
ar
X

iv
:2

20
6.

02
56

7v
3 

 [
m

at
h.

G
M

] 
 8

 S
ep

 2
02

2
1

A Monotonous Intuitionistic Fuzzy TOPSIS Method

under General Linear Orders via Admissible

Distance Measures
Xinxing Wu, Zhiyi Zhu, Chuan Chen, Guanrong Chen, Life Fellow, IEEE, Peide Liu

Abstract—All intuitionistic fuzzy TOPSIS methods contain two
key elements: (1) the order structure, which can affect the
choices of positive ideal-points and negative ideal-points, and
construction of admissible distance/similarity measures; (2) the
distance/similarity measure, which is closely related to the values
of the relative closeness degrees and determines the accuracy and
rationality of decision-making. For the order structure, many ef-
forts are devoted to constructing some score functions, which can
strictly distinguish different intuitionistic fuzzy values (IFVs) and
preserve the natural partial order for IFVs. This paper proves
that such a score function does not exist, namely the application of
a single monotonous and continuous function does not distinguish
all IFVs. For the distance or similarity measure, some examples
are given to show that classical similarity measures based on
the normalized Euclidean distance and normalized Minkowski
distance do not meet the axiomatic definition of intuitionistic
fuzzy similarity measures. Moreover, some illustrative examples
are given to show that classical intuitionistic fuzzy TOPSIS
methods do not ensure the monotonicity with the natural partial
order or linear orders, which may yield some counter-intuitive
results. To overcome the limitation of non-monotonicity, we
propose a novel intuitionistic fuzzy TOPSIS method, using three
new admissible distances with the linear orders measured by
a score degree/similarity function and accuracy degree, or two
aggregation functions, and prove that the proposed TOPSIS
method is monotonous under these three linear orders. This is the
first result with a strict mathematical proof on the monotonicity
with the linear orders for the intuitionistic fuzzy TOPSIS method.
Finally, we show two practical examples and comparative analysis
with other decision-making methods to illustrate the efficiency
of the developed TOPSIS method.

Index Terms—Intuitionistic fuzzy set, Distance measure, Sim-
ilarity measure, TOPSIS, Multi-attribute decision making.
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ZADEH (1965) [1] established the fuzzy set (FS) theory by

applying membership degree to measure the importance

of a fuzzy element, which generalized the concept of crisp

set, characterized by a characteristic function taking value 0
or 1, by taking any value in the unit interval [0, 1]. However,

due to the limitation of a membership function that only

indicates two (supporting and opposing) opposite states of

fuzziness, the fuzzy set cannot express the neutral state of

“this and also that”. According to this, Atanassov (1986) [2]

generalized Zadeh’s fuzzy set by proposing the concept of

intuitionistic fuzzy sets (IFSs) (see also [3]), characterized

by a membership function and a non-membership function

meeting the condition that the sum of the membership degree

and the non-membership degree at every point is less than

or equal to 1. Every pair of membership and non-membership

degrees for IFSs was called an intuitionistic fuzzy value (IFV)

by Xu [4]. Thereafter, various multi-attribute decision making

(MADM) methods under the intuitionistic fuzzy framework

were developed and widely applied. This paper focuses on

the intuitionistic fuzzy TOPSIS method.

Being one of the most well-known MADM methods, TOP-

SIS was first proposed by Hwang and Yoon (1981) [5].

The main idea of the TOPSIS is that the most desirable

alternative should be nearest from the positive ideal-point

and meanwhile furthest from the negative ideal-point. Noting

that the total order structure ‘≤’ and the absolute distance

‘| · |’ on the real line R are admissible (the bigger the real

number, the nearer from the maximum, and the further from

the minimum). This can naturally guarantee the establishment

of the TOPSIS and further ensure its monotonicity. Due to the

complex two-dimensional structure of the space of all IFVs, all

existing IF distance measurements for IFVs are not admissible

under linear orders on IFVs. Therefore, we [6] introduced the

concept of admissible distance measure with the linear order

‘≤
XY

’ of Xu and Yager [7] and constructed an admissible

distance measure ̺ with the linear order ‘≤
XY

’.

Through careful analysis of the TOPSIS method, it is

not difficult to find that the TOPSIS method contains two

key elements: (1) the order structure, which can affect the

choices of positive ideal-points and negative ideal-points; (2)

the distance/similarity measure, which is closely related to the

relative closeness degrees and determines the accuracy and

rationality of decision-making. Therefore, essentially speak-

ing, all improvements on IF TOPSIS method provide certain

improvements on the order structure and the distance/similarity

measures.

http://arxiv.org/abs/2206.02567v3
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To rank IFVs, score function is a useful tool. Xu and

Yager [7] introduced the linear order ‘≤
XY

’ for IFVs by

applying a score function and an accuracy function. According

to the TOPSIS idea [5], Zhang and Xu [8] proposed another

linear order ‘≤
ZX

’ for IFVs by applying a similarity function

and an accuracy function. Recently, Xing et al. [9] defined

a linear order for IFVs by using a score function expressed

by the Euclidean distance from the maximum point 〈1, 0〉.
Bustince et al. [10] suggested a general construction of linear

orders for intervals contained in [0, 1] by means of aggregation

functions. Based on this, De Miguel et al. [11], [12] developed

a general method for constructing linear orders between pairs

of intervals based on aggregation functions, which was suc-

cessfully applied to construct linear orders for interval-valued

IFSs. Wang et al. [13] classified the existing score functions

of IFVs into two types, one type consists of score functions

without abstention group influence [14], [15], [16], [17], [18],

[19], and the other consists of score functions with abstention

group influence [20]. Zeng et al. [21] illustrated that these

existing score functions, the existing accuracy functions in

[22], [23], and the measure methods in [24], [25], [8] for

ranking IFVs have a drawback that they may cause some

unreasonable raking results or they cannot distinguish some

different IFVs. To overcome this drawback, Zeng et al. [21]

proposed a new score function S
CK

for IFVs, which was

a monotonically increasing injective with Atanassov’s partial

order ⊂ (see [21, Theorems 3.1 and 3.2]). However, we

constructed an example to show that this inference in [21]

does not hold and proved that such a score function does not

exist, i.e., there is no any continuous injective from the space

of all IFVs to R that is increasing with Atanassov’s partial

order ⊂. This means that the score function S
CK

has the same

drawback. This trouble mainly arises from the fact that the

space of all IFVs has a two-dimensional structure, which is

not homeomorphic to any closed interval on the real line R.

In fact, we proved that the application of a single monotonous

and continuous function does not distinguish all IFVs.

Being a pair of dual concepts, the normalized distance

measures and similarity measures have been widely studied.

Similarly to the axiomatic definition of similarity measure for

fuzzy sets [26], [27], Li and Cheng [28] gave an axiomatic

definition of similarity measures for IFSs by using normaliza-

tion (S1), symmetry (S3), and compatibility with Atanassov’s

partial order (S4), i.e., the condition I1 ⊂ I2 ⊂ I3 implies that

the similarity measure between I1 and I3 is smaller than that

between I1 and I2 and between I2 and I3. Xu [29] introduced

some new IF similarity measures and applied them to some

practical MADM problems. Xu and Chen [30] presented a

comprehensive overview of distance and similarity measures

of IFSs and proposed some continuous distance and similarity

measures for IFSs using the weighted Hamming distance,

weighted Euclidean distance, and weighted Hausdorff dis-

tance. Iancu [31] defined some IF similarity measures using

Frank t-norms TF
γ . Szmidt and Kacprzyk [32] pointed out

that the third parameter (indeterminacy degree) should be

considered when calculating distances for IFSs. Because of

the duality between distance and similarity measures, var-

ious three-dimensional IF distance and similarity measures

including indeterminacy degrees were introduced in [33], [34],

[35], [36]. However, Atanassov’s partial order only reveals the

magnitudes of membership degrees and non-membership de-

grees between two IFSs, and thus many three-dimensional IF

similarity measures considering indeterminacy degrees might

not meet the axiomatic condition (S4). In fact, we constructed

three examples to show that Euclidean similarity measure

in [34], [37], [35], Minkowski similarity measure in [29], [35],

[34], [37], and a modified similarity measure in [30] based on

the idea of the above TOPSIS does not satisfy the axiomatic

condition (S4). In particular, it should be pointed out that some

existing IF distance and similarity measures are unreasonable

for dealing with some practical decision-making problems. For

example, Mitchell [38] showed that Li and Cheng’s similarity

measure [28] may lead to counter-intuitive situations in some

cases. Chen et al. [39] showed some counterexamples to illus-

trate that the similarity measures in [40], [41], [42], [38], [23],

[43] may produce unreasonable results in some cases. As noted

above, the application of a single monotonous and continuous

function does not distinguish all IFVs. This means that all

continuous IF similarity measures are unable to distinguish

every pair of different IFSs. For example, when we apply

a continuous IF similarity measure for pattern recognition,

we always encounter the case that we cannot determine the

classification result. Therefore, the comparative analysis on

the indistinguishability is meaningless ([44, Tables 2–5], [40,

Tables 1–2], [39, Tables 1, 2, 5, 6], [33, Table 2]), because all

continuous IF similarity measures will also encounter the same

indistinguishability problem. On the other hand, all existing

distance and similarity measures are only admissible with

Atanassov’s partial order, and thus decision-making results

obtained by these distance or similarity measures can only

guarantee the monotonicity with the partial order. Therefore,

to obtain monotonous decision-making methods, we need to

develop new admissible distance and similarity measures with

linear orders.

During the past decade, various generalized IF TOPSIS

methods have been developed. For example, Boran et al. [45]

first extended the TOPSIS method to IF group decision-

making with IFV weights. Then, some similar IF TOPSIS

methods with IFV/linguistic weights were developed [46],

[37], [47] and widely applied to practical decision-making

problems [46], [48], [49], [50], [51]. Our Examples 6 and

7 below in this paper show that the TOPSIS methods in [45],

[48], [37], [47], [50] may yield unreasonable results even when

dealing with the simplest decision-making problems. Chen

et al. [52] proposed a MADM method with crisp numerical

weights based on the TOPSIS method and a new similarity

measure for the IF situation. Zeng et al. [21] pointed out that

the MADM method in [52] cannot distinguish the alternatives

in some special situations. Furthermore, our Example 8 below

in this paper demonstrates that the MADM method in [52]

is not monotonous with the linear order ‘≤
XY

’ of Xu and

Yager [7]. Based on a new distance measure, Shen et al. [33]

developed an extended IF TOPSIS method and applied it to

credit risk evaluation. Here, only some works closely related to

this paper are mentioned. For more results on TOPSIS under

the IF or interval-valued IF framework, interested readers are
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referred to [53], [54], [55], [56], [57], [58], [59].

