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Fuzzy-Rough Intrigued
Harmonic Discrepancy Clustering

Guanli Yue, Yanpeng Qu, Longzhi Yang, Changjing Shang, Ansheng Deng, Fei Chao and Qiang Shen

Abstract—Fuzzy clustering decomposes data into clusters using
partial memberships by exploring the cluster structure informa-
tion, which demonstrates comparable performance for knowledge
exploitation under the circumstance of information incomplete-
ness. In general, this scheme considers the memberships of ob-
jects to cluster centroids and applies to clusters with the spherical
distribution. In addition, the noises and outliers may significantly
influence the clustering process; a common mitigation measure is
the application of separate noise processing algorithms, but this
usually introduces multiple parameters which are challenging to
be determined for different data types. This paper proposes a new
fuzzy-rough intrigued harmonic discrepancy clustering (HDC)
algorithm by noting that fuzzy-rough sets offer a higher degree
of uncertainty modelling for both vagueness and imprecision
present in real-valued datasets. The HDC is implemented by
introducing a novel concept of harmonic discrepancy, which
effectively indicates the dissimilarity between a data instance
and foreign clusters with their distributions fully considered. The
proposed HDC is thus featured by a powerful processing ability
on complex data distribution leading to enhanced clustering
performance, particularly on noisy datasets, without the use
of explicit noise handling parameters. The experimental results
confirm the effectiveness of the proposed HDC, which generally
outperforms the popular representative clustering algorithms
on both synthetic and benchmark datasets, demonstrating the
superiority of the proposed algorithm.

Index Terms—Rough set, Fuzzy-rough set, Clustering, Har-
monic discrepancy.

I. INTRODUCTION

CLUSTERING refers to dividing existing unlabelled data
instances into a number of clusters according to the

similarity between objects without any prior information,
leading to high inter-cluster similarity and low intra-cluster
similarity between instances. Clustering analysis typically uses
a precise similarity measure to gauge the similarity between
instances and then determines the division of clusters accord-
ing to specific clustering strategies [1]. A broad spectrum of
clustering algorithms have been developed successfully using
fuzzy sets and rough sets [2], [3]. They convey two crucial and
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mutually orthogonal aspects of imprecision implied by data
and knowledge; the former qualifies that instances belong to a
set to a certain degree, and the latter delivers approximations
of concepts under circumstances of incomplete information
[4], [5].

Fuzzy clustering offers a soft scheme against the conven-
tional hard measurement methods, which can be generally
grouped into three categories according to the types of fuzzy
sets: Type-1, Type-2 and Intuitionistic [6]. Amongst the many
types of existing fuzzy clustering solutions, fuzzy c-means
(FCM) is the most representative Type-1 algorithm [7]. Com-
pared with the popular partitional clustering k-means [8],
FCM classifies the instances into all clusters simultaneously
by calculating their (partial) memberships regarding each
cluster, which gives the flexibility to consider full, partial
or none belonging of a data point to all clusters. Despite
its success, FCM is sensitive to noises, outliers, and cluster
sizes. Subsequent research has made various improvements,
such as possibilistic c-means (PCM) [9] and possibilistic
fuzzy c-means (PFCM) [10]. The representative algorithms
of Type-2 fuzzy clustering include T2FCM and kernelised
T2FCM (KT2FCM) [11]. Due to the characteristics of Type-
2 fuzzy sets, the specific data elements contributing more
to the computation of appropriate cluster centroids result
in an improvement of FCM, but the challenge remains for
the processing of non-spherical and more complex data. By
introducing the tangent function and the Lagrangian method,
KT2FCM further improves the performance of T2FCM. The
third type, Intuitionistic fuzzy set based clustering, merges
the hesitation degree and membership, leading to intuitionistic
FCM (IFCM), IFCM-σ, kernelised IFCM (KIFCM) amongst
other [12]–[15]. These methods extend conventional FCM by
adding intuitionistic features to memberships and objective
functions, improving the computational efficiency and clus-
tering performance of non-spherically separable data.

Rough k-means (RKM) and its advancements enhances the
traditional k-means algorithm using the rough set theory [16],
such as three-way k-means [17], interval Type-2 fuzzy local
enhancement based rough k-means [16], and spatial rough k-
means [18]. These algorithms divide the instances that belong
to a specific cluster into the lower approximate set and the
instances that do not belong to a specific cluster into the
boundary set, which well solves the problem of fuzzy and
uncertain data clustering and demonstrates a more efficient
performance in overlapping datasets. However, RKM uses
an artificial setting of fixed weights and thresholds, which
may negatively affect the clustering performance in addition
to the challenge of determining these parameters. Fuzzy-
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rough k-means [19] and rough-fuzzy k-means [16] further
integrate rough theory and fuzzy theory into FCM and RKM,
respectively, to allow the algorithm to enjoy the advantages of
both fuzzy clustering and rough clustering.

The occurrences of noisy data points degrade the clustering
algorithm significantly. There are two leading solutions to
mitigate or address this. One solution uses a separate algorithm
to process the noisy data before clustering, such as Gaussian-
based statistical detection methods [20], kNN distance-based
local outliers searching algorithms and density-based detection
methods [21]. The other focuses on the reduction of the neg-
ative influence of noisy data points in the clustering process.
For example, a possibilistic c-means (PCM) is proposed to
process datasets containing noises and outliers [9], and this
approach has a guaranteed convergence [22]. Also, the FCM
and PCM algorithms are combined leading to the possibilistic
fuzzy c-means (PFCM) algorithm; this algorithm is supposed
to well handle noises and outliers by its possibilistic terms
but avoid coincident clusters and sensitivity to initialisation by
its fuzzy terms [10]. However, the experiments do not show
much better performance as expected. In addition, an improved
PFCM algorithm is presented for noisy data by modifying
the objective function of the PFCM algorithm [23]. Although
this algorithm is more accurate than the FCM, PCM, and
PFCM based on the experimental results, it suffers from high
computational complexity and thus long running time.

In addition to the aforementioned methods, which only
consider the centroids of clusters, further improvements are
made to partitional clustering in view of the distributions of
clusters, including inter-cluster and intra-cluster. In [24], a
dissimilarity measure is recommended and incorporated for the
benefit of considering the inter-cluster difference of clusters.
In [25], a new scheme for scaling the membership degrees of
the chosen samples is suggested to boost the effect of the
in-cluster samples and to weaken the effect of the out-of-
cluster samples in the clustering process. This scheme not only
accelerates the convergence of the algorithm but also maintains
the high clustering quality. When it comes to the intra-cluster
distribution, in [26], an elastic fuzzy c-means (EFCM) is
proposed to better recognise intrinsic cluster structure. EFCM
provides a sparser description for reliable points and a fuzzier
description for marginal points of clusters, thus, the roles of
reliable and margin points are more balance. In [27], Gaussian
mixture model and collaborative technology are combined
with FCM to enhance the ability of recognising the distribution
of intra-cluster. This approach is effective in dealing with
noise, non-spherical clusters, size-imbalanced clusters. In [28],
the local densities of instances in intra-cluster are considered
in FCM, and the instances with the local maximum density are
used as the initial centroids to improve the stability of FCM.

This paper proposes a new concept of harmonic discrepancy
to allow the full consideration of the distributions of clusters
when evaluating the dissimilarity between a data instance and
foreign clusters. In addition, a new cluster centroid updating
scheme is proposed by ignoring the abnormal data elements
of a cluster during the cluster centroid updating process.
These jointly leads to a novel fuzzy-rough intrigued harmonic
discrepancy clustering (HDC) algorithm in an effort to address

the aforementioned challenges. The proposed HDC algorithm
is applied to a set of synthetic and benchmark datasets and
gone through a comparative study by employing existing
popular clusters. The experimental results confirm a better
stability of the proposed HDC algorithm on real-world datasets
in comparison with its competitors. The contribution of the
paper is threefold:

• Proposing the novel concept of harmonic discrepancy
through an innovative application of fuzzy-rough approx-
imation to enable the comprehension of cluster distribu-
tions during cluster centroid updating,

• Developing a non-parameterised noise and outlier pro-
cessing method which effectively reduces the negative
impact of abnormal data instances in clustering and
improves the practical applicability;

• Establishing the HDC algorithm with its superiority
confirmed through a comparative study and statistical
analysis.

