
Aberystwyth University

Bus bridging for rail disruptions
Yang, Ming ; Ma, Hongguang; Li, Xiang; Shang, Changjing; Shen, Qiang

Published in:
IEEE Transactions on Fuzzy Systems

DOI:
10.1109/TFUZZ.2022.3224789

Publication date:
2023

Citation for published version (APA):
Yang, M., Ma, H., Li, X., Shang, C., & Shen, Q. (2023). Bus bridging for rail disruptions: A distributionally robust
fuzzy optimization approach. IEEE Transactions on Fuzzy Systems, 31(2), 500-510.
https://doi.org/10.1109/TFUZZ.2022.3224789

Document License
CC BY

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 30. Apr. 2024

https://doi.org/10.1109/TFUZZ.2022.3224789
https://doi.org/10.1109/TFUZZ.2022.3224789


Aberystwyth University

Bus bridging for rail disruptions
Yang, Ming ; Ma, Hongguang ; Li, Xiang; Shang, Changjing; Shen, Qiang

Published in:
IEEE Transactions on Fuzzy Systems

Publication date:
2022
Citation for published version (APA):
Yang, M., Ma, H., Li, X., Shang, C., & Shen, Q. (Accepted/In press). Bus bridging for rail disruptions: A
distributionally robust fuzzy optimization approach. IEEE Transactions on Fuzzy Systems.

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 08. Dec. 2022



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Bus bridging for rail disruptions: A distributionally
robust fuzzy optimization approach
Ming Yang, Hongguang Ma, Xiang Li, Changjing Shang, and Qiang Shen

Abstract—Dealing with uncertain rail disruptions effective-
ly raises a significant challenge for computational intelligence
research. This paper studies the bus bridging problem under
demand uncertainty, where the passenger demand is represented
as parametric interval-valued fuzzy variables and their associated
uncertainty distribution sets. A distributionally robust fuzzy opti-
mization model is proposed to minimize the maximum travel time
and to search for the optimal scheme for vehicle allocation, route
selection, and frequency determination. To solve the proposed
robust model, we discuss the computational issues concerning
credibilistic constraints, turning the robust counterpart model
into computationally tractable equivalent formulations. The pro-
posed approach is verified, and the resulting method is validated
with a report on uncertain parameters in a real-world disrupted
event of Shanghai Rail Line 1. Experiment results show that the
distributionally robust fuzzy optimization approach can provide
a better uncertainty-immunized solution.

Index Terms—Rail disruptions, Bus bridging, Distributionally
robust, Credibilistic optimization, Type-2 fuzzy set.

I. INTRODUCTION

THE railway is a sustainable transport system, which
effectively reduces congestion and carbon emission. In

2020, transport volume of rail transit in major Chinese cities,
e.g., Beijing, Shanghai, and Guangzhou, occupied more than
50% of the total public transportation volume1. However, the
rail transit system often suffers from unexpected operational
problems and accidents, leading to operation disruptions. Such
a disruption may cause partial or entire rail system closure,
which may block traffic and become unsustainable. For exam-
ple, in 2018, a signal failure on Shanghai Rail Line 2 led to
over five-hour delays and about 56,000 passengers stranded in
affected stations during the morning rush2. Meanwhile, over-
crowding on the rail platforms can create potentially highly
risky or even dangerous situations for passengers. Therefore,
it is necessary to timely evacuate stranded passengers from
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disruptive rail transit stations efficiently to ensure the rail
system’s sustainability.

To reduce the overcrowding caused by rail disruptions, rail
system operators usually utilize a bus bridging strategy to
evacuate stranded passengers. This strategy focuses on dis-
patching buses to pre-designed routes to restore and maintain
the connectivity along the affected rail stations [1], [2]. The
core decisions regarding bus bridging are dispatching buses,
designing temporary bridging routes, and determining bridging
frequency. Given a disruption situation, one general approach
is to dispatch buses to the turnover stations and run them in
parallel to the entire group of affected stations between two
turnover stations. However, for any situations involving a non-
uniform passenger demand, the conventional full-length mode
may result in inefficient scheduling and operation of the buses.
A short-turn mode is desirable to bridge any two stations with
intermediate stations. In addition, an express mode may stop
at major stations but skip some minor stations to improve high
passenger demand between major stations. Thus, to increase
the flexibility of bus service and reduce the passengers’ travel
time, we consider a mix of express and local service modes for
both full-length and short-turn routes concerning bus bridging.

In real-world situations, the bus bridging problem is typ-
ically characterized by a high degree of commuter demand
uncertainty, which exerts an important influence on policies
or strategies adopted for the bus dispatching, route selection,
and determination of frequency. The majority of existing bus
bridging studies require the complete distributional informa-
tion of demand data. This means the complete trip distributions
should be fixed in advance and are perfectly clear. However,
demand for mass commuting load in a short time does not
equate to those raised during daily traffic events. The exact
possible distribution of demand is usually unavailable due to
the lack of historical data. Instead, the uncertain information is
ambiguous and has to be estimated based on past experiences
or by the subjective judgment of experts. It’s reasonable to
assume that the exact information is embodied in an interval
area, so we consider the interval-valued fuzzy variable to
characterize the uncertain demand. To characterize different
fluctuation modes of uncertain demand, the lambda selection
variable is introduced as the representative of a parametric
interval-valued fuzzy variable.

In addition, when only partial distribution information of
uncertain parameter is available, the decision maker may wish
to gain a feasible solution for all the possible distributions.
Based on the idea of credibilistic optimization [3]–[5], this
paper develops a distributionally robust fuzzy optimization
approach for bus bridging, in which the possible perturbation
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of uncertain distribution is described by an uncertainty distri-
bution set [6]. The objective is to minimize the maximum
bridging time. In achieving this objective under uncertain
situations, credibilistic constraints are reformulated into their
equivalent robust counterpart representations. This results in
a novel approach that successfully resolves the challenging
problem of bus bridging for overcrowding caused by rail
disruptions.

The main contributions of this paper are summarized as
follows:
• A bus bridging service plan is developed that addresses

a mix of express and local service modes for both full-length
and short-turn routes.
• A new distributionally robust fuzzy optimization approach

is proposed for the bus bridging problem, in which the
uncertain demand is described as a parametric interval-valued
fuzzy variable. This approach could satisfy the requirement
that a solution has to be feasible for all realizations of the
distributions concerned.
• A real-world case is studied to demonstrate the effective-

ness of the proposed approach, addressing Shanghai Rail Line
1, with the objective being to bridge the passengers from dis-
rupted stations to their destination stations in a minimum clear
time. The computational results illustrate that the proposed
distributionally robust fuzzy optimization model outperforms
the nominal model under uncertain demands.