Inspired by the above discussions, this paper establishes

a monotonous IF TOPSIS under three popular linear orders,

‘≤
XY

’ in [7], ‘≤
ZX

’ in [8], and ‘≤
A,B

’ in ([11], [12], [10]).

More precisely, the main contributions of this paper are as

follows:

(1) We construct some counterexamples to illustrate that

Euclidean similarity measure ([37], [34]), Minkowski similar-

ity measure ([29]), and modified Euclidean similarity measure

([30]) do not satisfy the axiomatic definition of IF similarity

measures (see Examples 1–3).

(2) We prove that there is no any continuous and injective

function from the space of all IFVs to the real line R that is

increasing with Atanassov’s partial order ‘⊂’. This indicates

the nonexistence of continuous similarity measure distinguish-

ing between every pair of IFVs. Therefore, the comparative

analysis on the indistinguishability for IF similarity measures

is meaningless, but unfortunately this is a common problem

for all continuous IF similarity measures.

(3) We construct three simple examples to show that some

classical IF TOPSIS methods in [37], [52], [48], [45], [47],

[50] are not monotonous with Atanassov’s partial order ‘⊂’

or the linear order ‘≤
XY

’ (see Examples 6–8), which may

yield counter-intuitive results. To overcome this limitation, by

proposing three new admissible distances with the linear order

‘≤
XY

’ or ‘≤
ZX

’ or ‘≤
A,B

’, we develop a novel IF TOPSIS

method and prove that it is monotonically increasing with

these three linear orders.

(4) We provide two practical examples and a comparative

analysis with other MADM methods to illustrate the efficiency

of our proposed TOPSIS method.

The paper is organized as follows: Section II presents some

basic definitions related to the IFSs, including IFSs, orders

for IFSs, and IF distance and similarity measure. Section III

provides some examples to illustrate that classical similarity

measures in [34], [29], [30] based on the normalized Euclidean

distance and normalized Minkowski distance do not meet the

axiomatic definition of IF similarity measures. Section IV

proves that the application of a single monotonous and contin-

uous function does not distinguish all IFVs. Section V applies

three examples to demonstrate that the IF TOPSIS methods

in [37], [52], [48], [45], [47], [50] are not monotonous with

Atanassov’s partial order ‘⊂’ or the linear order ‘≤
XY

’ of Xu

and Yager [7]. To overcome this limitation, by constructing

three new admissible distances with the linear order ‘≤
XY

’,

‘≤
ZX

’ or ‘≤
A,B

’, Section VI develops a new IF TOPSIS

method and proves that it is monotonically increasing with

these three linear orders. Section VII presents two practical

examples to demonstrate the efficiency of the proposed TOP-

SIS method developed in Section VI. Section VIII concludes

the paper with a future research outlook.

II. PRELIMINARIES

A. Intuitionistic fuzzy set (IFS)

Definition 2.1 ([3, Definition 1.1]): Let X be the universe

of discourse. An intuitionistic fuzzy set (IFS) I in X is defined

as an object in the following form:

I = {〈x;µ
I
(x), ν

I
(x)〉 | x ∈ X} ,

where the functions µ
I
: X → [0, 1] and ν

I
: X → [0, 1]

define the degree of membership and the degree of non-

membership of an element x ∈ X to the set I , respectively,

and for every x ∈ X , µ
I
(x) + ν

I
(x) ≤ 1.

Let IFS(X) denote the set of all IFSs in X . For I ∈
IFS(X), the indeterminacy degree π

I
(x) of an element x

belonging to I is defined by π
I
(x) = 1 − µ

I
(x) − ν

I
(x).

In [4], [35], the pair 〈µ
I
(x), ν

I
(x)〉 is called an intuitionistic

fuzzy value (IFV) or an intuitionistic fuzzy number (IFN). For

convenience, use α = 〈µα, να〉 to represent an IFV α, which

satisfies µα ∈ [0, 1], να ∈ [0, 1], and 0 ≤ µα + να ≤ 1.

Additionally, s(α) = µα − να and h(α) = µα + να are called

the score degree and the accuracy degree of α, respectively.

Let Ĩ denote the set of all IFVs, i.e., Ĩ = {〈µ, ν〉 ∈ [0, 1]2 |
µ+ ν ≤ 1}.

Motivated by the basic operations on IFSs, Xu et al. [35],

[7] introduced the following basic operational laws for IFVs.

Definition 2.2 ([35, Definition 1.2.2]): Let α = 〈µα, να〉,
β = 〈µβ , νβ〉 ∈ Ĩ. Define

(i) α∁ = 〈να, µα〉.
(ii) α ∩ β = 〈min{µα, µβ},max{να, νβ}〉.

(iii) α ∪ β = 〈max{µα, µβ},min{να, νβ}〉.
(iv) α⊕ β = 〈µα + µβ − µαµβ , νανβ〉.
(v) α⊗ β = 〈µαµβ , να + νβ − νανβ〉.

(vi) λα = 〈1− (1− µα)
λ, (να)

λ〉, λ > 0.

(vii) αλ = 〈(µα)
λ, 1− (1− να)

λ〉, λ > 0.

B. Orders for IFSs

Atanassov’s order ‘⊂’ [3], defined by that α ⊂ β if and

only if α ∩ β = α, is a partial order on Ĩ.

Definition 2.3 ([11, Definition 4.1]): An order ≤ on Ĩ is

said to be an IF-admissible order if it is a linear order and

refines Atanassov’s order ⊂.

To compare any two IFVs, Xu and Yager [7] introduced the

following linear order ‘≤
XY

’ (see also [4, Definition 3.1] and

[35, Definition 1.1.3]):

Definition 2.4 ([7, Definition 1]): Let α1 and α2 be two

IFVs.

• If s(α1) < s(α2), then α1 is smaller than α2, denoted

by α1 <XY
α2.

• If s(α1) = s(α2), then

– if h(α1) = h(α2), then α1 = α2;

– if h(α1) < h(α2), then α1 <XY
α2.

If α1 <XY
α2 or α1 = α2, then denote it by α1 ≤

XY
α2.

Alongside Xu and Yager’s order ‘≤
XY

’ in Definition 2.4,

Szmidt and Kacprzyk [25] proposed another comparison func-

tion, ρ(α) = 1
2 (1+π(α))(1−µ(α)) for IFVs, which is a partial

order. However, it sometimes cannot distinguish between two

IFVs. Although Xu’s method [4] constructs a linear order

for ranking any two IFVs, its procedure has the following

disadvantages: (1) It may result in that the less we know,

the better the IFV, which is not reasonable. (2) It is sensitive

to a slight change of the parameters. (3) It is not preserved

under multiplication by a scalar, namely, α ≤
XY
β might not
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imply λα <
XY
λβ, where λ is a scalar (see [60, Example 1]).

To overcome such shortcomings of the above two ranking

methods, Zhang and Xu [8] improved Szmidt and Kacprzyk’s

method [25], according to Hwang and Yoon’s idea [5] and

technique for preference order by similarity to an ideal point.

They also introduced a similarity function L(α), called the

L-value in [8], for any IFV α = 〈µα, να〉, as follows:

L(α) =
1− να

(1− µα) + (1 − να)
=

1− να

1 + πα
. (1)

In particular, if να < 1, then L(α) = 1
1−µα

1−να
+1
. Furthermore,

Zhang and Xu [8] introduced the following order ‘≤
ZX

’ for

IFVs by applying the similarity function L( ).
Definition 2.5 ([8]): Let α1 and α2 be two IFVs.

• If L(α1) < L(α2), then α1 <ZX
α2;

• If L(α1) = L(α2), then

– if h(α1) = h(α2), then α1 = α2;

– if h(α1) < h(α2), then α1 <ZX
α2.

If α1 <ZX
α2 or α1 = α2, then denote it by α1 ≤

ZX
α2.

Definition 2.6 ([61, Definition 1.1]): An aggregation func-

tion in [0, 1]n is a function A : [0, 1]n → [0, 1] that

(i) is nondecreasing in each variable;

(ii) fulfills the boundary conditions

A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.

By an equivalent transformation between intervals and IFVs

and [10, Proposition 3.2], the following general construction

of linear orders is proposed for IFVs.

Proposition 2.1: Let A, B : [0, 1]2 → [0, 1] be two

continuous aggregation functions satisfying that, for (x1, y1),
(x2, y2) ∈ [0, 1]2, the identities A(x1, y1) = A(x2, y2) and

B(x1, y1) = B(x2, y2) can hold only if x1 = x2 and y1 = y2.

Define the order ≤
A,B

on Ĩ as follows: 〈µ1, ν1〉 ≤A,B
〈µ2, ν2〉

if and only if A(µ1, 1−ν1) < A(µ2, 1−ν2) or (A(µ1, 1−ν1) =
A(µ2, 1−ν2) and B(µ1, 1−ν1) ≤ B(µ2, 1−ν2)). Then, ≤

A,B

is an admissible order on Ĩ.

For γ ∈ [0, 1], consider an aggregation function Kγ :
[0, 1]2 → [0, 1] defined by Kγ(x, y) = x + γ(y − x). For

γ1, γ2 ∈ [0, 1] with γ1 6= γ2, according to Proposition 2.1, it

follows that the order ≤
γ1,γ2

on Ĩ defined by α ≤
γ1,γ2

β

if and only if Kγ1
(µα, 1 − να) < Kγ1

(µβ , 1 − νβ) or

(Kγ1
(µα, 1− να) = Kγ1

(µβ , 1− νβ) and Kγ2
(µα, 1− να) ≤

Kγ2
(µβ , 1− νβ)) is an admissible order on Ĩ.

C. IF distance and similarity measure

Li and Cheng [28] introduced an axiomatic definition of

similarity measure for IFSs, which was then improved by

Mitchell [62] as follows. More results on the similarity mea-

sure can be found in [34], [63].

Definition 2.7 ([62]): Let X be the universe of discourse.

A mapping S : IFS(X) × IFS(X) → [0, 1] is called an

admissible similarity measure with the order ⊂ on IFS(X) if it

satisfies the following conditions: for any I1, I2, I3 ∈ IFS(X),

(S1) 0 ≤ S(I1, I2) ≤ 1.

(S2) S(I1, I2) = 1 if and only if I1 = I2.