The remainder of the paper is structured as follows. Section
II briefly reviews the preliminaries of the rough set and fuzzy-
rough set. The proposed harmonic discrepancy clustering
algorithm is described in Section III. Results of comprehensive
experiments are presented in Section IV, leading to conclu-
sions in Section V.

II. PRELIMINARIES

This section reviews the concepts concerning rough sets and
fuzzy-rough sets which underpins the proposed discrepancy
metric.

A. Rough Set

The rough set theory provides a methodology to extract
knowledge from a domain in a concise way by minimising
information loss whilst reducing the amount of information
involved [16]. Central to rough set theory is the concept of
indiscernibility. Let (U,A) be an information system, where
U is a set of objects and A is a set of attributes such that
a : U → Va for every a ∈ A; Va is the set of values that
attribute a may take. For each feature subset P ⊆ A, an
associated P -indistinguishable relation can be determined by:

IND(P ) = {(x, y) ∈ U2 | ∀a ∈ P, a(x) = a(y)}. (1)

Obviously, IND(P ) is an equivalence relation on U. The
partition of U determined by IND(P ) is herein denoted by
U/P which can be defined as:

U/P = ⊗{U/a|a ∈ P}, (2)

where ⊗ regarding fuzzy sets A and B is defined as follows:

A⊗B = {X ∩ Y |X ∈ A, Y ∈ B,X ∩ Y ̸= ∅} . (3)

For any object x ∈ U, the equivalence class determined
by IND(P ), is denoted by [x]P . Let X ⊆ U. X can be
approximated using only the information contained in P by
constructing the P -lower and P -upper approximations of X
[29]:

PX = {x | [x]P ⊆ X}, (4)



MANUSCRIPT FOR IEEE TRANSACTIONS ON FUZZY SYSTEMS 3

PX = {x | [x]P ∩X ̸= ∅}. (5)

The pair ⟨PX,PX⟩ is called a rough set. Informally, the
former depicts the set of those objects which can be said
with certainty to belong to the concept to be approximated,
and the latter is the set of objects which either definitely
or possibly belong to the concept to be approximated. The
difference between the upper and lower approximations is the
area known as the boundary region and thus, representing
the area of uncertainty. When the boundary region is empty,
there is no uncertainty regarding the concept which is being
approximated and all objects belong to the subset of objects
of interest with full certainty.

B. Fuzzy-Rough Set

Fuzzy-rough sets encapsulate the related but distinct con-
cepts of vagueness (usually concerned by fuzzy sets) and
indiscernibility (usually concerned by rough sets) [30], both
of which occur as a result of uncertainty in data or knowledge.
Compared to rough sets, fuzzy-rough sets offer a higher
degree of flexibility in enabling the vagueness and imprecision
present in real-valued data to be simultaneously and effectively
modelled. In fuzzy-rough sets, the fuzzy lower and upper
approximations to approximate a fuzzy concept X can be
defined as:

µRPX(x) = inf
y∈U
I(µRP

(x, y), µX(y)), (6)

µRPX(x) = sup
y∈U
T (µRP

(x, y), µX(y)), (7)

where I is a fuzzy implicator and T is a T -norm. RP is a
T -transitive fuzzy similarity relation induced by the subset of
features P :

µRP
(x, y) = Ta∈P {µRa

(x, y)}, (8)

where µRa
(x, y) represents the degree to which objects x and

y are similar to each other based on feature a. This degree
may be defined in a number of ways such as:

µRa(x, y) = 1− |a(x)− a(y)|
|amax − amin|

, (9)

µRa
(x, y) = exp(

−(a(x)− a(y))2

δ2a
), (10)

where δ2a indicates the variation for feature a. The fuzzy lower
and upper approximations express the same physical meaning
with their crisp counterparts. In particular, µRPX(x) shows the
extent to which the object x must belong to the approximated
fuzzy concept X , whilst µRPX(x) represents the extent to
which the object x may belong to the approximated fuzzy
concept X .

III. FUZZY-ROUGH INTRIGUED HARMONIC DISCREPANCY
CLUSTERING

The existing partitional clustering algorithms, e.g., k-means
[8] and FCM [7], group an instance into a cluster if it a full or
the highest membership as induced by the nearest prototype or
expectation of the cluster. These types of clustering methods
are usually performed by considering the memberships of the
objects to the cluster centroids and ignoring the distributions
of the clusters; and a small amount of noisy data points or
outliers can have significant, and often negative, impact to
the clustering results. A novel harmonic discrepancy clus-
tering (HDC) strategy is presented in this section to ease
the restriction of the partitional clustering algorithms by an
innovative application of fuzzy-rough sets, for a sound and
robust clustering performance.

A. Discrepancy Inspired by Fuzzy-Rough Set

In this paper, discrepancy refers to the degree of separating
an object from a cluster. Given an information system (U,A),
suppose that there are n instances, i.e., U = {x1, . . . , xn},
and k clusters will be partitioned, including C1, . . . , Ck. The
degree to which a data instance xi belongs to a cluster Cj

with regard to attributes A can be gauged by the fuzzy lower
approximation µRACj

(xi).
Fuzzy implication I calculates the fulfillment degree of a

fuzzy rule:
IF p is X THEN q is Y, (11)

where the antecedent (p is X) and the consequence (q is Y )
are fuzzy. For any fuzzy implication , it holds that:

I(p, 1) = 1. (12)

That is, if the consequence establishes in any case (i.e., q = 1),
the truth value of the fuzzy rule (11) is 1. Due to Eq. (12),
µRACj (xi) can be simplified into:

µRACj (xi)

= inf
y∈U
I(µRA(xi, y), µCj (y))

=min

{
min
y∈Cj

{I (µRA (xi, y) , 1)} , min
y/∈Cj

{I (µRA (xi, y) , 0)}
}

=min
y/∈Cj

{I (µRA (xi, y) , 0)} . (13)

Moreover, let N be a strong negation (i.e., a continuous,
strictly decreasing, involutive function such that N (0) = 1),
I is contrapositive symmetry with respect to N if and only if

I(p, q) = I(N (p),N (p)). (14)

As proved in [31], if I belongs to S-implications, QL-
implications or R-implications which enjoys the contrapositive
symmetry, the equation I(x, 0) = N (x) holds with N being a
strong negator to induce I. By considering the classical strong
negation NC(x) = 1−x, Eq. (13) can be further modified to:

µRACj
(xi) = min

y/∈Cj

{1− (µRA (xi, y))} . (15)

In particular, typical fuzzy implicators of S-implications,
QL-implications or R-implications include but not limited to:
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• Łukasiewicz implicator: IL(p, q) = min(1− p+ q, 1),
• Kleene-Dienes implicator: IKD(p, q) = max(1− p, q),
• Reichenbach implicator: IR(p, q) = 1− p+ pq,
• Zadeh implicator: IZ(p, q) = max(1− p,min(p, q)),
• Willmott implicator: IW (p, q) = min(max(1 −

p, q),max(p, 1− q),min(q, 1− p)),
• Klir-Yuan implicator: IKY (p, q) = 1− p+ p2q.
Respectively, by replacing “min ” and “y /∈ Cj” in Eq. (15)

with “max ” and “y ∈ Cj”, the discrepancy of a data instance
xi in reference to a cluster Cj with regard to attributes A can
be expressed as:

ξRACj (xi) = max
y∈Cj

{1− µRA (xi, y)}. (16)

It makes intuitive sense that the discrepancy function indicates
the degree to which the most dissimilar data instance y in
cluster Cj to the referencing data instance xi. In fact, the
discrepancy function as given in Eq. (16) can be deemed
as the max-link distance [32] between xi and Cj . However,
if a cluster suffers from a decentralised distribution, the
discrepancy of a data instance to it may undergo a high
probability of inaccuracy. In this case, the discrepancy function
as expressed in Eq. (16) can be improved by taking into
account the distribution of cluster Cj .

Let M = [mij ]n×k be the partition matrix of U, i.e.,

mij =

{
0, xi /∈ Cj ,

1, xi ∈ Cj .
(17)

Each element of mij = 1 indicate that the i-th instance is
assigned to the j-th cluster. Based on M , the centroid cj of
cluster Cj can be calculated by:

cj =

n∑
i=1

mijxi

n∑
i=1

mij

, j = 1, . . . , k. (18)

Since the centroid of a cluster represents the expectation
of the instances belonging to this cluster, in this paper, the
distribution of cluster Cj is approximated via the membership
of cj to Cj . If cluster Cj enjoys a compact distribution, the
extent to which cj belongs to Cj is supposed to be large
accordingly. In the light of the concept of fuzzy-rough sets, this
membership can be represented by fuzzy upper approximation
µRACj

(cj).
T -norm T generalises the logical conjunction to fuzzy logic.

