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Abstract—In this work we generalize the notion of restricted
equivalence function for type-2 fuzzy sets, leading to the notion
of extended restricted equivalence functions. We also study
how under suitable conditions, these new functions recover the
standard axioms for restricted equivalence functions in the real
setting. Extended restricted equivalence functions allow us to
compare any two general type-2 fuzzy sets and to generate
a similarity measure for type-2 fuzzy sets. The result of this
similarity is a fuzzy set on the same referential set (i.e., domain)
as the considered type-2 fuzzy set. The latter is crucial for
applications such as explainable AI and decision making, as it
enables an intuitive interpretation of the similarity within the
domain-specific context of the fuzzy sets. We show how this
measure can be used to compare type-2 fuzzy sets with different
membership functions in such a way that the uncertainty linked
to type-2 fuzzy sets is not lost. This is achieved by generating a
fuzzy set rather than a single numerical value. Furthermore, we
also show how to obtain a numerical value for discrete referential
sets.

Index Terms—Type-2 Fuzzy Sets, Restricted Equivalence Func-
tions, Similarity Measures, Uncertainty, Information Loss, Ex-
plainable AI

I. INTRODUCTION

The task of comparing two objects is relevant in virtually
every area of study; whether working with images, functions,
or algorithms. In the particular case of Fuzzy Sets (FSs), one
of the most used techniques to that end is the one based on
similarity measures [1].

In the literature we can find several works generalizing
the concept of similarity measures for different extensions of
FSs [2], such as interval-valued FSs [3], [4], [5] or intuitionis-
tic FSs [6], [7] . In the context of type-2 FSs, there are works
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Zdenko Takáč is with the Slovak University of Technology in Bratislava,
Faculty of Chemical and Food Technology, Radlinskeho 9, Bratislava, Slo-
vakia, e-mail: zdenko.takac@stuba.sk
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dealing only with interval type-2 [8], [9], [10] or with general
type-2 FSs [11], [12], [13], [14].

However, a number of fundamental questions remain. Fuzzy
sets and their generalizations are characterized for dealing
with an additional grade of uncertainty. Considering this fact,
two distinct directions can be found in the literature. When
generalizing some theoretical notions, is it better to maintain
the original format/structure of the result, so that it can be
understood in the same way as the previous notion or should
the format/structure change to reflect the additional degree of
freedom – here, offering the capacity to model the uncertainty?
As stated in the literature, there is not a clear answer to this
question since “Here naturalness will no longer help us much,
for all the evidence suggests that what is natural to one author
in the field is not the same as what is natural to another, and
readers will surely show at least the same variety.”(Bandler
and Kohout in [15]).

These two directions can be also found in the context of
type-2 similarity measures. In the literature we find both,
similarity measures in which the result is a numerical value
[4], [12], [16] and similarity measures in which the result is
a fuzzy set [17], [18]. We opt for the latter case, coinciding
with Bandler and Kohout( [15]) which state that “The natural
anticipation, it seems to us, is that the fuzziness will not
thereby be diminished”. The interest of our similarity measure
is that it fulfills appropriate properties without losing important
uncertainty information. Moreover, if a single representative
value is required, the resulting fuzzy set can be defuzzified.

Similarity measures are commonly established in respect to
a set of axioms which varies depending on the applications
[19], [20], [21], [22]. A commonly used way of building
similarity measures in the context of type-1 fuzzy sets and
interval-valued fuzzy sets is based on aggregating Restricted
Equivalence Functions (REF) [23], [24], [25]. REFs were
introduced in the literature as a generalization of equivalence
functions introduced by Fodor [26]. They allow the generation
of similarity measures of fuzzy sets in terms of simple and
well studied functions such as aggregation functions [27], [28],
implication operators [29], [30], etc.

As explained in [23], the similarity measures generated
through the aggregation of the values of restricted equivalence
functions satisfy that:
• the comparison of two sets does not depend on the order

in which they are compared, i.e., the similarity measures
are symmetric;

• the comparison is the maximum reachable value if and
only if we are comparing a set with itself;
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• the comparison of two sets is the minimum reachable
value if and only if we are comparing complementary
crisp sets;

• the comparison of two sets yields the same value as when
comparing their complements.

These properties are especially desirable for image process-
ing problems, see [13], [23], [31], [32], [33].

All the previous considerations have led us to consider
the generalization of restricted equivalence functions and
similarity measures to the type-2 FSs setting. We call the
former Extended Restricted Equivalence Functions (EREF),
which are designed to compute a similarity measure between
membership functions of type-2 FSs. Moreover, we present the
concept of EREF-based Type-2 Similarity Measures, giving a
definition and a construction method based on EREFs. The
main advantage behind this concept is that the result of the
functions is a fuzzy set, i.e., the final result is not a single
value but several ones (one per element of the universe of the
type-2 FSs). Hence, most of the uncertainty associated with
the type-2 FSs is preserved. We show that the aggregation of
the considered FSs may be seen as a numerical T2SM. The
convenience of this proposal is that it maintains the uncertainty
until the last step. Nevertheless, it is important to remark that
our definition of similarity is the first one to consider that
similarity is given by a fuzzy set over the same referential
set (i.e., domain) as the one over which the compared type-2
fuzzy sets are considered.

Observe, in order to compare two objects, a natural way is
to compare the different components of those objects. This
is the approach followed by our definition of similarity in
terms of restricted equivalence functions. We first compute
how similar the membership functions for the same element
in the referential universe are. This information is later taken
into account by considering the type 1 fuzzy set it defines – in
which the membership of each element is a measure of how
similar the two corresponding membership functions are -.

This paper is organized as follows. In Section II, we
recall some preliminary notions. In Section III we discuss
the concept of extended restricted equivalence functions and
generate a construction method. In Section IV, we introduce
and demonstrate some properties of a novel type-2 similarity
measure. Finally, in Section V, we present some conclusions
and remarks about future works.

II. BACKGROUND

In this work we denote by X a non-empty universe of dis-
course that can be either finite or infinite. When the restriction
to a finite universe is required, the universe is denoted by U .

A. Type-1 Fuzzy Sets

Definition 2.1: [34] A type-1 Fuzzy Set, or simply, a Fuzzy
Set (FS) A is a mapping A : X 7→ [0, 1] where the value A(x)
is referred to as the membership degree of the element x to
the FS A.

