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Out-of-Sample Extension of the Fuzzy Transform
Giuseppe Patané

Abstract—This paper addresses the definition and computation
of the out-of-sample membership functions and the resulting out-
of-sample FT, which extend their discrete counterparts to the
continuous case. Through the out-of-sample FT, we introduce a
coherent analysis of the discrete and continuous FTs, which is
applied to extrapolate the behaviour of the FT on new data
and to achieve an accurate approximation of the continuous
FT of signals on arbitrary data. To this end, we apply either
an approximated approach, which considers the link between
integral kernels and the spectrum of the corresponding Gram
matrix, or an interpolation of the discrete kernel eigenfunctions
with radial basis functions. In this setting, we show the generality
of the proposed approach to the input data (e.g., graphs, 3D
domains) and signal reconstruction.

Index Terms—FT, Data-driven membership functions, Radial
basis functions, Signal approximation, Data analysis

I. INTRODUCTION

Due to the increasing availability of data, which is supported
by ongoing technological advances in the acquisition, stor-
age, and processing, several transformations (e.g., the Fourier
transform, the Laplace transform, and the Fuzzy transform)
have been proposed to solve problems that spread from signal
analysis to the solution of partial differential equations, from
the analysis to the approximation of signals, from fuzzy logic
to fuzzy modelling. To deal with the definition of the Fuzzy
transform (FT, for short) on arbitrary data (Sect. II), the data-
driven FT [1] and the continuous FT [2] have been defined by
applying the main concepts and results of spectral signal pro-
cessing and manifold learning to the FT, e.g., dimensionality
reduction [3] and kernels’ eigenfunctions [4]. The data-driven
and continuous FTs provide a link between the fuzzy theory
and previous work on diffusion kernels [5] and wavelets [5]–
[8], and geometric deep learning [9].

An input signal f : Ω → R is generally known at a set P
of points and the corresponding FT Ff is computable only
at P . As a result, we cannot estimate the value of Ff at
a new point not belonging to P . Increasing the sampling of
Ff , and consequently of the reconstructed signal F−1(Ff),
will require adding new points in P and evaluating the
corresponding function values, the FT, and its inverse. This
last option is not generally feasible (e.g., if the signal values
have been experimentally measured or their evaluation is time-
consuming) and requires computing the FT and its inverse
again. Since the FT of a continuous signal is still continuous,
we expect its behaviour to be accurately recovered at any
point from a set of enough dense signal samples without
further resampling the signal itself. The need to extrapolate
the behaviour of the FT Ff and of the reconstructed signal
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F−1(Ff) out of the set of input samples is further justified
by the observation that most of the signals exist outside the
input domain. For instance, we can measure the heat values
at a set of points on a thin plate (i.e., a bounded 2D domain)
but recover the heat distribution on and around the plate.

For these reasons, we address the problem of defining the
out-of-sample membership functions and the resulting out-of-
sample FT (Sect. III), which extend their discrete counterparts
to the continuous case. Through the out-of-sample FT, we
introduce a coherent analysis of the discrete and continuous
FTs, which extrapolate the behaviour of the FT on new data
and achieve an accurate approximation of the continuous FT
of signals on arbitrary data (Fig. 1). We also characterise
the data-driven FT [1], [2] by representing the normalisation
factor in terms of the input filter and the area/volume of
the input domain (Sect. IV). As main properties of the out-
of-sample extension of the FT, we discuss its linearity and
continuity, self-adjointness and eigensystem, convergence and
fast computation.

To this end, we apply (i) an approximated approach
(Sects. V, VI) that considers the link between integral kernels
and the spectrum of the corresponding Gram matrix. The out-
of-sample membership functions and the related FT are more
robust to noisy data and tailored to address signal denoising
and multi-scale representations. Alternatively, we apply (ii) an
interpolation of the discrete kernel eigenfunctions with radial
basis functions, which is more accurate for “noise-free” data
and useful for super-resolution and feature detection. Then, we
characterise the relations between Fuzzy theory and manifold
learning, explicitly focusing on integral and spectral kernels.
The out-of-sample membership functions and FT on large
data are efficiently computed by approximating the L2(Ω)
scalar product with a pseudoscalar product, which encodes
the weights associated with graph edges or the area/volume
of Voronoi regions for data represented as surface/volume
meshes and preserves the main properties of the out-of-sample
extension of the data-driven FT. Finally, we discuss different
tests on the out-of-sample FT and signal reconstruction in the
experimental part.