For two fuzzy variables p and q, T (p, q) indicates an “and”
operator to metric a unified truth degree when p and q are
established at the same time. For any T -norm operator T , it
holds that:

T (p, 1) = p, (19)

T (p, 0) = 0. (20)

Eq. (19) indicates that if a term q is established in any case
(i.e., q = 1), the degree of meeting both p and q depend on
the value of p. Eq. (20) indicates that if a term q acts as null

element (i.e., q = 0), the chance to meet both p and q is 0.
Due to Eqs. (19) and (20), µRACj

(cj) can be simplified to:

µRACj
(cj)

=sup
y∈U
T
(
µRA (cj , y) , µCj

(y)
)

=max

{
max
y∈Cj

{T (µRA (cj , y) , 1)},max
y/∈Cj

{T (µRA (cj , y) , 0)}
}

=max
y∈Cj

{T (µRA (cj , y) , 1)}

=max
y∈Cj

{µRA (cj , y)} . (21)

Based on Eq. (21), µRACj
(cj) can be interpreted as the

similarity of cj to its nearest neighbour in cluster Cj . There-
fore, it is rational to use this metric as the indicator of cluster
distribution.

To synthesise the roles of both Eqs. (16) and (21), a
representative object ỹji is sought to metric the harmonic
discrepancy (HD) of xi to cluster Cj , which is designed as
follows:

ỹji = argmax
y∈Cj

{2× (1− µRA(xi, y))× µRA(cj , y)

(1− µRA(xi, y)) + µRA(cj , y)
}. (22)

The harmonic average of 1 − µRA(xi, y) and µRA(cj , y)
in Eq. (22), is illustrated in Fig. 1. It can be seen that
by maximising this harmonic average, both 1 − µRA(xi, y)
or µRA(cj , y) can be guaranteed large values, which are
consistent with Eqs. (16) and (21), respectively. Therefore,
Eq. (22), can locate a sample y ∈ Cj which is distant to xi

(i.e., a large value of 1−µRA(xi, y)) but close to the centroid
cj of cluster Cj (i.e., a large value of µRA(cj , y)), from both
separability and rationality perspectives.

µ R
(c j
, y

)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1−µR (xi , y)
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Fig. 1. Harmonic average of 1− µRA (xi, y) and µRA (cj , y).

With the support of Eq. (22), the HD value of xi to cluster
Cj can be expressed as:

δRACj
(xi) = 1− µRA(xi, ỹji). (23)

B. Anomaly Reduction

Despite the comprehensive strategy of HD to distinguish the
degrees of data instances belonging to a cluster, its efficacy
may still be compromised by the anomalies associated with
the decentralised distribution of the cluster. The misclustering
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of the peripheral objects always triggers a chain of reactions
in subsequent iterations, resulting in unexpected centroid devi-
ation and thus poor clustering results. A novel cluster centroid
updating strategy is therefore proposed with an aim to reduce
the negative effects of peripheral objects. In particular, the core
and peripheral objects are distinguished after each iteration,
and the centroid update will depend only on the core objects
by ignoring the peripheral instances.

To identify the peripheral objects of cluster Cj , j ∈
{1, . . . , k}, the HD acceptance threshold of a data instance
to a cluster Cj is defined as:

ϵj = ave(δRACj (x)) + std(δRACj (x)), (24)

where ave(δRACj
(x)) and std(δRACj

(x)) represent the aver-
age and the standard deviation of δRACj

(x) for all x ∈ Cj ,
respectively. With the use of this threshold ϵj , if a sample
x ∈ Cj suffers from δRACj (x) > ϵj , its affiliation with
Cj can be considered as unreliable, naturally. Therefore, all
such instances are regarded as the peripheral objects of Cj ;
otherwise, they are labelled as a member of the core set. By
omitting the peripheral objects, if there is any, during the
calculation of the centroid of each cluster, the likelihood of
the occurrence of the offset centroid is mitigated.

The peripheral object detection procedure is outlined in
Algorithm 1. The main structure of the procedure is a loop
over the k clusters to be identified, as shown between Lines
1 and 10. Within this loop, the current clustering is provided
in Line 2, and acceptance threshold ϵj of Cj is calculated by
using Eq. (24) in Line 3. The inner loop between Lines 4 and
9 compares the HD value of each instance in cluster Cj with
the value of the calculated threshold ϵj to determine whether
the instance is a peripheral object. Form this, the memberships
of all identified peripheral objects mij are set to 0, to bypass
these objects in the calculation of the centroid of Cj in the
next iteration. After the main loop, the algorithm returns the
updated partition matrix M .

Algorithm 1 Peripheral Object Detection (POD)
POD (U, M , k, δ)
Input:

U, input space containing n objects,
M , partition matrix,
k, number of clusters,
δ, set of HD.

Output: M , partition matrix.
1: foreach j = 1 to k do
2: Cj ← set of instances where mij = 1, i = 1, ..., n.
3: ϵj = ave(δRACj

(xi)) + std(δRACj
(xi)), (∀xi ∈ Cj).

4: foreach xi in Cj do
5: if δRACj

(xi) > ϵj then mij = 0
6: else
7: continue
8: end
9: end

10: end
11: return M

C. Harmonic Discrepancy Clustering

To avoid the accident that the centroid are initialised in the
peripheral region of data, the random partition (RP) algorithm
[33] is used to initialise clusters. As shown in Algorithm 2,
rather than straightly initialises centroids. the RP algorithm
randomly assigns each instance to a cluster by initialising
the partition matrix. In so doing, the RP algorithm avoids
selecting outliers to act as centroids from the border areas. And
the centroids, resulted from the initialised partition matrix,
are concentrated in the central area of the data due to the
averaging.

Algorithm 2 Random Partition (RP)
RP (U, k)
Input:

U, input space containing n objects,
k, number of clusters,

Output: M , partition matrix.
1: Initialise M = {mij}n×k, where mij = 0.
2: foreach i = 1 to n do
3: j ← a random integer in [1, k].
4: mij = 1
5: end
6: return M

Inspired by fuzzy-rough sets, the membership of an instance
belonging to a cluster can be obtained from the discrep-
ancy expressing the degree of separating the instance from
other clusters. Intuitively, the more significant discrepancy
of an instance in reference to other clusters, the greater the
membership of this instance to the current computing cluster.
According to the definition of HD as expressed in Eq. (23),
the membership of xi to Cj can be defined as:

τRACj
(xi) =

1

k − 1

∑
l ̸=j

δRACl
(xi). (25)

With the support of Eq. (25), the proposed HDC algorithm
is summarised as Algorithm 3. Firstly, Line 1 initialises the
iteration counter iter as 0. In Line 2, the partition matrix M
is initialised by the RP algorithm. Next, a referencing partition
matrix T indicating the partition result of the current iteration
is prepared for future use (as the algorithm will terminate
when there is no change on clusters between two consecutive
iterations) in Line 3.

Lines 4-20 show the overall iterative process for clustering.
The HD values of all instances in reference to all clusters
is obtained by the inner loop expressed in Lines 5-11. After
computing the discrepancy values, the memberships of all
instances to each cluster are calculated by applying the HD
values to Eq. (25) as depicted in Line 12. Then, the partition
matrix can be readily updated by the following equation:

mij =

1 j = argmax
1≤j≤k

{τRPCj (xi)},

0 else.
(26)

By using Eq. (26), both the core objects and the peripheral
objects detected via Algorithm 1, are assigned into the clusters
with the most significant memberships Eq. (25).
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Algorithm 3 Harmonic Discrepancy Clustering (HDC)
HDC (U, k, Max)
Input:

U, input space containing n objects,
k, number of clusters,
Max, maximum iterations.

