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1Abstract—Classification is essential to the applications in the 

field of data mining, artificial intelligence, and fault detection. 

There exists a strong need in developing accurate, suitable, and 

efficient classification methods and algorithms with broad 

applicability. Random forest is a general algorithm that is often 

used for classification under complex conditions. Although it has 

been widely adopted, its combination with diverse fuzzy theory is 

still worth exploring. In this paper, we propose the intuitionistic 

fuzzy random forest (IFRF), a new random forest ensemble of 

intuitionistic fuzzy decision trees (IFDT). Such trees in forest use 

intuitionistic fuzzy information gain to select features and 

consider hesitation in information transmission. The proposed 

method enjoys the power of the randomness from bootstrapped 

sampling and feature selection, the flexibility of fuzzy logic and 

fuzzy sets, and the robustness of multiple classifier systems. 

Extensive experiments demonstrate that the IFRF has 

competitive and superior performance compared to other state-

of-the-art fuzzy and ensemble algorithms. IFDT is more suitable 

for ensemble learning with outstanding classification accuracy. 

This study is the first to propose a random forest ensemble based 

on the intuitionistic fuzzy theory. 

 
Index Terms—Intuitionistic fuzzy sets, Fuzzy decision tree, 

Ensemble learning, Random forest.  

 

I. INTRODUCTION 

uzzy set theory is widely applicable in analyzing 

uncertainties in data. Crisp classifiers only use the value 

of the objects, ignoring the relationship between the objects 

and the concept as a whole. In a fuzzy case, relationships 

between values and concepts or relationships among values are 

characterized by the degree of membership. Intuitionistic 

fuzzy sets can further consider the degree of membership and 

non-membership by introducing hesitation. It provides a new 

metric in information processing and makes the decision-

making process more similar to the human thinking process. 

Intuitionistic fuzzy sets can handle uncertainty in different 

features and have been widely used in machine learning, 

clustering algorithms, and decision support [1-5]. 

In classification problems, decision trees can be regarded as 

one of the most popular classifiers. It has the advantages of fast 

training speed, small memory consumption, and automatic 

feature selection. At the same time, it is the most commonly 
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used base classifiers in ensemble learning, such as in bagging, 

boosting, and random forest [6-9]. 

However, the crisp decision tree also has certain limitations. 

For example, insufficient robustness and the relationship 

between the values and the concepts cannot be revealed 

intuitively. Many studies have been published regarding this 

aspect. The most famous one is the fuzzy decision tree (FDT) 

[10-12]. Fuzzy decision trees bridge the gap between the realm 

of numbers and the realm of concepts with accurate 

classification performance [13]. In recent years, there are many 

articles that have studied the combination of fuzzy theory with 

decision trees and ensemble algorithms. For instance, Wang et 

al. [14] proposed a fusing fuzzy monotonic decision tree, 

which used the fuzzy theory to handle raw data and then input 

it into a decision tree for classification. Askari et al. [16]  used 

the intuitionistic fuzzy logic in considering cognitive 

properties of attributes and employed a C4.5 fuzzy decision 

tree for fraud detection. Segatori et al. [17] developed the fuzzy 

decision tree for the field of big data computing, which 

implemented the fuzzy decision tree on the Spark framework 

for classification. In terms of ensemble learning, Li et al. [15]  

proposed a fuzzy random forest based on fuzzified features and 

a boosting method, systematically combining the fuzzy theory 

and the randomness in the random forest classification process. 

To further improve the performance of fuzzy ensemble 

learning, Barsacchi et al. [18] proposed a boosted ensemble 

algorithm, which was based on week binary fuzzy decision 

trees and achieved satisfactory classification performance [19]. 

Apart from fuzzy tree-based classifiers, other types of fuzzy 

classifiers exist, such as [20] and [21].  

In addition, fuzzy random forest has strong capability in 

handling ambiguity and uncertainty due to the ensembled 

structure of multiple fuzzy decision trees [22-23]. In recent 

years, researchers aim to further improve the ability of fuzzy 

random forests in selecting high-dimensional information and 

better fitting imperfect data. Bian et al. [24] proposed an 

enhanced fuzzy random forest method that introduced doubly 

randomness in the fuzzy random forest, and used a new fuzzy 

information gain for feature selection. It has been shown to 

have good processing ability for high-dimensional data. Conn 

et al. [25] introduced a fuzzy forest algorithm that can provide 
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less biased feature ranking for correlated high-dimensional 

data and developed an implementation software. Chen et al. 

[26] developed a two-layer fuzzy random forest. They adopted 

the fuzzy C-means [27] to handle high-dimensional emotion 

features and established the corresponding random forest. 

Nowadays, methods that combine random forests and fuzzy 

sets have been applied to immunologic phenotypes [25], fault 

diagnosis [28], and other classification problems. These 

advancements have been demonstrated with great potential in 

theoretical research and applications.  

Most of the existing research on fuzzy decision trees and 

fuzzy random forests is based on the traditional fuzzy sets. Few 

intuitionistic fuzzy decision tree studies still use fuzzy 

information as the index of feature selection and ignore the 

non-membership in the classification process. Moreover, we 

note that there exist no ensemble algorithms that are designed 

for intuitionistic fuzzy decision trees. That is, in previous 

studies, fuzziness was introduced for feature selection 

purposes, rather than for mimicking human information 

processing. Also, traditional tree-based methods have only a 

single degree of membership in transferring information 

between nodes, resulting in low diversity between classifiers 

and limited voting strategies. Motivated by the limitations of 

the existing methods, we propose the intuitionistic fuzzy 

decision tree (IFDT) by combining intuitionistic fuzzy sets and 

decision trees, and develop intuitionistic fuzzy random forest 

(IFRF). In the construction of IFDT, we innovatively introduce 

hesitation to allow non-membership to be involved in the 

information transmission of fuzzy decision trees, and propose 

one type of intuitionistic fuzzy information gain for feature 

selection in tree nodes. The decision tree inherits the high 

interpretability of intuitionistic fuzzy sets, and can output to 

the two dimensions of membership and non-membership. The 

proposed tree method greatly improves the output selection 

and randomness. Then, using these characteristics of the IFDT, 

we design an ensemble learning algorithm, through the random 

feature selection in the nodes [29] and two different voting 

schemes to continue increasing the randomness in the 

decision-making process. In addition, given the classification 

performance of each random tree on the out of bag dataset 

(OOB), the voting weight is assigned, which well integrates 

the high randomness in the decision-making process and the 

stability of the decision result. Extensive experimental results 

verify that the proposed IFRF can significantly outperform 

several state-of-the-art fuzzy classifiers and fuzzy ensemble 

algorithms. 

The rest of this paper is organized as follows. In Section Ⅱ, 

we first summarize the fundamental concepts of intuitionistic 

fuzzy sets and entropy, and then briefly review the existing 

fuzzy ensembles. In Section Ⅲ, the proposed approach is 

described with computational algorithms and illustrative 

figures. In Section Ⅳ, we examine the performance of the 

proposed decision trees and random forest using multiple 

benchmark datasets in comparison with alternative methods. 

We demonstrate the proposed approach has significantly 

improved accuracy in classification. In Section Ⅴ, we discuss 

the advancement and limitations of the proposed method. This 

method combines the power of randomness in the ensemble 

and the flexibility of fuzzy logic to handle practical data. 

Overall, this study is the first to propose a random forest 

ensemble based on the intuitionistic fuzzy theory. 