(S3) S(I1, I2) = S(I2, I1).

(S4) If I1 ⊂ I2 ⊂ I3, then S(I1, I3) ≤ S(I1, I2) and

S(I1, I3) ≤ S(I2, I3).

Remark 1: The admissible similarity measure with the order

⊂ was also called similarity measure by Hung and Yang [64]

and Szmidt [34]. When no ambiguity is possible, we simply

call it similarity measure.

Definition 2.8: Let X be the universe of discourse and I1,

I2 ∈ IFS(X). If 〈µ
I1
(x), ν

I1
(x)〉 ≤

XY
〈µ

I2
(x), ν

I2
(x)〉 holds

for all x ∈ X , then we say that I1 is smaller than or equal to

I2 under the linear order ≤
XY

, denoted by I1 ≤
XY
I2.

Based on Definition 2.8, we introduce the improved simi-

larity measure definition for IFSs below:

Definition 2.9: Let X be the universe of discourse. A map-

ping S : IFS(X) × IFS(X) → [0, 1] is called an admissible

similarity measure with the order ≤
XY

on IFS(X) if it satisfies

the conditions (S1)–(S3) in Definition 2.7, and the following

one (S4′):

(S4′) For any I1, I2, I3 ∈ IFS(X), if I1 ≤
XY
I2 ≤

XY
I3, then

S(I1, I3) ≤ S(I1, I2) and S(I1, I3) ≤ S(I2, I3).

Now, we recall some classical distances and similarity

measures for IFSs.

The normalized Hamming distance in [32] is:

dHa(I1, I2) =
1

2n

n
∑

j=1

Hj , (2)

where Hj = |µI1(xj) − µI2(xj)| + |νI1(xj) − νI2(xj)| +
|πI1(xj)− πI2(xj)|.

The normalized Euclidean distance in [32] is:

dEu(I1, I2) =

√

√

√

√

1

2n

n
∑

j=1

Ej , (3)

where Ej = |µI1(xj) − µI2(xj)|2 + |νI1 (xj) − νI2(xj)|2 +
|πI1(xj)− πI2(xj)|2.

The normalized Minkowski distance in [32], [34] is:

d(α)
M

(I1, I2) = α

√

√

√

√

1

2n

n
∑

j=1

Mj , (4)

where Mj = |µI1(xj) − µI2(xj)|α + |νI1(xj) − νI2(xj)|α +
|πI1(xj)− πI2(xj)|α and α ≥ 1.

By using the normalized Hamming distance, Szmidt and

Kacprzyk [65] introduced the following similarity measure

S
1
SK for two IFSs I1 and I2:

S
1
SK
(I1, I2) =

dHa(I1, I2)

dHa(I1, I∁2 )
, (5)

where I∁2 is the complement of I2. If we replace the normalized

Hamming distance with the normalized Euclidean distance, we

can obtain the following “similarity measure” S
1
SK for two

IFSs I1 and I2:

S
2
SK
(I1, I2) =

dEu(I1, I2)

dEu(I1, I∁2 )
. (6)

Clearly, both S
1
SK and S

2
SK are not similarity measures, be-

cause their values may exceed 1. Then, the following similarity
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measures were introduced by Szmidt [34] using the normalized

Hamming and Euclidean distances:

Sim
1
H
(I1, I2) = 1− dHa(I1, I2), (7)

and

Sim
2
E
(I1, I2) = 1− dEu(I1, I2). (8)

Based on the normalized Minkowski distance d(α)
M

, Xu [29]

introduced the following Minkowski similarity measure (see

also [37], [30]): for α > 0,

S
(α)
Xu

(I1, I2) = 1− d(α)
M

(I1, I2). (9)

Clearly, S(1)
Xu

= Sim
1
H

and S
(2)
Xu

= Sim
2
E
.

Motivated by the idea of the TOPSIS of Hwang and

Yoon [5], Xu and Chen [30] modified Eqs. (5) and (6) as

follows:

S
1
XC
(I1, I2) =

dHa(I1, I
∁
2 )

dHa(I1, I2) + dHa(I1, I∁2 )
, (10)

S
2
XC
(I1, I2) =

dEu(I1, I
∁
2 )

dEu(I1, I2) + dEu(I1, I∁2 )
. (11)

III. THE DRAWBACKS OF SOME EXISTING SIMILARITY

MEASURES

This section illustrates that the similarity measures defined

by Eqs. (8), (9), and (11) do not meet the property (S4) in the

axiomatic definition of intuitionistic fuzzy similarity measures.

Example 1: Let the universe of discourse X = {x1}, and

I1 =
{

〈0,1〉
x1

}

, I2 =
{

〈0.1,0〉
x1

}

, and I3 =
{

〈0.4,0〉
x1

}

. Clearly,

I1 ⊂ I2 ⊂ I3. By direct calculation, we have

Sim
2
E
(I1, I2) =1−

√

|0− 0.1|2 + |1− 0|2 + |0− 0.9|2
2

=1−
√
0.91,

and

Sim
2
E
(I1, I3) =1−

√

|0− 0.4|2 + |1− 0|2 + |0− 0.6|2
2

=1−
√
0.76,

and thus Sim
2
E
(I1, I2) < Sim

2
E
(I1, I3). This, together with

I1 ⊂ I2 ⊂ I3, implies that the formula Sim
1
H

defined by

Eq. (8) is not a similarity measures on IFSs.

Example 2: Let the universe of discourse X = {x1} and

I1 =
{

〈0,1〉
x1

}

, I2 =
{

〈µ2,0〉
x1

}

, and I3 =
{

〈µ3,0〉
x1

}

be three

IFSs on X such that 0 < µ2 < µ3 < 0.5. Clearly, I1 ⊂ I2 ⊂
I3. Fix any α > 1. By direct calculation, we have

S
(α)
M

(I1, I2) = 1− α

√

(µ2)α + 1 + (1− µ2)α

2
,

and

S
(α)
M

(I1, I3) = 1− α

√

(µ3)α + 1 + (1− µ3)α

2
.

Let Γ(x) = 1 − α

√

xα+1+(1−x)α

2 (x ∈ (0, 0.5)). Noting that

α > 1 and x ∈ (0, 0.5), by direct calculation, we get Γ′(x) =

− 1
2 (

xα+1+(1−x)α

2 )
1
α
−1 · (xα−1 − (1 − x)α−1) > 0, and thus

the function Γ is strictly increasing on (0, 0.5). This, together

with 0 < µ2 < µ3 < 0.5, implies that S(α)
M

(I1, I2) = Γ(µ2) <
Γ(µ3) = S

(α)
M

(I1, I3). Therefore, the formula S
(α)
M

defined by

Eq. (9) is not a similarity measures on IFSs for any α > 1.
Example 3: Let the universe of discourse X = {x1}, and

I1 =
{

〈0,1〉
x1

}

, I2 =
{

〈0.9,0.01〉
x1

}

, and I3 =
{

〈0.901,0.007〉
x1

}

.

Clearly, I1 ⊂ I2 ⊂ I3. By direct calculation, we have

S
2
XC
(I1, I2)

=

√

|0−0.01|2+|1−0.9|2+|0−0.09|2

2
√

|0−0.9|2+|1−0.01|2+|0−0.09|2

2
+

√

|0−0.01|2+|1−0.9|2+|0−0.09|2

2

≈0.09141,

and

S
2
XC
(I1, I3)

=

√

|0.007|2+|1−0.901|2+|0.092|2

2
√

|0.901|2+|1−0.007|2+|0.092|2

2
+

√

|0.007|2+|1−0.901|2+|0.092|2

2

≈0.09148,

and thus S
2
XC
(I1, I2) < S

2
XC
(I1, I3). This, together with I1 ⊂

I2 ⊂ I3, implies that the formula S
2
XC

defined by Eq. (11) is

not a similarity measures on IFSs.

IV. A REMARK ON SCORE FUNCTIONS FOR IFVS

Zeng et al. [21] introduced the following score value
S

CK
( ) for IFV α = 〈µα, να〉:

S
CK

(α) = (µα−να)− (1−µα −να)×
log2(2− µα − να)

100
. (12)

Then, they proved the following basic properties for the score

function S
CK

( ).
Theorem 4.1 ([21, Theorem 3.1]): Assume that α and β are

two IFVs. If α 6= β, then S
CK

(α) 6= S
CK

(β).
Theorem 4.2 ([21, Theorem 3.2]): Assume that α and β are

two IFVs. If α ⊃ β, then S
CK

(α) > S
CK

(β).
However, the following example shows that Theorem 4.1

does not hold.

Example 4: Choose α = 〈0, 0〉 and β = 〈 99
200 ,

101
200 〉. By

direct calculation, we have S
CK

(α) = (0− 0)− (1− 0− 0)×
log2 2
100 = − 1

100 and S
CK

(β) = ( 99
200 − 101

200 )− (1− 99
200 − 101

200 )×
log2(2−1)

100 = − 1
100 . This implies that Theorem 4.1 does not

hold since α 6= β.

In fact, we can prove that there is no any continuous

function from Ĩ to R simultaneously meeting the conditions

in Theorems 4.1 and 4.2, which indicates that the two-

dimensional structure of IFVs is too complex to distinguish all

IFVs with only a single monotonous and continuous function,

where the monotonicity is under Atanassov’s order ‘⊂’, and

the continuity is under the topology of subset of R2.

Theorem 4.3: There is no any continuous function f : Ĩ → R

satisfying the following two conditions:

(1) f is injective, i.e., for any α, β ∈ Ĩ with α 6= β, f(α) 6=
f(β);

(2) f is increasing under the partial order ⊂, i.e., for any α,

β ∈ Ĩ with α ⊂ β, f(α) ≤ f(β).
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Proof: Suppose on the contrary that there exists a con-

tinuous function f : Ĩ → R simultaneously satisfying the

conditions (1) and (2).

(i) Let ϕ(ν) = f(〈0.25, ν〉) (ν ∈ [0.25, 0.75]). Clearly, ϕ

is continuous since f is continuous on Ĩ. For any 0.25 ≤
ν1 ≤ ν2 ≤ 0.75, by 〈0.25, ν1〉 ⊃ 〈0.25, ν2〉 and condition

(2), one has ϕ(ν1) = f(〈0.25, ν1〉) ≥ f(〈0.25, ν2〉) =
ϕ(ν2). This, together with condition (1), implies that ϕ( )
is strictly decreasing on [0.25, 0.75]. Thus, ϕ((0.25, 0.75]) =
[ϕ(0.75), ϕ(0.25)) = [f(〈0.25, 0.75〉), f(〈0.25, 0.25〉)) by the

intermediate value theorem.

