) = (g(λ, x1), . . . , g(λ, xn)),

F ρ(
−−−−→
g(λ, x)) = ρ−1(F (ρ(g(λ, x1)), . . . , ρ(g(λ, xn))))

= ρ−1(F (g(ρ(λ), ρ(x1)), . . . , g(ρ(λ), ρ(xn))))by hypth

= ρ−1(g(ρ(λ), F (ρ(x1), . . . ρ(xn))))F is g-homog.

= g(ρ−1(ρ(λ)), ρ−1(F (ρ(1), . . . , ρ(xn))))by lemma 35
= g(λ, F ρ(x1, . . . , xn))

�

Example 37 Consider F (x, y) = x · y and, ρ1(x) = xk or
ρ2(x) = x

1
k , for k ≥ 2.

A. Abstract homogeneity, Shift-invariance, weak monotonicity
and pre-aggregations

Proposition 38 A function F : [0, 1]n → [0, 1] is shift-
invariant, – i.e. F (λ+x1, . . . , λ+xn) = F (x1, . . . , xn)+λ ∈
[0, 1] whenever λ, x1, . . . , xn,max(x1, . . . , xn) + λ ∈ [0, 1] –
if and only if it is abstract homogeneous with respect to the
Łukasiewicz T-conorm SŁ(x, y) = min(y + x, 1).

Definition 39 Let g : [0, 1]2 → [0, 1] be a function.
A partial function F : [0, 1]n → [0, 1] is g-weak in-
creasing if F (g(λ, x1), . . . , g(λ, xn)) ≥ F (x1, . . . , xn), for
(g(λ, x1), . . . , g(λ, xn)) ∈ [0, 1]n and λ > 0.

Theorem 40 Let g : [0, 1]2 → [0, 1] be a function such that
g(x, y) ≥ y. If F : [0, 1]n → [0, 1] is g-homogeneous, then it
is g-weak increasing. Moreover, for any bijection ρ satisfying
(1), F ρ is also g-weak increasing.

Proof: Indeed, F (g(λ, x1), . . . , g(λ, xn)) =
g(λ, F (x1, . . . , xn)) ≥ F (x1, . . . , xn). Moreover, by
proposition 36, F ρ is also g-weak increasing. �

Corollary 41
1) For any T-conorm S, if F is S-homogeneous, then it is

S-weak increasing.
2) If F is SŁ-homogeneous, then it is weak increasing.

3) For every T-conorm generated by Łukasiewicz T-
conorm and an automorphism ϕ, SϕŁ(x, y) =

ϕ−1(SŁ(ϕ(x), ϕ(y))) – if ϕ satisfies equation (1) and
F is SϕŁ-homogeneous, then F is also weak increasing.

4) Let ~r = (r, . . . , r) ∈ ]0,+∞[n be a real n-dimensional
vector, then for any automorphism ϕ that satisfies equa-
tion (1), if a function F : [0, 1]n → [0, 1] is SϕŁ-
homogeneous, then F is ~r-increasing.

Proof:
1) Observe that x, y ≤ max(x, y) ≤ S(x, y) and apply

Theorem 40.
2) Given (x1, . . . , xn) ∈ [0, 1]n and λ > 0,

such that (x1 + λ, . . . , xn + λ) ∈ [0, 1]n,
since SŁ(x, y) = min(x + y, 1), then F (x1 +
λ, . . . , xn + λ) = F (SŁ(λ, x1), . . . , SŁ(λ, xn)) =
SŁ(λ, F (x1, . . . , xn)) ≥ F (x1, . . . , xn).

3) Apply the previous result plus proposition 40.
4) It follows from item 3), considering λ = cr and c > 0.

�

Proposition 42 Let ~r = (r, . . . , r) ∈ ]0,+∞[n be a real
n-dimensional vector and an automorphism ϕ that satisfies
equation (1). If a function F : [0, 1]n → [0, 1] is SϕŁ-
homogeneous and F (x, . . . , x) = 0 for some x ∈ [0, 1], then
F is a pre-aggregation function.

Proof: By item 4) in corollary 41, F is ~r-increasing.
In addition, F (1, . . . , 1) = F (SϕŁ(1, 0), . . . , SϕŁ(1, 0)) =

SϕŁ(1, F (0, . . . , 0)) = 1.
Finally, suppose F is SϕŁ-homogeneous and

F (x, . . . , x) = 0, for some x ∈ [0, 1], then
SϕŁ(x, F (0, . . . , 0)) = F (SϕŁ(x, 0), . . . , SϕŁ(x, 0)) =

F (0 + x, . . . , 0 + x) = F (x, . . . , x)
hip
= 0. Therefore,

x = 0 and F (0, . . . , 0) = 0. �

B. Abstract Homogeneity in Fuzzy Logic

.
Abstract homogeneity appears in Fuzzy Logic under the

well-known name of distributivity. For example, if H is a T -
norm/T -conorm and I is an implication which distributes over
H:

I(x,H(y, z)) = H(I(x, y), I(x, z)).