 

II. RELATED WORK 

In this section, we summarize the fundamental definitions 

relating to the intuitionistic fuzzy set and entropy. We also 

present commonly used intuitionistic fuzzy entropy calculation 

methods. In addition, classic fuzzy and crisp decision trees and 

ensemble algorithms are reviewed and briefly discussed. 

 

A. Intuitionistic Fuzzy Set and Entropy 

Traditional fuzzy sets are limited to describe the degree to 

which things belong, called membership. In order to extend the 

fuzzy set theory, Atanassov [30] first introduced the concept 

of the intuitionistic fuzzy set, which has been widely adopted 

in the literature. This concept is theoretically valid with well-

defined operations. The intuitionistic fuzzy set not only 

considers the degree of acceptance, but also the degree of 

rejection called non-membership, and the degree of 

uncertainty called hesitation. In this paper, we employ the 

intuitionistic fuzzy set and the related definitions that are 

described below. 

Let a set X  be fixed. One of the most universal 

generalizations of an intuitionistic fuzzy set A  in X  has the 

definition: 

 

A = ሼ<  x, uA ሺxሻ, vAሺxሻ > ȁx ∈ Xሽ,             (1) 

 

where uA : X → [0,1] and vA: X → [0,1] such that 

 

0 ≤ uA ሺxሻ + vAሺxሻ ≤ 1.                        (2) 

 

Denote the degree of membership of x ∈ A as uA  and the 

degree of non-membership of x ∈ A as vA. Further, we define 

the degree of uncertainty as: 

 

πAሺxሻ = 1 − uA ሺxሻ − vAሺxሻ.                   (3) 

 

Obviously, for any x ∈ X, we have 0 ≤ πA ≤ 1. The value 

of uncertainty represents the amount of hesitation, which does 

not belong to membership or non-membership degree.  

The fuzzy entropy describes the fuzziness and information 

content of fuzzy sets. The intuitionistic fuzzy entropy E(x) for 

each element x ∈ A is defined as below 

 

EAሺxሻ =  
minሼdIFSሺx,Mሻ,dIFSሺx,Nሻሽ

maxሼdIFSሺx,Mሻ,dIFSሺx,Nሻሽ
,                   (4) 

 

where M and N are intuitionistic fuzzy elements, 𝑑𝐼𝐹𝑆ሺ𝑥, ሻ is 

the distances between two intuitionistic fuzzy elements. 𝑀 =
< 𝑢, 𝑣, 𝜋 >=< 1, 0, 0 >  represents fully belonging to set 𝐴 

and 𝑁 =< 0, 1, 0 >  indicates fully not belonging to 𝐴 

[31][32].  
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Many distance measurements are available, including 

Euclidean and Hammering distance [33]. Here, we use the 

normalized Hamming distance. Thus, the dIFSሺx, Mሻ  and 

dIFSሺx, Nሻ is calculate as: 

 

dIFSሺx, Mሻ =
ሺȁuAሺxሻ−1ȁ+ȁvAሺxሻ−0ȁ+ȁπAሺxሻ−0ȁሻ

2
,              (5) 

dIFSሺx, Nሻ =
ሺȁuAሺxሻ−0ȁ+ȁvAሺxሻ−1ȁ+ȁπAሺxሻ−0ȁሻ

2
.              (6) 

 

B. Fuzzy Decision Trees and Ensemble Algorithms 

Decision trees are one of the most commonly used 

classification methods in machine learning. The generation of 

decision trees is a recursive process. In every node, we select 

an appropriate feature to conduct classification. For features 

with continuous values, crisp decision trees, such as C4.5 and 

CART, use binary-partition to handle datasets. A dataset is cut 

into two subsets. The subsets are then divided into different 

sub-nodes. Similarly, fuzzy decision trees also need to select 

an feature at each node. However, it can make a sample go 

down synchronously into multiple sub-nodes with different 

satisfaction degrees ranging within (0,1]. 

For the fuzzy decision trees’ construction process, the 

selection of features has many different criteria, including 

fuzzy information gain [10], fuzzy Gini index [34], minimal 

ambiguity of the possibility distribution [11], and maximum 

classification significance of feature contribution [35]. In this 

paper, we propose a new intuitionistic fuzzy information gain. 

Details are discussed in Section Ⅲ. 

The ensemble learning methods train multiple learners and 

combine them to achieve satisfactory performance[36]. In 

recent literature, many ensemble learning methods have been 

proposed that use different base classifiers. Commonly used 

ensemble techniques include bagging, boosting, as well as 

random forest that has become more popular in recent years. 

Bagging averages multiple weak classifiers, which are 

constructed by bootstrapped samples. For boosting, it 

ensembles weak classifiers by adding only one classifier at a 

time and weighting each classifier based on its error rate. 

Random forest method is an extension of bagging, which uses 

decision trees as the base classifier. In addition to using 

bootstrapped training data, random forest also randomly 

selects the set of features at each node. 

Compared to the ensemble methods that use crisp decision 

trees, applying fuzzy decision tree as the base classifier can 

significantly enhance the robustness and expand the scope of 

applications. Bonissone[37] proposed a fuzzy random forest, 

which used results from trees and leaves to vote for the final 

classification. Barsacchi[18] proposed a boosted ensemble of 

fuzzy decision trees. Both of the them have shown 

improvement in accuracy and robustness in numerical studies. 

Yet, we observe a lack of development in using intuitionistic 

fuzzy sets for ensemble methods in the current literature. More 

advanced fuzzy set theory is desired and necessary to obtain 

better results in classification.  

 

III. METHOD 

In this section, we propose the intuitionistic fuzzy discretizer, 

intuitionistic fuzzy decision tree, and intuitionistic fuzzy 

random forest. We also describe the methodological 

advancements of the proposed method and its implementation 

in details. 

 

A. Intuitionistic Fuzzy Discretization 

The fuzzy discretizer directly determines the domain of the 

fuzzy set. We develop an intuitionistic fuzzy discretizer for 

each continuous feature using K-means method [38] and 

define strong trapezoid intuitionistic fuzzy partitions.  

Common fuzzy sets include triangle, trapezoid, and normal 

fuzzy sets. Here, we apply trapezoid intuitionistic fuzzy sets. 

Compared to the traditional trapezoid fuzzy sets, trapezoid 

intuitionistic fuzzy set has an additional non-membership 

function (see Fig. 1). We use the hesitation parameter dπ  to 

calculate the non-membership function vA ሺxሻ： 

 

uA ሺxሻ = ൫1 − uA ሺxሻ൯ ∗ dπ.                    (7) 

 

For example, in Fig. 1, the non-membership function is 

represented by the red line when dπ = 1. The non-membership 

function is represented by the blue line when dπ = 0.5. 

Fig. 1.   Trapezoid intuitionistic fuzzy membership and non-membership 

function (Blue and red lines represent the non-membership function when 

dπ = 0.5 and dπ = 1, respectively) 

Fig. 2.  Trapezoid intuitionistic fuzzy membership function and cluster 

centers (eI,i+1 represents the distance between the i-th trapezoid’s center 

point and the i+1-th trapezoid’s adjacent base point) 

We defined C  as the number of cluster centers in the K-

means method. Thus, after clustering certain features in the 

dataset, we obtain C center points ሺc1, c2, … cCሻ. We define S 

as the shape parameter, which determines the shape of the 

membership function. S is calculated as: 

 

S =
ci+1− ci

ei,i+1
 ሺ0 < i < Cሻ,                      (8) 

dic://word/similar
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where eI,i+1 ሺ0 < i < Cሻ  is denoted as the distance between 

the i-th trapezoid’s center and the i+1-th trapezoid’s adjacent 

base point. Obviously, the trapezoid membership function is 

approximating to the triangle membership function when S 

tends to infinity. Here, Fig. 2 vividly demonstrates an example 

of membership functions when C =3. 