Output: M , final partition matrix.
1: Initialise iter = 0.
2: M = RP (U, k) //Algorithm 2
3: T = M
4: repeat
5: foreach j = 1 to k do
6: cj =

n∑
i=1

mijxi/
n∑

i=1

mij

7: foreach i = 1 to n do
8: ỹji ← Eq. (22)
9: δRACj

(xi) = 1− µRA(xi, ỹji)
10: end
11: end
12: M ← Eqs. (25) and (26) //Update M
13: if iter == Max or T == M then
14: break
15: else
16: T = M
17: M = POD (U, M , k, δ) //Algorithm 1
18: end
19: iter = iter + 1
20: end
21: return M

The algorithm will jump out of the loop either after reach-
ing the maximum number of iterations or the clusters are
stabilised, as controlled in Lines 13 and 14; otherwise, the
algorithm will move to Lines 16 and 17, which reset the
referencing partition matrix T and invokes Algorithm 1 to
detect peripheral objects. Correspondingly, the mij values of
the detected peripheral objects in the partition matrix are all
set to 0, so as to avoid the influence of such objects in the next
iteration of centroid update. In so doing, the peripheral objects
are detected progressively over iterations. Instances that have
been assigned as peripheral objects in the past iteration may
become core objects in the subsequent iterations. Likewise, the
previously identified core objects may be transferred to the
peripheral set. Regardless of the shifts, the centroid update
always relies only on the core set, to maximally guarantee
that the centroids resulted from each iteration has a minimal
influence from the outliers or other peripheral instances.

Finally, the stabilisation of clusters is examined by com-
paring the partition matrices between the current iteration and
the previous iteration in this work. If the partition matrices
between two consecutive iterations are exactly the same, the
algorithm will terminate.

The proposed algorithm is able to automatically identify
outliers without the use of any pre-defined parameters and
prior knowledge about outliers. Thus it can effectively avoid
the often negative influence of peripheral objects, but require
additional computational resources for this extra functionality.

In HDC, each data instance needs to traverse all elements of
all clusters when finding the largest memberships. The time
complexity of this part is O(n2). The algorithm needs to be
iterated t times, and denoising is performed in each iteration,
which computationally contributes to O(nk). Note that k is
usually much smaller than n, so the final time complexity of
the proposed HDC algorithm is O(n2t).

To illustrate the proposed HDC algorithm, some exemplar
instances are given in Table I and displayed in Fig. 2.

TABLE I
THE EXEMPLAR INSTANCES

Sample x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

x-axis 2.3 0.8 1.5 1.3 1.4 1.1 2.3 2.5 2.0 2.0 2.0
y-axis 0.5 3.0 2.0 3.2 2.4 2.6 2.4 3.0 3.2 1.8 2.2

Sample x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22

x-axis 4.0 5.6 3.5 4.5 5.7 4.0 5.0 9.4 11.7 12.2 12.8
y-axis 5.0 1.8 4.5 4.0 2.5 3.0 2.5 7.75 7.0 3.6 3.6
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5

6

7

8

Fig. 2. The unlabelled instances.

Let the number of clusters to be 2. By using the RP algo-
rithm, the partition matrix M and the associated unlabelled
instances are initialised as shown in Table II and Fig. 3,
respectively. Specifically, in Fig. 3, two pentacles represent
the resulting centroids of the respective clusters. Due to the
use of the RP algorithm, both of these two centroids locate
in the central region of the data, roughly. Thus, the risk of
the initialised centroids falling into the border is reduced,
effectively.

TABLE II
THE INITIALISATION OF THE PARTITION MATRIX M

j
i 1 2 3 4 5 6 7 8 9 10 11

1 1 0 0 0 1 1 0 1 1 1 0
2 0 1 1 1 0 0 1 0 0 0 1

j
i 12 13 14 15 16 17 18 19 20 21 22

1 1 1 0 1 0 0 1 1 0 0 1
2 0 0 1 0 1 1 0 0 1 1 0

Given the initialisation in Fig. 3, by taking Line 17, i.e.
the POD algorithm, out of the proposed HDC algorithm, the
resulting clusters are illustrated in Fig. 4. Here, the HDC
algorithm is implemented by using the Algebraic T -norm:
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Fig. 3. Initialisation via random partition.

TP (a, b) = ab and the fuzzy similarity in Eq. (10). It can
be observed that, without the process of anomaly reduction,
a small number of peripheral objects form a independent
category and their underlying connections to other instances
are ignored.

0 2 4 6 8 10 12
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8

c1
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C1 C2

Fig. 4. Clusters without using the POD algorithm.

On the contrary, when using the complete HDC algorithm,
C2 in Fig. 4 is merged with the right part of C1 in Fig. 4, as
depicted in Fig. 5. And the HD values of all instances at the
last iteration are summarised in Table III.
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Fig. 5. Clusters by using the complete HDC algorithm.

TABLE III
HD OF THE INSTANCES IN C1 AND C2

Sample x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

δRAC1
(xi) 0.77 0.37 0.27 0.35 0.20 0.25 0.30 0.32 0.30 0.37 0.27

Sample x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22

δRAC2
(xi) 0.72 0.65 0.75 0.65 0.75 0.52 0.64 0.99 0.99 0.99 0.99

By applying Eq. (24), the acceptance thresholds of these
instances are

ave(δRAC1
(x)) = 0.34, std(δRAC2

(x)) = 0.14⇒ ϵ1 = 0.49.

ave(δRAC2
(x)) = 0.78, std(δRAC2

(x)) = 0.17⇒ ϵ2 = 0.96.

As shown in Table III, the HD value of x1 is larger than
ϵ1 and those of x19, x20, x21 and x22 are larger than ϵ2.
Therefore, these instances are deemed respective peripheral
objects for C1 and C2 and marked with squares in Fig. 5.
The remaining samples are the members in the core set of C1

and C2. This results demonstrates the ability of HDC to detect
peripheral objects and exploit the latent cluster structures.

IV. EXPERIMENTAL EVALUATION

The experimental processes and results are reported in four
parts in this section. The specification of the experiment is
detailed first. Then, the proposed HDC algorithm is applied to
lane segmentation with the clustering results visually analysed.
This is followed by a comparative study of HDC in reference
to other competitive methods on a set of benchmark datasets.
Finally, a statistical analysis is performed to show any statis-
tical significance between different approaches. The codes of
HDC can be downloaded from the Github release page1.

A. Experimental Setup

All datasets used in this work are derived from the Google
image and UCI2 repository, including three common lane im-
ages, and the benchmark datasets Iris, Heart, Led7digit, Glass,
Newthyroid, Seeds, Hepatitis, Breast and Wine. Specifically,
the lane images include a solid line image (i.e., Image1), a
mixture of solid and dashed lines image (i.e., Image2), and
a curve line image (i.e., Image3) as shown in Fig. 6, are
employed to test the practical applicability of HDC in lane
line segmentation. The lane lines in these images are extracted
from the original location and represented as two-dimensional
datasets. The corresponding results are visualised as subfigures
below the original images in Fig. 6. Overall, the details of the
used datasets are summarised in Table IV.

(a) (b) (c)

(d) (e) (f)
Fig. 6. Original road images and extracted road separation lines. (a) Image1.
(b) Image2. (c) Image3. (d) Road1. (e) Road2. (f) Road3.

1https://github.com/guanliyue/hdc
2https://archive.ics.uci.edu/ml/datasets.php
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TABLE IV
DATASETS USED FOR EVALUATION

Datasets Attributes Class Size

Road1 2 3 940
Road2 2 4 1117
Road3 2 3 1486

Iris 4 3 150
Heart 13 2 270

Led7digit 7 10 500
Glass 9 7 214

Newthyroid 5 3 215
Seeds 7 3 210

Hepatitis 19 2 80
Breast 9 2 683
Wine 13 3 178

For a comprehensive evaluation of the effect of the proposed
method, four types of algorithms are employed in a com-
parative study: 1) partitional clustering algorithms, including
k-means [8], Mean Shift (MS) [34], FCM [7], PCM [9],
Enhanced PCM (EPCM) [35], Interval Type-2 Possibilistic
FCM (IT2PFCM) [36]; 2) hierarchy-based Agglomerative
Clustering (AC) [37]; 3) density-based methods, including
Density Peak Clustering (DPC) [38] and Density-based Spatial
Clustering of Applications with Noise (DBSCAN) [39]; 4)
ensemble clustering methods, specifically Spectral Ensemble
Clustering (SEC) [40] and Locally Weighted Evidence Ac-
cumulation (LWEA) [41]. In particular, PCM, EPCM and
IT2PFCM enjoy the ability to reduce of the negative influence
of noisy data points in the clustering process.