We can say that H is I-homogeneous. This equation
has been deeply investigated – c.f. Baczyński and Jayaram
[52, §7.2.3 and §7.2.4]. Another occurrences of distributivity
involves T -norms over T -conorms and vice-versa; for more
details see [9]. Therefore, it is straightforward that the ter-
minology “g-homogeneity” generalizes distributivity in Fuzzy
Logic. For example, observe the following proposition:

Proposition 43 Let NZ be the standard fuzzy negation and
the function Π(x, y) = x · y. If F : [0, 1]2 → [0, 1] is Π-
homogeneous, then FNZ is ΠNZ -homogeneous.
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Proof: ΠNZ (x, y) = x+y−xy. If F is Π-homogeneous, then

FNZ (ΠNZ (λ, x),NZ (λ, y))

= FNZ (λ+ x− λ · x, λ+ y − λ · y)

= 1− F (1− (λ+ x− λ · x), 1− (λ+ y − λ · y))

= 1− F ((1− λ)(1− x), (1− λ)(1− y))

= 1− (1− λ) · F (1− x, 1− y) by Π-homogeneity
= 1− (F (1− x, 1− y)− λ · F (1− x, 1− y))

= 1− F (1− x, 1− y) + λ · F (1− x, 1− y))

On the other hand:
ΠNZ (λ, FNZ (x, y)) = λ+ FNZ (x, y)− λ · FNZ (x, y)

= λ+ 1− F (1− x, 1− y)− λ · (1− F (1− x, 1− y))

= λ+ 1− F (1− x, 1− y)− λ+ λ · F (1− x, 1− y)

= 1− F (1− x, 1− y) + λ · F (1− x, 1− y).

�

In the case of T -norms the equation:

T (g(λ, x), g(λ, y)) = g(λ, T (x, y))

requires g(λ, 1) = 1.

Theorem 44 Given a T -norm T and a function g : [0, 1]2 →
[0, 1] which has 1 as identity and is increasing in the second
argument, then T is g-homogeneous if and only if T = min.

Proof: Let T be a T -norm and g : [0, 1]2 → [0, 1] which
has 1 as identity and is increasing in the second argument.
Suppose T is g-homogeneous, then by corollary 51, T is
idempotent and hence T = min (the unique idempotent
T-norm). Suppose T = min, let x, y, λ ∈ [0, 1], case x ≤ y,
then T (g(λ, x), g(λ, y)) = min(g(λ, x), g(λ, y)) = g(λ, x) =
g(λ, T (x, y)). The other case is analogous. �

Corollary 45
1) Given two T -norms T1 and T2, T1 is T2-homogeneous

if and only if T1 = min.
2) The only T -norm T which is T -homogeneous is the

minimum.
3) Let T be a T-norm and S be a T-conorm. Then T is

S-homogeneous if and only if T is the minimum and S
is T -homogeneous if and only if S is the maximum.

Proof: Minimum is the unique idempotent T-norm whereas
maximum is the unique idempotent T-conorm – c.f. [9].

�

Proposition 46 Let g : [0, 1]2 → [0, 1] be a function such
that for all λ ∈ [0, 1], g(λ, x) = 1 implies x = 1. The Drastic
Product TD is g-homogeneous if and only if g(λ, 1) ∈ {0, 1}
and g(λ, 0) = 0.

Proof: g(λ, 1) = g(λ, TD(1, 1)) = TD(g(λ, 1), g(λ, 1))
def
={

1 if g(λ, 1) = 1

0 otherwise.

Since g(λ, x) = 1 implies that x = 1 then g(λ, 0) < 1. So
g(λ, 0)

def
= g(λ, TD(0, 0)) = TD(g(λ, 0), g(λ, 0)) = 0.

�

C. Analytical and algebraic properties

Let be GHng = {F : [0, 1]n → [0, 1] :
F is g-homogeneous} and, given F : [0, 1]n →
[0, 1],H(F ) = {g : [0, 1]2 → [0, 1] : F is g-homogeneous}.
Then we can start assuring that, for any F , H(F ) is not
empty.

Proposition 47 Let P2(x, y) = y be the projection on the
second component. Then, any function F : [0, 1]n → [0, 1] is
homogeneous with respect to P2.

Proof: Straightforward. �

Proposition 48 Let g : [0, 1]2 → [0, 1] be an aggregation
function. Then the following statements are equivalent: (1)
Every F : [0, 1]n → [0, 1] is g-homogeneous and (2) g(x, y) =
P2(x, y).

Proof: The fact that (2) implies (1) follows from
the previous proposition. So assume that (1) holds
but g(x, y) 6= P2(x, y). This means that there exist
x, y0, y1 ∈ [0, 1] such that g(x, y0) = y1 6= y0.
Consider the constant function F (x1, . . . , xn) = y0,
then g(x, F (y0, . . . , y0)) = g(x, y0) = y1, whereas
F (g(x, y0), . . . , g(x, y0)) = y0. Since y0 6= y1, the result
follows. �

Note that, for each λ ∈ [0, 1] and a function g : [0, 1]2 →
[0, 1] we can define the mapping: gλ : [0, 1]→ [0, 1] given by:

gλ(t) = g(λ, t) (2)

Then a function F is g-homogeneous whenever

F (gλ(x1), . . . , gλ(xn)) = gλ(F (x1, . . . , xn))

for every x1, . . . , xn, λ ∈ [0, 1]. If gλ is bijective, we can state
the following.

Proposition 49 Let F : [0, 1]n → [0, 1] be a function and
g : [0, 1]2 → [0, 1] be an aggregation function such that gλ
at equation (2) is a bijection for every λ ∈ [0, 1]. Then the
following statements are equivalent:

1) F is g-homogeneous with respect to g;
2) g−1λ (F (gλ(x1), . . . , gλ(xn))) = F (x1, . . . , xn).