The intuitionistic fuzzy discretizer used in this paper is to 

work on each continuous feature of the dataset and obtain the 

final intuitionistic fuzzy dataset Df  to train the intuitionistic 

fuzzy decision tree (IFDT). The process for the discretization 

is summarized in Algorithm 1. 

 

Algorithm 1: Pseudocode of the intuitionistic fuzzy 

discretization process. 

For input, the algorithm needs the raw dataset D , the 

number of clusters C , the shape parameter S , and the 

hesitation degree dπ.  

The output is the intuitionistic fuzzy dataset Df. 

begin 

1. Extract the data of one feature from dataset D as 

the sample set F. 

2. Partition the set F  into C  clusters using the K-

means method and obtain cluster centers. 

3. Intuitionistic fuzzificate the set F  towards 

trapezoid intuitionistic fuzzy set with parameter dπ 

and S. 

4. Repeat step 1, 2, and 3 until all features are 

processed and the intuitionistic fuzzy dataset Df  is 

obtained. . 

end 

 

The fuzzy discretizer proposed in this section uses K-means 

to accurately define clustering centers, and can change the 

number of membership functions in the domain by changing 

k-value. It can reveal the underlying information from the data 

and make full use of the implicit information of the feature 

values. Only one feature is clustered to obtain the center point 

at a time, and the class does not participate in the above process. 

Additionally, it can provide a suitable and diverse intuitionistic 

fuzzy data set Df  for the subsequent intuitionistic fuzzy 

decision tree classification.  

 

B. Construction of Intuitionistic Fuzzy Decision Trees 

Here, we propose an intuitionistic fuzzy information entropy. 

Different from the information entropy used by C4.5 decision 

tree, we calculate the intuitionistic fuzzy entropy of each fuzzy 

partition of each sample according to (4).  

Assume that the proportion of the feature F’s intuitionistic 

fuzzy entropy of samples that belongs to the k-th class in the 

current intuitionistic fuzzy sample set Df  is Pk
F , where k = 

1,2…, ȁyȁ. The Pk
F is calculated as: 

 

Pk
F =

χሺsሻ∗EFሺsሻ,

χሺsሻ∗EFሺsሻ,
    s∈the k th class of Df

  s∈Df                                 
                    (9) 

 

Assume that feature F has C fuzzy partitions ሼa1, a2, … , acሽ. 

If F is used to split node, C child nodes are generated. The c-th 

child node contains all samples in Df
parent

, of which the 

membership degree is greater than zero on the fuzzy partition 

ac. The set is denoted as Df
c. We can compute intuitionistic 

fuzzy information entropy of the set Df
c using (10). 

 

IEnt൫Df
parent

, F൯ = − σ Pk
F log2 Pk

Fȁyȁ
k=1                 (10) 

 

Consider that the sum values of intuitionistic fuzzy entropy 

in different child nodes are different. Weights are assigned to 

each child node, which are the sum of intuitionistic fuzzy 

entropy in Df
c  divided by the sum of intuitionistic fuzzy 

entropy in Df
parent

. The larger the weight, the greater the 

influence of the child node. Consequently, the “intuitionistic 

fuzzy information gain” obtained by splitting the intuitionistic 

fuzzy sample set Df
parent

 with feature F can be calculated as: 

 

IGain൫Df
parent

, F൯ 

= IEnt൫Df
parent

, F൯ − σ
หDf

cห

D
f
parent IEntሺDf

c, FሻC
c=1    (11) 

We note that the mean value of the intuitionistic fuzzy 

entropy of all features is used when calculating the 

intuitionistic fuzzy information entropy IEnt൫Df
parent

൯ of the 

sample set Df
parent

 in the splitting parent node. 

At the beginning of the IFDT construction, a root node is 

created with all samples in Df. We denote χt,Nሺsሻ as the degree 

of membership to indicate the condition that leads to the node 

N of the tree t, s ∈ Df. The calculation of χt,Nሺsሻ is described 

as follows:  

• At the root node, each sample s has been allocated with 

an initial value 1,  as χt,rootሺsሻ = 1. 

• In the process of node splitting, samples may belong to 

one or more child nodes due to the overlapping of the 

intuitionistic fuzzy sets. Samples are descended to a 

child node associated with the membership degree 

greater than 0 as ufuzzy_partitionሺsሻ > 0 . Thus, the 

membership value χt,childnodeሺsሻ is calculated as: 

 

χt,childnodeሺsሻ =  χt,nodeሺsሻ  ×  ufuzzy_partitionሺsሻ.   (12) 

 

Similarly, the non-membership value ψt,childnodeሺsሻ is 

calculated as: 

 

ψt,childnodeሺsሻ =  ψt,nodeሺsሻ  ×  vfuzzy_partitionሺsሻ.   (13) 

• If the sample s has a missing value on a feature that is 

used to split node. The value χt,childnodeሺsሻ  is 

calculated as: 

 

χt,childnodeሺsሻ =
χt,nodeሺsሻ

C
                     (14) 

 

As the same as the traditional decision trees, the proposed 

IFDT is constructed by a recursive node-splitting process, 
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which searches for the split that maximizes the intuitionistic 

fuzzy information gain until meeting a series of stopping 

conditions. This learning process is summarized in Algorithm 

2. 

 

Algorithm 2: Algorithm for constructing the proposed 

IFDT. 

For input, we have the algorithm intuitionistic fuzzy 

dataset Df, the stopping parameters  dβ and nα, The output 

is an intuitionistic fuzzy decision tree IFDT. 

begin 

1. Create a root and start with the samples in Df, set 

χrootሺsሻ = 1. 

2. Let M be the number of features in Df. Let C be the 

number of fuzzy partitions. 

3. Select a feature to split the current node N. 

              3.1 Calculate the intuitionistic fuzzy information 

gain for each feature using the intuitionistic fuzzy 

entropy E(s) of each samples in node N. 

              3.2 Select the feature with the maximum   

intuitionistic fuzzy information gain to split. 

4. Generate C  child nodes for the node N in 

accordance with the number of fuzzy partitions. If 

ufuzzy_partitionሺsሻ > 0 , the sample is assigned to 

the corresponding child node. One sample may be 

assigned to multiple child nodes. 

5. Repeat step 3 and 4 for each node until the stopping 

condition is reached.  

end 

In this paper, the stopping criteria in Algorithm 2 are: 

• The tree’s depth reaches the maximum depth dβ. 

• Current node contains samples less than a threshold nα. 

• Current node contains samples belong to the same class. 

• The set of alternate features is empty. 

When any one of the above conditions is satisfied, the split of 

the node stops and the node is marked as a leaf node with a 

certain class that have the largest proportion of  χt,leaf − ψt,leaf. 

Otherwise, C child nodes are generated, selecting the split that 

maximizes the intuitionistic fuzzy information gain. 

Comparing the proposed intuitionistic fuzzy decision tree to 

the traditional fuzzy decision tree, two major advancements are 

achieved. First, we propose a new intuitionistic fuzzy 

information gain as the splitting criterion and extend the 

feature selection method using the intuitionistic fuzzy entropy. 