(ii) Let ψ(ν) = f(〈µ, 0.25〉) (µ ∈ [0, 0.25]). Clearly, ψ is

continuous since f is continuous on Ĩ. For any 0 ≤ µ1 ≤
µ2 ≤ 0.25, by 〈µ1, 0.25〉 ⊂ 〈µ2, 0.25〉 and condition (2), one

has ψ(µ1) = f(〈µ1, 0.25〉) ≤ f(〈µ2, 0.25〉) = ψ(µ2). This,

together with condition (1), implies that ψ( ) is strictly in-

creasing on [0, 0.25]. Thus, ψ([0, 0.25)) = [ψ(0), ψ(0.25)) =
[f(〈0, 0.25〉), f(〈0.25, 0.25〉)) by the intermediate value theo-

rem.

Summing (i) and (ii), one can easily verify

that Λ = ϕ((0.25, 0.75]) ∩ ψ([0, 0.25)) =
[max{f(〈0, 0.25〉), f(〈0.25, 0.75〉)}, f(〈0.25, 0.25〉)) is a

non-degenerate interval, i.e.,

max{f(〈0, 0.25〉), f(〈0.25, 0.75〉)} < f(〈0.25, 0.25〉),

implying that, for any ξ ∈ Λ, there exist ν ∈ (0.25, 0.75] and

µ ∈ [0, 0.25) such that ϕ(ν) = ξ and ψ(µ) = ξ, and thus

there exist 0 < µ < 0.25 < ν ≤ 0.75 such that ϕ(ν) =
f(〈0.25, ν〉) = ξ = f(〈µ, 0.25〉) = ψ(µ). This contradicts

with condition (1).

Shen et al. [33] pointed out that many existing distance

measures cannot determine the classification results for some

pattern recognition problems (see [33, Table 2]), i.e., their

dual similarity measures cannot distinguish between some

pair of IFVs. To overcome this drawback, they proposed a

new distance measure d
Sh

as follows: for α = 〈µα, να〉,
β = 〈µβ , νβ〉 ∈ Ĩ,

d
Sh
(α, β) =

√

(µ̃α − µ̃β)2 + (ν̃α − ν̃β)2

2
,

where µ̃α = µα(1+
2
3πα(1+πα)), ν̃α = να(1+

2
3πα(1+πα)),

µ̃β = µβ(1 +
2
3πβ(1 + πβ)), and ν̃β = νβ(1 +

2
3πβ(1 + πβ)).

Fix β ∈ Ĩ and define G(α) = 1 − d
Sh
(α, β) for α =

〈µα, να〉 ∈ Ĩ. From [33, Theorem 1], it follows that, for α1

α2 ∈ Ĩ with α1 ⊂ α2, one has G(α1) ≤ G(α2), i.e., the

function G satisfies the condition (2) of Theorem 4.3. This,

together with Theorem 4.3 and the continuity of G, implies

that G is not injective, and thus there exist two different

IFVs α1 and α2 ∈ Ĩ such that G(α1) = G(α2), implying

that d
Sh
(α1, β) = d

Sh
(α2, β). Therefore, the distance measure

d
Sh

has the same drawback (see Example 5). In fact, by

Theorem 4.3, we conclude that there is no any continuous

distance measure that can overcome the above drawback.

Therefore, the comparative analysis in [44, Tables 2–5], [40,

Tables 1–2], [39, Tables 1, 2, 5, 6], and [33, Table 2] on the

indistinguishability is meaningless.

Example 5: Let β = 〈0, 0〉 and α = 〈x, y〉 ∈ Ĩ. Then,

d
Sh
(α, β)

=

√

[1 + 2
3 (1 − x− y)(2− x− y)]2 × (x2 + y2)

2
= 0.5,

i.e.,
[

1 +
2

3
(1− x− y)(2− x− y)

]2

× (x2 + y2) = 0.5. (13)

Clearly, Eq. (13) has infinitely many solutions. This means

that there exist infinitely many IFVs, whose distances from β

are all equal to 0.5.

V. A MONOTONOUS IF TOPSIS METHOD WITH THE

LINEAR ORDERS ≤
XY

AND ≤
ZX

Suppose that there are n alternatives Ai (i = 1, 2, . . . , n)

evaluated with respect to m attributes Oj (j = 1, 2, . . . ,m).

The sets of the alternatives and attributes are denoted by A =
{A1, A2, . . . , An} and O = {O1,O2, . . . ,Om}, respectively.

The rating (or evaluation) of each alternative Ai ∈ A (i =
1, 2, . . . , n) on each attribute Oj (j = 1, 2, . . . ,m) is expressed

with an IFS rij =
{

〈µij ,νij〉
(Ai,Oj)

}

, denoted by rij = 〈µij , νij〉
for short, where µij ∈ [0, 1] and νij ∈ [0, 1] are respectively

the satisfaction (or membership) degree and dissatisfaction (or

non-membership) degree of the alternative Ai ∈ A on the

attribute Oj satisfying the condition 0 ≤ µij + νij ≤ 1. A

multi-attribute decision-making (MADM) problem with IFSs

is expressed in matrix form shown in Table I.

TABLE I
IF DECISION MATRIX R = (rij)n×m

O1 O2 . . . Om

A1 〈µ11, ν11〉 〈µ12, ν12〉 . . . 〈µ1m, ν1m〉
A2 〈µ21, ν21〉 〈µ22, ν22〉 . . . 〈µ2m, ν2m〉

.

.

.
.
.
.

.

.

.
. . .

.

.

.
An 〈µn1, νn1〉 〈µn2, νn2〉 . . . 〈µnm, νnm〉

To follow the common sense, a good method for MADM

must guarantee the monotonicity, i.e., the higher the score

of each attribute of the alternative is, the higher the ranking

is. Meanwhile, decision-making results obtained by this good

method must be consistent with our intuitive judgment, when

dealing with the simplest problems, for which the decision

making results can be obtained by direct observation and

comparison (see Examples 6 and 7). In analyzing the TOPSIS

method with crisp score values in [0, 1], we can find that

the unit interval [0, 1] has excellent algebraic and topological

structures as follows: (1) The unit interval [0, 1] has a natural

linear order structure ≤ and a natural metric structure | · |; (2)

This natural metric structure |·| can ensure that the smaller the

value in [0, 1] is, the farther away from 1, and the closer away

from 0; (3) The order topology induced by the linear order ≤
is consistent with the topology induced by the metric |·|. These

good structures of [0, 1] can ensure that the TOPSIS method of

Hwang and Yoon [5] is monotonous. Recently, we [6] proved

that the space Ĩ of all IFVs with the order topology induced
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by the linear order <
XY

, defined in Definition 2.4, is not

metrizable, i.e., there is no such good distance for Ĩ with the

linear order <
XY

. Nevertheless, we still construct an admissible

distance with the order ≤
XY

in [6]. In the following, we will

show that this distance is very important for our proposed

monotonous IF TOPSIS method.

A. Limitation in TOPSIS method of Li [37]

First, we recall a fundamental IF TOPSIS method from [37]

and use two examples show that the TOPSIS method in [37]

does not have the basic monotonicity with the partial order ⊂,

which may lead the decision-making result to be unreasonable

and inconsistent with the actual situation, when dealing with

some even simplest decision-making problems.

The main process of IF TOPSIS method in [37, Section 3.3]

is summarized as follows:

Step 1: Determine the alternatives A = {A1, A2, . . . , An}
and attributes O = {O1,O2, . . . ,Om}, respectively;

Step 2: Construct the IF decision matrix R = (rij =
〈µij , νij〉)m×n, as shown in Table I;

Step 3: Determine the weights of the attributes expressed

with the IF weight vector ω = (ω1, ω2, . . . , ωm)⊤, where ωj =
〈ρj , ϑj〉 ∈ Ĩ;

Step 4: Compute the weighted IF decision matrix R =
(rij = ωj ⊗ rij) by Definition 2.2 (v), i.e., rij = 〈ρjµij , ϑj +
νij − ϑjνij〉;

Step 5: Determine the IF positive ideal-point A
+ =

(〈µ+
1 , ν

+
1 〉, 〈µ+

2 , ν
+
2 〉, . . . , 〈µ+

m, ν
+
m〉)⊤ and the IF negative

ideal-point A
− = (〈µ−

1 , ν
−
1 〉, 〈µ−

2 , ν
−
2 〉, . . . , 〈µ−

m, ν
−
m〉)⊤ as

follows:

µ+
j = max

1≤i≤n
{µ̄ij}, ν+j = min

1≤i≤n
{ν̄ij},

µ−
j = min

1≤i≤n
{µ̄ij}, ν−j = max

1≤i≤n
{ν̄ij};

Step 6: Compute the Euclidean distances dEu(Ai,A
+) and

dEu(Ai,A
−) of the alternatives Ai (i = 1, 2, . . . , n) from A

+

and A
− by using formula (3);

Step 7: Calculate the relative closeness degrees Ci of the

alternatives Ai (i = 1, 2, . . . , n) to the IF positive ideal-point

A
+ by the following formula:

Ci =
dEu(Ai,A

−)

dEu(Ai,A+) + dEu(Ai,A−)
;

Step 8: Rank the alternatives Ai (i = 1, 2, . . . , n) according

to the nonincreasing order of the relative closeness degrees Ci

and select the most desirable alternative.

Example 6: Suppose that there exist 4 alternatives A1, A2,

A3, A4 evaluated with respect to 2 benefit attributes O1,

O2. The sets of the alternatives and attributes are denoted

by {A1, A2, A3, A4} and {O1,O2}, respectively. Assume that

the IF weight vector of O1 and O2 is ω = (ω1, ω2)
⊤ =

(〈1, 0〉, 〈1, 0〉)⊤. The IF decision-making matrix is expressed

as shown in Table II.

TABLE II
IF DECISION MATRIX R = (rij)4×2

O1 O2

A1 〈0, 1〉 〈0, 1〉
A2 〈0.9, 0.01〉 〈0.9, 0.01〉
A3 〈0.901, 0.007〉 〈0.901, 0.007〉
A4 〈1, 0〉 〈1, 0〉

If we use the above TOPSIS method [37, Section 3.3],

by direct calculation, it can be verified that the weighted IF

decision matrix is given as shown in Table III.