Note that redundant features may present in the original
datasets. Principal Component Analysis (PCA) [42] is used
for all datasets. For the lane image datasets, the first two
principal components are extracted to identify the underlying
dependencies and reduce the feature correlation of the two
road line dimensions. For benchmark datasets, the accumula-
tive contribution rate is set to 90%. To ensure the fairness of
the experiment, this settings are used for all comparison algo-
rithms. Also, all instances are randomised and standardised to
ensure that clustering results are not affected by the order of
data instances.

The parameter settings of the compared algorithms are
implemented based on the recommendation in the original
publications or optimal settings in the parameters pool. There
are no extra parameters for k-means except the number of clus-
ters. For MS, the maximum number of iterations is set to 300.
The density peaks for DPC are selected automatically using
the scheme reported in [38]. It is challenging for DBSCAN to
deal with various datasets with fixed parameters; in this work,
the value of minpts is set to ⌊ln|n|⌋ as recommended in [43]
and the value of eps is set to the optimal set in the pool of
[1, 5] with the step being valued as 0.2. For PCM, the fuzzy
parameter and error are set to 1.2 and 0.001, respectively.
For EPCM, parameters m, θ are set to 2, 3, respectively.

In the case of IT2PFCM, parameters m1, m2 are set to 2,
4, respectively. As for the ensemble approaches SEC and
LWEA, the required parameters µ and θ are set to 1 and 0.4,
respectively, in line with the recommendation as reported in
[40], [41]. For the proposed HDC, the Algebraic T-norm and
Eq. (10) are used as the metric for fuzzy similarity calculation
and the similarity parameters are set to the optimal value
of the standard deviation and variance; the maximal number
of iterations t is set to 15. Likewise, FCM, PCM, EPCM,
IT2PFCM and traditional k-means all use 15 as the maximal
number of iterations.

Each clustering algorithm was run 100 times on each
dataset. Normalised mutual information (NMI) [41] and homo-
geneity score (HS) [44] are used as the evaluation criteria of
all datasets for a more objective comparison. More specifically,
the NMI measure provides a sound indication of the shared
information between the real and predicted clusters, which
is a normalisation of the mutual information (MI) score
scaling the results between 0 (no mutual information) and 1
(perfect correlation). As for the HS, a clustering result satisfies
homogeneity if all of its clusters contain only data points
which are members of a single class; HS is ranged from 0
to 1, where 1 represents perfectly homogeneous labelling. For
clear description, the best results are highlighted in bold in
Tables V, VI and VII.

B. Performance on Road Line Segmentation

The best experimental results of each approach for the three
types of lanes are illustrated in Figs. 7, 8 and 9. Note that for
MS and DBSCAN, there are no parameters about the number
of clusters, so the cluster number may not be consistent with
the number of lane separation lines when selecting the optimal
parameters (such as that shown in Fig. 9b). It can be seen that
only DBSCAN and HDC have generated the correct clustering
results, but all other methods were not able to segment the lane
separation lines correctly. More specifically, for Road1 and
Road3, both HDC and DBSCAN have successfully clustered
the lane separation lines in the sampled roads. However, the
lane segmentation problem is too challenging for other clus-
ters. For Road2, the DBSCAN can separate each short line into
a cluster when selecting appropriate parameters. Nonetheless,
due to the intervals between dotted lines, the two middle lane
separation lines cannot be clustered into a complete line no
matter how the parameters are set for DBSCAN. Interestingly,
the proposed HDC is the only clustering approach leading
to correct clustering results, demonstrating superior clustering
performance over others.

Moreover, for each lane image dataset, four images are
captured from the process of clustering to show the changes
of centroids and noises. The respective results are recorded
in Figs. 10, 11 and 12. Among these four images, the first
one is the moment of initialisation; the last one indicates the
resulting clusters; the second and the third ones show the main
segments in the process of clustering. And for each cluster,
“⋆” indicates the centroid, and “×” indicates the peripheral
object. It can be seen that due to the use of the RP method,
the centroid of each cluster is initialised in the center region of
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Fig. 7. The visual results of different clustering algorithms for Road1. (a)
k-means. (b) MS. (c) FCM. (d) PCM. (e) EPCM. (f) IT2PFCM. (g) AC. (h)
DBSCAN. (i) DPC. (j) SEC. (k) LWEA. (l) HDC.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Fig. 8. The visual results of different clustering algorithms for Road2. (a)
k-means. (b) MS. (c) FCM. (d) PCM. (e) EPCM. (f) IT2PFCM. (g) AC. (h)
DBSCAN. (i) DPC. (j) SEC. (k) LWEA. (l) HDC.

each image. In the process of clustering, these centroids move
towards the intermediate area of the corresponding lane lines,
gradually. During the segmentation process of each lane line, it
is interesting to note that the proposed HDC algorithm intends

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Fig. 9. The visual results of different clustering algorithms for Road3. (a)
k-means. (b) MS. (c) FCM. (d) PCM. (e) EPCM. (f) IT2PFCM. (g) AC. (h)
DBSCAN. (i) DPC. (j) SEC. (k) LWEA. (l) HDC.

(a) (b) (c) (d)
Fig. 10. The clustering process of Road1. (a) Initialisation. (b), (c) Two main
segments in the process of clustering. (d) The final result.

(a) (b) (c) (d)
Fig. 11. The clustering process of Road2. (a) Initialisation. (b), (c) Two main
segments in the process of clustering. (d) The final result.

to treat the upper and lower ends of lines as the peripheral
objects of each cluster. In the light of Algorithm 3, the noises
won’t be used to update the centroids at each iteration. But at
last, the noise objects are assigned to the clusters according
to the maximum membership principle shown in Eq. (26).

The corresponding average results of NMI and HS over
100 experiments are detailed in Table V. HDC shows the best
performance based on both metrics, given that the value of 1
indicates the method has always successfully clustered all lane
separation lines in all repeated experiments. The second best
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TABLE V
NMI AND HS RESULTS OF DIFFERENT CLUSTERING ALGORITHMS ON EXTRACTED LANE SEPARATION LINES

Dataset Index k-means MS FCM PCM EPCM IT2PFCM AC DBSCAN DPC SEC LWEA HDC

Road1 NMI 0.27 0.00 0.30 0.30 0.30 0.27 0.28 1.00 0.29 0.22 0.25 1.00
HS 0.27 0.00 0.30 0.30 0.30 0.27 0.28 1.00 0.26 0.18 0.27 1.00

Road2 NMI 0.22 0.04 0.23 0.23 0.22 0.58 0.22 0.90 0.58 0.16 0.23 1.00
HS 0.22 0.03 0.24 0.23 0.22 0.56 0.23 1.00 0.56 0.14 0.24 1.00

Road3 NMI 0.01 0.00 0.02 0.01 0.02 0.02 0.02 1.00 0.10 0.02 0.01 1.00
HS 0.01 0.00 0.02 0.01 0.03 0.02 0.02 1.00 0.10 0.02 0.02 1.00

(a) (b) (c) (d)
Fig. 12. The clustering process of Road3. (a) Initialisation. (b), (c) Two main
segments in the process of clustering. (d) The final result.

performer is DBSCAN, which does not show the best result
for Road2, but it has got a tie with the proposed HDC for the
other two roads. None of the rest referenced approaches has
demonstrated any close performance. This clearly shows the
superiority of the proposed HDC clustering algorithm.

C. Performance on Benchmark Datasets

To verify the noise-resistance ability of the studied algo-
rithms, 5%, 10%, and 15% random Gaussian noises are added
to each benchmark dataset following the experiments reported
in [45]. Each newly added noise is assigned to the class where
the centroid is closed to this noise. All of these noise samples
will be taken into account by the evaluation metrics NMI and
HS. The average NMI and HS results (and the best NMI and
HS results as shown in brackets) of these algorithms over
100 repeated experiments on different datasets are detailed in
Tables VI and VII.