Second, we adopt the non-membership to the information 

transmission of the decision trees and intuitively associate 

value with concept. These advancements upgrade the decision 

tree technique to more effectively mimic human thinking 

process. The proposed IFDT also has strong generalization 

ability. Moreover, due to the addition of one dimension of 

output, IFDT is more suitable for being used as the base 

classifier for ensemble learning. These advanced 

characteristics are verified in the section Ⅳ. 

C. Intuitionistic Fuzzy Random Forest Learning and 

Classification 

In order to better use the two-dimensional output of IFDT, 

we propose the intuitionistic fuzzy random forest (IFRF) by 

strategically combining the IFDT，and design two different 

voting schemes for decision making. 

In the construction of IFRF, similar to random forest 

algorithm, we used the intuitionistic fuzzy random decision 

tree as the base classifier, which adds random selection of 

features in each node. During the construction of intuitionistic 

fuzzy random decision tree, suppose there are m  candidate 

features in a node. Different from IFDT, the proposed decision 

tree randomly selects a subset of log2 m  features from the 

features set of the node, and then select the optimal feature 

from this subset to generate child nodes. The rest of the 

construction is exactly the same as IFDT. The detailed process 

of constructing IFRF is summarized in Algorithm 3. 

 

Algorithm 3: Algorithm for constructing the proposed 

IFRF. 

  For input, we have the intuitionistic fuzzy dataset Df , 

number of trees nγ, the stopping parameters dβ and nα, The 

output is an intuitionistic fuzzy random forest IFRF. 

begin 

1. Extract a random sample set ȁDȁ  with replacement 

from the dataset Df and obtain the out of bag samples 

set OOB. 

2. Input ȁDȁ,  stopping parameters and construct an 

intuitionistic fuzzy random decision tree.  

3. Use OOB dataset to test the base random decision tree 

and obtain the classification error rate.  

4. Repeat steps 1, 2, and 3 until the number of trees reach 

nγ. 

5. Assign the weight wt (0 < t ≤ nγሻ to each base tree 

according to its classification error rate on the OOB 

dataset. 

end 

Fig. 3.  A result matrix example of a IFRF that has three trees 

 

In the first step of Algorithm 3, the resampling with 

replacement is consistent with the traditional random forest 

method using bootstrapping[39]. As a result, approximately 

63.2% of the samples are extracted to form the dataset ȁDȁ. The 

rest of approximately 36.8% samples that were not included 

are called the out of bag (OOB) dataset. The OOB dataset are  
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                                                    (a)                                                                                         (b)    

Fig. 4.  Two voting schemes for the IFRF: (a) tree-based voting scheme 1. (b) leaf-based voting scheme 2 

 

used to test the intuitionistic fuzzy random decision tree and 

assign weights to the random decision trees based on the testing 

results in the step 5. In the step 5 of Algorithm 3, the weights of 

t-th tree in IFRF is computed as: 

wtሺerrtሻ

= ቐ

1,
ሺemax + margሻ − errt

ሺemax − eminሻ
,

  if errt ≤ ሺemin + margሻ
                    

  if ሺemin + margሻ ≤ errt ≤ ሺemaxሻ
 

(15) 

 

where the errt is the error rate of the t-th tree in IFRF, which 

obtained as 
𝑒𝑟𝑟𝑜𝑟𝑠ሺ𝑂𝑂𝐵𝑡ሻ

𝑠𝑖𝑧𝑒ሺ𝑂𝑂𝐵𝑡ሻ
. The 𝑒𝑟𝑟𝑜𝑟𝑠ሺ𝑂𝑂𝐵𝑡ሻ  is the number of 

classification errors of t-th tree that uses OOB𝑡  dataset as test set, 

and the 𝑠𝑖𝑧𝑒ሺ𝑂𝑂𝐵𝑡ሻ is the number of samples of the OOBt [37]. 

The emax is the maximum error rate in the trees of IFRF, which 

is calculated as: 

emax = maxt=1,…nγ
൜

errorsሼOOBtሽ

sizeሼOOBtሽ
ൠ                 (16) 

 

Similarly, the emin is the minimum error rate in the trees of 

IFRF and marg = ሺemax − eminሻ/4. 

When classifying a new sample, we assume that the t-th tree 

generates Nt  leaves. If a sample reaches a certain leaf in the 

classification process, the leaf is assigned to a voting weight 

Lt,leaf =  χt,leaf − ψt,leaf. The leaves that have not been reached 

are null and do not participate in voting. A result matrix 

example is shown in Fig. 3 

The classification voting for the final decision follows the 

majority voting principle. We develop two voting strategies: 

tree-based voting ሺscheme 1ሻ  and leaf-based voting 

(scheme 2). The scheme 1 is to perform a fusion voting for the 

leaf voting weights within each tree to obtain a classification 

result of each tree, and then conduct a weighted fusion voting 

for these results to generate the final decision of the IFRF. The 

scheme 2 is to directly conduct a weighted fusion voting by 

combining the information generated by all leaves. We plot the 

two-voting scheme in Fig. 4.  

The fusion voting in scheme 1 is to add up the leaves’ voting 

weight of each class on each tree, obtain the class with the 

largest weight, and mark the tree result as the class. Then, the 

voting weights of the trees of each class are added to obtain the 

class with the largest sum, and the class is outputed as the final 

ensemble classification result. The weighted fusion voting in 

scheme 2 is to multiply the voting weight of each leaf by the 

voting weight of its belonging tree and add them according to 

the class of the leaves. We obtain the class with the largest 

weight and output this class as the final ensemble classification 

result. 

Through proper voting schemes, IFRF integrates the 

advantages of intuitionistic fuzzy set theory into the random 

forest’s classification process, making the final fused voting 

results more accurate. In addition, by considering the role of 

membership and non-membership in information transmission, 

the randomness in the IFRF classification process is greatly 

increased. In the process of integrating various base learners, 

OOB is used to weight them, which increases the stability of 

voting. The above strategies combine the advanced 

characteristics of intuitionistic fuzzy theory, include the 

important role of χt,leaf in voting, and enhance the performance 

of the proposed IFRF in classification accuracy. 

IV. EXPERIMENT 

The evaluation of classification algorithms is a delicate job 

that requires comparisons using multiple datasets. In order to 

examine the performance of our proposed classification 

algorithms and ensure the reproducibility of the results, we 

select 23 commonly used classification datasets from Uci and 

Keel and adopt cross validation for evaluation [40]. These 

datasets are extensively used in the literature for many 

ensembles learning models. Furthermore, the used datasets 

cover various aspects of general classification problems, 

involving different numbers of samples, features, balance levels, 

and real/integer/numerical features in different ratios. The 

ultimate goal we aim to achieve is to comprehensively assess 

the classification performance of the IFDT classifier and the 
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IFRF ensemble algorithm, in comparison with other fuzzy 

classification methods. The selected datasets are listed in Table 

Ⅰ with the numbers of features (real(R), integer(I), 

categorical(C)), the numbers of classification class, and the 

imbalance ratio (IR). The IR is the ratio of the class with the 

largest sample size to the class with the smallest sample size. 

To evaluate of a classifier, accuracy is an appropriate and 

intuitive measurement to quantify performance levels. Thus, we 

design two series of experiments to investigate the accuracy of 

a single IFDT and IFRF ensemble algorithm respectively. In the 

first series of experiments, we focus on the comparison of IFDT 

with other popular base classifiers, including C4.5, CART, and 

MLP[41]. The purpose is to properly analyze the performance 

of our proposed base classifier IFDT. Similarly, in the second 

series of experiments, we aim to compare the IFRF ensemble 

method with other popular ensembles in the literature. 