The rest of this paper is organized as follows. In Section
2, we present a literature review on the general bus bridging
problem under uncertain environments. In Section 3, we
describe the specific problem and present the new distribu-
tionally robust fuzzy bus bridging approach. In Section 4, we
analyze the distributionally robust optimization approach and
turn credibilistic constraints into a computationally tractable
formulation. Section 5 presents the case study to illustrate the
effectiveness of the proposed distributionally robust optimiza-
tion approach. The conclusions and future research are then
presented in the final Section.

II. LITERATURE REVIEW

A number of studies have been conducted on bus bridging
under uncertainty in the literature relevant to our work. In
particular, a sequence of critical problems is generally focused
on developing networks, dispatching buses, designing bus
routes, and determining frequency. Kang et al. [7] developed
a last train timetable optimization and bus bridging problem
for an urban railway transit network that consists of a set of
rail lines. The objective of the bus bridging service was to
minimize the waiting time of passengers. A decomposition
method was used to resolve large-scale problems. Jin et al. [8]
presented a path-based multicommodity network flow model
for improving the bus bridging service, where the network
consists of non interchange and interchange rail stations.
The objective was to minimize the total travel time of all
passengers.

The problem on bus bridging routes is usually designed
for local mode or express mode, where the local mode stops
at all specified stations and express mode only provides for

several major stations [9]. For example, Van et al. [10]
studied local route bus bridging planning for link closures
concerning the selection of shuttle bus lines and frequencies
under their budget constraints. The objective is to minimize
operating costs and passenger inconvenience. Wang et al. [11]
considered a feeder-bus dispatch planning model with the local
bridging route. The model’s goal is to minimize feeder buses’
total traveling time when targeting the problem of stranded
passenger evacuation. Hu et al. [12] presented an express route
to schedule a bus bridging strategy to evacuate passengers
from disrupted stations to turnover stations on one rail line.
Considering minimizing the maximum evacuation time for all
disrupted stations, the model determined the dispatched station
and the number of roundtrips for each bus.

To solve the rail station disruption problem, Yin et al. [13]
explored the use of an express route service where bridging
buses are operated between the disrupted station and the rest
of the rail stations. The objective is to minimize the total
travel time of affected passengers and the operating cost of
the bridging buses. Moreover, several studies also considered
local and express bus bridging services as candidate routes for
non-uniform passenger demand. An example of such work is
that reported by [14], proposing a two-stage model to optimize
the bridging strategy bus bridging plan, where the first stage
was to minimize bus bridging time and the second stage was
to minimize the total passenger delay. The resulting model
assigned buses to both local and express bus bridging routes.
In their work, the local routes only connected the disrupted
stations, and the express routes were operated between the
disrupted station and the turnover station. However, because
there are still major stations with large passenger flow in the
interrupted stations, it is difficult to meet the needs of rapidly
evacuating a large number of passengers by interrupting the
local services between stations. Therefore, this paper studies
the hybrid bus bridge problem in which local and express
route services can be bridged between all stations (including
disrupted and turnover stations).

Other researchers and practitioners in bus bridging service
problems are concerned with uncertainty in the problem data.
Problems modeled with stochastic programming are often
solved by exploiting the exact distribution assumed about their
underlying random variables. Luo and Xu [15] proposed a
stochastic programming model for the design of bus bridging
services that involve uncertain commuter demands and spare
capacities of existing rail and bus lines. The objective of their
model is to minimize expected unsatisfied commuter demand
under rail transit disruptions. However, in reality, information
on exact distribution is often difficult to obtain, and only partial
or even no distribution information is available by exploiting
historical data. In this case, it is better to deal with the
uncertain demand as fuzziness based on experiences or subjec-
tive judgments of experts. Type-2 fuzzy sets, as an extension
of type-1 fuzzy sets, are good at modeling the uncertainty
embedded in secondary possibility distributions [4], [16]–[18].
The type-2 fuzzy theory has been successfully applied to many
fields, such as facility location selection [19], comparative
linguistic expressions [20] and transportation problem [21].
In addition, to make the decisions more flexible and practical,
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Liu and Liu [4] proposed the lambda selections of parametric
interval-valued fuzzy to describe the uncertain parameter.

Due to the ambiguity of expert opinions and the impact
of potential external environments, the decision maker may
wish to use a reliable strategy that immunizes against the
perturbation of distribution information. Robust optimization
offers a significant potential to find solutions that still perform
well [22], [23]. For example, Liang et al. [24] focused on
developing a plan for robust bus bridging service in response
to rail transit system disruptions by considering bus travel time
uncertainty. The results showed that the robust solution could
remain feasible even when the bus travel time deviates to the
worst case. Kulshrestha et al. [25] proposed a transit-based
evacuation model under the uncertainty of demand, leading
to a robust optimization approach for determining the optimal
decisions for producing a reliable plan. Other relevant robust
optimization methods can be formed in [26]–[28].

Motivated by the above observation, we herein develop a
distributionally robust optimization approach, which is novel
in dealing with uncertain bus bridging problems. In our model,
the demands of passengers in each disrupted station are
represented with uncertain parameters, which can be specified
using expert opinions. To the best of our knowledge, this is the
first time such an approach is proposed to handle bus bridging.

III. BUS BRIDGING OPTIMIZATION MODEL

In this section, we propose an optimization model to iden-
tify the best bus bridging service plan, considering demand
uncertainty. We first introduce the problem of bus bridging
with the underlying assumptions in the context of urban
transit rail networks. Then, we illustrate each part of the
model formulations, including the decision variables, objective
function and constraints. Significantly, uncertain information
on passenger demand in terms of fuzziness is formulated in
the model.

A. Problem statement

We consider a general scenario that an emergency event on a
single-direction rail line has resulted in the closure of several
stations. The rail line is disconnected between two turnover
stations, while short routing operations are possible beyond the
two. Buses are used to connect disrupted stations and transport
passengers to destination stations or turnover stations. As
illustrated in Figure 1, a rail link between two turnover stations
TS1 and TS2 is disrupted. Consequently, many passengers
are affected and stay in these stations. Among them, some
passengers choose alternative ways to reach their destinations,
while most passengers have to stand at the station to wait for
help because of the limited capacity of other transportation
modes. In this case, a bus bridging service is used to travel
disrupted passengers from their strand place to destination
stations.