II. PREVIOUS WORK

We review the FT (Sect. II-A), its extension to continuous
FT [2] and the data-driven FT [1] (Sect. II-B).

A. Fuzzy tranform

Let us consider the space L2(Ω) of square inte-
grable functions defined on a compact and connected do-
main Ω of Rn, endowed with the L2(Ω) scalar prod-
uct ⟨f, g⟩2 :=

∫
Ω
f(p)g(p)dp and the corresponding norm
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∥f∥22 :=
∫
Ω
|f(p)|2dp. On the space C0(Ω) of continu-

ous functions defined on Ω, we consider the L2(Ω)
and the L∞(Ω)-norm ∥f∥∞ := maxp∈Ω{|f(p)|}. Given a
set P := {pi}ni=1 of points in Ω, a family of functions
A := {Ai : Ω → [0, 1]}ni=1 is a fuzzy partition of Ω if

• Ai is continuous, has its unique maximum 1 at pi;
• for all p ∈ Ω,

∑n
i=1Ai(p) = 1,

for each i. Then, the FT [10]–[13] of a function f : Ω → R
is defined as the array Fn := (Fi)

n
i=1 ∈ Rn with components

Fi :=

∫
Ω
Ai(p)f(p)dp∫
Ω
Ai(p)dp

, i = 1, . . . , n. (1)

Since the function f is known at a set of points Q := {qi}si=1

in Ω, the definition (1) is replaced by the discrete FT
Fn := (Fi)

n
i=1 ∈ Rn, whose components are

Fi :=

∑s
j=1Ai(qj)f(qj)∑s

j=1Ai(qj)
, i = 1, . . . , n, s ≤ n.

The discrete FT is applied to recover an approximation fF,n

of the function f underlying the set of values (f(qi))
s
i=1

through the inverse FT [10], which is defined as
fF,n(p) :=

∑n
i=1 FiAi(p), p ∈ Rd.

FT as integral operator: Given a symmetric kernel
A : Ω× Ω → [0, 1] (i.e., A(p,q) = A(q,p), p,q ∈ Ω), the
continuous FT [1], [2] of f : Ω → R is defined as the con-
tinuous function F : Ω → R

F (p) :=

∫
Ω
A(p,q)f(q)dq

D(p)
=

∫
Ω

K(p,q)f(q)dq

=: (LKf)(p), D(p) :=

∫
Ω

A(p,q)dq.

(2)

Here, LK is the integral operator induced by the normalised
kernel

K : Ω× Ω → R, K(p,q) :=
A(p,q)

D(p)
, (3)

Noting that Fi = F (pi) = (LKf)(pi) is the i-th compo-
nent Fi of the FT of f , the continuous FT F (·) interpolates
the values Fn := (Fi)

n
i=1 of the discrete FT. According to

Eq. (2), any FT associated with the membership function
Ap : Ω → R is re-written as an integral operator induced by
the normalised kernel (3) with A(p,q) := Ap(q). Viceversa,
any symmetric kernel K : Ω× Ω → R can be considered as
a membership function Ap(q) : Ω → R, Ap := K(p,q), and
the corresponding FT is equal to Eq. (2).