TABLE III
WEIGHTED IF DECISION MATRIX R = (ωj ⊗ rij)4×2

O1 O2

A1 〈0, 1〉 〈0, 1〉
A2 〈0.9, 0.01〉 〈0.9, 0.01〉
A3 〈0.901, 0.007〉 〈0.901, 0.007〉
A4 〈1, 0〉 〈1, 0〉

The IF positive ideal-point A+ and the IF negative ideal-

point A− are obtained as follows:

A
+ = (〈1, 0〉, 〈1, 0〉) and A

− = (〈0, 1〉, 〈0, 1〉),

respectively. According to the Euclidean distance of the al-

ternatives A1, A2, A3, and A4 from A
+ and A

− obtained

by [37, Eqs. (3.27) and (3.28)], the relative closeness degrees

Cj of the alternatives A1, A2, A3, and A4 to the IF positive

ideal-point can be calculated as follows:

C1 =
dEu(A1,A

−)

dEu(A1,A+) + dEu(A1,A−)
= 0,

C2 =
dEu(A2,A

−)

dEu(A2,A+) + dEu(A2,A−)
= 0.9085917,

C3 =
dEu(A3,A

−)

dEu(A3,A+) + dEu(A3,A−)
= 0.9085194,

and

C4 =
dEu(A4,A

−)

dEu(A4,A+) + dEu(A4,A−)
= 1,

respectively. Therefore, the ranking order of A1, A2, A3, and

A4 is: A4 ≻ A2 ≻ A3 ≻ A1. However, A4 ≻ A3 ≻ A2 ≻ A1

by a direct observation with 〈1, 0〉 ⊃ 〈0.901, 0.007〉 ⊃
〈0.9, 0.01〉 ⊃ 〈0, 1〉. This means that the ranking order

obtained by the IF TOPSIS method in [37] is not consistent

with the real situation.

The following example demonstrates that the above IF

TOPSIS may yield some unreasonable decision-making re-

sults, even if we restrict the normalized weight vector ω =
(ω1, ω2, . . . , ωm)⊤ in Step 3 to be positive real numbers, i.e.,

ωj ∈ (0, 1] and
∑m

j=1 ωi = 1.

Example 7: Suppose that there exist 4 alternatives A1, A2,

A3, A4 evaluated with respect to 2 benefit attributes O1,

O2. The sets of the alternatives and attributes are denoted

by {A1, A2, A3, A4} and {O1,O2}, respectively. Assume that

the weight vector of O1 and O2 is ω = (ω1, ω2)
⊤ =

(0.5, 0.5)⊤.The IF decision-making matrix is expressed as

shown in Table IV.
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TABLE IV
IF DECISION-MAKING MATRIX R = (rij)4×2

O1 O2

A1 〈0, 1〉 〈0, 1〉
A2 〈0.99, 0.0001〉 〈0.99, 0.0001〉
A3 〈0.990199, 0.49× 10−4〉 〈0.990199, 0.49× 10−4〉
A4 〈1, 0〉 〈1, 0〉

By direct calculation, it can be verified that the weighted

IF decision matrix is given as shown in Table V.

TABLE V
WEIGHTED IF DECISION MATRIX R = (ωj · rij)4×2

O1 O2

A1 〈0, 1〉 〈0, 1〉
A2 〈0.9, 0.01〉 〈0.9, 0.01〉
A3 〈0.901, 0.007〉 〈0.901, 0.007〉
A4 〈1, 0〉 〈1, 0〉

If we use the TOPSIS method in [37], by Example 6, we

know that the ranking order of A1, A2, A3, and A4 is: A4 ≻
A2 ≻ A3 ≻ A1. This is also an unreasonable decision-making

result.

Remark 2: (1) Examples 6 and 7 show that, for some weight

vector with either IFVs or real numbers, even for some simple

decision-making problems, the TOPSIS method in [37] may

lead to some unreasonable decision-making results.

(2) Careful readers can verify that by applying the TOPSIS

methods in [45], [48], [47], [50] to Examples 6, the same

result can be obtained. This means that the TOPSIS methods in

[45], [48], [47], [50] may produce unreasonable results when

dealing with the simplest decision-making problems.

B. Limitation in TOPSIS method of Chen et al. [52]

The above two examples show that the TOPSIS method

in [37] is not monotonous with Atanassov’s partial order ⊂.

Recently, Chen et al. [52] developed a monotonous TOPSIS

method with the partial order ⊂ based on a new similarity

measure. However, the following example shows that the

TOPSIS methods in [52] is not monotonous with the linear

order ≤
XY

.

The main process of IF TOPSIS method in [52] is summa-

rized as follows:

Step 1: Determine the alternatives A = {A1, A2, . . . , An}
and attributes O = {O1,O2, . . . ,Om}, respectively, and con-

struct the IF decision matrix R = (rij = 〈µij , νij〉)m×n, as

shown in Table I;

Step 2: Determine the IF positive ideal-point A
+ =

(〈µ+
1 , ν

+
1 〉, 〈µ+

2 , ν
+
2 〉, . . . , 〈µ+

m, ν
+
m〉)⊤ and the IF negative

ideal-point A
− = (〈µ−

1 , ν
−
1 〉, 〈µ−

2 , ν
−
2 〉, . . . , 〈µ−

m, ν
−
m〉)⊤ as

follows:

〈µ+
j , ν

+
j 〉 =







〈 max
1≤i≤n

{µij}, min
1≤i≤n

{νij}〉, Oj ∈ O+,

〈 min
1≤i≤n

{µij}, max
1≤i≤n

{νij}〉, Oj ∈ O−,

and

〈µ−
j , ν

−
j 〉 =







〈 min
1≤i≤n

{µij}, max
1≤i≤n

{νij}〉, Oj ∈ O+,

〈 max
1≤i≤n

{µij}, min
1≤i≤n

{νij}〉, Oj ∈ O−,

where O+ is the set of benefit attributes and O− is the set of

cost attributes;

Step 3: Compute the degree of indeterminacy π+
j = 1−µ+

j −
ν+j of the positive ideal-point 〈µ+

j , ν
+
j 〉 for each attribute Oj

(j = 1, 2, . . . , n);

Step 4: Compute the degree of indeterminacy π−
j = 1−µ−

j −
ν−j of the negative ideal-point 〈µ−

j , ν
−
j 〉 for each attribute Oj

(j = 1, 2, . . . , n);

Step 5: Compute the degree of similarity g+ij between

the evaluating IFV rij of the alternative Ai with respect

to the attribute Oj and the positive ideal-point 〈µ+
j , ν

+
j 〉 of

the attribute Oj to construct the positive similarity matrix

G+ = (g+ij)m×n, where g+ij = 1 − |2(µ+

j −µij)−(ν+

j −νij)|

3 ×
(1− π

+

j +πij

2 )− |2(ν+

j −νij)−(µ+

j −µij)|

3 × π
+

j +πij

2 ;

Step 6: Compute the degree of similarity g−ij between

the evaluating IFV rij of the alternative Ai with respect

to the attribute Oj and the negative ideal-point 〈µ−
j , ν

−
j 〉 of

the attribute Oj to construct the negative similarity matrix

G− = (g−ij)m×n, where g−ij = 1 − |2(µ−

j −µij)−(ν−

j −νij)|

3 ×
(1− π

−

j +πij

2 )− |2(ν−

j −νij)−(µ−

j −µij)|

3 × π
−

j +πij

2 ;

Step 7: Compute the weighted positive score S+
i =

∑m
j=1 ωjg

+
ij and the weighted negative score S−

i =
∑m

j=1 ωjg
−
ij of each alternative Ai (i = 1, 2, . . . , n), where

ωj is the weight of criterion Oj such that ωj ∈ (0, 1] and
∑m

j=1 ωj = 1;

Step 8: Compute the relative degree of closeness T (Ai) =
S

+

i

S
+

i +S
−

i

of each alternative Ai. The larger the value of T (Ai),

the better the preference order of alternative Ai. Then, rank the

alternativesAi (i = 1, 2, . . . , n) according to the nonincreasing

order of the relative closeness degrees T (A1), T (A2), . . .,
T (An).

Example 8: Suppose that there exist 4 alternatives A1, A2,

A3, A4 evaluated with respect to 2 benefit attributes O1,

O2. The sets of the alternatives and attributes are denoted

by {A1, A2, A3, A4} and {O1,O2}, respectively. Assume that

the weight vector of O1 and O2 is ω = (0.5, 0.5)⊤. The IF

decision-making matrix is expressed as shown in Table VI.

TABLE VI
IF DECISION MATRIX R

O1 O2

A1 〈0, 1〉 〈0, 1〉
A2 〈0.3, 0〉 〈0.3, 0〉
A3 〈0.64, 0.36〉 〈0.64, 0.36〉
A4 〈1, 0〉 〈1, 0〉

The IF positive ideal-point A+ and the IF negative ideal-

point A− are obtained as follows: A+ = (〈1, 0〉, 〈1, 0〉) and

A
− = (〈0, 1〉, 〈0, 1〉), respectively. By using the TOPSIS

method in [52], we obtain the positive similarity matrix G+

and the negative similarity matrix G− as follows:

G+ = (g+ij)4×2 =









0 0
0.615 0.615
0.64 0.64
1 1









,
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and

G− = (g−ij)4×2 =









1 1
0.385 0.385
0.36 0.36
0 0









.

Then, the weighted positive scores S+
i = ω1g

+
i1 + ω2g

+
i2 (i =

1, 2, 3, 4) and the weighted negative scores S−
i = ω1g

−
i1 +

ω2g
−
i2 (i = 1, 2, 3, 4) of the alternatives A1, A2, A3, and A4

can be calculated as follows:

S+
1 = 0, S+

2 = 0.615, S+
3 = 0.64, S+

4 = 1,

and

S−
1 = 1, S+

2 = 0.385, S+
3 = 0.36, S−

4 = 0.

Therefore, the relative degree of closeness T (Ai) =
S

+

i

S
+

i +S
−

i

(i = 1, 2, 3, 4) of the alternatives A1, A2, A3, and A4 are

given as follows:

T (A1) = 0, T (A2) = 0.615, T (A3) = 0.64, T (A4) = 1,

and thus the ranking order of A1, A2, A3, and A4 is: A4 ≻
A3 ≻ A2 ≻ A1. However, it can be verified that A4 ≻ A2 ≻
A3 ≻ A1 by a direct observation with 〈1, 0〉 ≥

XY
〈0.3, 0〉 ≥

XY

〈0.64, 0.36〉 ≥
XY

〈0, 1〉.
Summing up Examples 6–8, an interesting question is

whether there exists an IF TOPSIS method that is monotonous

with the linear order ≤
XY

or ≤
ZX

? In the following section, we

will establish an IF TOPSIS method that is monotonous with

the linear order ≤
XY

or ≤
ZX

.