Proof: Straightforward. �

Lemma 50 Let F : [0, 1]n → [0, 1] be a g-homogeneous func-
tion and e the identity of F ; i.e. F (e, . . . , e, x, e, . . . , e) = x.
If ϕ : [0, 1]→ [0, 1] is a bijective function and ϕ(x) = g(x, e),
then F is idempotent.
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Proof: Let x ∈ [0, 1] and y = ϕ−1(x), then F (x, . . . , x) =
F (g(y, e), . . . , g(y, e)) = g(y, F (e, . . . , e)) = g(y, e) = x.

�

Corollary 51 Let F : [0, 1]n → [0, 1] be a g-homogeneous
function. If F has identity e and g(x, e) = x, for all x, then
F is idempotent.

Proof: It is straightforward from the previous proposition,
since the mentioned function ϕ is precisely the identity
function. �

V. SELF HOMOGENEOUS FUNCTIONS

Let us recall example 32. If we consider g(x, y) =
M(x, y) = x+y

2 (the arithmetic mean). Then, it follows
that M is M -homogeneous. In this case, we say that
M is self-homogeneous. On the other hand, the prod-
uct Π2(x, y) = xy is s.t. Π2(λ,Π2(x, y)) = λxy,
whereas Π2(Π2(λ, x),Π2(λ, y)) = λ2xy. So Π2 is not self-
homogeneous. In what follows we investigate the situation in
which a function is self-homogeneous.

Definition 52 Let g : [0, 1]2 → [0, 1] be a function, g is said
to be self-homogeneous if g is g-homogeneous.

The following proposition shows sufficient conditions to
ensure that a function g is self-homogeneous.

Proposition 53 Every associative, commutative and idempo-
tent function g : [0, 1]2 → [0, 1] is self-homogeneous.

Proof: Let g : [0, 1]2 → [0, 1] be an associative, commutative
and idempotent function. By associativity

g(g(λ, u), g(λ, v)) = g(λ, g(u, g(λ, v))).

Commutativity and associativity lead to

g(λ, g(u, g(λ, v))) = g(λ, g(g(u, v), λ)) = g(λ, g(λ, g(u, v))).

Again, by associativity and idempotency:
g(λ, g(λ, g(u, v))) = g(g(λ, λ), g(u, v)) = g(λ, g(u, v)).
Therefore, g(g(λ, u), g(λ, v)) = g(λ, g(u, v)), so we have the
result. �

Corollary 54
1) The only t-norm which is self-homogeneous is the min-

imum.
2) The only t-conorm which is self-homogeneous is the

maximum.

Example 55 The converse of proposition 53 does not hold in
general. For instance:

1) According to proposition 47, the second projection is
self-homogeneous, it is also associative and idempotent
but it is not commutative.

2) The geometric mean, g(x, y) =
√
xy is self-

homogeneous, idempotent and commutative, but it is not
associative.

3) The smallest aggregation function A∗ is self-
homogeneous, commutative and associative, but it
is not idempotent.

Proposition 56 Let F : [0, 1]2 → [0, 1] be a self-
homogeneous function. Then, for every x, y ∈ [0, 1]

F (x, F (x, y)) = F (F (x, x), F (x, y)) (3)

If F is also injective, then it is idempotent.

Proof: If F is self-homogeneous, then for every
x, y, λ ∈ [0, 1], F (λ, F (x, y)) = F (F (λ, x), F (λ, y)). So,
taking λ = x, we have F (x, F (x, y)) = F (F (x, x), F (x, y)).
If F is also injective, then by equation (3) it is straightforward
to say that it is also idempotent. �

Regarding the converse of Prop. 53 we can state the
following.

Proposition 57 Let F : [0, 1]2 → [0, 1] be a self-
homogeneous continuous function such that F (0, 0) = 0 and
F (1, 1) = 1. Then, if F (0, 1) = 0 or F (1, 0) = 1, it follows
that F is idempotent.

Proof: Case F (0, 1) = 0, let’s consider the function
f(λ) = F (λ, 1). Clearly, in our hypothesis, f(0) = 0 and
f(1) = 1. Moreover, f is surjective (due to the continuity).
From the self-homogeneity, we have F (F (λ, 1), F (λ, 1)) =
F (λ, F (1, 1)) = F (λ, 1). Now, for every t ∈ [0, 1], there
exists λ(t) ∈ [0, 1] such that F (λ(t), 1) = t. So, F (t, t) =
F (F (λ(t), 1), F (λ(t), 1)) = F (λ(t), 1) = t.

The proof is analogous for F (1, 0) = 1. �

Although there is a unique idempotent t-norm (the min-
imum), there are uncountable idempotent overlap functions
[14]. The next corollary shows that there is a whole family of
self-homogeneous idempotent overlaps.

Proposition 58 Let f be an overlap function. If f is self-
homogeneous, then it is also idempotent. The same applies if
f is a grouping function.

Example 59 Take the overlap O(x, y) =
√
x · y and

G(x, y) = 1−
√

(1− x)(1− y).