A common strategy is to completely replace disrupted rail
service with bus bridging circulating between the two turnover
stations. However, due to the imbalance in the number of
passengers in each station, the bridging process of all-station

is not effective. Therefore, using partial stations as a short-
turn operation is an effective strategy. For example, as Figure
1 shows, there are two types of disrupted stations, including
major station (i.e., DS2) and minor station (i.e., DS1 and DS3),
where a major station refers to one with high pedestrian traffic,
such as rail stations in commercial areas, transfer stations,
etc. If many passengers travel between stations TS1 and DS1,
building a short-turn route between these two stations is a
convenient and effective strategy. Meanwhile, the local and
express modes are also considered, where the local mode stops
at all stations (i.e., route BS1-BS2-BS3) and the express mode
only transits between the two major stations (i.e., route BS1-
BS3) [9]. For easy operation, the bridged bus can only serve
the local or express routes.

The sequence of proposed bus bridging service includes the
dispatching and bridging processes. During the dispatching
process, the buses originally depart from the depot and run
to the demand stations. After picking up the passengers,
the buses leave the rail station to the nearest bus station,
travel through a series of bus stations, and repeatedly operate
between the bridging stations several times. To facilitate the
model formulation, we make the following assumptions:

1. Passengers can get off the bus at each station but can
only get on from the starting station. This is because the rail
station is generally far from the nearest bus station, and it is
inconvenient for buses to transfer between the rail station and
the bus station in an emergency period.

2. The bus dispatching time and bridging time between
bus stations is deterministic, which can be estimated using
historical data.

3. Each station has sufficient space for the bridged buses to
stop.

To better understand the proposed strategy of the bus
bridging service, let us consider a simple illustrative example,
as shown in Figure 1. There are four service stations (TS1,
DS1, DS2 and DS3), four destination stations (DS1, DS2,
DS3 and TS1), and two vehicles with a capacity of 5 each.
The dispatching time and inter-station running time are 2 time
units, and the service time at each station is one time unit.
For easy illustration, only station TS1 generates the demand
for different destinations. Note that although TS1 is not a
disrupted station, there are also a large number of passengers
who are unable to commute due to the disrupted link. The
sampled demands associated with station TS1 and the optimal
operation strategy are listed in Table I.

As shown in Table I, bus 1 is dispatched from the depot
to the station TS1 first (3 time units) and then transports
passengers over the local route TS1-DS1-DS2-DS3 in se-
quence (9 time units). The roundtrip of this route is 2, and
the corresponding travel time is 32 time units. Then, the total
travel time of bus 1 is 44 time units. Bus 2 is assigned to
the express route (3 time units) and is bridged from station
TS1 to station DS2 (5 time units). Bus 2 makes 3 roundtrips
on this express route, and the corresponding travel time is 30
time units. Then, the total travel time of bus 2 is 38 time units.
Note that a roundtrip means a trip to a destination station and
back usually over the same route. The total travel time is equal
to the sum of dispatching time, bridging time and roundtrip
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TABLE I
EXAMPLE OF A BUS BRIDGING PLAN

Route Demands Travel mode Roundtrips Bus index Time
TS1-DS1 4 Local 2 1 44
TS1-DS2 26 Express 3 2 38
TS1-DS3 3 Local 2 1 44

TS1 TS2DS1 DS2 DS3

BS5

BD1

BS1 BS2 BS3 BS4

Bus depot Turnover station Minor station Major station Bus station

Rail link Disrupted rail link Dispatching link Local or express route Transfer link

Fig. 1. Illustration of bus bridging routes on a rail line.

TABLE II
NOTATIONS

Sets and parameters
B Set of vehicles
D Set of depots
S Set of stations, including disrupted and turnover stations
A Set of OD pairs
dij Passenger demand from station i to station j
tij Bus running time from station i to station j
fi Bus dispatching time from the depot to the disrupted station
si Boarding or alighting time at station i
C Capacity of vehicle

Intermediate variables
T b Total travel time for bus b
Tmax Bus clear evacuation time
vbl The bridging time on a local route for bus b
ubl The roundtrip time on a local route for bus b

time.

B. Model formulation for the bridging

For the convenience of the readers, the notations used
throughout this paper are summarized in Table II.

� Decision variables

Presently, the decision variables are related to bus dispatch-
ing and bus bridging. Therefore, they can be divided into two
groups, which are as follows.

1) Dispatching variables:
• xbij : A binary variable indicating whether bus b is as-

signed to an express route, dispatched from station i to
station j. If so, xbij = 1, otherwise xbij = 0.

• ybi : A binary variable indicating whether bus b is assigned
to a local route and dispatched to station i. If so, ybi = 1,
otherwise ybi = 0.

• zbij : A binary variable indicating whether bus b is assigned
to a local route connecting station i and station j. If so,
zbij = 1, otherwise zbij = 0.

2) Bridging variables:
• mb

ij : An integer variable indicating the number of
roundtrips on an express route for bus b, bridged from
station i to station j.

• nbij : An integer variable indicating the number of
roundtrips on a local route for bus b connecting station i
and station j.

• pebij : Number of passengers from station i to station j
boarding on an express route for bus b.

• plbij : Number of passengers from station i to station j
boarding on a local route for bus b.

� Objective function

The objective function formulated in this study aims to mini-
mize the clear evacuation time, i.e., minimizing the maximum
evacuation time for all buses. The evacuation time consists
of three components: dispatching time, bridging time and
deadhead time. Specifically, the dispatching time means the
travel time of a vehicle from the depot to the disrupted station.
The bridging time refers to the travel time of a vehicle from the
origin disrupted station to the destination station to evacuate
passengers. The deadhead time implies the travel time when a
vehicle is not carrying passengers. Generally, this occurs when
the vehicle returns from the destination station to the origin
station. Accordingly, the travel time equations on express and
local routes appear in the following form respectively:

T be =
∑

(i,j)∈A

(fi + tij + si + sj)× xbij

+
∑

(i,j)∈A

(tij + tji + si + sj)×mb
ij , ∀b ∈ B (1)

T bl =
∑
i∈S

fi × ybi + max
(i,j)∈A

(tij +

j∑
k=i

sk)× zbij

+ max
(i,j)∈A

(tij + tji +

j∑
k=i

sk)× nbij , ∀b ∈ B (2)

where fi represents the dispatching time of a bus from depot
to the disrupted station, tij represents the running time from
station i to station j, si represents the boarding or alighting
time at station i. Note that under the express mode, a bus
does not stop at intermediate stations, while in the local mode,
buses need to stop during the bridging process but do not need
to stop during a deadhead process. Therefore, tij + si + sj
and tij + tji + si + sj mean the bridging time and roundtrip
time on an express route, respectively. tij+