The set of all FSs on X is denoted by FS(X).
We also recall here the definition of aggregation function.

Definition 2.2: Let m ≥ 2 (where m is the number of
sources). An aggregation function is a function M : [0, 1]m →
[0, 1] which is increasing in each variable and it satisfies that
M(0, . . . , 0) = 0 and M(1, . . . , 1) = 1.

B. Type-2 fuzzy sets

While the concept of FS has been very useful, estab-
lishing discrete degrees of membership is often challenging
and counter-intuitive. Trying to solve this difficulty, different
generalizations of FSs have been introduced. In this paper,
we work with Type-2 FSs (T2FS) as originally introduced by
Zadeh in [35].

Definition 2.3: A Type-2 FS (T2FS) Ã on X is a mapping
Ã : X 7→ FS([0, 1]) where the membership degree of an
element of the universe x ∈ X , which is denoted by Ãx, is a
FS on the infinite universe [0, 1].

It is worth mentioning that two different notations in the
context of type-2 fuzzy exist. In this case, for the simplicity of
our mathematical developments we have opted for the notation
used in [36], [37], [38]. With this notation T2FSs can be
expressed mathematically as a mapping Ã : X 7→ F , where

F = {f | f : [0, 1] 7→ [0, 1]}.

Let T2FS(X) denote the class of all T2FSs in the universe
X . In this case, the membership degree of each element
x = x′ is associated with a function f : [0, 1] 7→ [0, 1]. In a
three-dimensional coordinate framework, note that, with this
notation, Ãx(t) corresponds to the z-axis, with t in the y-axis,
see [39].

For those accustomed to the notation of Mendel et al. [40],
the preceding function is equivalent to the secondary member-
ship degree (µF̃ (x

′, u)) for a fixed value x = x′ in a vertical
slice where u lies in the unit interval [0, 1] (adding the value
µF̃ (x

′, u) = 0 to those u /∈ [µ
F̃
(x′, u), µF̃ (x

′, u)]). See [14],
[41] for more complete information.

The union, intersection and negation operations of T2FSs
have been deeply studied, including in [36], [37]. Here, we
briefly recapitulate the notion of negation and some important
concepts that are crucial for the subsequent parts of the paper.

Definition 2.4: Let X be a universe of discourse and let
Ã ∈ T2FS(X). The negation of the T2FS Ã, denoted by
N(Ã) is the new T2FS such that for each element x in the
universe, the membership degree is given by:

(N(Ã))x(t) = Ãx(1− t) for any t ∈ [0, 1].

Observe that this refers to the membership of t on the mem-
bership of the element x on N(Ã). Note also that considering
Ã ∈ T2FS(X), for any x ∈ X , the function representing
the membership degree of the negation, (N(Ã))x ∈ F is the
symmetric function with respect to t = 1

2 of the function Ãx
which represents the membership degree of the type-2 FS Ã
(i.e., (N(Ã))x(t) = Ãx(1− t) for every t ∈ [0, 1], see Fig. 1,
where we represent the membership value to the type-2 FS,
on the left, and its negation, on the right). Moreover, N is a
strong negation, i.e., it is involutive which means that it holds
N(N(Ã)) = Ã for all Ã ∈ T2FS(X).
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Fig. 1. Example of a function degree and its negation.
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Fig. 2. Representation of the functions 0 and 1.

Let X be a universe of discourse and let Ã ∈ T2FS(X).
Considering x ∈ X , the interpretation of the membership
function fx associated to x is the following. For any t ∈ [0, 1],
• fx(t) = 1 means certainty about the membership of the

value t to the type-1 FS associated to x.
• fx(t) = 0 means certainty about the non-membership of

the value t to the type-1 FS associated to x.
• fx(t) = 0.5 means uncertainty about the membership of

the value t to the type-1 FS associated to x.
An important consequence of the interpretation of T2FSs is

the fact that the constant function 0 given by 0(t) = 0 for all
t ∈ [0, 1] means completely certainty that there is no possible
value of membership degree (empty set). From here on, all
our developments assume that the membership degrees of a
T2FS lie in G = F\{0} (see also [39]).

Moreover, the functions representing the logical values
False (F) and True (T) in classical logic are the functions
0 and 1 given by

0(t) =

{
1 , if t = 0 ,

0 , otherwise ;
(1)

1(t) =

{
1 , if t = 1 ,

0 , otherwise
(2)

which are displayed in Fig. 2(a)–(b).
Note that, considering the negation introduced in Def. 2.4,

it holds that the negation of the membership degree 0 (False)
is 1 (True), while the negation of the membership degree 1
(True) is 0 (False) as in classical logic.

C. Distance Measures

Quantifying the similarity between two objects is an
important field of research. This quantification is often based

on distances which capture the proximity of the two considered
objects. First of all, we recall the notion of distance between
numbers in the unit interval, see, for instance, [42].

Definition 2.5: A distance function on the unit interval is a
function d : [0, 1]× [0, 1] → R that satisfies for any x, y, z ∈
[0, 1] that:

1) d(x, y) ≥ 0.
2) d(x, y) = 0 if and only if x = y.
3) d(x, y) = d(y, x).
4) d(x, z) ≤ d(x, y) + d(y, z).
Note that, since membership grades of elements in a fuzzy

set are numbers between zero and one, it would be possible
to measure distances between fuzzy sets by appropriately
aggregating distances between the corresponding membership
grades.

Example 2.1: Some examples of distances are:
• The Euclidean distance, dE(x, y) = |x− y|;
• The function, d(x, y) = k| arctan(x) − arctan(y)|, for

any k > 0.
If we consider a finite referential set U = {u1, . . . , un},

if we take as aggregation function the arithmetic mean
M(t1, . . . , tn) = 1

n (t1 + · · · + tn) and if A,B ∈ FS(U),
then, M(dE(A(u1), B(u1)), . . . , dE(A(un), B(un))) can be
seen as a measure of the distance between A and B. Of course,
dE can be replaced by any other distance.