 
TABLE I 

 DATASETS AND THEIR CHARACTERISTICS 

Dataset Samples 
Feature  

(R,I,C) 
Class 

appendicitis (APP) 106 7 (7,0,0) 2 

australian (AUS) 690 14 (3,5,6) 2 

bands (BAN) 365 19 (13,6,0) 2 

dermatology (DER) 358 34 (0,34,0) 6 

glass (GLA) 214 9 (9,0,0) 7 

hayes (HAY) 160 1 (0,4,0) 3 

iris (IRI) 150 4 (4,0,0) 3 

magic (MAG) 19020 10 (10,0,0) 2 

mammographic (MAM) 830 5(0,5,0) 2 

newthyroid(NEW) 215 5 (4,1,0) 3 

ring (RIN) 7400 20 (20,0,0) 2 

segment (SEG) 2310 19 (19,0,0) 7 

tae (TAE) 151 5 (0,5.0) 3 

vehicle (VEH) 846 18 (0,18,0) 4 

vowel (VOW） 990 13 (13,0,0) 11 

wdbc (WDC) 569 30 (30,0,0) 2 

wine (WIN) 178 13 (13,0,0) 3 

wisconsin(WIS) 683 9(0,9,0) 2 

german credit(GER) 1000 20(0,7,13) 2 

thyroid (THY) 3772 21(15,6,0) 3 

breast-cancer(BC) 286 9(0,1,8) 2 

ionosphere (ION) 351 33(32,1,0) 2 

pima (PIM) 768 8(8,0,0) 2 

 

In the following, we test the proposed methods separately. 

The two series of experiments follow the standard procedure. 

First, fit a dataset-specific tuning parameter by each method in 

each dataset. Here, we use a nested 5-fold cross-validation 

testing sets to select hyperparameters. Subsequently, we test 

IFDT and IFRF respectively. In order to fairly compare with 

other classification methods in the literature, we follow 

Bonissone [37] and Barsacchi [18], running cross-validation [42] 

test for IFDT and IFRF. Our reference implementation of IFDT 

and IFRF are developed in Python 3.7, and it is used in all 

experiments described hereafter. 

In section Ⅳ.A, we evaluate the accuracy of our base fuzzy 

classifier IFDT and other fuzzy and crisp base classifiers. In 

Section Ⅳ.B, the proposed IFRF is analyzed and compared 

with others newest fuzzy ensemble classification methods. 

 

A. Evaluation of Intuitionistic Fuzzy Decision Trees 

In this section, we compare the proposed IFDT with other 

general decision tree-based classifiers and fuzzy classifiers. 

 We consider two commonly used crisp decision tree C4.5 

[44]and CART [45] that use information gain ratio and Gini 

index as the criteria of feature selection in nodes respectively. 

Fuzzy decision trees incorporate fuzzy theory into the 

traditional crisp information gain with the fuzzy information 

gain, which makes fuzzy decision trees widely applicable in 

other fields. Multilayer Perceptron (MLP) [47] and radial base 

function (RBF) [48] are two general network classifiers. Bayes 

classifier is a popular classifier, which is based Bayesian 

decision theory. The above six classifiers are often used as the 

base classifiers for many ensemble learning methods. For 

example, Ada-boosting and Bagging. We also consider grey 

relational analysis GRA [46] and CIGRA classifier [41] which 

adds to fuzzy theory for more comprehensive comparisons.  

The selection of the hyperparameters in the classifier is 

mainly based on the grid search method and 5-fold inner cross-

validation. For IFDT, 𝐶 ∈ [2:7] with step 1, 

𝑆 ∈ [2,3,4,5,7,9,10000], dπ ∈  [0.5:0.9] with step 0.1, 𝑛𝛼 ∈ 

[5:20] with step 5, 𝑑𝛽 ∈ [2:20] with step 2.  

In order to fairly compare with each classifier, we use the 

reported results from [41]. The accuracy results are obtained by 

a 10-fold cross validation testing strategy. The percentage of the 

average classification accuracy for all classifies are reported in 

Table Ⅱ. 

We observe in Table Ⅱ that CIGRA, IFDT and RBF perform 

better in accuracy. IFDT and RBF both perform the best on three 

datasets, and CIGAR performs the best on two datasets. In 

addition, we calculate the mean rank of error rate of each 

classifier on eight datasets. We observe that in terms of the mean 

rank, the CIGRA classifier performers the best with a mean rank 

of 2.80, followed by the IFDT classifier with a mean rank of 

3.65, the two neural network classifies RBF and MLP.  

In order to further explore the difference between the results 

of each classifier, we perform a non-parametric test on the error 

rate results. We choose Friedman test [49] that is widely used in 

comparing algorithm performance, and the Friedman test results 

are reported in Table Ⅲ (Friedman test results are obtained 

using SPSS 22). In this paper, we choose the significance p-

value as 0.05. From Table Ⅲ, the Friedman test produce a p-

value = 0.019, lower than 0.05, indicating the null hypothesis of 

statistical equivalence is rejected. Therefore, we conclude that 

there is a significant difference between the accuracy of 

classifiers. 
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TABLE Ⅱ 

ACCURACY RESULT OF THE TEST OF IFDT AND OTHER CLASSIFIES 

Datasets Classifiers 

IFDT GRA CIGRA MLP C4.5 RBF Bayes Cart FDT 

APP 88.02 86.00 88.70 85.80 84.9 80.20 83.00 84.90 88.10 

BC 78.43 72.80 74.30 73.50 73.9 72.40 69.30 71.40 77.75 

WIS 96.88 96.20 96.80 96.50 94.7 96.60 96.40 94.40 96.76 

GER  71.03 73.00 74.20 71.60 73.5 75.70 70.40 73.90 68.39 

GLA 74.45 57.40 63.20 68.70 65.8 47.70 71.80 63.60 71.36 

ION  90.71 88.50 92.60 92.00 90.9 94.60 85.50 89.50 88.66 

IRI 96.00 95.70 96.10 96.00 94.00 98.00 94.70 92.00 95.33 

PIM 75.61 74.90 76.20 75.80 72.7 75.70 72.20 74.70 74.26 

WIN 97.65 93.30 96.20 98.30 93.3 94.90 94.40 87.60 97.14 

THY 93.74 97.50 98.20 94.30 99.7 95.50 99.70 99.60 95.28 

TABLE Ⅲ 

RESULTS OF THE FRIEDMAN TEST ON THE ACCURACY OBTAINED BY IFDT, 

GRA, CIGRA, MLP, C4.5, RBF, BAYES, CART AND FDT 

Classifier Mean Rank p-value 

IFDT 3.65 0.019 

GRA 6.05  

CIGRA 2.80  

MLP 4.25  

C4.5 5.65  

RBF 4.60  

Bayes 6.55  

Cart 6.55  

FDT 4.90  

 

TABLE Ⅳ 

 RESULTS OF THE PAIRWISE FRIEDMAN TESTS 

 (SIGNIFICANCE LEVEL = 0.05) 

Classifier Mean Rank p-value Hypothesis 

CIGRA 2.80 0.527 Not reject 

IFDT 3.65     - - 

MLP 4.25 0.739 Not reject 

RBF 4.60 1.000 Not reject 

FDT 4.90 0.058 Not reject 

C4.5 5.65 0.206 Not reject 

GRA 6.05 0.058 Not reject 

Bayes 6.55 0.011 Rejected 

Cart 6.55 0.058 Not reject 

  

In order to further compare the performance of each classifier 

with IFDT, we choose the proposed IFDT as the control 

classifier, and conduct pairwise Friedman tests with other 

classifiers. The results are shown in Table Ⅳ. From Table Ⅳ, 

we conclude that there is no significant difference in 

performance between IFDT and CIGRA, MLP, RBF, FDT, C4.5, 

GRA and CART. The proposed IFDT is significantly better than 

the Bayes classifier. However, using the mean rank as the 

evaluation measurement, IFDT ranks as the second among nine 

classifiers, which demonstrates that the proposed IFDT has 

competitive performance and is an effective classifier. 