VI. ABSTRACT HOMOGENEITY AND AGGREGATIONS

Aggregation operators are applied in many fields, like:
statistics, image processing, etc. The notion of invariant ag-
gregation operators, i.e. aggregations which do not depend on
the given scale of measurement is a powerful concept and also
has applications in many fields. One type of such functions are
those which are invariant with respect to the multiplication
by a constant. They are known as homogeneous aggregation
functions.
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Tatiana and Roman Rückschlossová [58] proposed a way
to build homogeneous operators from families of aggregation
functions. In this section we generalize their work to the
setting of abstract homogeneous functions. To achieve that
we introduce the notion of g-pairs which are structures that
together with associative aggregations provide us a family of
abstract homogeneous functions with respect to g by using a
function of the form A :

⋃
n∈N+

[0, 1]n → [0, 1] – see Theorem

62.

Definition 60 Given a function g : [0, 1]2 → [0, 1], a g-pair
is a structure 〈hg, fg〉, such that:

1) hg : [0, 1]n → [0, 1] is an abstract g-homogeneous
function.

2) fg : [0, 1]2 → [0, 1] is a function such that:

fg(g(u, v), g(u,w)) = g(fg(u, u), fg(v, w)). (4)

3) for all y, z ∈ [0, 1],

g(fg(y, y), fg(z, hg(x1, . . . , xn))) = fg(z, hg(x1, . . . , xn)).
(5)

Example 61
1) Given the aggregation g(x, y) = xq · y, for q ∈ N+, the

following functions are g-pairs:
a) ϕ1(x, y) = 〈max(x1, . . . , xn),min(1, xy )〉
b) ϕ2(x, y) = 〈G1(x1, . . . , xn),min(1, xy )〉.
c) ϕ3(x, y) = 〈Mp(x1, . . . , xn),min(1, xy )〉; for p ∈

]0,+∞[ and Mp(x1, . . . , xn) =

(
1
n

n∑
i=1

xpi

) 1
p

.

2) Let S(x, y) = y · sin(x · π
2 ). Then

〈M(x1, . . . , xn),min(1, xy )〉, ϕ1, ϕ2, and ϕ3 are
S-pairs.

3) Any pair of functions 〈fg, hg〉 is a g-pair for g(x, y) = y.

Theorem 62 Given a g-pair 〈hg, fg〉, if g is associative, then
for every function A : [0, 1]n → [0, 1], the function:

HA(~x) = g(hg(~x), A(fg(x1, hg(~x)), . . . , fg(xn, hg(~x))))

is g-homogeneous.

Proof: Let g be an associative function together with a g-
pair 〈hg, fg〉 and a function A : [0, 1]n → [0, 1]. Without
loss of generality we demonstrate just for two arguments. For
readability we use the notation: ~κ = (g(λ, x1), g(λ, x2)) and
ω = g(λ, hg(x1, x2)).
HA(~κ)

def
= g(hg(~κ), A(fg(g(λ, x1), hg(~κ), fg(g(λ, x2), hg(~κ))).

Since hg is g-homogeneous, then HA(~κ) =
g(ω,A(fg(g(λ, x1), ω), fg(g(λ, x2), ω))). By equation
(4) HA(~κ) =
g(ω,A(g(f(λ, λ), fg(x1, hg(x1, x2))), g(fg(λ, λ), fg(x2, hg(x1, x2))))).

By equation (5) HA(~κ) =
g(g(λ, hg(x1, x2)), A(fg(x1, hg(x1, x2)), fg(x2, hg(x1, x2)))).

Since g is associative, then HA(~κ) =
g(λ, g(hg(x1, x2), A(fg(x1, hg(x1, x2)), fg(x2, hg(x1, x2)))))

i.e. HA(~κ) = g(λ,HA(x1, x2)). �

Remark 63 Given an associative function g, each g-pair ϕ =
〈hg, fg〉 provides a family of g-homogeneous function H(ϕ)

def
=

{HA | A : [0, 1]n → [0, 1]}.

Example 64
1) Let Π(x, y) = x · y and the g-pairs stated in example

61.1. Then H(ϕ1), H(ϕ2) and H(ϕ3) are families of
Π-homogeneous functions.

2) Let be g(x, y) = y, then any g-pair ϕ provides a family
H(ϕ) of g-homogeneous functions. See example 61.3.

Lemma 65 Let g be an associative function and ϕ = 〈hg, fg〉
a g-pair. If A : [0, 1]n → [0, 1] is a function such that A(~0) = 0
and A(~1) = 1, g(x, 0) = g(0, x) = 0 for every x ∈ [0, 1],
hg(~1) = 1 and fg(1, 1) = 1, then HA(~0) = 0 and HA(~1) = 1.

Proof:
1) HA(~0)

def
=

g(hg(~0), A(g(0, fg(0, hg(~0))), . . . , g(0, fg(0, hg(~0)))))
hip
=

g(hg(~0), A(~0))
hip
= g(hg(~0), 0)

hip
= 0

2) HA(~1)
def
=

g(hg(~1), A(g(1, fg(1, hg(~1))), . . . , g(1, fg(1, hg(~1)))))
hip
= g(1, A(g(1, fg(1, 1)), . . . , g(1, fg(1, 1))))
hip
= g(1, A(g(1, 1), . . . , g(1, 1)))
= g(1, A(~1)) = g(1, 1) = 1.

�

Example 66 Let A be any extended aggregation and the g-
pairs stated in example 61.1, then HA(~0) = 0 and HA(~1) =
1; e.g. HM, HG, HS, etc. Note that although 0 is not an
annihilator for g(x, y) = y, we also have HA(~0) = 0 and
HA(~1) = 1.

The next theorem establishes sufficient conditions for HA

be an aggregation.