Considering the NMI evaluation index, HDC shows an over-
all better clustering performance on most datasets. Especially
for Newthyroid, the average results of HDC surpass the results
of all other competing methods under different noise condi-
tions. However, as the noise scale increases, the performance
of the noise-sensitive algorithms declines quickly. Take Iris as
an example, the average result of k-means decreases from 0.72
(5% added noise) to 0.46 (10% added noise) and 0.18 (15%
added noise). For MS, SEC, and LWEA, the performance
also drops with the enlargement of noise; especially when
the noise ratio reaches 15%, the evaluation values of those
contrasting methods are reduced to the lowest. For datasets
Newthyroid, Seeds and Wine, the performance of k-means, AC,
SEC and LWEA also degrades as the noise level rises. As for
the robust clustering algorithms: PCM, EPCM, and IT2PFCM,
the obtained results are more steady no matter how much
noise is included, and occasionally, able to surpass HDC even
with 15% added noise. Nevertheless, without noise parameters,

HDC still outperform these robust clustering algorithms in
most cases. It is worth noting that for datasets Led7digit and
Glass, with the expansion of noise, the performance of diverse
approaches does not change significantly, which is related to
the added random noise and the specific distribution of the
data.

Interestingly, the density-based algorithms DPC and DB-
SCAN seem to suffer less from the increased noise, although
negatively affected by noise like other compared approaches.
Again, take the Iris dataset as an example, the effect of
noises to these two algorithms is marginal, and other datasets
also show similar trends, indicating that the density-based
clustering approach is more resistant to data noises.

In terms of the best NMI values, the results of k-means
are rather different from the corresponding average on many
datasets, such as Iris, Hepatitis, and Wine, when the noise
level is 15%. This shows its instability to deal with noise. For
the remaining comparison strategies and the proposed HDC,
although there is a gap between the average and best values, it
is not significantly noticeable. Especially for MS and AC, their
clustering performance is highly stable, and the same results
can always be observed in repeated experiments. Overall, HDC
has a stable ability to outperform the compared algorithms.

Regarding the HS metric, the performance of each algorithm
is consistent to its NMI results under most circumstances.
Again, HDC displays outperformance in comparison with
other competitor. Especially for datasets Newthyroid, and
Wine, HDC outperforms nearly all the compared methods
in terms of both average and best results, and it exceeds
more than half of the compared approaches for the remaining
datasets in most cases. In general, many clustering algorithms
are noise-sensitive, which means they have difficulties to well
handle datasets with noises and/or outliers. For the robust
clustering algorithms, the noise preprocessing helps provide
more stable results but it may challenge to determine the
noise threshold and it often requires bespoke optimisation for
different datasets. Experimental results show that HDC can
better deal with noise data without the requirement of pre-
defined noise parameters.

D. Statistical Analysis

Paired t-test is applied to all the experiments to explore
any statistically significant differences between the proposed
HDC algorithm and the referenced clustering approaches. The
threshold of significance is set to 0.05 for all experiments,
which ensures that the results are not obtained by chance. The
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TABLE VI
NMI RESULTS OF DIFFERENT CLUSTERING ALGORITHMS ON BENCHMARK DATASETS WITH DIFFERENT PROPORTIONS OF NOISE

Dataset Iris Heart Led7digit

Noise(%) 5 10 15 5 10 15 5 10 15

k-means 0.72 (0.72) * 0.46 (0.72) * 0.18 (0.72) * 0.27 (0.36) * 0.10 (0.10) * 0.10 (0.10) * 0.46 (0.48) * 0.45 (0.47) * 0.45 (0.46) *
MS 0.67 (0.67) * 0.64 (0.64) * 0.16 (0.16) * 0.07 (0.07) * 0.12 (0.12) * 0.15 (0.15) * 0.08 (0.08) * 0.14 (0.14) * 0.18 (0.18) *

FCM 0.80 (0.81) v 0.76 (0.80) * 0.69 (0.72) * 0.34 (0.35) 0.32 (0.35) * 0.32 (0.33) * 0.48 (0.49) 0.47 (0.48) * 0.45 (0.46) *
PCM 0.63 (0.65) * 0.68 (0.69) * 0.56 (0.58) * 0.25 (0.26) * 0.10 (0.10) * 0.09 (0.10) * 0.45 (0.51) * 0.48 (0.48) * 0.39 (0.41) *

EPCM 0.75 (0.76) * 0.78 (0.79) 0.71 (0.72) * 0.34 (0.36) * 0.39 (0.39) v 0.26 (0.33) * 0.39 (0.41) * 0.47 (0.48) * 0.45 (0.48) *
IT2PFCM 0.76 (0.76) * 0.67 (0.72) * 0.71 (0.71) * 0.35 (0.35) 0.28 (0.30) * 0.19 (0.19) * 0.44 (0.48) * 0.47 (0.47) * 0.47 (0.48) *

AC 0.72 (0.72) * 0.13 (0.13) * 0.17 (0.17) * 0.06 (0.06) * 0.10 (0.10) * 0.10 (0.10) * 0.46 (0.46) * 0.44 (0.44) * 0.44 (0.44) *
DBSCAN 0.66 (0.66) * 0.62 (0.62) * 0.60 (0.60) * 0.18 (0.18) * 0.17 (0.17) * 0.16 (0.16) * 0.51 (0.51) v 0.48 (0.49) * 0.48 (0.48)

DPC 0.73 (0.73) * 0.72 (0.72) * 0.68 (0.68) * 0.23 (0.23) * 0.12 (0.12) * 0.10 (0.10) * 0.00 (0.00) * 0.00 (0.00) * 0.00 (0.00) *
SEC 0.53 (0.74) * 0.43 (0.69) * 0.12 (0.68) * 0.15 (0.37) * 0.02 (0.10) * 0.02 (0.10) * 0.44 (0.50) * 0.46 (0.50) * 0.42 (0.48) *

LWEA 0.72 (0.72) * 0.64 (0.64) * 0.17 (0.17) * 0.06 (0.06) * 0.10 (0.10) * 0.10 (0.10) * 0.47 (0.47) * 0.46 (0.46) * 0.45 (0.45) *
HDC 0.79 (0.80) 0.78 (0.81) 0.79 (0.80) 0.35 (0.36) 0.35 (0.39) 0.36 (0.36) 0.49 (0.51) 0.49 (0.51) 0.48 (0.49)

Summary (10/0/1) (10/1/0) (11/0/0) (9/2/0) (10/0/1) (11/0/0) (9/1/1) (11/0/0) (10/1/0)

Dataset Glass Newthyroid Seeds

Noise(%) 5 10 15 5 10 15 5 10 15

k-means 0.31 (0.34) * 0.35 (0.36) 0.36 (0.36) 0.15 (0.15) * 0.25 (0.25) * 0.32 (0.32) * 0.17 (0.42) * 0.13 (0.13) * 0.17 (0.17) *
MS 0.37 (0.37) v 0.22 (0.22) * 0.26 (0.26) * 0.58 (0.58) * 0.24 (0.24) * 0.30 (0.30) * 0.07 (0.07) * 0.13 (0.13) * 0.17 (0.17) *

FCM 0.33 (0.38) * 0.30 (0.37) * 0.32 (0.38) * 0.59 (0.62) 0.31 (0.52) * 0.35 (0.56) * 0.72 (0.73) v 0.59 (0.63) * 0.48 (0.50) *
PCM 0.30 (0.31) * 0.33 (0.33) * 0.35 (0.36) * 0.16 (0.16) * 0.29 (0.30) * 0.31 (0.33) * 0.51 (0.51) * 0.13 (0.13) * 0.17 (0.17) *

EPCM 0.29 (0.34) * 0.26 (0.30) * 0.31 (0.32) * 0.49 (0.49) * 0.23 (0.25) * 0.30 (0.32) * 0.72 (0.72) v 0.48 (0.48) * 0.49 (0.50) *
IT2PFPCM 0.36 (0.38) v 0.32 (0.33) * 0.33 (0.35) * 0.57 (0.58) * 0.40 (0.40) * 0.32 (0.32) * 0.66 (0.66) v 0.60 (0.61) * 0.47 (0.48) *

AC 0.30 (0.30) * 0.33 (0.33) * 0.34 (0.34) * 0.15 (0.15) * 0.25 (0.25) * 0.32 (0.32) * 0.08 (0.08) * 0.13 (0.13) * 0.17 (0.17) *
DBSCAN 0.39 (0.39) v 0.39 (0.39) v 0.36 (0.36) 0.46 (0.48) * 0.47 (0.49) * 0.48 (0.49) * 0.08 (0.08) * 0.13 (0.13) * 0.17 (0.17) *