From the above experiments, we note that the intuitionistic 

fuzzy decision tree classifier proposed in this paper is an 

effective classifier with competitive performance in accuracy 

among other eight classifiers. Furthermore, since it considers 

the degree of hesitation and is able to output decision 

information in two dimensions, the proposed IFDT is 

practically applicable to many other fields to produce accurate 

classification results and more suitable for ensemble learning.  

 

B. Performance Analysis for the IFRF Ensemble 

In this section, we compare the performance of the proposed 

IFRF with four state-of-the-art fuzzy classifiers and ensemble 

algorithms and classic random forest (RF). FDT-Boost [18] is 

an ensemble algorithm, which uses fuzzy binary decision trees 

as a multi-class base classifies. This type of trees is constrained 

their depth to maintain compact while not reducing the 

classification accuracy. FURIA [43] is an extended algorithm 

based on the RIPPER algorithm, which classifies by learning 

conventional rules and unordered rule sets. Moreover, we also 

choose two latest fuzzy decision trees: FBDT and FMDT [17]. 

Both of them adopt strong fuzzy partitioning in the domains of 

numeric features. We note that FBDT is fuzzy binary decision 

tree and FMDT is fuzzy multi-way decision tree. 

We employ a 5-fold cross-validation method in the 

performance evaluation of the IFRF and other four algorithms. 

The hyperparameter selection method in this experiment is the 

same as Section Ⅳ.A. For IFRF, C ∈ [2:7] with step 1, S ∈ 

[2,3,4,5,7,9,10000], dπ ∈  [0.5:0.9] with step 0.1, nα ∈  [5:20] 

with step 5, dβ ∈ [2:20] with step 2 and nγ = 600.  

In practice, it is not necessary to tune all the hyperparameters 

to perform a grid search. We conduct a grid search only on 

selected hyperparameters that have a large impact on the model, 

and then simply adjust the remaining hyperparameters or set 

them as default values. The influence of specific 

hyperparameters on the model and the default values are 

discussed in the appendix. For the other four algorithms, they 

also select dataset-specific hyperparameters by tunning.  

To make the experiment result more comparable, the result 

reported in [18] is used and the complete experimental results 

are reported in Table Ⅴ. 

At the first glance, the best classifier is the proposed IFRF, 

because it has the highest accuracy on two thirds of the test 
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datasets. Its performance on the remaining datasets is also close 

to the best performance. In order to quantify this observation, 

we also conduct a non-parameter statistical test based on the 

error rates of each classifier on the test datasets. The specific 

testing process is the same as the section Ⅳ.B. The results of 

the total Friedman test are reported in Table Ⅵ, and the results 

of the paired-Friedman tests are reported in Table Ⅶ. It is 

worth noting that, to make the conclusion more rigorous, we use 

the Holm-method [50] to adjust the significance level for 

multiple comparison. 

 

 

TABLE Ⅴ 

MEAN ACCURACY RESULTS OBTAINED BY IFRF, FDT-BOOST, FURIA, FBDT AND FMDT 

Datasets  Algorithms 

IFRF FDT-Boost FURIA FBDT FMDT 

mean std mean std mean std mean std mean std 

APP 90.56 5.21 85.84 7.38 90.38 1.10 87.75 2.24 84.07 6.68 

AUS 86.67 2.22 86.87 1.87 82.44 6.99 84.49 1.98 85.36 3.41 

BAN 73.48 4.51 75.31 3.75 73.26 4.66 65.17 3.10 68.55 3.09 

DER 98.09 1.86 98.06 2.40 81.7 1.46 81.70 1.49 93.3 3.21 

GLA 78.47 7.53 75.70 6.98 82.62 3.94 66.79 5.22 72.39 5.42 

HAY 84.37 3.43 83.75 4.59 75.00 2.53 73.75 4.24 63.75 7.02 

IRI 97.33 2.49 94.67 2.67 98.00 0.42 96.00 3.89 94.00 4.42 

MAG 86.03 0.25 85.18 0.65 85.49 0.12 85.63 0.73 80.03 0.77 

MAM 84.07 2.52 83.96 1.58 79.04 6.32 83.23 2.39 83.93 2.46 

NEW 98.14 2.71 96.74 3.15 97.67 0.59 93.02 2.94 93.49 1.70 

RIN 95.89 0.99 95.54 0.32 83.7 6.91 92.55 0.65 91.28 1.08 

SEG 97.48 0.70 97.4 0.64 84.52 4.80 96.36 0.57 95.84 0.86 

TAE 57.59 4.09 52.32 4.90 48.74 3.47 49.01 3.26 51.61 4.87 

VEH 74.23 2.15 74.11 1.89 71.09 2.05 71.40 1.89 70.33 1.71 

VOW 97.98 0.90 95.55 1.25 79.33 1.86 79.6 1.94 94.44 1.59 

WDC 97.54 0.65 97.01 1.43 98.42 0.60 94.38 1.62 94.55 1.18 

WIN 99.44 1.11 98.87 1.38 98.43 0.97 91.51 5.73 94.38 2.52 

WIS 97.42 1.07 97.66 0.84 95.20 7.34 95.32 1.06 95.03 1.23 

TABLE Ⅵ 

RESULTS OF THE FRIEDMAN TEST ON THE ACCURACY OBTAINED BY IFRF, 

FDT-BOOST, FURIA, FBDT AND FMDT 

    Algorithms     Mean Rank p-value 

    IFRF     1.33 <0.001 

    FDT-Boost     2.33  

    FURIA     3.42  

    FBDT     3.86  

    FMDT     4.06  

 
TABLE Ⅶ 

RESULTS OF THE PAIRWISE FRIEDMAN TEST ON IFRE AND OTHER FOUR 

ALGORITHMS WITH HOLM METHOD (SIGNIFICANCE LEVEL = 0.05) 

Algorithms Holm p-value Hypothesis 

FBDT 0.0125 <0.001 Rejected 

FMDT 0.0167 <0.001 Rejected 

FDT-Boost 0.25 0.005 Rejected 

FURIA 0.05 0.005 Rejected 

 

According to Table Ⅵ, the test result of the IFRF algorithm 

that ranks the first in accuracy has a p-value <0.001 and the null 

hypothesis of statistical equivalence is rejected. Therefore, we 

conclude that there is a significant difference between each 

classifies, and the IFRF preforms the best in classification 

accuracy. The subsequent pairwise Friedman test with the Holm 

adjustment also proves this conclusion. 

The above two series of experiments comprehensively 

demonstrate the feasibility of integrating intuitionistic fuzzy 

theory into decision tree algorithm. The IFDT classifier has 

competitive performance with other general classifiers, and the 

IFRF algorithm with IFDT as the base classifier has obviously 

superior performance in the comparison with other state-of-the-

art algorithms. 