D. Similarity Measures

In this paper, we introduce a similarity measure for type-2
FSs based on the definition of similarity measures for type-
1 FSs. Similarity measures are functions which quantify the
similarity between two objects. Specifically, in the literature
we can find many axiomatizations of similarity measures for
FSs [1], [43], [44], [45]. Our definition builds on that by L.
Xuecheng [43], although it is not exactly the same since our
axioms are more restrictive. In particular, the motivation for
Axiom 2 in Def. 2.6 follows from the necessity of setting
for which of the considered objects the difference should
be the greatest possible one, or equivalently, the similarity
should be the smallest possible one. This approach has already
been followed in the literature [44], [46], [47], since, in
the case of type-1 fuzzy sets and interval-valued fuzzy sets,
this property is relevant for some applications such as image
processing [47], where it is natural to demand that the value
of the similarity measure is 0 when the two sets considered to
be the extremal ones are involved.

Definition 2.6: A similarity measure S is a mapping S :
FS(X)× FS(X)→ [0, 1] such that:

1) S(A,B) = S(B,A) for every A,B ∈ FS(X).
2) S(A,B) = 0 if and only if {A(x), B(x)} = {0, 1} for

all x ∈ X .
3) S(A,B) = 1 if and only if A(x) = B(x) for all x ∈ X.
4) For any A,B,C ∈ FS(X), such that A ≤ B ≤ C,

it holds S(A,C) ≤ S(A,B) and S(A,C) ≤ S(B,C),
(where the order relation A ≤ B holds if and only if
A(x) ≤ B(x) for any x ∈ X).

There are several construction methods for similarity mea-
sures as introduced in Def. 2.6. One approach for finite
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universes is based on the aggregation of restricted equivalence
functions. From the point of view of this work, we are espe-
cially interested in aggregation functions which are averaging.

Definition 2.7: An aggregation function M : [0, 1]m →
[0, 1] is averaging if, for every x1, . . . , xm ∈ [0, 1]m, the
inequalities

min(x1, . . . , xm) ≤M(x1, . . . , xm) ≤ max(x1, . . . , xm)

hold.
Some other aggregation functions, such as t-norms or copu-

las, fail to be averaging. However, there are many well-known
functions which are averaging aggregation functions such as
the minimum, the maximum or the arithmetic mean [28].

For the next definition we also need to recall that a strong
negation is a decreasing continuous function n : [0, 1]→ [0, 1]
such that n(n(x)) = x for every x ∈ [0, 1].

Definition 2.8: [23] A Restricted Equivalence Function
(REF) is a function REF : [0, 1]2 → [0, 1] associated with
a strong negation n if it satisfies the following:

1) REF (x, y) = REF (y, x) for all x, y ∈ [0, 1];
2) REF (x, y) = 1 if and only if x = y;
3) REF (x, y) = 0 if and only if {x, y} = {0, 1};
4) REF (x, y) = REF (n(x), n(y)) for all x, y ∈ [0, 1];
5) For all x, y, z, t ∈ [0, 1], such that x ≤ y ≤ z ≤ t, it

holds that REF (y, z) ≥ REF (x, t).
As we have already said, the relevance of REFs comes from

the fact that they can be used to build similarity measures
between fuzzy sets, as the next result shows.

Proposition 2.2: [23], [24] Let REF be a restricted equiv-
alence function and let M be an m-ary aggregation function
satisfying that M(x1, . . . , xm) = 0 if and only if xi = 0
for all i ∈ {1, . . . ,m} and M(x1, . . . , xm) = 1 if and
only if xi = 1 for all i ∈ {1, . . . ,m}. The function
SM : FS(U)× FS(U)→ [0, 1], given by

SM(A,B) =Mm
i=1(REF (A(ui), B(ui))) (3)

is a similarity measure.
For instance, if we take the restricted equivalence function

REF (x, y) = 1−|x−y| and the arithmetic mean, we recover
the similarity measure

SM(A,B) =
1

n

n∑
i=1

(1− |A(ui)−B(ui)|) .

III. EXTENDED RESTRICTED EQUIVALENCE FUNCTIONS

The semantics of Restricted Equivalence Functions (REF)
are tied to computing the similarity between two membership
degrees on a FS. Mathematically, the generalization of Re-
stricted Equivalence Functions for constructing a similarity
measure for type-2 FSs should measure how similar two
functions f1, f2 ∈ G are. To do this we need to modify the
domain of restricted equivalence functions and replace the
values in the unit interval [0, 1] with functions in G. We denote
these functions by EREFs (Extended Restricted Equivalence
Functions.)

The special nature of this generalization compels us to
extend the domain of REF from a finite cardinality to an

infinite one. We do this in order to construct the theoretical
development as generally as possible, but the real required
cardinal in this case is that of G2.

For infinite cardinality, it is natural to think about an
integral, i.e, formulas similar to

EREF (f1, f2) =

∫
d(f1, f2),

(where d is some distance) dependent on f1 and f2 satisfying
additional properties.

Axiom 3 of REF adresses cases in which two values are
the most dissimilar, i.e., the minimum value given to contrary
values. For type-2 FSs, our proposal consists of replacing the
values 0, 1 with the functions bottom and top, i.e., with the
functions 0 (False in classical logic) and 1 (True in classical
logic) introduced in Eqs. (1) and (2). Hence, the axiom should
be:
3’) EREF (f1, f2) = 0 if and only if {f1, f2} = {0, 1}.

A first problem of this integral approximation arises due to
the integral of two functions which differ in a zero-measure
set (in a set of finite points, for example) is equal. A possible
solution would be to consider the following modification of
axiom 2):
2’) EREF (f1, f2) = 1 if and only if f1 = f2 a.e.,
where f1 = f2 a.e. means that f1 = f2 are equal almost
everywhere, that is, f1(t) = f2(t) for all t ∈ [0, 1]\S being S
a set of null measure (i.e., of measure equal to zero).

But even in this case, a second drawback must be taken into
account. Considering Axiom 2’, since the functions 0 and 1
are the same for every t different from 0 and 1, they only
differ in the set {0, 1}, which is a discrete set and hence it is
a set of measure zero. According to 2’), this would imply that
EREF (0, 1) = 1. Moreover, due to Axiom 3’ it holds that
EREF (0, 1) = 0, a contradiction. Our proposal to deal with
this problem is based on the cumulative functions defined in
[37].