∑
k∈{i,··· ,j} sk and

tij+tji+
∑
k∈{i,··· ,j} sk mean the bridging time and roundtrip

time on a local route, respectively.
Then, the travel time for bus b can be expressed by

T b = T be + T bl , ∀b ∈ B. (3)

Based on the above, the goal of the optimization model is
an effort to minimize the duration of the evacuation that is
specified by the highest travel time of any bus can be written
as follows:

min Tmax

s.t. Tmax ≥ T b, ∀b ∈ B, (4)

where Constraint (4) requires Tmax to be greater than or equal
to the maximum travel time incurred by any bus, which is then
minimized by the objective function.
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� Constraints

Constraints associated with route dispatch and passenger
assignment are described here. In particular, Constraint (5)
guarantees that a bus can be dispatched either to an express
route or to a local route. Constraints (6) and (7) ensure that
bus b can make roundtrips exclusively on the express or the
local route only, respectively. Specifically, only when the bus
is assigned to a certain route can it makes roundtrip decisions.

∑
i∈S

ybi +
∑

(i,j)∈A

xbij ≤ 1, ∀b ∈ B (5)

mb
ij ≤M × xbij , ∀(i, j) ∈ A, b ∈ B (6)

nbij ≤M × zbij , ∀(i, j) ∈ A, b ∈ B, (7)

where M is a certain large number. Constraints (8) and (9)
ensure that bus b bus b runs over the same roundtrips from
station i to station j if it is dispatched to a local route.
Constraint (10) means that bus b can serve the local route
(i, j) only if it is dispatched to station i:

nbij′ ≥ nbi,i+1 −M ∗ (1− zbij),
∀(i, j) ∈ A, j′ = i+ 1, i+ 2, · · · , j, b ∈ B (8)

nbij′ ≤ nbi,i+1 +M ∗ (1− zbij),
∀(i, j) ∈ A, j′ = i+ 1, i+ 2, · · · , j, b ∈ B (9)

zbij ≤ ybi , ∀i, j ∈ S, b ∈ B. (10)

Finally, Constraint (11) indicates that the roundtrips of bus
b should satisfy the number of passengers connecting station i
and station j on an express route. Constraint (12) ensures that
the roundtrips of bus b should satisfy the number of passengers
from station i to station j on a local route. Constraint (13)
ensures that all passengers between disrupted stations are
transported.

C × (mb
ij + xbij) ≥ pebij , ∀(i, j) ∈ A, b ∈ B (11)

C × (nbi,i′+1 + zbi,i′+1) ≥
j∑

k=i′+1

plbik,

∀(i, j) ∈ A, i′ = i, · · · , j − 1, b ∈ B (12)∑
b∈B

(pebij + plbij) = dij , ∀(i, j) ∈ A. (13)

C. Distributionally robust fuzzy bus bridging model

Passenger demand is often uncertain in dealing with a bus
bridging problem, which may come from various features such
as traffic and weather conditions. Because of the noise in
historical data or the ambiguity of expert opinions, it is difficult
to obtain precise descriptions of the passenger demand for
every pair of stations. In this section, we develop a parametric
credibilistic optimization model to seek the best bus bridging
while considering uncertainty in passenger demands.

For this purpose, the uncertain demand d̃ij is assumed
to be an interval-valued fuzzy random variable [29] with a
possibility distribution. In addition, decision makers typically
require that the credibility of this constraint meet a certain

confidence level. Thus, for any (i, j) ∈ A, the credibility
constraint is set such that

Cr

{∑
b∈B

(pebij + plbij) ≥ d̃ij

}
≥ βij , ∀(i, j) ∈ A, (14)

where the credibility constraint implies that the passenger
demand is less than the threshold regarding the number of
passengers allowed on board at each station, at least with a
probabilistic confidence level β.

Based on the definition in [4], let ζij be a parametric
interval-valued fuzzy variable of d̃ij with the secondary
possibility distribution µζ(dij) = [µζL(dij ; θl), µζR(dij ; θr)],
where µζL(dij ; θl) is the lower parametric possibility distri-
bution and µζR(dij ; θr) the upper one. In order to describe
the perturbation of the possibility distribution µζ(dij), fuzzy
variables ζij,λ are introduced to define the so-called λ selection
variables of parametric interval-valued fuzzy variables for any
λij ∈ [0, 1]. Then, the parametric possibility distribution can
be characterized as follows

µζλ(dij ; θ) = (1− λij)µζL(dij ; θl) + λijµζR(dij ; θr),

where θ = (θl, θr), ∀(i, j) ∈ A. (15)

Note that in practical applications, the values of θl and θr can
be determined by the decision maker based on the experts’
experiences or subjective judgments.

According to this formulation, the change of the λ parameter
determines the location of the parametric possibility distribu-
tion. That is, the credibility constraint above is a collection of
constraints that are of a common structure (i.e., with a fixed
parameter λ), with the parameter varying in a given uncertainty
distribution set Uζ , which is defined by

Uζ ={µζλ(dij ; θ)|µζλ(dij ; θ) is determined by

Equation (15),where λij ∈ [0, 1], ∀(i, j) ∈ A}. (16)

From this uncertainty distribution set, the distribution robust
emergency evacuation model can be expressed as follows:

min Tmax

subject to Cr

{∑
b∈B

(pebij + plbij) ≥ ζij

}
≥ βij ,

∀(i, j) ∈ A,µζλ(dij ; θ) ∈ Uζ (17)
Constraints (1)− (12).

The above objective function is to minimize the duration of
the evacuation. As such, this model focuses on a semi-infinite
programming problem, and it is severely intractable [30]. In
the next section, we will turn the credibility constraints into
their equivalent deterministic ones to facilitate the search for
a feasible optimal solution to the problem.

IV. ANALYSIS OF BUS BRIDGING OPTIMIZATION MODEL

This section aims to turn the credibility bus bridging opti-
mization model into a computationally tractable formulation.
Decision makers in the problem domain tend to choose d-
ifferent parametric interval-valued fuzzy variables according
to different given situations. It is therefore assumed that the
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uncertain demand ζij is rendered as a parametric interval-
valued trapezoidal fuzzy variable. From this, the analytical
expression of the bus bridging model is discussed below.