Theorem 67 Let g be an associative aggregation, ϕ =
〈hg, fg〉 a g-pair such that hg is first-place non decreasing1

and ~x ≤ ~y implies hg(~x) ≤ yk, for all k.
Consider xg = hg(~x) and yg = hg(~y). If A is an

aggregation that satisfies the following condition:

g(yg, A(fg(y1, yg), . . . , fg(yn, yg))) ≥
g(xg, A(fg(y1, xg), . . . , fg(yn, xg)))

(6)

then, HA is a non decreasing g-homogeneous function. If 0 is
an annihilator for g, hg(~1) = 1 and fg(1, 1) = 1, then HA is
an aggregation.

Proof: By Theorem 62, HA is g-homogeneous function.
Suppose ~x ≤ ~y, since fg is first place non decreasing, then
fg(xk, xg) ≤ fg(yk, xg). Since A and g are both aggrega-
tions, then HA(~x)

def
= g(xg, A(fg(x1, xg), . . . , fg(xn, xg))) ≤

g(xg, A(fg(y1, xg), . . . , fg(yn, xg)). By transitivity and con-
dition (6) HA(~x)

def
= g(xg, A(fg(x1, xg), . . . , fg(xn, xg))) ≤

1i.e. x ≤ y implies hg(x, z) ≤ hg(y, z).
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g(yg, A(fg(y1, yg), . . . , fg(y1, yg)))
def
= HA(~y). Therefore,

HA is non decreasing.
Moreover, if 0 is an annihilator for g, hg(~1) = 1 and

fg(1, 1) = 1, then by lemma 65, HA is an aggregation.
�

Example 68 The g-pair 〈max(~x),min(1, xy )〉 together with
the aggregations g1(x, y) = x · y and g(x, y) = y satisfy
Theorem 67.

The next section shows that abstract homogeneity can be
used to provide a new paradigm of multi-expert decision
making systems called consistent influenced/disturbed multi-
expert decision making systems. We provide a toy example
and a toy algorithm to illustrate our paradigm.

VII. ABSTRACT HOMOGENEITY AND CONSISTENTLY
INFLUENCED MULTI-EXPERT DECISION MAKING

This section introduces a new type of decision-making
approach. It shows that abstract homogeneous functions can
be used to model the situation in which a consensus relation
of a multi-expert decision making is consistently influenced.
Before we proceed, we provide an overview of what we mean
by a decision making system with an adaptation of one of its
phase in order to encompass pre-aggregations.

A multi-expert decision making problem based on prefer-
ence relations can be summarized in the following way: We
have a set of p alternatives X = {x1, . . . , xp}, with p > 2,
and a set of n experts E = {e1, . . . , en}, (n > 2). Each of
the experts provides his/her preferences on the alternatives.
We assume that the expert et (with t ∈ {1, . . . , n}) expresses
his/her preferences by means of a relation (matrix)

Rt =

 · Rt
12 . . . Rt

1p

Rt
21 · . . . Rt

2p

. . . . . . . . . . . .
Rt

p1 Rt
p2 . . . ·


where Rtij ∈ [0, 1] expresses the preference of expert et on
alternative xi over alternative xj . Note that we do not impose
any additional condition for Rt.

We must find a solution, either an alternative or a set of
alternatives, which is (are) the most accepted one(s) by the
experts.

The literature proposes two steps to solve a problem of
multi-expert decision making – c.f. [59].

1) Uniform representation of information. In this phase, the
heterogeneous information for the problem (the informa-
tion can be represented by means of preference orderings
or utility functions or fuzzy preference relations) is
translated into a homogeneous information by means
of different transformation functions. We assume that
this step has already been fulfilled when the preference
relations Rt are built.

2) Application of a selection procedure. This procedure
consists of two phases:
• Aggregation phase. A collective preference relation

is built from the set of individual preference rela-
tions.

• Exploitation phase. A given method is applied to the
collective preference structure to obtain a selection
of alternatives.

We focus on Aggregation phase. However, since the name:
“Aggregation phase” induces the reader to think about the use
of aggregation functions and we want include the application
of other functions, we suggest new names for this phase,
namely: Amalgamation phase and amalgamator. In what
follows, we provide a mathematical description for this phase
(amalgamation):

A. Abstract Homogeneity and Amalgamation phase

The reduction of all the given preference relations Rt

into one single collective preference relation RC is done
in this phase using pre-aggregation functions which we call
amalgamators. In other words, given a pre-agregation func-
tion (amalgamator) A : [0, 1]n → [0, 1] and the preference
relations: R1, . . . , Rn, the Amalgamation Phase (by using A)
can be seen as a function Â : Rnp×p → Rp×p s.t:

Â(R1, . . . , Rn)ij =

{
0.5 , if i = j
A(R1

ij , . . . , R
n
ij) , otherwise

where Rp×p is the set of all preference relations on p
alternatives.

In what follows we propose a toy algorithm for the amalga-
mation phase of a multi-expert decision making system. In this
case we use the mode (which is not an aggregation function)
as the basic function to amalgamate the data. We follow with
an illustrative application.