B. Data-driven Fuzzy transform

The data-driven membership functions and FT [1], [2]
are defined in terms of the Laplacian orthonormal eigen-
system (λn, ϕn)

+∞
n=0 [14], ∆ϕn = λnϕn, with λ0 = 0 and

λn ≤ λn+1. Given a strictly, positive, continuous, and square-
integrable filter φ : R+ → R+, we consider the power series
φ(s) =

∑+∞
n=0 αns

n and define the data-driven FT

LKφ
f := φ(∆)f :=

+∞∑
n=0

φ(λn)⟨f, ϕn⟩2ϕn = ⟨Kφ, f⟩2, (4)

Fig. 1. Given a function f : Ω → R, the scheme summarised the definition
of the out-of-sample extensions Ef , E(Ff) of f and its FT Ff .

where Kφ(p,q) :=
∑+∞

n=0 φ(λn)ϕn(p)ϕn(q) is the spec-
tral kernel and A(p, ·) := Kφ(p, ·) = φ(∆)δp is the spec-
tral membership function at p. Selecting the filter func-
tion, we define different classes of membership func-
tions; main examples are the diffusion (φt(s) := exp (−st)),
poly-harmonic (φ̃(s) := (s+ α)−k/2), and commute-time
(φ̃(s) := (s+ α)−1/2) filters [9], [15], [16], α > 0.

III. OUT-OF-SAMPLE FUZZY TRANSFORM

In a general setting, an input signal f : Ω → R is known at
a set P of points and the corresponding FT Ff is computable
only at P . As a result, we cannot estimate the value of Ff at
a new point not belonging to P . Increasing the sampling of
Ff , and consequently of the reconstructed signal F−1(Ff),
will require adding new points in P and evaluating the
corresponding function values, the FT, and its inverse. This
last option is not generally feasible (e.g., if the signal values
have been experimentally measured or their evaluation is time-
consuming) and requires computing the FT and its inverse
again.

Since the FT of a continuous signal is still continuous,
we expect that its behaviour can be accurately recovered
at any point from a set f of dense signal samples. To
this end, we address the out-of-sample extension of the
corresponding FT Ff =: F, i.e. the computation of a function
E(Ff) : Rd → R such that E(Ff)(pi) = (Ff)(pi) = Fi,
i = 1, . . . , n. The out-of-sample extension of the FT is
a natural way to recover the continuous formulation of
the FT from its discrete version. More precisely we
study the relationship between the discrete and continuous
FTs through the sampling operator R : C0(Ω) → Rs,
f 7→ Rf := f |P := (f(qi))

s
i=1 = f , and the out-of-

sample operator E : Rs → C0(Ω), f = (fi)
s
i=1 7→ Ef ,

with (Ef)(qi) = fi, ∀i. We require that the out-of-sample
operator is linear: i.e., E(αf + βg) = αEf + βEg, ∀α, β,
∀f ,g.

Applying the out-of-sample operator to the set
f := (f(qi))

s
i=1 of the f -values at Q, we consider the

diagram

f ∈ Rs 7→ Ef ∈ C0(Ω) 7→ (LKEf) ∈ C0(Ω).

This article has been accepted for publication in IEEE Transactions on Fuzzy Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2023.3326657

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON FUZZY SYSTEMS 3

Kernel-based out-of-sample Interpolating out-of-sample
ext. of singular vect. ext. of kernel eigenvect.

ui : Ω → R Eui : Rd → R ϕi : Ω → R Eϕi : Rd → R
(u1, Eu1) (ϕ1, Eϕ1)

(u2, Eu2) (ϕ2, Eϕ2)

(u3, Eu3) (ϕ3, Eϕ3)

(u4, Eu4) (ϕ4, Eϕ4)

(u5, Eu5) (ϕ5, Eϕ5)

Fig. 2. Color-map and level-sets of the input singular vectors and Laplacian
eigenvectors. Iso-surfaces of the kernel-based (Sect. IV) out-of-sample exten-
sion of the singular vectors and interpolating out-of-sample extension of the
kernel eigenvectors (Sect. IV-B).

In this setting, the error

∥LKf − LKEf∥2 ≤ ∥K∥2∥f − Ef∥2 (5)

between the data-driven FTs LKf and LKEf is guided by the
accuracy of the out-of-sample extension Ef of f .