VI. A MONOTONOUS IF TOPSIS METHOD

The fundamental cause for counterintuitive decision-making

results in Examples 6–8 lies in the structure of metrics for

IFVs. In [6], we defined a metric ̺ in Ĩ as follows: for α,

β ∈ Ĩ,

̺(α, β) =

{

1
3 (1 + |s(α)− s(β)|), s(α) 6= s(β),
1
3 (|h(α)− h(β)|), s(α) = s(β),

where s(α) and h(α) are the score degree and the accuracy

degree of α, respectively. Furthermore, we [6] proved the

following basic properties of ̺.

Theorem 6.1 ([6]):

(1) ̺(α, β) ∈ [0, 1] and ̺(α, β) = 0 if and only if α = β.

(2) ̺(α, β) = 1 if and only if (α = 〈0, 1〉 and β = 〈1, 0〉) or

(α = 〈1, 0〉 and β = 〈0, 1〉).
(3) ̺(α, β) = ̺(β, α).
(4) For any α, β, γ ∈ Ĩ, ̺(α, β) + ̺(β, γ) ≥ ̺(α, γ).
(5) For any α, β, γ ∈ Ĩ, if α ≤

XY
β ≤

XY
γ, then ̺(α, β) ≤

̺(α, γ) and ̺(β, γ) ≤ ̺(α, γ).

Based on the similarity function L(α), similarly to the

metric ̺, define the parametric metrics ̺(λ) and ˜̺(λ) in Ĩ as

follows: for α, β ∈ Ĩ,

̺(λ)(α, β)

=

{

1
1+2λ(1 + λ · |s(α)− s(β)|), s(α) 6= s(β),

1
1+2λ(|h(α) − h(β)|), s(α) = s(β),

(14)

and

˜̺(λ)(α, β)

=

{

1
1+λ

(1 + λ · |L(α)− L(β)|), L(α) 6= L(β),
1

1+λ
(|h(α) − h(β)|), L(α) = L(β),

(15)

where λ ≥ 1 is a parameter, and L(α) and h(α) are the

similarity function and the accuracy degree of α, respectively.

Let A and B be two aggregation functions satisfying the

condition in Proposition 2.1. Based on Proposition 2.1, define

another parametric metric ̺(λ)
A,B

in Ĩ as follows: for α, β ∈ Ĩ,

̺(λ)
A,B

(α, β)

=

{

1
2 (1 + |A(α)−A(β)|), A(α) 6= A(β),
1
2 (|B(α)−B(β)|), A(α) = A(β),

(16)

where λ ≥ 1 is a parameter, A(α) = A(µα, 1 − να), and

B(α) = B(µα, 1− να). In particular, by taking A = Kγ1
and

B = Kγ2
with γ1 6= γ2 and direct calculation, we have

̺(λ)
Kγ1

,Kγ2

(α, β)

=

{

1
1+λ

(1 + λ ·Eγ1
(α, β)), Eγ1

(α, β) 6= 0,
1

1+λ
Eγ2

(α, β), Eγ1
(α, β) = 0,

(17)

where Eγ(α, β) = |Kγ(α)−Kγ(β)| = |(1− γ)(µα − µβ)−
γ(να − νβ)|.

Remark 3: The parameter γ1 in Eq. (17) can be regarded as

the preference for decision-makers to choose the membership

and non-membership:

(1) If γ1 > 0.5, then the decision-makers prefer non-

membership to membership, i.e., the decision-makers are

pessimistic.

(2) If γ1 < 0.5, then the decision-makers prefer membership

to non-membership, i.e., the decision-makers are optimistic.

(3) If γ1 = 0.5, then the decision-makers have no preference

for membership and non-membership, i.e., the decision-makers

are neutral.

Similarly to the proof of Theorem 6.1 in [6], we can prove

that the metrics ̺(λ), ˜̺(λ), and ̺(λ)
A,B

have the following basic

properties.

Theorem 6.2: Let λ ≥ 1 and ρ ∈ {̺(λ), ˜̺(λ), ̺(λ)
A,B

}. Then,

(1) ρ(α, β) ∈ [0, 1] and ρ(α, β) = 0 if and only if α = β.

(2) ρ(α, β) = 1 if and only if (α = 〈0, 1〉 and β = 〈1, 0〉) or

(α = 〈1, 0〉 and β = 〈0, 1〉).
(3) ρ(α, β) = ̺(β, α).
(4) For any α, β, γ ∈ Ĩ, ρ(α, β) + ρ(β, γ) ≥ ρ(α, γ).
(5) For any α, β, γ ∈ Ĩ, if α ≤ β ≤ γ, then ρ(α, β) ≤ ρ(α, γ)

and ρ(β, γ) ≤ ρ(α, γ).

For the MADM problem with IFSs, by using the three

metrics defined by Eqs. (14)–(16), we propose a new IF

TOPSIS method as follows:

Step 1: (Construct the decision matrix) Supposing that

the decision-maker gave the rating (or evaluation) of each

alternative Ai ∈ A (i = 1, 2, . . . , n) on each attribute Oj

(j = 1, 2, . . . ,m) in the form of IFNs rij = 〈µij , νij〉,
construct an IF decision matrix R = (rij)n×m as shown in

Table I.
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Step 2: (Normalize the decision matrix) Transform the IF

decision matrix R = (rij)n×m to the normalized IF decision

matrix R = (r̄ij)n×m = (〈µ̄ij , ν̄ij〉)n×m as follows:

r̄ij =

{

rij , for benefit attribute Oj ,

r∁ij , for cost attribute Oj ,

where r∁ij is the complement of rij .

Step 3: (Determine the positive and negative ideal-

points) Determine the IF positive ideal-point A
+ =

(〈µ+
1 , ν

+
1 〉, 〈µ+

2 , ν
+
2 〉, . . . , 〈µ+

m, ν
+
m〉)⊤ and IF negative ideal-

point A− = (〈µ−
1 , ν

−
1 〉, 〈µ−

2 , ν
−
2 〉, . . . , 〈µ−

m, ν
−
m〉)⊤ as follows:

µ+
j = max

1≤i≤n
{µ̄ij}, ν+j = min

1≤i≤n
{ν̄ij},

µ−
j = min

1≤i≤n
{µ̄ij}, ν−j = max

1≤i≤n
{ν̄ij}.

Step 4: (Compute the weighted similarity measures) Choose
λ ≥ 1 and compute the weighted similarity measures between
the alternatives Ai (i = 1, 2, . . . , n) and the IF positive ideal-
point A

+ and between the alternatives Ai (i = 1, 2, . . . , n)
and the IF negative ideal-point A

− by using the following
formulas:

S(Ai,A
+) = 1−

m
∑

j=1

ωj · ̺
(λ)(〈µ̄ij , ν̄ij〉, 〈µ

+
j , ν

+
j 〉), (18)

(resp., S(Ai,A
+) = 1−

m
∑

j=1

ωj · ˜̺
(λ)(〈µ̄ij , ν̄ij〉, 〈µ

+
j , ν

+
j 〉), (19)

S(Ai,A
+) = 1−

m
∑

j=1

ωj · ̺
(λ)
A,B

(〈µ̄ij , ν̄ij〉, 〈µ
+
j , ν

+
j 〉)),

(20)

and

S(Ai,A
−) = 1−

m
∑

j=1

ωj · ̺
(λ)(〈µ̄ij , ν̄ij〉, 〈µ

−
j , ν

−
j 〉), (21)

(resp., S(Ai,A
−) = 1−

m
∑

j=1

ωj · ˜̺
(λ)(〈µ̄ij , ν̄ij〉, 〈µ

−
j , ν

−
j 〉), (22)

S(Ai,A
−) = 1−

m
∑

j=1

ωj · ̺
(λ)
A,B

(〈µ̄ij , ν̄ij〉, 〈µ
−
j , ν

−
j 〉)).

(23)

By Theorems 6.1 and 6.2, it is easy to see that the similarity

measures obtained by Eqs. (18)–(20) are admissible similarity

measures with the orders ≤
XY

, ≤
ZX

, and ≤
A,B

, respectively.

Step 5: (Compute the relative closeness degrees) Calculate

the relative closeness degrees Ci of the alternatives Ai (i =
1, 2, . . . , n) to the IF positive ideal-point A

+ by using the

following formula:

Ci =
S(Ai,A

+)

S(Ai,A+) + S(Ai,A−)
. (24)

Step 6: (Rank the alternatives) Rank the alternatives Ai (i =
1, 2, . . . , n) according to the nonincreasing order of the relative

closeness degrees Ci and select the most desirable alternative.

Remark 4: (1) By Theorems 6.1 and 6.2, it is easy to see

that S(Ai,A
+) + S(Ai,A

−) in Eq. (24) is always nonzero.

This overcomes the limitation that many TOPSIS method may

lead to the situation that the denominator is equal to 0 when

computing the relative closeness degrees.

(2) For practical MADM problems, in order to eliminate the

effect of the constant term 1 in formulas (14)–(17) as much as

possible, the parameter λ should be chosen as large as possible.

Theorem 6.3 (Monotonicity): Using Eqs. (18) and (21), the

above proposed method is increasing with the linear order ≤
XY

,

i.e., for the MADM problem expressed in Table I, if there

exist 1 ≤ i1, i2 ≤ n such that r̄i1j ≤
XY

r̄i2j holds for all

1 ≤ j ≤ m, then Ci1 ≤ Ci2 , i.e., Ai2 is better than Ai1

ranked by the proposed method. In particular, the proposed

method is increasing with Atanassov’s order ‘⊂’.

Proof: Fix λ ≥ 1. Let A+ = (〈µ+
1 , ν

+
1 〉, 〈µ+

2 , ν
+
2 〉, . . . ,

〈µ+
m, ν

+
m〉)⊤ and A

− = (〈µ−
1 , ν

−
1 〉, 〈µ−

2 , ν
−
2 〉, . . . , 〈µ−

m, ν
−
m〉)⊤

be the IF positive ideal-point and the IF negative ideal-

point obtained by Step 3, respectively. Clearly, 〈µ−
j , ν

−
j 〉 ≤

XY

r̄i1j ≤XY
r̄i2j ≤XY

〈µ+
j , ν

+
j 〉. By Theorem 6.2, we have

̺(λ)(〈µ−
j , ν

−
j 〉, r̄i1j) ≤ ̺(λ)(〈µ−

j , ν
−
j 〉, r̄i2j),

and

̺(λ)(〈µ+
j , ν

+
j 〉, r̄i2j) ≤ ̺(λ)(〈µ+

j , ν
+
j 〉, r̄i1j),

and thus,

S(Ai1 ,A
−) ≥ S(Ai2 ,A

−),

and

S(Ai1 ,A
+) ≤ S(Ai2 ,A

+) by Eqs. (18) and (21).