Algorithm 1:

Input: n preference relations:

Rt =


· Rt12 . . . Rt1p

Rt21 · . . . Rt2p
. . . . . . . . . . . .
Rtp1 Rtp2 . . . ·

 , for t ∈ {1, . . . , n.}

Output: A collective preference relation:

RC =


· RC12 . . . RC1p

RC21 · . . . RC2p
. . . . . . . . . . . .
RCp1 RCp2 . . . ·


1 for i = 1 to p do
2 for j = 1 to p do
3 if i = j then
4 RCii = 0.5
5 else
6 RCij ←− max(mmode(R1

ij , . . . , R
n
ij))

7 end
8 end
9 end

Obs: Step 6 returns the composition of max with the choice
function mmode. According to example 21, this composition
is an internal pre-aggregation. Observe that the user can
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replace max by any function f which chooses an element
of mmode s.t. f ◦mmode is a pre-aggregation.

B. Illustrative example

Consider a multi-expert decision making problem with three
alternatives (a1, a2, a3) and six experts (e1, . . . , e6). Each
expert provides his/her preference relations (Table I). Each
entry Rtij of the relations Rt of Table I, where t = 1, . . . , 6,
indicates the preference of expert et on alternative ai over
alternative aj , where i, j = 1, 2, 3.

Table II(a) shows the multimodes of components Rtij , with
t = 1, . . . , 6. The multimodes are calculated using Def. 19,
considering all preference relations of Table I. For example,
for Rt23 (i.e., the various preferences of alternative a2 over
alternative a3 according to the six experts), using Def. 19,
one has that ~x = (R1

23, . . . , R
6
23) = (0.2, 0.4, 0.6, 0.2, 0.3, 0.4)

and k(1, ~x) = #{1, 5} = 2, k(2, ~x) = #{2, 4} = 2, k(3, ~x) =
#{3} = 1 and k(5, ~x) = #{5} = 1. Then, it holds that m =
max{1, 2} = 2 and mmode(R1

23, . . . , R
6
23) = {0.2, 0.4}.

Finally, Table II(b) contains the resulting collective prefer-
ence relation RC based on the choice function max, calculated
using Algorithm 1. That is, for each entry of Table II(a), one
takes the maximum. In the example of the previous paragraph,
for Rt23, we have that the collective preference of alternative a2
over alternative a3 is RC23 = max(mmode(R1

ij , . . . , R
6
ij)) =

max{0.2, 0.4} = 0.4.

(a) R1

a1 a2 a3
a1 0.5 0.4 0.8
a2 0.6 0.5 0.2
a3 0.2 0.8 0.5

(b) R2

a1 a2 a3
a1 0.5 0.3 0.8
a2 0.7 0.5 0.4
a3 0.2 0.6 0.5

(c) R3

a1 a2 a3
a1 0.5 0.1 0.8
a2 0.9 0.5 0.6
a3 0.2 0.4 0.5

(d) R4

a1 a2 a3
a1 0.5 0.2 0.7
a2 0.8 0.5 0.2
a3 0.3 0.8 0.5

(e) R5

a1 a2 a3
a1 0.5 0.8 0.9
a2 0.2 0.5 0.3
a3 0.1 0.7 0.5

(f) R6

a1 a2 a3
a1 0.5 0.6 0.4
a2 0.4 0.5 0.4
a3 0.3 0.6 0.5

Table I
PREFERENCES OF EXPERTS e1, . . . , e6

(a) mmode(R1
ij , . . . , R

6
ij)

mmode a1 a2 a3
a1 {0.5} {0.1,0.2,0.3,0.4,0.6,0.8} {0.8}
a2 {0.2,0.4,0.6,0.7,0.8,0.9} {0.5} {0.2,0.4}
a3 {0.2} {0.6,0.8} {0.5}

(b) Collective Preference Relation RC

max ◦ mmode a1 a2 a3
a1 0.5 0.8 0.8
a2 0.9 0.5 0.4
a3 0.2 0.8 0.5

Table II
MULTI-MODES AND THE COLLECTIVE PREFERENCE RELATION RC .

Now we show what we mean by consistent influ-
ence/disturbance and the role of abstract homogeneity in this
new concept.

Figure 1. Disturbance of the consensus preference relation

C. Abstract homogeneity and consistent influence/disturbance
on decision making processes

Suppose we have applied a decision making process and we
want to influence the resulting collective preference relation
RC , by using an extra-opinion given by a new preference
relation Λ, called the matrix of influence/disturbance. For
example, suppose RC and Λ are preference relations of the
form:

RC =


0.5 RC12 . . . RC1p
RC21 0.5 . . . RC2p
. . . . . . . . . . . .
RCp1 RCp2 . . . 0.5

 and Λ =


0.5 λ12 . . . λ1p
λ21 0.5 . . . λ2p
. . . . . . . . . . . .
λp1 λp2 . . . 0.5


Consider a function g : [0, 1]2 → [0, 1] and a collective

preference relation RC . The influenced (disturbed) collective
preference relation based on (Λ, g) is given by:

ĝ(Λ, RC) =


0.5 g(λ12, R12) . . . g(λ1p, R1p)

g(λ21, R21) 0.5 . . . g(λ2p, R2p)
. . . . . . . . . . . .

g(λp1, Rp1) g(λp2, Rp2) . . . 0.5

 (7)

The function g is called the influence (disturbance) method.
The matrix ĝ(Λ, RC) is obtained by applying the mapping

ĝ : R2
p×p → Rp×p, defined by:

ĝ(Λ, RC)ij =

{
0.5 , if i = j
g(λij , R

C
ij) , otherwise. (8)

This process is summarized in Figure 1.
Another possibility is to disturb the preference relations

of experts individually with this new preference relation Λ
(using the influence (disturbance) method g) and then apply
the amalgamation phase to obtain the collective (disturbed)
preference relation, as illustrated in Figure 2.