In our examples, a signal f : Ω → R is represented through
its colour-map and level-sets γα := {p ∈ Ω : f(p) = α)},
α ∈ R. Then, we represent the out-of-sample exten-
sion Ef : Rd → R through its colormap and isosurfaces
Σα := {p ∈ Rd : Ef(p) = α}; analogously, for the out-of-
sample extension E(Ff) of the discrete generalised FT. The
colour map varies the hue component of the hue-saturation-
value colour model; the colours begin with red, pass through
yellow, green, cyan, blue, and magenta, and return to red.

a) Kernel-based out-of-sample FT: Selecting s seed
points over n input points and recalling Eq. (3), we
evaluate the n× s kernel matrix K := (K(pi,qj))

j=1,...,s
i=1,...,n,

K(pi,qj) :=
A(pi,qj)
D(pi)

, where D(pi) :=
∫
Ω
A(pi,q)dq

is approximated as D(pi) ≈
∑s

j=1A(pi,qj). Then,

Kernel-based out-of-sample Interpolating out-of-sample
ext. of singular vect. ext. of kernel eigenvect.

ui : Ω → R Eui : Rd → R ϕi : Ω → R Eϕi : Rd → R
(u1, Eu1) (ϕ1, Eϕ1)

(u1, Eu2) (ϕ2, Eϕ2)

(u3, Eu3) (ϕ3, Eϕ3)

(u4, Eu4) (ϕ4, Eϕ4)

Fig. 3. Color-map and level-sets of the input singular vectors ui and Laplacian
eigenvectors ϕi. Iso-surfaces of the kernel-based (Sect. IV) out-of-sample
extension Eui, Eϕi of the singular vectors and interpolating out-of-sample
extension of the kernel eigenvectors (Sect. IV-B).

the weighted generalised FT is FK = Kf = D−1Af ,
where A := (A(pi,pj))i,j and D := (diag(D(pi)))

n
i=1. In

particular, K1 = 1, i.e., 1 is a singular vector of K and
the corresponding singular value is 1. We compute the
singular value decomposition [17] (Ch. 2) UKV = Γ of
the kernel matrix, with orthogonality conditions U⊤U = I
and V⊤V = I, U ∈ Rn×n, V ∈ Rs×s. Here, Γ ∈ Rn×s has
p := min{n, s} non-null diagonal entries. According to the
relations KV = UΓ, K⊤U = VΓ⊤, we rewrite the left and
right eigenvectors as (Figs., 2, 3, 1st column){

ui(pl) =
1
σi

∑s
j=1K(pl,qj)vi(qj);

vi(ql) =
1
σi

∑n
j=1K(pj ,ql)ui(pj);

i = 1, . . . , p.

Indeed, the functions{
ui(p) =

1
σi

∑s
j=1K(p,qj)vi(qj);

vi(q) =
1
σi

∑n
j=1K(pj ,q)ui(pj);
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Fig. 4. Statistics of the kernel-based out-of-sample spectral FT on (a) an
input and up-sampled domain Ω, represented by a point set P and its
resampling Psplit. See also Fig. 5.

f : Ω → R Ef |Psplit : Psplit → R

Fig. 5. With reference to Fig. 5, colour map and level sets of an input signal f
and its out-of-sample extension Ef : Rd → R and its restriction to Psplit,
Ef |Psplit : Psplit → R, on an upsampling Psplit of Ω. See also Fig. 7.

are the out-of-sample extensions of ui and vi, respectively.
Equivalently, E(ui) = ui and R(ui) = ui. The out-of-sample
kernel interpolates the entries of K, i.e.,

K(pa,qb) =

p∑
i=1

σiui(pa)vi(qb)

= e⊤a

p∑
i=1

σiu
⊤
i vieb. = K(a, b).

Furthermore, the functions (ui(·))ni=1 are orthonormal with
respect to the pointwise scalar product at P , i.e.,

⟨ua, ub⟩ :=
n∑

i=1

ua(pi)ub(pi) = u⊤
a ub = δab,

as a consequence of the orthogonality of U.
Through the out-of-sample extensions of the left and

right-hand-side singular eigenvectors, we compute the out-
of-sample extensions of the FT. Representing the dis-

Fig. 6. Statistics of the kernel-based out-of-sample spectral FT on (a) an
input and up-sampled domain Ω, represented by a point set P and its
resampling Psplit. See also Fig. 7.

crete signal f =
∑n

i=1⟨f ,ui⟩2ui as a linear combina-
tion of the singular vectors U := (ui)

n
i=1, the function

(Ef)(p) :=
∑n

i=1⟨f ,ui⟩Dui(p) is the out-of-sample exten-
sion of f , i.e.,

(Ef)(pj) =

n∑
i=1

⟨f ,ui⟩2ui(pj) =

n∑
i=1

⟨f ,ui⟩2ui = f(pj).