This, together with Eq. (24), implies that

(1) if S(Ai1 ,A
+) = 0, then

Ci1 =
S(Ai1 ,A

+)

S(Ai1 ,A
+) + S(Ai1 ,A

−)
= 0 ≤ Ci2 ;

(2) if S(Ai1 ,A
+) > 0, then S(Ai2 ,A

+) ≥ S(Ai1 ,A
+) >

0, and thus

Ci1 =
S(Ai1 ,A

+)

S(Ai1 ,A
+) + S(Ai1 ,A

−)
=

1

1 +
S(Ai1

,A−)

S(Ai1
,A+)

≤ 1

1 +
S(Ai2

,A−)

S(Ai2
,A+)

=
S(Ai2 ,A

+)

S(Ai2 ,A
+) + S(Ai2 ,A

−)
= Ci2 .

Therefore, Ci1 ≤ Ci2 .

By Theorem 6.2, similarly to the proof of Theorem 6.3, it

is not difficult to check that the following result holds.

Theorem 6.4 (Monotonicity): Using Eqs. (19) and (22)

(resp., Eqs. (20) and (23)), the above proposed method is

increasing with the linear order ≤
ZX

(resp., ≤
A,B

).

Example 9 (Continuation of Example 7): Consider the

MADM problem described in Example 7. If the proposed

TOPSIS method in this section is used based on Eq. (14)

with λ = 1, by direct calculation, it can be verified that

C1 = 0, C2 = 0.99495, C3 = 0.995075, C4 = 1. Thus,

the ranking order of the alternatives A1, A2, A3, and A4 is:

A4 ≻ A3 ≻ A2 ≻ A1, which is consistent with the result

obtained by directly observing in Example 7.

Example 10 (Continuation of Example 8): Consider the

MADM problem described in Example 8. If the proposed

TOPSIS method in this section is used based on Eq. (14)

with λ = 1, by direct calculation, it can be verified that

C1 = 0, C2 = 0.65, C3 = 0.64, C4 = 1. Thus, the
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ranking order of the alternatives A1, A2, A3, and A4 is:

A4 ≻ A2 ≻ A3 ≻ A1, which is consistent with the result

obtained by directly observing in Example 8.

Remark 5: Observing from Examples 9 and 10, it can

be seen that the proposed TOPSIS method can effectively

overcome the limitations of the TOPSIS methods in [37], [52],

which is consistent with the result proved in Theorem 6.3.

Furthermore, this shows that the proposed TOPSIS method is

superior to those in [37], [52].

VII. ILLUSTRATIVE EXAMPLES

This section provides two practical examples to illustrate the

efficiency of the above proposed TOPSIS method. One is an IF

MADM problem on the choice of suppliers in the supply chain

management (see Example 11). The ranking order obtained

by the proposed TOPSIS method is slightly different from the

results obtained by those TOPSIS methods in [46], [49], [51],

[33]. However, the most desirable alternatives are consistent.

The other is an IF MADM problem on the choice of project

managers (see Example 12). The ranking order, obtained by

the proposed TOPSIS method under the case that the decision-

maker is neutral or pessimistic, is consistent with those results

obtained by the TOPSIS methods in [52], [66], [46], [49], [51].

Example 11 ([52, Example 5.1]): Assume that there are five

alternatives A1, A2, A3, A4, and A5 of suppliers and four

attributes O1, O2, O3, and O4 to assess these five alternatives,

so as to choose the best supplier among these five alternatives

in the supply chain management, where O1 is the “Product

Quality”, O2 is the “Service”, O3 is the “Delivery”, O4 is the

“Sustainability” and O1, O2, O3, and O4 are benefit attributes,

with weight vector ω = (0.25, 0.4, 0.2, 0.15)⊤.

Step 1: (Construct the decision matrix) The decision matrix

R = (rij)5×4 given by the decision maker is listed in

Table VII.

TABLE VII
THE DECISION MATRIX R

O1 O2 O3 O4

A1 〈0.6, 0.3〉 〈0.5, 0.2〉 〈0.2, 0.5〉 〈0.1, 0.6〉
A2 〈0.8, 0.2〉 〈0.8, 0.1〉 〈0.6, 0.1〉 〈0.3, 0.4〉
A3 〈0.6, 0.3〉 〈0.4, 0.3〉 〈0.4, 0.2〉 〈0.5, 0.2〉
A4 〈0.9, 0.1〉 〈0.5, 0.2〉 〈0.2, 0.3〉 〈0.1, 0.5〉
A5 〈0.7, 0.1〉 〈0.3, 0.2〉 〈0.6, 0.2〉 〈0.4, 0.2〉

Step 2: (Normalize the decision matrix) Since O1, O2, O3,

and O4 are all benefit attributes, we have R = (r̄ij)5×4 = R.

Step 3: (Determine the positive and negative ideal-points)

The IF positive ideal-point is

A
+ = (〈0.9, 0.1〉, 〈0.8, 0.1〉, 〈0.6, 0.1〉, 〈0.5, 0.2〉)⊤,

and IF negative ideal-point is

A
− = (〈0.6, 0.3〉, 〈0.3, 0.3〉, 〈0.2, 0.5〉, 〈0.1, 0.6〉)⊤.

Steps 4 and 5: (Compute the relative closeness degrees)

Choose λ = 100 and calculate the relative closeness degrees

Ci of the alternatives Ai (i = 1, 2, 3, 4, 5) to the IF positive

ideal-point A
+ by Eqs. (18), (21), and (24): C1 = 0.4321,

C2 = 0.5709, C3 = 0.4750, C4 = 0.4876, C5 = 0.5053.

Step 6: (Rank the alternative) Because C2 > C5 >

C4 > C3 > C1, the ranking order of the alternatives Ai

(i = 1, 2, 3, 4, 5) is: A2 ≻ A5 ≻ A4 ≻ A3 ≻ A1.

Repeating Steps 1–3, by applying Eqs. (19) and (22), we

obtain the following result:

Step 4 and 5: (Compute the relative closeness degrees)

Choose λ = 100 and calculate the relative closeness degrees

Ci of the alternatives Ai (i = 1, 2, 3, 4, 5) to the IF positive

ideal-point A+ by Eqs. (19), (22), and (24): C1 = 0.4371,

C2 = 0.5618, C3 = 0.4694, C4 = 0.4922, C5 = 0.4925.

Step 6: (Rank the alternatives) Because C2 > C5 >

C4 > C3 > C1, the ranking order of the alternatives Ai

(i = 1, 2, 3, 4, 5) is: A2 ≻ A5 ≻ A4 ≻ A3 ≻ A1.

Comparative analysis

From Table VIII, which shows a comparison of the rank-

ing orders of the alternatives in Example 11 for different

MADM methods, it can be observed that (1) our results

are exactly the same, which are consistent with the result

A2 ≻ A5 ≻ A4 ≻ A3 ≻ A1 in [52], [66], [21]; (2) the result

obtained by Xu’s IFWA operator in [4] is different from the

results obtained by all other methods; (3) since the TOPSIS

method of Büyüközkan and Güleryüz in [49] is based on the

normalized Euclidean distance defined by Eq. (3), which does

not satisfy the axiomatic definition of IF distance measure (see

Example 1), the ranking result A2 ≻ A5 ≻ A3 ≻ A4 ≻ A1

may be unreasonable; (4) the best choice is always A2.

TABLE VIII
A COMPARISON OF THE RANKING ORDERS OF THE ALTERNATIVES IN

EXAMPLE 11 FOR DIFFERENT MADM METHODS

Methods Ranking orders

Chen et al.’s TOPSIS method in [52] A2 ≻ A5 ≻ A4 ≻ A3 ≻ A1

Wang and Wei’s TOPSIS method in [66] A2 ≻ A5 ≻ A4 ≻ A3 ≻ A1

Altan Koyuncu et al.’s TOPSIS method in [46] A2 ≻ A5 ≻ A3 ≻ A4 ≻ A1

Büyüközkan and Güleryüz’s TOPSIS method in [49] A2 ≻ A5 ≻ A3 ≻ A4 ≻ A1

Zhang et al.’s TOPSIS method in [51] A2 ≻ A5 ≻ A3 ≻ A4 ≻ A1

Zeng et al.’s VIKOR method in [21] A2 ≻ A5 ≻ A4 ≻ A3 ≻ A1

Shen et al.’s TOPSIS method in [33] A2 ≻ A5 ≻ A3 ≻ A4 ≻ A1

Xu’s IFWA operator method in [4] A2 ≻ A4 ≻ A5 ≻ A3 ≻ A1

Our TOPSIS based on ̺(100) A2 ≻ A5 ≻ A4 ≻ A3 ≻ A1

Our TOPSIS based on ˜̺(100) A2 ≻ A5 ≻ A4 ≻ A3 ≻ A1

Our TOPSIS based on ̺
(100)
K0.2 ,K0.4

A2 ≻ A5 ≻ A4 ≻ A3 ≻ A1

Our TOPSIS based on ̺
(100)
K0.5 ,K0.4

A2 ≻ A5 ≻ A4 ≻ A3 ≻ A1

Our TOPSIS based on ̺
(100)
K0.6 ,K0.4

A2 ≻ A5 ≻ A4 ≻ A3 ≻ A1

To illustrate the detailed influence of the parameters λ and

γ1 on the decision-making results in Example 11 by using

metrics ̺(λ), ˜̺(λ), and ̺(λ)
Kγ1

,Kγ2

, the relative closeness degrees

Ci of each alternative Ai obtained by ̺(λ), ˜̺(λ), and ̺(λ)
Kγ1

,Kγ2

are shown in Figs. 1 (a), (b), and (c)–(d), respectively. As

can be seen from Fig. 1, the ranking orders of the alternatives

using different values of parameters λ and γ1 remain the same

and are stabilized , when the parameter λ is large enough,

and thus the preferences of decision makers do not affect the

ranking results in this example. This indicates that our method

is effective and stable.