Figure 2. Consensus of the individually disturbed expert preference relations.
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A good property for such disturbance in a decision making
process is that both methods produce the same output matrix.
This is what we call consistent influence/disturbance. In what
follows, we define precisely what we mean.

Definition 69 Given: (1) a vector (R1
ij , . . . , R

n
ij) which rep-

resents the ij-preference of n-experts; (2) a bivariate func-
tion g; a pre-aggregation A and (3) a factor λij , which
will influence the ij-preferences. The function g consistently
influences/disturbs the consensus matrix RC , if it does not
matter if it is applied on each individual preference Rkij , or
on the final consensus preference RCij . In other words, if the
following equation is satisfied:

RCij = A(g(λij , R
1
ij), . . . , g(λij , R

n
ij)) = g(λij , A(R1

ij , . . . , R
n
ij)).

This means that the amalgamator A must be g-
homogeneous. Figure 3 illustrates what we mean.

Figure 3. g-homogeneity and influence/disturbance scheme

In other words, whenever the resulting collective preference
relation RC = Â(R1, . . . Rn) is influenced by the extra
opinion Λ by using g, the resulting (influenced) collective
preference relation ĝ(Λ, Â(R1, . . . Rn)) coincides with the
collective preference relation which rises from Â applied on
all disturbed experts preference relation (by using g and Λ)
Â(ĝ(Λ, R1), . . . , ĝ(Λ, Rn)).

In what follows we show that our toy algorithm illustrate
this situation. To achieve that, we use as the influence (dis-
turbance) method the weighted average function ga(x, y) =
a ·x+ (1− a) · y from Example 33, for a = 0.5, and a matrix
Λ. Since max ◦mmode is ga-homogeneous (c.f. Example 33)
we obtain a consistently influenced/disturbed system.

1) Revisiting the illustrative example: Consider the multi-
expert decision making situation exposed in subsection VII-B
and a new preference relation Λ of a new expert e0. He/She
has a separate judgment (his/her own preference relation)
and a influence (disturbance) method g to influence the re-
sulting collective preference relation RC given by algorithm
1. Imagine that the preferences of experts e1, . . . , en are
based on technical criteria whereas the preferences of e0
are based on political/strategical criteria and he/she want
to influence RC with Λ and g as if the experts took into
account his/her criteria in their opinions. In other words, the
new RC (denoted here by RCd ) should be equal to the output
collective preference relation RC provided by algorithm 1

whenever the experts took into account the same criterion
as e0 (together with the influence (disturbance) method g)
to provide their preference relation Rt. In other words, RC

must be consistently influenced/disturbed by (Λ, g). To achieve
that the function max ◦mmode provided at step 6 must be g-
homogeneous (c.f. Figure 3).

For example, our expert e0 provides the influence (dis-
turbance) method g0.5(x, y) = 0.5 · x + (1 − 0.5) · y (i.e.,
the arithmetic mean) to influence RC . In fact, according to
example 33, for any a ∈ [0, 1] and any weighted average
function ga(x, y) = a·x+(1−a)·y, the function max ◦mmode
is ga-homogeneous.

Table III(a) contains the preferences Λ of e0 and Table III(b)
contains RC disturbed by (Λ, g0.5), namely, the matrix RCd
given in Eq. 7. In order to understand how each entry of this
matrix is calculated, for example, considering the collective
preference relation RC23 obtained in subsection VII-B (that
is, the resulting collective preference of alternative a2 over
alternative a3) and using Eq. 8, we obtain that

RCd 23 = g(λ23, R
C
23) = 0.5 · 0.7 + (1− 0.5) · 0.4 = 0.55.

Now we show that the function max ◦mmode is g0.5-
homogeneous. Tables VII-C1(a)-(f) contain the six experts’
opinions taking into account the point of view of e0, i.e.,
each table contains their original opinion disturbed by Λ and
g0.5, using Eq. 8 in each entry of each preference matrix. For
example, considering the preference relation R1 of expert e1
given in subsection VII-B, one has that R1

d23 = g(λ23, R
1
23) =

0.5 · 0.7 + (1 − 0.5) · 0.2 = 0.45, R2
d23 = g(λ23, R

2
23) =

0.5 · 0.7 + (1 − 0.4) · 0.2 = 0.55 and R3
d23 = g(λ23, R

2
23) =

0.5 · 0.7 + (1 − 0.5) · 0.6 = 0.65, and, similarly, one obtains
R4
d23 = 0.45, R5

d23 = 0.5 and R6
d23 = 0.55.

Then, in Table VII-C1(g), we show the multimodes of
components Rtdij , with t = 1, . . . , 6. The multimodes are
calculated using Def. 19, considering all disturbed preference
relations of Table VII-C1(a)-(f). For example, for Rtd23 (i.e.,
the various disturbed preferences of alternative a2 over alterna-
tive a3), using Def. 19, one has that ~x = (R1

d23, . . . , R
6
d23) =

(0.45, 0.55, 0.65, 0.45, 0.5, 0.55) and k(1, ~x) = #{1, 4} = 2,
k(2, ~x) = #{2, 6} = 2, k(3, ~x) = #{3} = 1 and k(5, ~x) =
#{5} = 1. Then, it holds that m = max{1, 2} = 2 and
mmode(R1

d23, . . . , R
6
d23) = {0.45, 0.55}.