Then, the out-of-sample spectral membership functions are

A(pj ,q) := K(pj ,q) :=

p∑
i=1

σiui(pj)vi(q),

and the out-of-sample FT is

E(LKf)(p) =

p∑
i=1

σi⟨f ,ui⟩2vi(p). (6)

Eq. (6) can also be derived from Eq. (2) as follows∫
Ω

K(p,q)f(q)dq =

p∑
i=1

σivi(p)

∫
Ω

f(q)ui(q)dq

=

p∑
i=1

σi⟨f, ui⟩2vi(p) =
p∑

i=1

σi⟨f ,ui⟩2vi(p) = E(LKf)(p).

From the relation K := D−1A, we have that A = DK and
the out-of-sample membership functions are

A(pj ,q) = d(j)K(pj ,q) = d(j)

n∑
i=1

σiui(pj)vi(q).

b) Interpolating out-of-sample FT: Selecting s = n and
pi = qi, ∀i, the singular value decomposition of the symmet-
ric kernel matrix K ∈ Rn×n is replaced with its generalised
eigendecomposition Kxi = λiDxi, with ui = vi = xi and
σi = λi, x⊤

i Dxj = δij , ∀i, j. In this case, the out-of-sample
extension of the Laplacian eigenvectors minimises the energy

E :=

n∑
i=1

[
K(p,pi)−

n∑
l=1

λld(l)ϕl(p)ϕl(pi)

]2

.
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f : Ω → R Ef |Psplit : f Ef |Psplit

Psplit → R

Fig. 7. With reference to Fig. 6, colour map and level sets of the input
sognal f and its out-of-sample extension Ef : Rd → R and its restriction
to Psplit, Ef |Psplit : Psplit → R, on an upsampling Psplit of Ω.

Firstly, we compute its derivatives

∂ϕkE = 2

n∑
i=1

[
K(p,pi)−

n∑
l=1

λld(i)ϕl(p)ϕl(pi)

]
λkϕk(pi)

= 2λk

n∑
i=1

K(p,pi)ϕk(pi)− 2

n∑
i,l=1

λld(l)ϕl(p)ϕl(pi)λkϕk(pi).

Recalling that the Laplacian eigenvectors are orthonormal
n∑

i=1

ϕl(pi)ϕk(pi)d(i) = x⊤
k Dxl = δkl,

the condition ∂ϕk
E = 0 reduces to the linear condi-

tions
∑n

i=1K(p,pi)d(i)ϕk(pi)− ϕk(p)λk = 0, ∀k, i.e.,
(Figs. 2, 3 2nd column)

ϕk(p) =
1

λk

n∑
i=1

d(i)K(p,pi)xk(i).

In this case, the out-of-sample FT is (Figs. 4, 5)

E(LKf)(q) =

n∑
i=1

λid(i)⟨f ,xi⟩2ϕi(q).

The approximation accuracy and convergence of E(LKf) to
LKf will be discussed in Sect. V.

c) Experimental tests: For a given sampling P of Ω, we
compute the generalised eigenvectors of (K,D), where K
is the Gram matrix K := (K(pi,pj))

n
i,j=1, induced by the

Gaussian kernel K(p,q) := exp(∥p− q∥2/σ), σ is the width
parameter, and D is the diagonal matrix whose entries are the
sum of the rows of K. The behaviour of the colour map, the
shape and the distribution of the level sets show the analogous
behaviour of the input and out-of-sample extension of the
eigenfunctions, as confirmed by the low approximation er-
ror ϵ∞. The out-of-sample extension has a generally smoother
behaviour as a matter of its representation in terms of a smooth
kernel (e.g., the Gaussian kernel).