DPC 0.33 (0.33) * 0.33 (0.35) * 0.34 (0.36) * 0.53 (0.53) * 0.56 (0.56) * 0.56 (0.56) * 0.70 (0.72) v 0.60 (0.60) * 0.44 (0.49) *
SEC 0.23 (0.34) * 0.23 (0.31) * 0.22 (0.30) * 0.01 (0.11) * 0.05 (0.25) * 0.07 (0.32) * 0.23 (0.42) * 0.02 (0.09) * 0.04 (0.12) *

LWEA 0.33 (0.33) * 0.36 (0.36) 0.36 (0.36) 0.15 (0.15) * 0.25 (0.25) * 0.32 (0.32) * 0.08 (0.08) * 0.13 (0.13) * 0.17 (0.17) *
HDC 0.35 (0.36) 0.35 (0.36) 0.37 (0.39) 0.60 (0.64) 0.64 (0.68) 0.64 (0.69) 0.63 (0.63) 0.61 (0.64) 0.52 (0.56)

Summary (8/0/3) (8/2/1) (8/3/0) (10/1/0) (11/0/0) (11/0/0) (7/0/4) (11/0/0) (11/0/0)

Dataset Hepatitis Breast Wine

Noise(%) 5 10 15 5 10 15 5 10 15

k-means 0.23 (0.23) * 0.30 (0.30) * 0.08 (0.29) * 0.11 (0.56) * 0.13 (0.13) * 0.08 (0.14) * 0.12 (0.59) * 0.13 (0.13) * 0.13 (0.59) *
MS 0.22 (0.22) * 0.23 (0.23) * 0.25 (0.25) * 0.67 (0.67) v 0.13 (0.13) * 0.16 (0.16) * 0.43 (0.43) * 0.13 (0.13) * 0.16 (0.16) *

FCM 0.23 (0.23) * 0.30 (0.30) * 0.29 (0.29) 0.71 (0.71) v 0.52 (0.53) * 0.46 (0.46) * 0.76 (0.76) * 0.63 (0.72) * 0.74 (0.74) *
PCM 0.23 (0.23) * 0.29 (0.30) * 0.29 (0.29) 0.71 (0.72) v 0.13 (0.13) * 0.14 (0.14) * 0.42 (0.44) * 0.13 (0.13) * 0.49 (0.49) *

EPCM 0.18 (0.19) * 0.32 (0.32) v 0.28 (0.29) 0.70 (0.71) v 0.55 (0.56) v 0.53 (0.54) 0.65 (0.66) * 0.62 (0.65) * 0.78 (0.78) v
IT2PFCM 0.23 (0.23) * 0.16 (0.16) * 0.21 (0.21) * 0.62 (0.65) v 0.54 (0.55) 0.55 (0.55) v 0.48 (0.51) * 0.52 (0.56) * 0.56 (0.61) *

AC 0.23 (0.23) * 0.30 (0.30) * 0.04 (0.04) * 0.07 (0.07) * 0.13 (0.13) * 0.07 (0.07) * 0.04 (0.04) * 0.13 (0.13) * 0.11 (0.11) *
DBSCAN 0.29 (0.29) v 0.26 (0.26) * 0.25 (0.25) * 0.67 (0.67) v 0.64 (0.64) v 0.55 (0.55) v 0.59 (0.59) * 0.55 (0.55) * 0.53 (0.53) *

DPC 0.22 (0.22) * 0.25 (0.25) * 0.25 (0.25) * 0.64 (0.64) v 0.65 (0.66) v 0.26 (0.27) * 0.65 (0.69) * 0.64 (0.64) * 0.62 (0.66) *
SEC 0.01 (0.18) * 0.04 (0.30) * 0.01 (0.04) * 0.23 (0.56) * 0.02 (0.13) * 0.03 (0.14) * 0.35 (0.63) * 0.02 (0.13) * 0.33 (0.63) *

LWEA 0.18 (0.18) * 0.30 (0.30) * 0.04 (0.04) * 0.07 (0.07) * 0.13 (0.13) * 0.07 (0.07) * 0.04 (0.04) * 0.13 (0.13) * 0.11 (0.11) *
HDC 0.26 (0.28) 0.31 (0.32) 0.29 (0.30) 0.52 (0.52) 0.54 (0.54) 0.53 (0.55) 0.83 (0.83) 0.80 (0.80) 0.75 (0.77)

Summary (10/0/1) (10/0/1) (8/3/0) (4/0/7) (7/1/3) (8/1/2) (11/0/0) (11/0/0) (10/0/1)

t-test results are summarised at the end of each subtable of
Tables VI and VII, by counting the number of statistically bet-
ter, equivalent, or worse cases for HDC in comparison to other
compared algorithms; in particular, better and worse cases are
indicated by “*” and “v” in the tables whilst equivalent cases
are represented by blank spaces. For example, (10/1/0) in the
column Iris with 10% noise in Table VI expresses that the
average clustering result led by the proposed HDC algorithm
is better than 10 compared methods, equally well with 1
compared method, and worse than 0 compared method. It can

be clearly seen from these tables that the statistical results of
HDC are better than other methods in most cases based on both
metrics NMI and HS. Especially based on NMI, the proposed
HDC algorithm surpasses all other compared approaches on
nearly half of the datasets. For other datasets and the HS
metric, HDC outperforms most of the compared algorithms as
well. Statistical analysis based on 100 repeated experiments
proves the better stability of the proposed HDC algorithm in
reference to the employed competitors in this work.
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TABLE VII
HOMOGENEITY SCORES OF DIFFERENT CLUSTERING ALGORITHMS ON BENCHMARK DATASETS WITH DIFFERENT PROPORTIONS OF NOISE

Dataset Iris Heart Led7digit

Noise(%) 5 10 15 5 10 15 5 10 15

k-means 0.60 (0.60) * 0.39 (0.62) * 0.13 (0.62) * 0.25 (0.33) * 0.07 (0.07) * 0.07 (0.07) * 0.43 (0.44) * 0.42 (0.45) * 0.42 (0.44) *
MS 0.60 (0.60) * 0.62 (0.62) * 0.12 (0.12) * 0.05 (0.05) * 0.10 (0.10) * 0.13 (0.13) * 0.05 (0.05) * 0.09 (0.09) * 0.13 (0.13) *

FCM 0.79 (0.80) v 0.74 (0.80) * 0.68 (0.72) * 0.31 (0.33) * 0.30 (0.32) * 0.32 (0.33) * 0.47 (0.47) 0.46 (0.46) * 0.44 (0.44) *
PCM 0.53 (0.54) * 0.59 (0.60) * 0.50 (0.51) * 0.25 (0.26) * 0.06 (0.06) * 0.06 (0.07) * 0.47 (0.50) * 0.44 (0.45) * 0.34 (0.36) *

EPCM 0.74 (0.75) * 0.78 (0.78) 0.63 (0.63) * 0.32 (0.36) * 0.38 (0.38) v 0.31 (0.33) * 0.37 (0.43) * 0.44 (0.47) * 0.46 (0.48) *
IT2PFCM 0.74 (0.74) * 0.59 (0.61) * 0.63 (0.63) * 0.33 (0.34) 0.26 (0.27) * 0.18 (0.18) * 0.46 (0.48) * 0.44 (0.44) * 0.46 (0.47) *

AC 0.60 (0.60) * 0.09 (0.09) * 0.12 (0.12) * 0.03 (0.03) * 0.07 (0.07) * 0.07 (0.07) * 0.42 (0.42) * 0.40 (0.40) * 0.41 (0.41) *
DBSCAN 0.57 (0.57) * 0.56 (0.56) * 0.58 (0.58) * 0.24 (0.24) * 0.23 (0.23) * 0.22 (0.22) * 0.50 (0.50) v 0.46 (0.48) * 0.46 (0.49)

DPC 0.71 (0.71) * 0.62 (0.62) * 0.60 (0.60) * 0.22 (0.22) * 0.14 (0.14) * 0.07 (0.07) * 0.00 (0.00) * 0.00 (0.00) * 0.00 (0.00) *
SEC 0.42 (0.60) * 0.36 (0.56) * 0.09 (0.60) * 0.15 (0.25) * 0.01 (0.07) * 0.01 (0.07) * 0.40 (0.48) * 0.42 (0.49) * 0.38 (0.47) *