A. Analysis of credibilistic constraint

When the passenger demand follows a trapezoidal distribu-
tion, we can represent the analytical expression of credibility
constraint (17) in the following theorem.

Theorem 1: Let evacuation demand ζij =
[rij1 , r

ij
2 , r

ij
3 , r

ij
4 ; θijl , θ

ij
r ] be a parametric interval-valued

trapezoidal fuzzy variable. If ζij are mutually independent,
then the credibility constraint concerned can be transformed
into the following:

(i) If βij ∈ (0,
λijθ

ij
r −(1−λij)θ

ij
l +1

4 ], then the credibility
constraint is equivalent to

2βijr
ij
2 + [λijθ

ij
r − (1− λij)θijl + 1− 2βij ]r

ij
1

1 + λijθ
ij
r − (1− λij)θijl

≤ ωij .

(ii) If βij ∈ (
λijθ

ij
r −(1−λij)θ

ij
l +1

4 , 12 ], then the credibility
constraint is equivalent to

[2βij − λijθijr + (1− λij)θijl ]rij2 + (1− 2βij)r
ij
1

1− λijθijr + (1− λij)θijl
≤ ωij .

(iii) If βij ∈ ( 1
2 ,

3−λijθijr +(1−λij)θijl
4 ], then the credibility

constraint is equivalent to

(1− 2βij)r
ij
4 + [λijθ

ij
r − (1− λij)θijl − 2 + 2βij ]r

ij
3

λijθ
ij
r − (1− λij)θijl − 1

≤ ωij .

(iv) If βij ∈ (
3−λijθijr +(1−λij)θijl

4 , 1], then the credibility
constraint is equivalent to

[λijθ
ij
r − (1− λij)θijl − 1 + 2βij ]r

ij
4 + (2− 2βij)r

ij
3

1 + λijθ
ij
r − (1− λij)θijl

≤ ωij .

where ωij =
∑
b∈B(pebij + plbij).

For presentational simplicity, we use πβ(d; θ, λ) to express
the above piecewise functions collectively and denote Dn

β as
the definition domain of each segment function. Then the
credibility constraint (17) can be expressed as

πβ(d; θ, λ) ≤
∑
b∈B

(pebij + plbij), ∀(i, j) ∈ A, βij ∈ Dn
β . (18)

The proof of this theorem is given in Appendix A.

B. Analysis of robust counterpart

After turning the credibility constraints into their equivalent
formulations, the perturbation of the parametric interval value
possibility distribution can be resolved. With a predefined
uncertainty distribution set Uζ , the aim is to find the solutions
that remain feasible for any possible distribution, that is

max
µ
ζλ

(dij ;θ)∈Uζ
{πβ(d; θ, λ)} ≤

∑
b∈B

(pebij + plbij),

∀(i, j) ∈ A, βij ∈ Dn
β , (19)

To resolve the above maximization problem, we use the the-
orem of duality [31] to transform the left hand maximization
into its conic dual. As a consequence, inequality (19) becomes
equivalent to the following piecewise function

π∗β(d; θ) =



2βijr
ij
2 + [1− θijl − 2βij ]r

ij
1

1− θijl
≤ ωij ,

βij ∈ (0,
1− θijl

4
]

[2βij + θijl ]rij2 + (1− 2βti )r
ij
1

1 + θijl
≤ ωij ,

βij ∈ (
1− θijl

4
,

1

2
]

(1− 2βij)r
ij
4 + [θijr − 2 + 2βij ]r

ij
3

θijr − 1
≤ ωij ,

βij ∈ (
1

2
,

3− θijr
4

]

[θijr − 1 + 2βij ]r
ij
4 + (2− 2βij)r

ij
3

1 + θijr
≤ ωij ,

βij ∈ (
3− θijr

4
, 1]

(20)

where ωij =
∑
b∈B(pebij +plbij). The first two inequalities are

derived from λ = 0, and the latter two from λ = 1.
Based on the above analysis, the equivalent deterministic

model can be rewritten as the following:

min Tmax

subject to π∗β(d; θ) ≤
∑
b∈B

(pebij + plbij),

∀(i, j) ∈ A, βij ∈ Dn
β , (21)

Constraints (1)− (12).

Given the values of the mode parameters, βij , θ
ij
l and θijr , this

model is a mixed-integer linear programming model, which
can be solved by a commercial solver [32]. The next section
contains a case study to illustrate an application of the model.

V. CASE STUDY

In this section, we test the performance of the proposed
approach using a real case based on Shanghai rail line 1, which
consists of 28 stations and connects central business districts
with high demands at different stations. The study of Rail Line
1 involves running both real and virtual data. In the following,
the problem tackled in this case study is first described, and
the related parameters are set. Then, computational results
are presented and discussed under variations of the parameter
settings.

A. Case description and data setting

We consider a rail disruption between the Xinzhuang and
Xujiahui station along Shanghai Rail Line 1 at 11:20 am, on
November 12th, 2021. Figure 2 illustrates the diagram of Rail
Line 1, which contains 6 disrupted stations from Waihuanlu to
Shanghai Indoor Stadium (indexed as 1-6 respectively). The
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Waihuanlu

Lianhua Road

Jinjiang Park

Shanghai South
 Railway Station

Caobao Road

Shanghai Indoor Stadium

Depot 

Turnover station Disrupted station Disrupted rail link

Fig. 2. Diagram of Shanghai Rail Line 1.

TABLE III
NUMBER OF BUSES AND DISPATCHING TIME FROM DEPOT TO STATIONS.

Number of buses Dispatching time (min)
Station 1 Station 2 Station 3 Station 4 Station 5

15 16 19 11 9 12

TABLE IV
RUNNING TIME AND TRAPEZOIDAL PARAMETERS FOR OD PAIRS.

OD pair Running time (min) Trapezoidal parameters
r1 r2 r3 r4

(1,2) 3 396 443 489 536
(1,3) 7 173 194 214 235
(1,4) 13 116 129 143 156
(1,5) 19 97 108 120 131
(1,6) 24 139 156 172 189
(2,3) 4 748 836 924 1012
(2,4) 10 496 555 613 672
(2,5) 16 417 466 515 564
(2,6) 21 604 675 746 817
(3,4) 6 189 211 233 255
(3,5) 12 158 177 195 214
(3,6) 17 230 257 284 311
(4,5) 6 102 114 126 138
(4,6) 11 148 165 183 200
(5,6) 5 122 137 151 166

direction from Waihuanlu to Shanghai Indoor Stadium is de-
fined as up direction and inversely down direction. Generally,
the rail operators concerned simultaneously dispatch buses in
both directions. For simplicity, we address the problem of
optimizing the up direction trips.