To analyse the properties of the proposed approach
(Figs., 4, 5; Figs., 6, 7), we plot the singular values of the

Fig. 8. Given a signal f : Ω → R, we compute (a) its FT Ff , (b) its FT on an
up-sampling Psplit of Ω, and (c) the kernel-based out-of-sample FT E(Ff).
We also report statistics on the singular values’ distribution, approximation,
and pointwise errors.

Gram matrix K induced by the selected kernel. We select
three samples P50K , P100K , and P150K of a 3D domain Ω,
represented as a triangle mesh. The samplings P100K , P150K

are achieved by splitting each triangle of P50K into four sub-
triangles by joining the midpoint of each edge; in this way, the
new mesh has nV + 3nT vertices, where nV and nT are the
number of vertices and triangles of the input mesh, respec-
tively. We consider the discrete signal f150 := (f(pi))

150K
i=1 ,

achieved by sampling f : Ω → R at the point set P150K of
the domain Ω at the highest resolution with 150K samples.
On these data sets, we evaluate the (a) extrapolation and (b)
maximum errors

(a) ϵi := |f(pi)−Efk(pi)|, k := 50, 100, (b) ϵ∞ := max
i

{ϵi},

between the input f and the out-of-sample extension Ef
evaluated at P50K , P100K , and P150K .

For the results in Figs., 4, 5, 6, 7, the singular values rapidly
decrease to zero, the order of magnitude of the pointwise
error between f at P150K and (Ef50K)|P150K

, (Ef100K)|P150K

remains lower than 1%. The order of magnitude of the
approximation error of the kernel-based approach remains
lower than 10−2. According to Eq. (5) and assuming that
the kernel matrix K is well conditioned, a low error in the
approximation of the signal corresponds to an approximation
of the corresponding generalised FT of the same order of
magnitude.

Analogously to the previous tests, we compute the FT
Ff150K = F150K := (Fi)

150K
i=1 of the input signal f : Ω → R

on the sampling P150K of the domain Ω at the highest
resolution with 150K samples: we consider F150K as our
ground-truth. We also compute the out-of-sample FTs EF50K ,
EF100K : R3 → R of the signal at the lower resolutions of Ω
with 50K and 100K samples and evaluate these two out-
of-sample FTs at P150K . Then, we measure the pointwise
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f : Ω → R Ff : Ω → R
Ef : R3 → R E(Ff) : R3 → R

(a) (b)

Fig. 9. (a) Color map and level sets of an input signal f : Ω → R and iso-
surfaces of its out-of-sample extension Ef : Rd → R, (b) colour map and
level sets of the FT Ff : Ω → R and iso-surfaces of its kernel-based out-of-
sample extension E(Ff) : Rd → R.

Fig. 10. Given a signal f : Ω → R, we compute (a) its FT Ff , (b) its
FT on an up-sampling Psplit of Ω, and (c) the kernel-based out-of-sample
FT E(Ff). We also report statistics on the singular values’ distribution,
approximation, and pointwise errors.

and ℓ∞ errors between the resulting FTs (EF50K)|P150K
,

(EF150K)|P150K
and the ground-truth F150K , thus estimating

the extrapolation capabilities of the out-of-sample FT. In this
case, the order of magnitude of the pointwise error remains
lower than 1%. This behaviour is consistent with the upper
bound in (5) and the accuracy of the out-of-sample extension
of the input signal.

IV. OUT-OF-SAMPLE DATA-DRIVEN FUZZY TRANSFORM

Firstly (Sect. IV-A), we express the data-driven FT in terms
of the spectral filter and the area/volume of the input domain,
thus avoiding the computation of integrals. Then, we introduce
the out-of-sample extension of the data-driven FT (Sect. IV-B).