Definition 3.1: Let f ∈ G. The left- and right-cumulative
functions fL, fR : [0, 1]→ [0, 1] are defined for any t ∈ [0, 1]
as:

fL(t) =
∨
y≤t

f(y)

and
fR(t) =

∨
y≥t

f(y).

Note that the left cumulative function fL is an increasing
function while fR is a decreasing one. Moreover, since the
constant function 0 is not in G, we find that the function
fL(1) > 0 and fR(0) > 0. An example of the cumulative
functions is depicted in Fig. 3.

Considering the cumulative functions we propose to con-
sider the modification of Axiom 2’ as follows:
• EREF (f1, f2) = 1 if and only if fL1 = fL2 a.e. and
fR1 = fR2 a.e.

Summarizing our proposal for the definition of EREF is the
following.

Definition 3.2: A function EREF : G2 → [0, 1] is called
an extended restricted equivalence function if it satisfies:
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Fig. 3. Representation of a function f and its cumulative functions fL, fR:
a) function f, b) left-cumulative function and c) right-cumulative function.

1) EREF (f1, f2) = EREF (f2, f1) for all f1, f2 ∈ G;
2) EREF (f1, f2) = 1 if and only if fL1 = fL2 a.e. and

fR1 = fR2 a.e.;
3) EREF (f1, f2) = 0 if and only if {f1, f2} = {0, 1};
4) EREF (f1, f2) = EREF (N(f1), N(f2)) where N(fi)

(i = 1, 2) is the negation given by N(fi)(t) = fi(1− t)
for all t ∈ [0, 1];

5) for any three functions f1, f2, f3 ∈ G such that f1 ≤
f2 ≤ f31 it holds EREF (f1, f3) ≤ EREF (f1, f2) and
EREF (f1, f3) ≤ EREF (f2, f3).

Remark 1: Note that if f1 = f2, then it holds that fL1 = fL2
and fR1 = fR2 . The converse does not always hold, just
consider the function identically equal to 1 and the function
which is 1 everywhere except at t = 0.5, where it takes
the value 0. However, we find a close relation. In [37] it is
proved that the union and intersection operations of type-2 FSs
generate a lattice only if the considered functions are normal
and convex. Namely, in order to generate a lattice the functions
must satisfy these additional properties:
•
∨
t∈[0,1] f(t) = 1 (normal functions)

• for any t ≤ y ≤ z, it holds that f(y) ≥ f(t) ∧ f(z)
(convex functions).

In [37] it is also proved that in the set of normal and convex
functions it holds that (fL∧fR)(x) = f(x). Hence, fL1 = fL2
and fR1 = fR2 imply that f1 = f2. This means that the
proposed Axiom 2 is the straightforward generalization of
Axiom 2 for extended restricted equivalence functions when
we consider normal and convex functions.

1We consider f1 ≤ f2 if f1(t) ≤ f2(t) for any t ∈ [0, 1].

The main reason to introduce left and right cumulative func-
tions is to provide a tool to deal with membership functions
as general as possible. Observe that, strictly speaking, if we
consider a type-2 fuzzy set A over a referential set X , any
function f : [0, 1] → [0, 1] can be taken as membership
function for a given x ∈ X . Hence, it is necessary to provide
a mathematical mechanism as general as possible in order to
compare any two of these functions, and the use of cumulative
functions provides such mechanism.

Theorem 3.1: Let d : [0, 1]2 → [0, 1] be a distance on [0, 1]
such that

1) d(x, y) = 1 if and only if {x, y} = {0, 1}, and
2) for every x, y, z ∈ [0, 1] such that x ≤ y ≤ z, it holds

that d(x, z) ≥ d(x, y).
Then, the function

EREF (f1, f2) = 1− 1

2

∫ 1

0

d(fL1 (t), f
L
2 (t))dt−

1

2

∫ 1

0

d(fR1 (t), fR2 (t))dt

is an EREF .
Proof: See Appendix.

Example 3.2:
1) Considering the Euclidean distance, the function

EREF (f1, f2) = 1− 1

2

∫ 1

0

|fL1 (t)− fL2 (t)|dt

− 1

2

∫ 1

0

|fR1 (t)− fR2 (t)|dt ,

is an EREF.
2) Considering the distance function d(x, y) =

4
π (| arctan(x)− arctan(y)|) , the function

EREF (f1, f2) =

1− 1

2

∫ 1

0

4

π
| arctan(fL1 (t))− arctan(fL2 (t))|dt

− 1

2

∫ 1

0

4

π
| arctan(fR1 (t))− arctan(fR2 (t))|dt

= 1− 2

π

∫ 1

0

| arctan(fL1 (t))− arctan(fL2 (t))|dt

− 2

π

∫ 1

0

| arctan(fR1 (t))− arctan(fR2 (t))|dt

is an EREF.

IV. TYPE-2 SIMILARITY MEASURES

In this section we generalize the definition of a similarity
measure, as well as introduce a construction method based on
EREFs defined in the preceding section. Like in the definition
of similarity measures for Type-1 FSs, a reasonable way to
define similarity measures for type-2 FSs is to give a number
in the unit interval [0, 1] such that the closer to one, the
more similar the T2FSs are. However, that idea implies an
immense loss of information. Even worse, type-2 FSs provide
a fine-grained model of uncertainty and we believe that to
summarize the similarity of two T2FSs in a single value is
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not an ideal option. Our proposal consists of associating the
similarity of any two T2FSs on the universe X with a FS
on the universe X , such that the membership degree of each
element of the universe is associated with a number which
expresses the similarity between the two type-2 memberships
at that element.2 The main advantage of this proposal is that it
allows the generalization of the concept of a similarity measure
while preserving key uncertainty information inherent in the
type-2 FSs which are being compared.

Definition 4.1: A type-2 similarity measure T2SM is a
mapping T2SM : T2FS(X)× T2FS(X) −→ FS(X) such
that, for any element x in the universe of discourse X , the
membership degree of the T2SM satisfies that:

1) T2SM(Ã, B̃)x = T2SM(B̃, Ã)x for any Ã, B̃ ∈
T2FS(X).