In summary, our proposed TOPSIS method has the follow-

ing advantages:
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(a) Relative closeness degrees of A1–
A5 obtained by ̺(λ)
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(b) Relative closeness degrees of A1–
A5 obtained by ˜̺(λ)

(c) Relative closeness degrees of A1–

A5 obtained by ̺
(λ)
Kγ1

,Kγ2
(0 ≤

γ1 < 0.5, γ2 = 1)

(d) Relative closeness degrees of A1–

A5 obtained by ̺
(λ)
Kγ1

,Kγ2
(0.5 <

γ1 < 1, γ2 = 1)

Fig. 1. Relative closeness degrees of A1–A5 in Example 11

(1) It is monotonous under the linear order ‘≤
XY

’ or ‘≤
ZX

’

or ‘≤
A,B

’. This can overcome the limitation of non-

monotonicity for some classical IF TOPSIS methods

in [48], [45], [52], [37], [47], [50]. In addition, other IF

TOPSIS methods can at most guarantee the monotonicity

under Atanassov’s partial order ⊂.

(2) Based on the admissible distances with linear orders, our

method is more in line with the essential features of the

original TOPSIS introduced by Hwang and Yoon [5].

(3) As can be seen from Example 11, the ranking orders of the

alternatives using different MADM methods are slightly

different. However, the best choice is the same. Moreover,

our preference order is stable when the parameter λ is

large enough. This indicates that our method is effective

and stable.

(4) Compared to the TOPSIS methods in [33], [52], our

method requires less computation and fewer steps.

Example 12 ([21, Example 5.2]): Assume that there is a

committee of a company, which decides to choose a project

manager from five alternatives A1, A2, A3, A4, and A5 with

four attributes O1, O2, O3, and O4, where O1 is “Self-

Confidence”, O2 is “Personality”, O3 is “Past Experience”,

O4 is the “Proficiency in Project Management” and O1, O2,

O3, and O4 are all benefit attributes, with weight vector

ω = (0.1, 0.2, 0.3, 0.4)⊤.

Assume the decision matrix R = (rij)5×4 given by the

committee is as listed in Table IX.

TABLE IX
THE DECISION MATRIX R

O1 O2 O3 O4

A1 〈0.4, 0.5〉 〈0.3, 0.6〉 〈0.4, 0.4〉 〈0.5, 0.3〉
A2 〈0.4, 0.4〉 〈0.5, 0.4〉 〈0.3, 0.5〉 〈0.3, 0.4〉
A3 〈0.4, 0.6〉 〈0.5, 0.5〉 〈0.4, 0.6〉 〈0.4, 0.6〉
A4 〈0.3, 0.4〉 〈0.2, 0.6〉 〈0.1, 0.9〉 〈0.4, 0.4〉
A5 〈0.5, 0.4〉 〈0.3, 0.6〉 〈0.3, 0.5〉 〈0.47, 0.5〉

Step 1: (Normalize the decision matrix) Since O1, O2, O3,

and O4 are all benefit attributes, we have R = (r̄ij)5×4 = R.

Step 2: (Determine the positive and negative ideal-points)

The IF positive ideal-point is

A
+ = (〈0.5, 0.4〉, 〈0.5, 0.4〉, 〈0.4, 0.4〉, 〈0.5, 0.3〉)⊤,

and IF negative ideal-point is

A
− = (〈0.3, 0.6〉, 〈0.2, 0.6〉, 〈0.1, 0.9〉, 〈0.3, 0.6〉)⊤.

Step 3: (Compute the relative closeness degrees) Choose

λ = 100 and calculate the relative closeness degrees Ci of the

alternatives Ai (i = 1, 2, 3, 4, 5) to the IF positive ideal-point

A
+ by Eqs. (18), (21), and (24): C1 = 0.5565, C2 = 0.5295,

C3 = 0.5058, C4 = 0.4555, C5 = 0.5171.
Step 4: (Rank the alternatives) Because C1 > C2 >

C5 > C3 > C4, the ranking order of the alternatives Ai

(i = 1, 2, 3, 4, 5) is: A1 ≻ A2 ≻ A5 ≻ A3 ≻ A4.

Repeating Steps 1–2, by applying Eqs. (19) and (22), we

obtain the following result:

Step 3: (Compute the relative closeness degrees) Calculate

the relative closeness degrees Ci of the alternatives Ai (i =
1, 2, 3, 4, 5) to the IF positive ideal-point A

+ by Eqs. (19),

(22), and (24): C1 = 0.5531, C2 = 0.5329, C3 = 0.5042,

C4 = 0.4583, C5 = 0.5198.
Step 4: (Rank the alternative) Because C1 > C2 >

C5 > C3 > C4, the ranking order of the alternatives Ai

(i = 1, 2, 3, 4, 5) is: A1 ≻ A2 ≻ A5 ≻ A3 ≻ A4.

From Table X, which shows a comparison of the ranking

orders of the alternatives in Example 12 for different MADM

methods, it can be observed that our results based on the

metrics ̺(100), ˜̺(100), ̺(100)
K0.5,K0.4

, and ̺(100)
K0.6,K0.4

are consistent

with the ranking orders obtained by the MADM methods

in [52], [66], [46], [49], [51], [21].

TABLE X
A COMPARISON OF THE RANKING ORDERS OF THE ALTERNATIVES IN

EXAMPLE 12 FOR DIFFERENT MADM METHODS

Methods Ranking orders

Chen et al.’s TOPSIS method in [52] A1 ≻ A2 ≻ A5 ≻ A3 ≻ A4

Wang and Wei’s TOPSIS method in [66] A1 ≻ A2 ≻ A5 ≻ A3 ≻ A4

Altan Koyuncu et al.’s TOPSIS method in [46] A1 ≻ A2 ≻ A5 ≻ A3 ≻ A4

Büyüközkan and Güleryüz’s TOPSIS method in [49] A1 ≻ A2 ≻ A5 ≻ A3 ≻ A4

Zhang et al.’s TOPSIS method in [51] A1 ≻ A2 ≻ A5 ≻ A3 ≻ A4

Zeng et al.’s VIKOR method in [21] A1 ≻ A2 ≻ A5 ≻ A3 ≻ A4

Our TOPSIS based on ̺(100) A1 ≻ A2 ≻ A5 ≻ A3 ≻ A4

Our TOPSIS based on ˜̺(100) A1 ≻ A2 ≻ A5 ≻ A3 ≻ A4

Our TOPSIS based on ̺
(100)
K0.2 ,K0.4

A1 ≻ A3 ≻ A5 ≻ A2 ≻ A4

Our TOPSIS based on ̺
(100)
K0.5 ,K0.4

A1 ≻ A2 ≻ A5 ≻ A3 ≻ A4

Our TOPSIS based on ̺
(100)
K0.6 ,K0.4

A1 ≻ A2 ≻ A5 ≻ A3 ≻ A4

To illustrate the detailed influence of the parameters λ and

γ1 on the decision-making results in Example 12 by using
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the metrics ̺(λ), ˜̺(λ), and ̺(λ)
Kγ1

,Kγ2

, the relative closeness

degrees Ci of each alternative Ai obtained by ̺(λ), ˜̺(λ), and

̺(λ)
Kγ1

,Kγ2
are shown in Fig. 2 (a), (b), and (c)–(d), respectively.

Compared to Example 11, the preferences of decision makers

greatly affect the ranking results in this example: (1) For 0 ≤
γ1 < 0.5, the ranking order is: A1 ≻ A3 ≻ A5 ≻ A2 ≻ A4.

(2) For 0.5 ≤ γ1 < 1, the ranking order is: A1 ≻ A2 ≻ A5 ≻
A3 ≻ A4.
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(a) Relative closeness degrees of A1–
A5 obtained by ̺(λ)
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(b) Relative closeness degrees of A1–
A5 obtained by ˜̺(λ)

(c) Relative closeness degrees of A1–

A5 obtained by ̺
(λ)
Kγ1

,Kγ2
(0 ≤

γ1 < 0.5, γ2 = 1)

(d) Relative closeness degrees of A1–

A5 obtained by ̺
(λ)
Kγ1

,Kγ2
(0.5 <

γ1 < 1, γ2 = 1)

Fig. 2. Relative closeness degrees of A1–A5 in Example 12

VIII. CONCLUSIONS

This paper is devoted to establishing a monotonous IF

TOPSIS method with three typical linear orders, ‘≤
XY

’ in [7],

‘≤
ZX

’ in [8], and ‘≤
A,B

’ in [11], [12]. Noting that the TOPSIS

method is closely related to the order structure and the met-

ric/similarity measure, we first discuss some examples to show

that some classical similarity measures in [37], [34], [29], [30],

including Euclidean similarity measure, Minkowski similarity

measure, and modified Euclidean similarity measure, do not

satisfy the axiomatic definition of IF similarity measures.

Then, we prove the nonexistence of a continuous function

that can distinguish IFV by a real number and is increasing

with Atanassov’s order ‘⊂’. As a direct corollary, we prove

that there is no any continuous similarity measure that can

distinguish between each pair of IFVs. Moreover, we show

some illustrative examples to demonstrate that some classical

IF TOPSIS methods in [48], [45], [52], [37], [47], [50] are

not monotonous with Atanassov’s partial order ‘⊂’ or the

linear order ‘≤
XY

’, which may yield counter-intuitive results.

To overcome this limitation, by using three new parametric

admissible distances with the linear order ‘≤
XY

’ or ‘≤
ZX

’ or

‘≤
A,B

’, we develop a novel IF TOPSIS method and prove that

it is monotonically increasing with these two linear orders.

Finally, we show two practical examples with comparative

analysis to other MADM methods to illustrate the efficiency

of our TOPSIS method.

Because the proposed TOPSIS method depends on the

choice of the linear orders, choosing an appropriate order for a

given problem is very important for practical decision-making.

Meanwhile, because the construction method of admissible

distances with linear orders presented in this paper is rela-

tively rough, which fails to capture all properties of the the

corresponding linear order, this may cause inaccurate decision-

making results in some cases. In the future, therefore, we

will further study the general construction of linear orders and

admissible distance/similarity measures for IFVs, which will

be useful for building more effective IF TOPSIS methods.
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[45] F. E. Boran, S. Genç, M. Kurt, and D. Akay, “A multi-criteria intuition-
istic fuzzy group decision making for supplier selection with TOPSIS
method,” Expert Syst. Appl., vol. 36, no. 8, pp. 11 363–11 368, 2009.

[46] C. Altan Koyuncu, E. Aydemir, and A. C. Başarır, “Selection industry
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