A. Data-driven Fuzzy transform: unified representation

We characterise the data-driven FTs [1], [2] by explicitly
deriving the normalisation factor in terms of the input filter
and the area/volume of the input domain. Recalling that the
Laplacian eigenfunctions are orthonormal and ϕ0 = 1 is the
eigenfunction associated with the null eigenvalue λ0, we get
the relation ∫

Ω

ϕn(p)dp =

{
0 n ̸= 0;
|Ω| n = 0;

Choosing the corresponding membership functions
Ap : Ω× Ω → R, centred at p and defined as
Ap(q) := Kφ(p,q), we get that

D(p) : =

∫
Ω

Ap(q)dq =

∫
Ω

Kφ(p,q)dq

=

+∞∑
n=0

φ(λn)ϕ(p)

∫
Ω

ϕn(q)dq = φ(0)|Ω|.
(7)

Let us introduce the normalised filter φ̃(s) := φ(s)
φ(0)|Ω| , which

is still positive and belongs to L2(R+). Then, the spectral
membership function centred at p is defined by the action of
the data-driven FT on δp, i.e.,

ψ : = LKφ̃
δp = φ̃(∆)δp

= Kφ̃(p, ·) =
+∞∑
n=0

φ(λn)

φ(0)|Ω|
ϕn(p)ϕn =

1

φ(0)|Ω|
LKφ

δp.

From Eq. (7), we rewrite Eq. (2) as

F (p) =

∫
Ω
A(p,q)f(q)dq

D(p)
=

1

φ(0)|Ω|

+∞∑
n=0

φ(λn)⟨f, ϕn⟩2ϕn(p)

=

∫
Ω

Kφ̃(p,q)f(q)dq = (LKφ̃
f)(p).

(8)
The data-driven FT LKφ̃

is linear and continuous
∥LKφ̃

f∥2 ≤ ∥Kφ̃∥2∥f∥2 ≤ ∥φ∥2

φ(0)|Ω|∥f∥2, self-adjoint
LKφ̃

f = 1
φ(0)|Ω|LKφ

f , and positive-definite, according
to the relation

⟨LKφ̃
f, f⟩2 =

+∞∑
n=0

1

φ(0)|Ω|
|⟨f, ϕn⟩2|2 =

1

φ(0)|Ω|
∥f∥22 ≥ 0.

The data-driven FT is injective if and only if φ is strictly
positive. In fact, LKφ̃

f = LKφ̃
g if and only if

+∞∑
n=0

φ̃(λn)⟨f − g, ϕn⟩2 = 0 ⇐⇒ ⟨f − g, ϕn⟩2 = 0, ∀n,

i.e., f = g. Noting that

L−1
Kφ̃
f = LK1/φ̃

f = φ(0)|Ω|LK1/φ
f = φ(0)|Ω|L−1

Kφ
f,

the inverse data-driven FT is the integral operator induced
by K1/φ̃. Equivalently, g := LKφ̃

f = φ̃(∆)f if and only
if f = φ̃−1(∆)g. If φ̃(∆) is singular (i.e., φ(λi) = 0, for
some i), then we consider its peudoinverse f = φ̃†(∆)g.

Discrete data-driven FT: Assuming that W is a weight
matrix (e.g., the adjacency matrix), whose entry (i, j) is
a strictly positive weight associated with the corresponding
edge, the Laplacian matrix [18] is defined as L̃ := D−1L,
where L := D−W and D is the diagonal matrix whose en-
tries are the sum of the rows of W. The Laplacian matrix is D-
adjoint with respect to the scalar product ⟨f ,g⟩D := f⊤Dg,
f := (f(pi))

n
i=1, i.e., ⟨L̃f ,g⟩D = ⟨f , L̃g⟩D, and its spec-

tral decomposition is LX = DXΛ, X⊤DX = I, where
X := [x1, . . . ,xn] is the eigenvectors’ matrix and Λ is the
diagonal matrix of the eigenvalues (λi)

n
i=1. The discrete

membership functions are represented in matrix form as

Kφ̃ := Xφ̃(Γ)X⊤D =
1

φ(0)|Ω|
Xφ(Γ)X⊤D,

This article has been accepted for publication in IEEE Transactions on Fuzzy Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2023.3326657

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON FUZZY SYSTEMS 7

Statistics Out-of-sample signal Ef Out-of-sample FT E(Ff)
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Fig. 11. (c,e) Color map and level sets of an input signal f : Ω → R and iso-surfaces of its kernel-based out-of-sample extension Ef : Rd → R, (d,f) colour
map and level sets of the FT Ff and iso-surfaces of its out-of-sample extension E(Ff) : Rd → R.

and the discrete data-driven FT is

LKφ̃
f =Eq.(8)

n∑
i=1

φ̃(λi)⟨f ,xi⟩Dxi = φ̃(L̃)f ,

where φ̃(L̃) is the filtered Laplacian matrix.