2) T2SM(Ã, B̃)x = 0 if and only {Ãx, B̃x} = {0, 1}.
3) T2SM(Ã, B̃)x = 1 if and only if ÃLx = B̃Lx a.e. and

ÃRx = B̃Rx a.e for all x ∈ X .
4) For any Ã, B̃, C̃ ∈ T2FS(X) such that Ã ≤ B̃ ≤

C̃, it holds that T2SM(Ã, C̃) ≤ T2SM(Ã, B̃) and
T2SM(Ã, C̃) ≤ T2SM(B̃, C̃), where the order rela-
tion Ã ≤ B̃ holds if and only if Ãx(t) ≤ B̃x(t) for all
x ∈ X and for all t ∈ [0, 1].

Once again, we have opted for a modification of the axioms
of similarity measures in order to preserve key uncertainty
information of type-2 FSs. It is worth mentioning many of
the expressions considered in the literature, fulfill Axiom 2).
For instance, if we consider some of the measures which are
discussed in [48]:

• For the Hung and Yang’s similarity measure [49], which
is based on the use of the Hausdorff distance, it comes
out that d(Ã, B̃) = 0 if and only if Ã = 0 and B̃ = 1 or
viceversa.

• Regarding Yang and Lin’s similarity measure [12], if we
consider two type-2 fuzzy sets over the same referential
set X such that, for every x ∈ X , Ãx(t) · B̃x(t) = 0,
then the similarity between them is zero.

• Hwang, Yang, Hung and Lee’s similarity [50] is not
well-defined for general type-2 fuzzy sets, since, if the
membership function of all the elements in A is equal
to zero a.e, the denominator maybe equal to zero for a
general fuzzy measure.

• Finally, both McCulloch, Wagner and Aickelin’s [11]
and McCulloch and Wagner’s [16] similarities fullfill the
requested axioms as long as the type-1 similarity used for
defining them satisfies an analogous condition; that is, if
the similarity between two fuzzy sets A and B is equal
to zero if and only if for each element x in the referential
set, {Ãx, B̃x} = {0, 1}.

Furthermore, it is worth remarking thatr, in [12], a sim-
ilarity measure for general type-2 FSs is also introduced.
That measure is defined according to the axioms of symmetry
(Axiom 1), transitivity (Axiom 4) and minimum and maximum
similarity (Axioms 2, 3). The method presented in this paper

2Note that another option is associating a type-2 FS but we believe that the
interpretation of uncertainty in this situation would be intricate.

and that of [12] share Axioms 1 and 4, but they differ in
Axioms 2, 3. In [12] they impose:

(S2) S(D,Dc) = 0 , for every D ∈ P(X) (the power set of
X).

(S3) S(E,E) = maxA,B∈FS(X) S(A,B), for all E ∈
FS(X).

Although S2 may look quite similar, indeed the main dif-
ference is that we impose that only complementary crisp
sets yield the minimum value 0 while Yang and Lin allow
minimum value for other sets. Similarly, Axiom 3 imposes
maximum similarity measure. In general, our axioms are
more restrictive, since they imply a sufficient and necessary
condition.

The construction method by means of EREFs still holds, but
in this case, without the necessity of an aggregation function.

Proposition 4.1: Let EREF be an extended restricted
equivalence function and let U be a finite universe of dis-
course. We generate a type-2 similarity measure T2SM , as
follows:

T2SM(Ã, B̃) = {(ui, EREF (Ãui
, B̃ui

))|ui ∈ U}

So, a way to calculate the type-2 similarity measure between
two type 2 fuzzy sets Ã, B̃ defined over a referential set X ,
it is necessary to follow the following steps:

1) Choose an EREF function which fulfills the properties
required in Def. 3.2.

2) For each x ∈ X , calculate the value EREF (Ãx, B̃x).
3) Then, the resulting similarity measure is the fuzzy set

over X such that the membership value of the element
x ∈ X is given by EREF (Ãx, B̃x).

Remark 2: Note that, with our approach, the similarity
measure that we obtain is strongly dependent on the EREF that
we have chosen. In this sense, our definition has the advantage
of providing a whole family of similarity measures rather than
a specific expression, enabling (but also requiring) the most
appropriate instance to be selected given an application. In this
sense, the proposed approach is not dissimilar to requiring
practitioners to select amongst the existing set of similarity
measures, except that it provides one coherent family of
measures within one overall mathematical framework.

A. Numerical type-2 similarity measures

In our axiomatic definition we have opted for a FS instead
of a single value as the result of type-2 similarity measures.
As explained before, this is partially done with the aim of
maintaining the uncertainty of the type-2 fuzzy sets. However,
it might be necessary for some applications or comparisons
to yield a single representative value. In this context, when
the universe of discourse is finite, we propose to fuse the
information by means of an aggregation function, retrieving a
single value which satisfies suitable properties. Nevertheless,
some other defuzzification methods available in the literature
may be used (e.g., the centroid).

Definition 4.2: Let U = {u1, . . . , un} be a finite universe of
discourse, M be an averaging n-ary aggregation function and
T2SM a type-2 similarity measure. We call Numerical Type-2
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Similarity Measure (NT2SM ) with respect to M to the result
of fusing all the membership degrees of the T2SM , i.e., to the
function NT2SM : T2FS(U) × T2FS(U) → [0, 1] defined
by:

NT2SM(Ã, B̃) =Mn
i=1(T2SM(Ã, B̃)ui

) =

M(T2SMu1
, T2SMu2

, . . . , T2SMun
).

Notice that, as the aggregation function does not have to be
necessarily commutative, the previous definition may directly
depend on the concrete order of the elements in the set
{u1, u2, . . . , un}.

For instance, if we take as M : [0, 1]n → [0, 1] the
arithmetic mean, and as EREF the function given in 2) of
Example 3.2, we have that, for any Ã, B̃ ∈ T2FS(U):

NT2SM(Ã, B̃) =

1

n

n∑
i=1

(
1− 2

π

∫ 1

0

| arctan(ÃLui
(t))− arctan(BLui

(t))|dt

− 2

π

∫ 1

0

| arctan(ÃRui
(t))− arctan(BRui

(t))|dt
)

If the averaging aggregation function M satisfies that:
• M(x1, . . . , xn) = 0 if and only if x1 = . . . = xn = 0;
• M(x1, . . . , xn) = 1 if and only if x1 = . . . = xn = 1;

then the numerical type-2 similarity measure satisfies that
1) NT2SM(Ã, B̃) = NT2SM(B̃, Ã) for any Ã, B̃ ∈

T2FS(X).
2) NT2SM(Ã, B̃) = 0 if and only {Ãx, B̃x} = {0, 1} for

all x ∈ X .
3) NT2SM(Ã, B̃) = 1 if and only if ÃLx = B̃Lx a.e. and

ÃRx = B̃Rx a.e. for all x ∈ X .
4) For any Ã, B̃, C̃ ∈ T2FS(X), such that Ã ≤ B̃ ≤ C̃,

it holds that NT2SM(Ã, C̃) ≤ NT2SM(Ã, B̃) and
NT2SM(Ã, C̃) ≤ NT2SM(B̃, C̃).