We demonstrate the superior performance in classification 

accuracy and great integration potentials using various 

experiments. The additional dimension information in outputs 

increases its ensemble performance, making the IFRF 

outperform in accuracy. These results confirms that the 

combination of the intuitionistic fuzzy sets and decision tree 

ensemble algorithms is effective and efficient.  

The time complexity of IFRF is lower than that of traditional 

random forests. Since IFRF supports multi-split, when multi-

split is conducted, the space complexity will be larger than that 

of traditional random forests, while the storage space size 

remains acceptable under a regular laptop configuration. For a 

detailed analysis, see Appendix B.  

 

C. Performance Analysis for the IFRF in Noise Dataset in 

comparison with crisp ensemble learning algorithms 

A significant advantage of the ensemble learning algorithm is 

its robustness; fuzzy models are considered to also have this 

property. In order to further study the robustness of the 

combination of intuitionistic fuzzy sets and random forest, we 

select two ensemble learning algorithms that use crisp decision 
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trees as their base learner, random forest (RF) and AdaBoost as 

comparisons. The robustness of these algorithms is evaluated 

using two types of label noise: moderate noise (10%) and heavy 

noise (30%), with results from original data (no noise) serving 

as a benchmark. Before the experiment, we randomly shuffle 

the labels of a certain number of samples in the training dataset 

according to the noise level to obtain noise datasets. Both 

random forest and AdaBoost methods use the algorithms in 

scikit-learn, the most popular machine learning Python library, 

among which AdaBoost uses SAMMA. Both algorithms use 

grid search to tune the optimal model in each dataset. The 

number of trees included in each algorithm is set to be 100. 

Other hyperparameters are tuned in the same process as the 

IFRF in section IV.B. We also employ a 5-fold cross-validation 

method in the performance evaluation of the IFRF and other two 

crisp algorithms. 

The experimental results are shown in Table Ⅷ. Similarly, 

the non-parametric test is performed on the results as shown in 

Table IX. 

 

 
TABLE Ⅷ 

MEAN ACCURACY RESULTS OBTAINED BY IFRF, ADABOOST AND RF IN NOISE DATASETS 

Datasets 
No Noise Moderate Noise (10%) Heavy Noise (30%) 

IFRF AdaBoost RF IFRF AdaBoost RF IFRF AdaBoost RF 

APP 90.56 90.68 92.12 90.55 88.95 90.49 76.37 76.31 80.22 

AUS 86.67 87.39 87.54 85.36 82.32 86.96 85.22 65.94 81.30 

BAN 73.48 81.44 77.74 68.27 75.34 72.54 66.22 63.65 68.47 

DER 98.09 97.81 98.63 81.16 94.53 97.54 71.87 74.86 92.91 

GLA 78.47 79.90 81.31 75.68 74.76 72.40 64.97 59.38 64.47 

HAY 84.37 80.63 85.63 75.63 66.25 81.25 64.38 59.38 67.50 

IRI 97.33 94.67 96.66 94.00 84.67 94.00 94.00 66.00 82.67 

MAG 86.03 87.27 86.20 83.55 85.36 83.70 83.56 82.71 85.08 

MAM 84.07 80.64 83.45 82.83 75.76 82.21 81.68 68.37 80.64 

NEW 98.14 93.02 96.28 93.95 93.02 94.88 81.40 77.21 82.79 

RIN 95.89 96.91 93.12 90.93 92.96 90.77 90.59 78.64 90.15 

SEG 97.48 98.66 96.71 94.97 94.24 93.03 92.81 74.72 92.55 

TAE 57.59 64.34 60.92 53.61 64.28 57.59 50.28 54.32 52.99 

VEH 74.23 78.73 75.53 71.16 73.41 72.22 67.62 61.71 70.45 

VOW 97.98 97.17 92.73 89.09 88.99 76.67 72.32 70.10 71.62 

WDC 97.54 95.78 96.13 95.60 95.96 94.90 94.38 85.23 90.34 

WIN 99.44 93.83 98.29 98.30 95.48 96.63 91.00 79.76 86.51 

WIS 97.42 96.71 96.99 96.42 91.85 96.28 95.28 78.54 92.42 

TABLE Ⅸ 

RESULTS OF THE FRIEDMAN TEST ON THE ACCURACY OBTAINED BY IFRF, ADABOOST AND RF IN NOISE DATASETS 

 No Noise Moderate Noise (10%) Heavy Noise (30%) 

Algorithms Mean Rank p-value Mean Rank p-value Mean Rank p-value 

IFRF 2.00 0.801 1.86 0.744 1.56 <0.001 

RF 1.89  2.03  1.61  

AdaBoost 2.11  2.11  2.83  

TABLE Ⅹ 

RESULTS OF THE PAIRWISE FRIEDMAN TEST ON IFRE AND OTHER TWO CRISP 

ALGORITHMS WITH HOLM METHOD IN HEAVY NOISE DATASETS 
(SIGNIFICANCE LEVEL = 0.05) 

Algorithms Holm p-value Hypothesis 

RF 0.025 0.637 Not rejected 

AdaBoost 0.05 0.001 Reject 

 

It can be seen from the experimental results that IFRF and RF 

perform comparable on the moderate noise dataset. AdaBoost 

performance is not good. On the heavy noise dataset, IFRF 

performs slightly better than RF, and the hypothesis test results 

also prove that there are significant differences between the 

methods. Therefore, we believe that under moderate noise, RF 

and IFRF have similar performance; under heavy noise, IFRF 

performs slightly better than RF. And IFRF performs obviously 

better than AdaBoost, which shown in Table Ⅹ. 

V. CONCLUSION 

In this study, we propose a new random forest ensemble 

based on intuitionistic fuzzy decision trees. We extend the 

existing fuzzy decision trees to the intuitionistic fuzzy theory 

and advance to more effective modeling the classification trees 

based on fuzzy sets. The intuitionistic fuzzy sets are more 

sophisticated than the traditional fuzzy description of data by 

incorporating the hesitation as the degree of uncertainty. In the 

proposed IFDT, the hesitation parameter is considered in the 

non-membership function and in the information transmission 

process of decision trees. It takes into account the relationship 

between the value and the concept, which is reflected by the 

degree of membership and non-membership. The proposed 

IFDT can also deal with imperfect datasets that contain missing 

and fuzzy values.  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

11 

Based on the proposed IFDT, we further develop the IFRF 

with two schemes of combination and an ensemble method. It 

is well established in the literature that ensemble methods can 

increase the classification accuracy compared to individual 

classifiers. In the proposed IFRF, features are randomly selected 

when splitting nodes using bootstrapped samples. Such 

randomness contributes to the robustness property of the 

random forest ensemble and improves the diversity of the base 

trees. IFRF calculates the intuitionistic fuzzy entropy of each 

sample, and uses the intuitionistic fuzzy information gain 

method for feature selection in nodes. In the information 

transferring process between nodes, the transfer of non-

membership degrees is also added, increasing the differences 

between different trees in a forest. In addition, IFRF supports 

multi-split of nodes, which improves the fit of the dataset. In 

general, it has the ability to increase variance and reduce bias, 

enhancing the performance of bagging ensemble classifier. 

For computation, we develop algorithms for fitting the 

proposed IFDT and IFRF and implement them using Python. 