LWEA 0.60 (0.60) * 0.56 (0.56) * 0.12 (0.12) * 0.03 (0.03) * 0.07 (0.07) * 0.07 (0.07) * 0.44 (0.44) * 0.44 (0.44) * 0.42 (0.42) *
HDC 0.77 (0.79) 0.77 (0.81) 0.78 (0.79) 0.33 (0.34) 0.34 (0.36) 0.36 (0.36) 0.48 (0.50) 0.47 (0.50) 0.47 (0.49)

Summary (10/0/1) (10/1/0) (11/0/0) (10/1/0) (10/0/1) (11/0/0) (9/1/1) (11/0/0) (10/1/0)

Dataset Glass Newthyroid Seeds

Noise(%) 5 10 15 5 10 15 5 10 15

k-means 0.26 (0.27) * 0.26 (0.27) * 0.29 (0.29) * 0.09 (0.09) * 0.17 (0.17) * 0.24 (0.24) * 0.12 (0.33) * 0.09 (0.09) * 0.12 (0.12) *
MS 0.28 (0.28) * 0.15 (0.15) * 0.20 (0.20) * 0.57 (0.57) v 0.17 (0.17) * 0.24 (0.24) * 0.05 (0.05) * 0.09 (0.09) * 0.12 (0.12) *

FCM 0.33 (0.39) v 0.30 (0.38) 0.31 (0.35) * 0.52 (0.55) * 0.23 (0.43) * 0.28 (0.48) * 0.72 (0.73) v 0.56 (0.61) * 0.43 (0.44) *
PCM 0.21 (0.22) * 0.26 (0.26) * 0.28 (0.29) * 0.10 (0.10) * 0.17 (0.21) * 0.23 (0.25) * 0.44 (0.44) * 0.09 (0.09) * 0.12 (0.12) *

EPCM 0.30 (0.34) * 0.27 (0.30) * 0.30 (0.30) * 0.35 (0.38) * 0.16 (0.17) * 0.22 (0.24) * 0.72 (0.72) v 0.41 (0.41) * 0.42 (0.44) *
IT2PFCM 0.34 (0.36) v 0.30 (0.31) 0.30 (0.32) * 0.48 (0.50) * 0.30 (0.31) * 0.24 (0.25) * 0.65 (0.66) v 0.42 (0.44) * 0.44 (0.45) *

AC 0.21 (0.21) * 0.25 (0.25) * 0.27 (0.27) * 0.09 (0.09) * 0.17 (0.17) * 0.24 (0.24) * 0.05 (0.05) * 0.09 (0.09) * 0.12 (0.12) *
DBSCAN 0.30 (0.30) * 0.30 (0.30) 0.28 (0.28) * 0.42 (0.43) * 0.43 (0.45) * 0.45 (0.46) * 0.05 (0.05) * 0.09 (0.09) * 0.12 (0.12) *

DPC 0.34 (0.34) v 0.34 (0.36) v 0.33 (0.36) 0.50 (0.52) * 0.48 (0.50) * 0.48 (0.48) * 0.70 (0.72) v 0.50 (0.55) * 0.44 (0.44) *
SEC 0.20 (0.30) * 0.20 (0.28) * 0.19 (0.26) * 0.01 (0.06) * 0.03 (0.17) * 0.05 (0.24) * 0.17 (0.33) * 0.01 (0.05) * 0.03 (0.08) *

LWEA 0.23 (0.23) * 0.27 (0.27) * 0.29 (0.29) * 0.09 (0.09) * 0.17 (0.17) * 0.24 (0.24) * 0.05 (0.05) * 0.09 (0.09) * 0.12 (0.12) *
HDC 0.31 (0.31) 0.30 (0.30) 0.34 (0.36) 0.54 (0.59) 0.55 (0.58) 0.57 (0.61) 0.62 (0.62) 0.57 (0.63) 0.51 (0.56)

Summary (8/0/3) (7/3/1) (10/1/0) (10/0/1) (11/0/0) (11/0/0) (7/0/4) (11/0/0) (11/0/0)

Dataset Hepatitis Breast Wine

Noise(%) 5 10 15 5 10 15 5 10 15

k-means 0.16 (0.16) * 0.22 (0.22) * 0.06 (0.22) * 0.08 (0.53) * 0.09 (0.09) * 0.06 (0.10) * 0.09 (0.49) * 0.08 (0.08) * 0.10 (0.51) *
MS 0.16 (0.16) * 0.23 (0.23) * 0.24 (0.24) * 0.65 (0.65) v 0.11 (0.11) * 0.14 (0.14) * 0.40 (0.40) * 0.09 (0.09) * 0.13 (0.13) *

FCM 0.16 (0.16) * 0.22 (0.22) * 0.29 (0.30) * 0.70 (0.70) v 0.48 (0.49) * 0.45 (0.45) * 0.76 (0.76) * 0.60 (0.71) * 0.73 (0.74) *
PCM 0.16 (0.16) * 0.21 (0.22) * 0.22 (0.22) * 0.69 (0.69) v 0.09 (0.09) * 0.24 (0.24) * 0.38 (0.39) * 0.08 (0.08) * 0.43 (0.43) *

EPCM 0.11 (0.12) * 0.37 (0.37) v 0.28 (0.30) * 0.69 (0.70) v 0.54 (0.55) v 0.53 (0.53) v 0.65 (0.66) * 0.63 (0.65) * 0.77 (0.78) v
IT2PFCM 0.16 (0.16) * 0.13 (0.13) * 0.25 (0.25) * 0.65 (0.68) v 0.52 (0.55) v 0.55 (0.56) v 0.41 (0.43) * 0.46 (0.47) * 0.50 (0.53) *

AC 0.16 (0.16) * 0.22 (0.22) * 0.03 (0.03) * 0.04 (0.04) * 0.09 (0.09) * 0.05 (0.05) * 0.02 (0.02) * 0.08 (0.08) * 0.08 (0.08) *
DBSCAN 0.29 (0.29) 0.25 (0.25) * 0.24 (0.24) * 0.68 (0.68) v 0.65 (0.65) v 0.54 (0.54) v 0.69 (0.69) * 0.65 (0.65) * 0.62 (0.62) *

DPC 0.25 (0.25) * 0.26 (0.26) * 0.29 (0.29) * 0.65 (0.65) v 0.64 (0.64) v 0.30 (0.31) * 0.73 (0.73) * 0.71 (0.71) * 0.70 (0.70) *
SEC 0.00 (0.12) * 0.03 (0.22) * 0.00 (0.03) * 0.22 (0.52) * 0.01 (0.09) * 0.02 (0.10) * 0.27 (0.49) * 0.01 (0.08) * 0.26 (0.50) *

LWEA 0.12 (0.12) * 0.22 (0.22) * 0.03 (0.03) * 0.04 (0.04) * 0.09 (0.09) * 0.05 (0.05) * 0.02 (0.02) * 0.08 (0.08) * 0.08 (0.08) *
HDC 0.29 (0.31) 0.28 (0.28) 0.30 (0.31) 0.48 (0.48) 0.50 (0.50) 0.50 (0.53) 0.83 (0.83) 0.80 (0.80) 0.74 (0.76)

Summary (10/1/0) (10/0/1) (11/0/0) (4/0/7) (7/0/4) (8/0/3) (11/0/0) (11/0/0) (10/0/1)

V. CONCLUSION

Inspired by the fuzzy-rough set theory, this paper proposes
the concept of harmonic discrepancy and associated harmonic
discrepancy clustering (HDC) algorithm, which clusters data
from the perspectives of both separability and rationality
of clusters. Also, this HDC algorithm benefits from a non-
parametric noise detection strategy for better applicability on
noisy datasets. Experimental results demonstrate that HDC en-
joys sound effectiveness and stability on the lane segmentation
and benchmark datasets.

Whilst promising, the work also opens up an avenue for
further development. For instance, it would be interesting to
investigate an extension of HDC for multi-density clusters.
In addition, an investigation into potential time efficiency
improvement remains active research. Moreover, HDC can
deal with noise without the assistance of pre-defined noise
parameters, which is promising for complex and large-scale
real-world datasets. Therefore, further applications, such as
medical image analysis [46], [47], would construct the foun-
dation for a broader spectrum of future research.
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