Fifteen buses reserved in a surrounding depot are dispatched
to provide the required bus bridging service. Bus capacity is
80 passengers each. Recall that there are 4 disrupted stations,
then the number of all feasible routes is 15. The dispatching
time from the depot to each disrupted station is shown in Table
III. According to the daily passenger flow within each station
of Shanghai Rail Line 1 in December 2018, we estimate the
demand on the number of passengers who arrive at the relevant
stations within half an hour after the disruption. The service
time is assumed to 1 min at each boarding or alighting station.

Due to the noise in historical data and the impact of the
disruption on passenger travel modes, precise information on
passenger demand is unavailable. Let the quadruplet of trape-
zoidal parameters be expressed by (rij1 , r

ij
2 , r

ij
3 , r

ij
4 ). Based on

the construction method of fuzzy membership function [33],
[34], we derive the trapezoidal parameters estimated from pas-
senger flow data as shown in Table IV. Note that the detailed
procedures for generating the trapezoidal parameters based on
given numeric data are summarized in Appendix B. Then we
can represent the uncertain demand [rij1 , r

ij
2 , r

ij
3 , r

ij
4 ; θijl , θ

ij
r ],

where θijl and θijr are determined by the decision maker
based on the experts’ experiences or subjective judgments.
In this case study, the values of parameters θl and θr are
specified as 0.24 and 0.15, respectively. Meanwhile, to ensure
the evacuation work with high credibility levels, we denote the
confidence level βij = 0.9. Comparisons are made between
nominal and the proposed distributionally robust fuzzy models,
where the nominal demand for each OD pair is equal to the
mean value of the trapezoidal parameters.

B. Results analysis
The computational results are presented in this subsection,

and the solution procedure is implemented using the CPLEX
12.10 commercial software. All the experiments are performed
on a PC with AMD 1.80 GHz CPU and 4 GB RAM under
Windows 8.

Table V shows the objective values and optimal solutions
of the nominal and distributionally robust fuzzy models. The
column named ”Travel mode” indicates whether the bus bridg-
ing route mode is ”express” or ”local”, with ”E” denoting the
express mode and ”L” the local mode. Note that when the
bridging route has only two adjacent stations, e.g., 1-2, we
classify it as an express mode. For the nominal model, all
15 buses are dispatched to the disrupted stations. 8 buses are
assigned to different local routes, and the rest are assigned to
5 different express routes. The maximum evacuation time is
147 min. For the distributionally robust fuzzy model, all 15
buses are also dispatched to the disrupted stations. 9 buses are
assigned to 8 different local routes, and the rest are assigned
to 4 different express routes. The maximum evacuation time
is 169 min.

By comparing the objective values of these two models,
we find that the distributionally robust fuzzy model is 22
min higher than the nominal model. This is because the
distributionally robust fuzzy model considers the uncertainty
of the demand, resulting in a more robust solution. Otherwise,
the parametric settings for both models are the same. Suppose
that the demands in each station take two extreme values (i.e.,
nominal value and maximum perturbation value). In this case,
when sticking to the optimally assigned bridging routes, the
travel frequency of the buses is increased accordingly. As a
result, for the nominal model, the actual maximum evacuation
time is 184 min, which is 25.17% larger than the objective
value of 147 min derived from the optimal solution of the
nominal situation. For the distributionally robust fuzzy model,
the actual maximum evacuation time is 188 min, which is
16.77% larger than the objective value of 161 min derived
by the optimal solution of the nominal situation. This 16.77%
increase in distributionally robust value is less than the 25.17%
increase of the actual value when the actual demand violates
the nominal demand. The stability of emergency decision-
making can effectively stabilize social order and reduce the
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loss of people’s lives and property. Therefore, the distribu-
tionally robust fuzzy optimization method can provide a better
uncertainty-immunized solution for the surging passenger flow
emergency management problem.

C. Influence of parameter βij
We next identify the influence of the confidence level βij

on the potential of achieving the optimal bridging decisions.
For fixed parameters θηl = 0.24 and θηr = 0.15, the parameter
βij changes with a step of 0.1 within the interval [0.7, 0.9].
The results are reported in Table VI. The second column lists
the number of vehicles assigned in each disrupted station for
two travel modes. The third column named “Mean value,”
represents the mean values of the distributionally robust model
when demands take two extreme values with a probability
0.5 each. The last column, “Perturbation value,” indicates the
difference in the percentage of the values derived from the
distributionally robust fuzzy model when there is a constraint
violation. That is, the actual objective value when sticking to
the optimal solution where the actual demand is against it.

From Table VI, with the decrease of the confidence level
β, the mean value of the distributionally robust fuzzy model
increases first and then decreases. In contrast, the fluctuation
value decreases first and then increases. This means a higher
robust price (mean value) can make the result more stable.
With this policy, the government management department’s
decisions should balance the emergency plan’s robustness and
efficiency.

VI. EXTENSIONS

In this section, we extend our model by relaxing assumption
1 in Section 3 to allow the passengers to get on/off the bus at
each bus station. The extended model with improved vehicle
capability constraints is formulated as follows

min Tmax

s.t. T be =
∑

(i,j)∈A

(fi + si + tbij)× xbij

+
∑

(i,j)∈A

(tbij + tbji)×mb
ij , ∀b ∈ B (22)

T bl =
∑
i∈S

(fi + si)× ybi +
∑
i∈S

tbi,i+1 × zbi,i+1

+
∑
i∈S

(tbi,i+1+ti+1,i+si×ybi )×nbi,i+1, ∀b ∈ B(23)

nbi′j′≥ nbi,i+1 −M ∗ (1− zbi′j′), ∀(i, j) ∈ A, b ∈ B,
i′= i,i+ 1,· · ·,j − 1,j′ = i′ + 1,i′ + 2,· · ·,j (24)

nbi′j′ ≤ nbi,i+1 +M ∗ (1− zbi′j′), ∀(i, j) ∈ A, b ∈ B,
i′= i,i+ 1,· · ·,j − 1,j′ = i′ + 1,i′ + 2,· · ·,j (25)

zbij ≤ ybi + zbi−1,i, ∀i, j ∈ S, b ∈ B (26)

zb0,1 = 0, ∀b ∈ B (27)

C × (nbi′,i′+1 + zbi′,i′+1) ≥
i′∑
k=i

j∑
k′=i′+1

plbk,k′ ,

∀(i, j) ∈ A, i′ = i, · · · , j − 1, b ∈ B (28)
Constraints (3)− (7), (11) and (13).