So, in order to calculate the numerical type-2 similarity
measure between two type 2 fuzzy sets Ã, B̃ defined over a
finite referential set U , it is necessary to follow the following
steps:

1) Choose the similarity function T2SM to be used.
2) For each u ∈ U , calculate the value T2SM(Ã, B̃)u.

That is, the membership value of the element u ∈ U to
the fuzzy set T2SM(Ã, B̃).

3) Choose an aggregation function M : [0, 1] → [0, 1],
where n is the cardinality of the referential set U .

4) Calculate the aggregation by M of all the values
T2SM(Ã, B̃)u with u ∈ U .

B. The case of Interval type-2 fuzzy sets

Dealing with T2FSs is not an easy task. One of the main
challenges is that dealing with such intricate expressions of
uncertainty is arduous. Moreover, the definition of well defined
operators is quite novel, in particular at the design stage of
such FSs. Due to these difficulties most of the applications
deal with Interval Type-2 FSs (IT2FS) ([8], [9], [40], [51],
[52]). In the literature, there are some controversies on the
definition of these sets ([53]). In our context, an IT2FS is a

T2FS in which, for any element in the universe of discourse,
the associated membership function is given by

fx(t) =

{
1 , if t ∈ [a, b],

0 , otherwise

for some 0 ≤ a ≤ b ≤ 1 which depend on the considered
T2FS and x. Specifically, the membership interval of x to the
interval valued fuzzy set is precisely [a, b].

The main advantage of these sets is that the considered
membership functions are convex and normal [37], and, hence,
Axiom 2 of EREF is equivalent to the original one (see
Remark 1). Furthermore, although the calculation of the type-
2 similarity measure between sets of this type follows the same
steps as in the case of general type-2 fuzzy sets, it may be
easier in some cases.

For instance, considering Ã, Ã′ ∈ IT2FS(X), if the type-2
similarity measure is generated by the Euclidean distance as
in Example 3.2(1), then

T2SM(Ã, Ã′) = {(x, µx)} ,

where the value µx is

µx = 1− 1

2
|a− a′| − 1

2
|b− b′| . (4)

Note that a, a′, b, b′ depend on x.
Indeed, we find that µx = 1

2REF (a, a
′) + 1

2REF (b, b
′)

where the REF (x, y) = 1− |x− y|.
From here on and for the sake of simplicity, the membership

function f̃x of an IT2FS, given by

fx(t) =

{
1 , if t ∈ [a, b],

0 , otherwise

for some 0 ≤ a ≤ b ≤ 1, is denoted by the corre-
sponding interval [a, b], i.e., considering Ã ∈ IT2FS(U)
(U = {u1, . . . , un}), the IT2FS will be represented as

Ã = {(u1, [a1, b1]), . . . , (un, [an, bn])},

where [ai, bi] is the interval where the function fui
takes the

value 1.
Example 4.2: Let U = {u1, u2, u3} be the universe of Ã ∈

IT2FS(U) given by

Ã = {(u1, [0.2, 0.5]), (u2, [0.6, 0.6]), (u3, [0.4, 0.45])}

(see Fig. 4a))3 and

Ã′ = {(u1, [0, 0.4]), (u2, [0.3, 0.65]), (u3, [0.55, 0.8])}

(see Fig. 4b)) .
We compute the similarity measure of Ã and Ã′

using Eq. 4, so the result is T2SM(Ã, Ã′) =
{(u1, 0.85), (u2, 0.825), (u3, 0.75)}.

3Note that we have opted for depicting the complete T2FS, including the
three elements of the universe (on the x-axis) and on the y-axes a blue vertical
line with the values in which the membership degree is 1.
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a) IT2FS A b) IT2FS A′

Fig. 4. Interval-type-2 FSs of Example 4.2: a) the set A (left image) and b)
set A′.

C. The case of triangular and trapezoidal type-2 fuzzy sets

In this section, we consider general type-2 fuzzy sets in
which secondary membership functions are convex and normal
FS([0, 1]). Particularly, we focus on distributions that have
been deeply studied in the literature in which the membership
functions are triangular or trapezoidal FSs [54], [55], [56],
[57], [58], [59]. Triangular membership degrees of T2FSs are
mathematically described by:

f̃x(t) =


t−a
b−a , if t ∈ [a, b],

1− t−b
c−b , if t ∈ (b, c],

0 , otherwise,
(5)

for some 0 ≤ a < b < c ≤ 1.
Similarly, the functions which represent the trapezoidal

membership degrees of T2FSs are given by:

f̃x(t) =


t−a
b−a , if t ∈ [a, b],

1 , if t ∈ (b, c],

1− t−c
d−c , if t ∈ (c, d],

0 , otherwise,

(6)

for some 0 ≤ a < b ≤ c < d ≤ 1.
It is worth mentioning that triangular T2FSs can be also

thought as a subclass of trapezoidal FSs in which the param-
eters satisfy that b = c.

From here on and for the sake of simplicity, the membership
function f̃x of a triangular T2FS is denoted by the correspond-
ing triplet (a, b, c) with a < b < c, i.e., considering Ã to be a
triangular T2FS(U) on a finite universe U = {u1, . . . , un},
the triangular T2FS will be represented as

Ã = {(u1, (a1, b1, c1)), . . . , (un, (an, bn, cn))},

where (ai, bi, ci) represent the function f̃ui
(as in Eq. (5)).

Similarly,

Ã = {(u1, (a1, b1, c1, d1)), . . . , (un, (an, bn, cn, d1))},

represents the trapezoidal T2FS where f̃ui is expressed as in
Eq. (6).