We also conduct numerical studies using public datasets and 

compare the proposed IFDT and IFRF to multiple alternative 

methods. Competitive and superior performance in accuracy is 

observed. Furthermore, the proposed algorithm can also be 

applied to specific data containing hesitation information, such 

as voting classification, human decision, etc. 

Our study also has limitations. First, the proposed method is 

based on the trapezoid intuitionistic fuzzy membership function 

and can be extended to more complex membership functions. 

Second, we adopt the K-means method to discretize the 

domains of the fuzzy sets due to its simplicity. There exist other 

methods for fuzzy clustering, such as fuzzy C-means. Given the 

scope of this study, we choose K-means for fuzzy partition and 

achieve satisfactory results with moderate computational cost. 

Finally, the two voting schemes for the random forest ensemble 

are not explicitly compared. More numerical studies are needed 

for future work. 

 

APPENDIX A  

TUNNING OF HYPERPARAMETERS 

In order to study the influence of each parameter on the 

performance of the IFDT algorithm, we select three commonly 

used datasets and adjust each hyperparameter separately to 

assess the effect of the hyperparameter on the algorithm 

performance, which provides a basis for the optimization of the 

hyperparameter. We denote the number of clusters as 𝐶 , the 

shape of the membership function as 𝑆, the hesitation parameter 

as dπ , the maximum depth as dβ , the minimum split sample 

number as nα, and the number of trees as  nγ. The default values 

of each hyperparameter at initialization is shown in Table XI. 

 
TABLEA XI 

HYPERPARAMETER DEFAULT VALUES 

Hyperparameter      𝐂      𝐝𝛑      𝐒      𝐝𝛃      𝐧𝛂     𝐧𝛄 

Default value 2 0.9 7 5 5 100 

   

The first step is to tune 𝐶 . This parameter determines the 

number of child nodes that split at each node. As shown in 

Figure A5, it can be found that 𝐶  has a great impact on the 

performance of the model. On the glass dataset, a 40% 

difference between the best-performing 𝐶-value and the worst 

𝐶-value result is observed. The best-performing 𝐶-value is also 

different on different datasets. Therefore, the default value is set 

to the minimum value of 2. When fitting each data set, it is 

necessary to tune the 𝐶-value to select the best model. 

 

Fig. A5.  Results of the tunning for the IFRF 

In the following experiments, we set 𝐶  to the best value 

found in the first experiment for each dataset, while the other 

hyperparameters are left at their default values. We then tune 

them one by one.    

When tuning 𝑆, the magnitude of the change in the prediction 

results is much smaller than that of 𝐶. In the fitting process of 

the glass data set, 𝑆 has shown satisfactory performance over a 

large interval. Therefore, compared to 𝐶, 𝑆 is less sensitive in 

model performance, and a larger step size can be used in 
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searching its best value. For instance, the step size can be set to 

be 0.2. The default value is set to be 0.9. 

The prediction results change little as we change the value of 

dπ . Increasing dπ , the performance in the three datasets 

becomes slightly better. We set the default value to be 0.9. It can 

be considered that this hyperparameter has the least impact on 

the model, and it is generally set to its default value. 

In tuning dβ, in all datasets, as dβ increases, the classification 

results gradually become better, and finally reach a stable state 

without obvious overfitting. When dβ =5, all model results 

converge, so the default maximum depth is 5. 

In tunning nγ , in all data sets, the performance shows a 

tendency to increase first and then converge. When nγ=100, the 

results of the model tend to be stable on all data sets, so we set 

the default value to be 100. 

When tunning nα, as the pruning hyperparameter increases, 

the performance of the model gradually decreases. Pruning is 

used to alleviate the phenomenon of overfitting, and there is no 

overfitting in the datasets of our experiments. With the increase 

in nα, it leads to under-fitting. We set the default value to be 5, 

and need to increase this parameter appropriately when 

overfitting. 

The influence of the hyperparameters dβ, nγ and nα relating 

to trees on the model results is consistent with their influence in 

the random forest, and the corresponding hyperparameter 

tuning process is similar. 

When selecting hyperparameters for a large dataset, a single 

IFDT can be used for tuning first to select the optimal 

discretization hyperparameters. Afterwards, other hyper-

parameters can be selected by integrating multiple random 

IFDT learners, which can greatly reduce the computational cost. 

 

APPENDIX B  

COMPLEXITY OF IFRF 

Assuming that the dataset has n samples, m features, and all 

features are numerical data, each ensemble algorithm contains t 

base learners, and no pruning operation is performed.  

For a random forest, training a tree first requires sorting each 

feature. Sorting one feature requires the time complexity to be 

O(n*log n), so sorting all features requires O(m*n*log n). 

During the crisp decision tree training process, we need to 

calculate information gain at each threshold. For one feature, it 

takes O(n) and O(n*m) for m features. A total of 𝑡 base learners 

are trained and the total cost is O(t*d*n), so the total time 

complexity for random forest is O(m*n*log n) + O(t*m*n).  

Since m is generally much smaller than n in the real dataset, 

big O notation is adopted for the time complexity O(m*n*log n) 

+ O(t*m*n). 

For an intuitionistic fuzzy random forest, the data needs to be 

intuitionally fuzzificated first. The center point is obtained 

using K-means, and the time complexity is O(m*n). After that, 

the intuitionistic fuzzy assignment and the calculation of 

intuitionistic fuzzy entropy are performed on each sample. The 

cost of each sample is O(m) and the total cost is O(m*n). 

In the intuitionistic fuzzy decision tree training process, we 

don’t need to calculate each threshold. We only need to calculate 

the intuitionistic fuzzy information gain of each feature to 

complete the split, which takes O(m). Training 𝑡 base learners 

costs O(t*m). Thus, the total time complexity for the 

intuitionistic fuzzy random forest is O(m*n) + O(t*m).  

Intuitionistic fuzzy random forest training time complexity is 

less than that of random forest. 

In terms of space complexity, two algorithms are both O(p), 

where p is the number of nodes in all trees. Since the 

intuitionistic fuzzy decision tree supports the splitting of multi-

nodes, the number of nodes trained by the intuitionistic fuzzy 

tree may be greater than that of the crisp decision tree based on 

binary tree splitting. However, since only one split feature name 

is stored in each node, we believe that this space complexity is 

acceptable. 

In the actual test, a txt file is used to store 100 intuitionistic 

fuzzy decision trees with a maximum depth of 8. When the 

number of sub-nodes of each node split is 2, 4, 6, 8, and 10, the 

required storage space is 0.38MB. 4.51MB, 5.33MB, 4.03MB 

and 2.81MB. Even if the number of intuitionistic fuzzy decision 

trees fitted in the algorithm is further increased, the memory 

usage would not exceed 30MB. Given that the current 

mainstream computer memory is greater than 8GB, we think 

this memory usage is completely acceptable. 

With the increase in the number of split nodes, the required 

storage space shows a trend of rising first and then falling. The 

peak of space occupied probably reaches its maximum when the 

number of split nodes is 6. As the number of split nodes 

increases, more samples will be divided into multiple child 

nodes, making it more difficult for child nodes to trigger 

pruning conditions. However, as the split node increases to a 

certain threshold, the phenomenon will also reach a peak. As the 

number of split nodes increases, the average number of samples 

assigned to each child node gradually decreases, making it 

easier for child nodes to trigger the pruning condition, resulting 

in a reduction in the number of final nodes. More customized 

pruning methods for the intuitionistic fuzzy random forest can 

be designed in the future. 
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