TABLE VII
COMPARISON RESULTS OF BENCHMARK MODEL AND EXTENDED MODEL.

Model Bus index Travel mode Route Roundtrips Time

BM 1 Local TS1-DS1-DS2-DS3 6 108
2 Express DS1-DS3 3 38

EM 1 Local TS1-DS1-DS2-DS3 4 76
2 Express TS1-DS2 4 48

The objective function is to minimize the clear evacuation
time. Constraints (22) and (23) calculate the travel time on
express and local routes, respectively, where tbij means the
sum of inter-station travel time and service time at station j,
i.e., tbij = tij+sj . Constraints (24) and (25) ensure that bus b
runs over the same roundtrips from station i to station j if it is
dispatched to a local route. Constraint (26) imposes that bus b
can serve the local route (i, j) only if it is dispatched to station
i or the route (i − 1, i) is accessible. Constraint (27) is the
initial condition. Constraint (13) certifies that the maximum
capacity of each vehicle on a local route is not exceeded.
Note that the total number of passengers on the bus at station
k between routes (i, j) is equal to the sum of the number
of passengers boarding from station i to station k minus the
number of passengers alighting at station k. Constraints (3)-
(7), (11) and (13) have not changed and are described before.

In order to examine the model’s performance, the numerical
experiment is based on the simple illustrative example in
Section 3. Recall that a rail line service is interrupted in
stations DS1, DS2 and DS3, and a bus line joining these
stations will be used for bus bridging service. The parameters
of dispatching time, inter-station running time and service
time are the same in the simple example. To illustrate the
performance of the extended model, we generate additional
20 passengers’ demand from station DS1 to station DS3. The
optimal operation strategies of the benchmark model (BM)
and the extended model (EM) are shown in Table VII.

As shown in Table VII, in the BM, bus 1 is dispatched to
station TS1 first (3 time units) and then transports passengers
over the local route TS1-DS1-DS2-DS3 (9 time units). The
roundtrip of this route is 6 and the corresponding travel time
is 96 time units. Then, the total travel time of bus 1 is 108
time units. Bus 2 is dispatched from the depot to station DS1
first (3 time units), then transports passengers over the express
route from station DS1 to DS3 (5 time units). The roundtrip
of bus 2 is 3, and the corresponding travel time is 40 time
units. Then, the total travel time of bus 2 is 48 time units. In
the EM, bus 1 is also dispatched to station TS1 and travels
over the local route TS1-DS1-DS2-DS3. The roundtrip of this
route is 4, and the corresponding travel time is 64 time units.
Then, the total travel time of bus 1 is 76 time units. For bus 2,
it runs over the express route TS1-DS2 with 4 roundtrips, and
the total travel time is 48 time units. The results show that the
maximum evacuation time of EM is lower than that of BM.

However, if passengers can get on the bus at the intermediate
stations, the service time will increase because the bus needs
to turn back between rail stations and bus stations. Therefore,
it is rational to consider an additional transfer time between
the rail station and the bus station. We denote the transfer time
as tsi, and then the service time at the disrupted stations is
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TABLE V
OBJECTIVE VALUES AND SOLUTIONS OF NOMINAL AND DISTRIBUTIONALLY ROBUST FUZZY MODELS.

Nominal model Distributionally robust fuzzy model
Bus

index
Travel
mode

Travel
route Roundtrips Evacuation

time (min)
Bus

index
Travel
mode

Travel
route Roundtrips Evacuation

time (min)
1 L 1-2 5

147

1 L 4-5-6 4

169

2 L 1-2-3-4-5 1 2 L 3-4-5 5
3 L 2-3 10 3 L 1-2-3-4-5 3
4 L 3-4-5 4 4 L 2-3-4-5-6 2
5 L 2-3-4-5 3 5 L 2-3-4-5-6 2
6 L 1-2-3-4 3 6 L 1-2-3-4-5-6 2
7 L 4-5-6 3 7 L 1-2-3 8
8 L 3-4-5-6 3 8 L 2-3-4-5 3
9 E 5-6 2 9 L 2-3 13

10 E 2-5 3 10 E 5-6 2
11 E 2-4 5 11 E 2-6 2
12 E 1-6 2 12 E 2-6 2
13 E 2-6 2 13 E 2-6 2
14 E 2-6 2 14 E 2-4 6
15 E 2-6 2 15 E 3-6 3

TABLE VI
PRICE AND VIOLATION VALUES OF DISTRIBUTIONALLY ROBUSTNESS WITH DIFFERENT CONFIDENCE LEVELS.

β
Number of buses Mean

value(min)
Perturbation
value(percentage)Station 1 Station 2 Station 3 Station 4 Station 5

E L E L E L E L E L
0.9 0 3 4 4 1 1 0 1 1 0 174.5 16.77%
0.8 1 2 2 6 1 1 0 1 1 0 178.5 11.24%
0.7 0 3 3 5 0 2 0 1 1 0 169.5 20.13%

0 1 2 3 4 5
76 93 108 124 140 156
108 109 110 111 112 113
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Fig. 3. Comparison between BM and EM on maximum evacuation time.

equal to the sum of boarding/alighting time and transfer time,
i.e., si+tsi. To describe the different transfer times between the
rail station and the bus station, the parameter tsi changes with
a step of 1 within the interval [1, 5]. The comparison results
are shown in Figure 3. One can find that with the increase in
transfer time, the maximum evacuation time of EM increased
significantly and finally exceeded the maximum evacuation
time of BM. This indicates that EM applies to the scenario
where the rail station is near the bus station, while BM is
suitable for long-distance transfers.

VII. CONCLUSION

This paper has developed a new distributionally robust
optimization approach for the bus bridging problem involving
credibilistic constraints. In our proposed optimization mod-
el, only partial distribution information about the passenger
demands in each station was assumed to be available, charac-
terized by parametric interval-valued possibility distributions
and their associated uncertainty distribution sets. Based on the
equivalent representation of credibilistic constraints, we have

converted the original optimization problem into equivalent
robust counterpart models, which can be resolved by existing
official solver software.