Fig. 5 shows a graphical representation of the triangular
membership function fx = (0.3, 0.6, 0.7) and the trapezoidal
membership function fx = (0.3, 0.45, 0.8, 0.9), respectively.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

t

f(
t)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t

f(
t)

a) Triangular set b) Trapezoidal set
Fig. 5. Functions representing triangular and trapezoidal membership de-
grees of type-2 FSs: a) triangular membership function, and b) trapezoidal
membership function.

Example 4.3: Let be the universe U = {u1, u2}.
Let Ã be the triangular T2FS(U) given by Ã =
{(u1, (0.4, 0.6, 0.8), (u2, (0, 0.25, 0.75)))}, (see Fig. 6(a)–
(b)) and B̃ be the trapezoidal T2FS(U) given by
B̃ = {(u1, (0.4, 0.5, 0.7, 0.8)), (u2, (0, 0.25, 0.75, 1))} (see
Fig. 6(c)–(d)).

The left and right cumulative functions of the membership
function of u1 are given by:

ãLu1
(t) =


0 , if t < 0.4,
t−0.4
0.2 = 5t− 2 , if t ∈ [0.4, 0.6],

1 , if t > 0.6 ,

(7)

and

ãRu1
(t) =


1 , if t < 0.6,

1− t−0.6
0.2 = −5t+ 4 , if t ∈ [0.6, 0.8],

0 , if t > 0.8 .

(8)

Similarly, the left and right cumulative functions of the
membership function of u1 in B̃ are given by:

b̃Lu1
(t) =


0 , if t < 0.4,
t−0.4
0.1 = 10t− 4 , if t ∈ [0.4, 0.5],

1 , if t > 0.5 ,

(9)

and

b̃Ru1
(t) =


1 , if t < 0.7,

1− t−0.7
0.1 = −10t+ 8 , if t ∈ [0.7, 0.8],

0 , if t > 0.8 .

(10)

We compute the similarity measure of Ã and Ã′, which is
for u1:

EREF (Ãu1
, B̃u1

) = 1− 1

2

∫ 1

0

d(ãLu1
(t), b̃Lu1

(t))dt

−1

2

∫ 1

0

d(ãRu1
(t), b̃Ru1

(t))dt = 1− 1

2
0.05− 1

2
0.05 = 0.95 .

Making a similar calculation for the membership functions
of the element u2, we have a type-2 similarity measure
T2SM(Ã, B̃) = {(u1, 0.95), (u2, 0.8125)}.

Note that, since triangular and trapezoidal type-2 FSs are
quite similar in this example, the similarity measure between
them is quite high in both elements of the universe. Moreover,
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Fig. 6. Triangular and trapezoidal type-2 FSs of Example 4.3: a) the mem-
bership function Ãu1 , b) the membership function Ãu2 , c) the membership
function B̃u1 and d) the membership function B̃u2 .

it holds that the membership function Ãu1
and B̃u1

are more
similar than Ãu2

and B̃u2
. Moreover, if it is necessary a single

representative value for the similarity, we can fuse both values
with some aggregation function, such as the arithmetic mean
and then NT2SM(Ã, B̃) = 0.88125.

It is also worth to mention that, if we consider the expression
for similarity given in [18], which is done in terms of the α-
plane or zSlice representation, considering for α the values
{0.25, 0.5, 0.75, 1}, we get that the similarity between Ã and
B̃ of Example 4.3 is given by the type-1 fuzzy set:

{(0.25, 0.778), (0.5, 0.7560), (0.75, 0.7426), (1, 0.7255)} .

Note that this set is defined over the referential
{0.25, 0.5, 0.75, 1} so it is not possible to directly compare
it to the result T2SM(Ã, B̃) obtained in our example.
However, if we calculate the centroid of this set to produce a
single numerical, representative value (as proposed in [18]),
we get a value of 0.7420, which, again, is a high similarity
although lower than the numerical value NT2SM(Ã, B̃)
obtained in our case. Nevertheless, we maintain that a direct
comparison of the similarity scores for such methods,-
operating on different referential sets-, is not meaningful.
In this particular case, our proposed method is designed to
evaluate the similarity of the sets primarily in respect to the
primary degree of membership, while [18] focuses on the
similarity of the secondary memberships.

V. CONCLUSIONS AND FUTURE WORK

This work has two main contributions. First of all, we have
introduced the family of extended restricted equivalence func-
tions, a generalization of the notion of restricted equivalence
functions for type-2 FSs. The value of this definition lies that:
A) it supports the direct operation with general type-2 FSs,

i.e, is not restricted to (but is also compatible with)
interval type-2 FSs;

B) although some modifications on the axioms of restricted
equivalence functions must be considered, the standard
axioms are recovered when considering secondary mem-
bership degrees that are normal and convex functions as
in [36], [37].

The second contribution has been the definition of similarity
measures for type-2 FSs constructed by means of EREFs. This
concept has been introduced to compare two type-2 FSs with
a distance measure while preserving key uncertainty infor-
mation inherent in the type-2 FSs. Finally, we have applied
these similarity measures to different examples of type-2 FSs,
focusing on interval, triangular and trapezoidal type-2 FSs.
The benefit of focusing on these commonly used sets is that
their secondary membership functions are convex and normal,
substantially simplifying the formulas and computation.

We expect to expand the present work through two different
lines of research. First, we will conduct an independent
theoretical study to analyze the differences in the modified
axioms of similarity measures when general (instead of normal
and convex) type-2 FSs are considered, i.e., deepening the
study of the behaviour of similarity measures dealing with
general type-2 FSs. Secondly, we expect to introduce and
generalize inference methods for dealing with general type-
2 FSs. We believe that the proposed similarity measures can
be used for measuring the alikeness of general type-2 FSs
leading to improvements in some applications, as well as to
compare antecedents and consequents of fuzzy rules defined
in terms of type-2 fuzzy sets. Our final goal consists of finding
a real problem in which these inference methods can be
applied. Taking into account that similarity functions built in
terms of REF functions have shown themselves very useful in
grayscale image processing algorithms, we also think that our
developments can be useful for colour image processing, when
we assume that the colours are defined in terms of linguistic
labels.