Finally, Table IV(h) contains the resulting disturbed collec-
tive preference relation RCd based on function max, calculated
using Algorithm 1. That is, for each entry of Table VII-C1(g),
one takes the maximum. In the example of the previous
paragraph, for Rtd23, we have that the disturbed collective
preference of alternative a2 over alternative a3 is RCd 23 =
max(mmode(R1

dij , . . . , R
6
dij)) = max{0.45, 0.55} = 0.55.

As expected, this table is equal to Table III(b), since
max ◦mmode is g0.5-homogeneous.

VIII. FINAL REMARKS

In this paper we have introduced the notion of abstract
homogeneity. In our opinion this concept is important in
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(a) e0’s Preferences Λ

Λ a1 a2 a3
a1 0.5 0.7 0.8
a2 0.6 0.5 0.7
a3 0.2 0.8 0.5

(b) RC
d = ĝ(Λ, RC) (disturbed

RC )
RCd a1 a2 a3
a1 0.5 0.75 0.8
a2 0.75 0.5 0.55
a3 0.2 0.8 0.5

Table III
e0’S PREFERENCES (Λ) AND RC

d (THE DISTURBED RC )

(a) R1
d

a1 a2 a3
a1 0.5 0.55 0.8
a2 0.6 0.5 0.45
a3 0.2 0.8 0.5

(b) R2
d

a1 a2 a3
a1 0.5 0.5 0.8
a2 0.65 0.5 0.55
a3 0.2 0.7 0.5

(c) R3
d

a1 a2 a3
a1 0.5 0.4 0.8
a2 0.75 0.5 0.65
a3 0.2 0.6 0.5

(d) R4
d

a1 a2 a3
a1 0.5 0.45 0.75
a2 0.7 0.5 0.45
a3 0.25 0.80 0.50

(e) R5
d

a1 a2 a3
a1 0.5 0.75 0.85
a2 0.4 0.5 0.5
a3 0.15 0.75 0.5

(f) R6
d

a1 a2 a3
a1 0.5 0.65 0.6
a2 0.5 0.5 0.55
a3 0.25 0.7 0.5

(g) Multi-modes of disturbed Rk’s.

mmode a1 a2 a3
a1 {0.5} {0.4,0.45,0.5,0.55,0.65,0.75} {0.8}
a2 {0.4,0.5,0.6,0.65,0.7,0.75} {0.5} {0.45,0.55}
a3 {0.2} {0.7,0.8} {0.5}

(h) Output Matrix, RC , from disturbed
Rk’s (namely: Rk

d’s)

max ◦mmode a1 a2 a3
a1 0.5 0.75 0.8
a2 0.75 0.5 0.55
a3 0.2 0.8 0.5

Table IV
ga-HOMOGENEITY OF max ◦mmode

itself, since it generalizes the notion of homogeneity without
imposing any restriction on g, which provides more flexibility
than the other generalizations found in the literature. This is
reinforced with some occurrences in further fields (as we have
shown in sections III, IV.A and IV.b). In these sections we
demonstrate some properties of abstract homogeneity related
to the corresponding field. Beyond generalization and the
occurrence in different fields, abstract homogeneity enable us
to introduce a new paradigm for the theory of multi-expert
decision making called: consistently influenced/disturbed de-
cision making systems (as we have demonstrated with our toy
example).

Future work is concerned with the development of interval
g-homogeneity in the light of interval representation proposed
by Santiago et. al. – c.f. [37], [60], [61], [62], inspired by the
work by Lima et. al. [27]-
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of correctness and optimality in interval computations,” Formal Aspects
of Computing, vol. 18, no. 2, pp. 231–243, 2006.

[61] B. Bedregal and R. Santiago, “Some continuity notions for
interval functions and representation,” Computational and Applied
Mathematics, vol. 32, no. 3, pp. 435–446, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s40314-013-0049-z

[62] B. C. Bedregal, G. P. Dimuro, R. H. N. Santiago, and R. H. S. Reiser”,
“On interval fuzzy S-implications,” Information Sciences, vol. 180,
no. 8, pp. 1373–1389, 2010.



14

Regivan Santiago received his MSc and PhD de-
grees in Computer Science from the Federal Univer-
sity of Pernambuco (UFPE), Recife, Brazil, in 1995
and 1999, respectively. He is currently full profes-
sor at Federal University of Rio Grande do Norte
(UFRN). He is associate editor of Computational
and Applied Mathematics (Springer). His interests
include Fuzzy sets and Fuzzy Logics, Interval Math-
ematics, Logics, Domain Theory, Topology, Theory
of Computation and Semantics.

Benjamı́n Bedregal Benjamin Bedregal was born
in Arica, Chile. He received the M.Sc. degree in in-
formatics and the Ph.D. degree in computer sciences
from the Federal University of Pernambuco (UFPE),
Recife, Brazil, in 1987 and 1996, respectively. In
1996, he became Assistant Professor at the De-
partment of Informatics and Applied Mathematics,
Federal University of Rio Grande do Norte (UFRN),
Natal, Brazil, where he is currently a Full Professor.
He is associate editor of IEEE Transactions on Fuzzy
Systems journal and member of Editorial Board of

the journal of Fuzzy Extension and Applications. His research interests in-
clude: nonstandard fuzzy sets theory, aggregation functions, fuzzy connectives,
clustering, fuzzy lattices, and fuzzy computability.
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