A real-world case study of Shanghai Rail Line 1 has been
utilized to demonstrate the effectiveness of our distributionally
robust optimization method. In contrast to previous studies,
the experimental results have illustrated that the proposed
approach can provide a better uncertainty-immunized solution.
The optimal bus allocation, route selection and frequency
determination solution obtained from our model jointly offer
a robust strategy for effectively dealing with the uncertainty
generated from the small perturbations around the nominal
demand.

This study only considers problems involving single line bus
bridging over routes with the affected line. It can be extended
by introducing interline routes to connect with other rail lines.
Another problem variant can be developed by considering
multi-objective optimization models that simultaneously ac-
count for minimizing passenger delay time and total bridging
time. In addition, other uncertain parameters, for example,
travel time, may also be considered as the next step of this
research.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

APPENDIX A. PROOF OF THEOREM 1
Since the possibility distribution of ζij is a parametric

interval-valued trapezoidal fuzzy variable [4] and ζλij is a

λ selection variable of ζij , the parametric interval-valued
possibility distribution µ(d; θ, λ) of ζij is

µ(d; θ, λ) =



[1 + λijθ
ij
r − (1− λij)θijl ](ζλij − r

ij
1 )

rij2 − r
ij
1

, rij1 < ζλij ≤
rij1 + rij2

2

[1− λijθijr + (1− λij)θijl ]ζλij + [λijθ
ij
r + (1− λij)θijl ]rij2 − r

ij
1

rij2 − r
ij
1

,
rij1 + rij2

2
< ζλij ≤ r

ij
2

1, rij2 < ζλij ≤ r
ij
3

[λijθ
ij
r − (1− λij)θijl − 1]ζλij − [λijθ

ij
r − (1− λij)θijl ]rij3 + rij4

rij4 − r
ij
3

, rij3 < ζλij ≤
rij3 + rij4

2

[1 + λijθ
ij
r − (1− λij)θijl ](rij4 − ζλij)

rij4 − r
ij
3

,
rij3 + rij4

2
< ζλij ≤ r

ij
4

According to the definition of credibility measure [3], the
credibility constraints can be deal with in the following way.

If βij < 0.5, then we have

Cr
{
ζλij ≤ ωij

}
=

1

2

{
1 + sup

d≤u
µ(d; θ, λ)− sup

d>u
µ(d; θ, λ)

}
=

1

2
sup
d≤u

µ(d; θ, λ),

where ωij =
∑
b∈B(pebij + plbij). Thus, the credibility con-

straint Cr
{
ωij ≥ ζλij

}
≥ βij is equivalent to sup

d≤u
µ(d; θ, λ) ≥

2βij . Denote

ζinf(θ) = inf

{
u
∣∣∣ sup
d≤u

µ(d; θ, λ) ≥ βij
}

for βij ∈ (0, 1], then we have d̄inf(2βij) ≤ u. Note that when
dij = rij1 , µ(rij1 ) = 0, and when dij =

rij1 +rij2
2 , µ(

rij1 +rij2
2 ) =

(1+λijθ
ij
r −(1−λij)θ

ij
l )

2 .

If 0 < 2βij ≤ (1+λijθ
ij
r −(1−λij)θ

ij
l )

2 , i.e., βij ∈
(0,

(1+λijθ
ij
r −(1−λij)θ

ij
l )

4 ] then based on function (VII), the
following equation is obtained:

[1 + λijθ
ij
r − (1− λij)θijl ](ζλij − r

ij
1 )

rij2 − r
ij
1

= 2βij .

Solving the above equation, we have

d̄inf(2β) =
2βijr

ij
2 + [λijθ

ij
r − (1− λij)θijl + 1− 2βij ]r

ij
1

1 + λijθ
ij
r − (1− λij)θijl

.

Note that when dij = rij2 , µ(rij2 ) = 1.
If (1+λijθ

ij
r −(1−λij)θ

ij
l )

2 < 2βij ≤ 1, i.e., βij ∈
(
(1+λijθ

ij
r −(1−λij)θ

ij
l )

4 , 12 ] then based on function (VII), the
following equation is obtained:

[1−λijθijr + (1−λij)θijl ]dij+[λijθ
ij
r +(1−λij)θijl ]rij2 − r

ij
1

rij2 − r
ij
1

= 2βij .

Solving the above equation, we have

d̄inf(2β) =
[2βij − λijθijr + (1− λij)θijl ]rij2 + (1− 2βij)r

ij
1

1− λijθijr + (1− λij)θijl
.

The proof of assertions (i)-(ii) is complete. The other two
asserting in theorem 1 can be proved similarly.

APPENDIX B. GENERATE TRAPEZOIDAL PARAMETERS

The construction method of trapezoidal parameters is di-
vided into two phases. First, according to the historical infor-
mation of daily passenger flow at each station, we obtain a
collection of numeric data Ωij = {d1ij , d2ij , · · · , dNij}, which
can be formalized by ξij = (rij1 , r

ij
2 , r

ij
3 , r

ij
4 ). Then, we

calculate the mean value of Ωij , i.e., d̄ij =
∑N
n=1 d

n
ij/N .

Second, we denote the membership degree of dnij as µ(dnij),
which is computed by

µ
(
dnij
)

=


dnij−r

ij
1

rij2 −r
ij
1

, if dnij < rij2

1, if rij2 ≤ dnij < rij3
rij2 −d

n
ij

rij3 −r
ij
2

, if rij3 ≤ dnij ≤ r
ij
4 .

Then, we solve the following maximization problem to
determine rij1 and rij2

max
∑

rij1 ≤dnij<r
ij
2

µ(dnij) · exp
(
−αij |rij2 − r

ij
1 |
)

+

crad{dnij |dnij ∈ [rij2 , d̄ij ]} · exp
(
−αij |d̄ij − rij2 |

)
,

where
∑

rij1 ≤dnij<r
ij
2

µ(dnij) means the objective of maximizing

the number of covered demand data points for each OD
pair, exp

(
−αij |rij2 − r

ij
1 |
)

is the objective of minimizing the

support length |rij2 − rij1 |, αij is a positive parameter, and
crad{dnij |dnij ∈ [rij2 , d̄ij ]} means the number of demand data
points for each OD pair covered by [rij2 , d̄ij ]. Likewise, solve
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the following maximization problem to determine rij3 and rij4

max
∑

rij3 ≤dnij<r
ij
4

µ(dnij) · exp
(
−αij |rij4 − r

ij
3 |
)

+

crad{dnij |dnij ∈ [d̄ij , r
ij
3 ]} · exp

(
−αij |d̄ij − rij3 |

)
.
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