Finally, it is worth mentioning that in this work we have
not included a comparison to other similarity measures that
can be found in the literature, since this is the first time a
similarity measure between type-2 fuzzy sets has been defined
as a fuzzy set defined over the same referential set as the one
of the compared sets. As part of a future publication we will
provide a detailed set of empirical analyses which illustrate
the difference in output and general behavior between the
proposed and traditional similarity measures.

APPENDIX

In this Appendix, we include the proof of Theorem 3.1.
Proof: Note that since the codomain of the distance d is

restricted to [0, 1], the function EREF is well defined. Let us
show that it satisfies properties 1)− 5).
1) EREF (f1, f2) = EREF (f2, f1) is trivially satisfied,

due to the commutativity of d.
2)

EREF (f1, f2) = 1− 1

2

∫ 1

0

d(fL1 (t), f
L
2 (t))dt

− 1

2

∫ 1

0

d(fR1 (t), fR2 (t))dt = 1
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if and only if ∫ 1

0

d(fL1 (t), f
L
2 (t))dt = 0 and (11)

∫ 1

0

d(fR1 (t), fR2 (t))dt = 0 . (12)

Since the distance d satisfies that d(x, y) ≥ 0 for all x, y ∈
[0, 1] and d(x, y) = 0 if and only if x = y, we find that
(11) and (12) hold if and only if

d(fL1 (t), f
L
2 (t)) = 0 a.e. in [0, 1] and

d(fR1 (t), fR2 (t)) = 0 a.e. in [0, 1]

which is equivalent to

fL1 (t) = fL2 (t) a.e. in [0, 1] and

fR1 (t) = fR2 (t) a.e. in [0, 1].

3) Similarly to 0, which denotes the constant function
0(t) = 0 for all t ∈ [0, 1], let 1 denote the constant function
1.

EREF (f1, f2) = 1− 1

2

∫ 1

0

d(fL1 (t), f
L
2 (t))dt

− 1

2

∫ 1

0

d(fR1 (t), fR2 (t))dt = 0

if and only if ∫ 1

0

d(fL1 (t), f
L
2 (t))dt = 1 and (13)

∫ 1

0

d(fR1 (t), fR2 (t))dt = 1. (14)

Since the distance d satisfies that d(x, y) ≤ 1 for all x, y ∈
[0, 1] and d(x, y) = 1 if and only if {x, y} = {0, 1}, we find
that (13) and (14) hold if and only if

d(fL1 (t), f
L
2 (t)) = 1 a.e. in [0, 1] and

d(fR1 (t), fR2 (t)) = 1 a.e. in [0, 1]

which is equivalent to

{f1L(t), fL2 (t)} = {0, 1} a.e. in [0, 1] and

{fR1 (t), fR2 (t)} = {0, 1} a.e. in [0, 1].

Let us show that this holds if and only if one of the left
cumulative functions is the constant null function 0 a.e. in
[0, 1], and the other one is the constant one function 1 a.e. in
[0, 1].

Without loss of generality, suppose fL1 = 0 a.e.. Since 0 /∈
G and due to the increasingness of the left cumulative function,
the function f1 is given as follows:

f1(t) =

{
0 , if t 6= 1 ,

a , if t = 1

where a > 0. Furthermore, we know that {fR1 (t), fR2 (t)} =
{0,1} a.e. in [0, 1]. Since the right cumulative function is a
decreasing function and fR1 (1) = a > 0, we find that fR1 = 1
a.e. in [0, 1]. However, this only holds if a = 1, i.e., f1 = 1.

Finally, if fR1 = 1 a.e. then fR2 = 0 a.e.. Since 0 /∈ G and
due to the decreasingness of the right cumulative function,

f2(t) =

{
0 , if t 6= 0 ,

b , if t = 0

where b > 0. Besides, since fL2 (t) = 1 a.e. in [0, 1] it holds
that b = 1 and hence, the function f2 = 0.
4) First of all, let us show that (N(f))L(t) = fR(1− t) for

any t ∈ [0, 1].

(N(f))L(t) =
∨
y≤t

(N(f))(y) =
∨
y≤t

f(1− y)

=
∨

1−z≤t

f(z) =
∨

1−t≤z

f(z) = fR(1− t).

Similarly, it can be seen that (N(f))R(t) = fL(1− t) for any
t ∈ [0, 1].

Hence,

EREF (N(f1), N(f2)) =

1− 1

2

∫ 1

0

d((N(f1))
L(t), (N(f2))

L(t))dt

− 1

2

∫ 1

0

d((N(f1))
R(t), (N(f2))

R(t))dt

= 1− 1

2

∫ 1

0

d(fR1 (1− t), fR2 (1− t))dt

− 1

2

∫ 1

0

d(fL1 (1− t), fL2 (1− t)))dt

Changing the variable 1− t = y, it holds that

EREF (N(f1), N(f2)) = 1−1

2

∫ 0

1

d(fR1 (y), fR2 (y))(−dy)

− 1

2

∫ 0

1

d(fL1 (y), (f
L
2 (y))(−dy) =

1− 1

2

∫ 1

0

d(fR1 (y), fR2 (y))dy

− 1

2

∫ 1

0

d(fL1 (y), (f
L
2 (y))dy = EREF (f1, f2) .

5) Let f1, f2, f3 ∈ G such that f1 ≤ f2 ≤ f3. One easily
verifies that, since f1(t) ≤ f2(t) ≤ f3(t) for all t ∈ [0, 1], it
holds that

fL1 (t) ≤ fL2 (t) ≤ fL3 (t)
fR1 (t) ≤ fR2 (t) ≤ fR3 (t) .

Hence,

d(fL3 (t), f
L
1 (t)) ≥ d(fL3 (t), fL2 (t))

d(fR3 (t), fR1 (t)) ≥ d(fR3 (t), fR2 (t)) .
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Consequently, it holds that

EREF (f1, f3) = 1− 1

2

∫ 1

0

d(fL1 (t), f
L
3 (t))dt

− 1

2

∫ 1

0

d(fR1 (t), fR3 (t))dt

≤ 1− 1

2

∫ 1

0

d(fL2 (t), f
L
3 (t))dt

− 1

2

∫ 1

0

d(fR2 (t), fR3 (t))dt = EREF (f2, f3).
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