B. Out-of-sample data-driven Fuzzy transform

For each Laplacian eigenvector xi := (xi(j))
n
j=1.

we compute an out-of-sample extension ψi : Ω → R,
ψi(pj) = xi(j), through an implicit approximation
ψi(p) :=

∑n
j=1 α

(i)
j ψ(∥p− pj∥2), α(i) := (α

(i)
j )nj=1, with

radial basis functions (RBFs) Ψ(p,pi) := ψ(∥p− pi∥2),
i = 1, . . . , n, induced by the generating function ψ : R → R.
Imposing the interpolating conditions

xi(a) = ψi(pa) :=

n∑
j=1

α
(i)
j ψ(∥pa − pj∥2) =

n∑
j=1

Ψ(a, j)α
(i)
j ,

Ψ(i, j) := ψ(∥pi − pj∥2) = Ψ(pi,pj), we get the n× n lin-
ear system Ψα(i) = xi. The coefficient matrix is computed
only once and applied to evaluate all the out-of-sample exten-
sions of the Laplacian eigenvectors. In particular, E(xi) = ψi

and R(ψi) = xi. Rewriting the discrete signal f := (fi)
n
i=1 in

terms of the Laplacian eigenvectors as f =
∑n

i=1⟨f ,xi⟩Dxi,
the function

f(p) :=

n∑
i=1

⟨f ,xi⟩Dψi(p) (9)

is the out-of-sample extension of f ; in fact,

(f(pj))
n
j=1 =

[
n∑

i=1

⟨f ,xi⟩Dψi(pj)

]n

j=1

=

n∑
i=1

⟨f ,xi⟩Dxi = f .

Once we have computed the out-of-sample extension of
the Laplacian eigenvectors, the spectral membership function
at pj is evaluated as Kφ̃(pj ,q) :=

∑n
i=1 φ̃(λi)ψi(pj)ψi(q),

p ∈ Ω, and the corresponding out-of-sample spectral FT is
(Figs. 8, 9, 10, 11)

(LKφ̃
f)(p) = ⟨Kφ̃(p, ·), f⟩2 =

n∑
i=1

φ̃(λi)⟨f, ψi⟩2ψi(p),

(10)
which is analogous to Eq. (4). In a similar way,

Ai(p) =

∫
Ω

Kφ̃(p,q)dq =

n∑
i=1

φ̃(λi)ψi(p)

∫
Ω

ψi(q)dq

=

n∑
i=1

φ̃(λi)ψi(p)

∫
Ω

ψi(q)dq

=

n∑
i=1

φ̃(λi)ψi(p)

∫
Ω

n∑
j=1

α
(i)
j ψ(∥q− pj∥2)

=

n∑
i,j=1

α
(i)
j φ̃(λi)ψi(p)

∫
Ω

ψ(∥q− pj∥2)dq,

where the last integral is easily computed as the generating
function ψ is 1D.

Computation: For the out-of-sample extension with
RBFs, the evaluation of Eq. (10) requires computing the
component

⟨f, ψi⟩2 = ⟨f,
n∑

j=1

α
(i)
j ψ(∥p− pi∥2)⟩2

=

n∑
i=1

α
(i)
j ⟨f, ψ(∥p− pi∥2)⟩2 =

n∑
i=1

α
(i)
j

∫
Ω

f(p)ψ(∥p− pi∥2)dp,
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Fig. 12. Kernel-based out-of-sample extension Ef : Rd → R of the input signal and its kernel-based out-of-sample extension E(Ff) : Rd → R of the FT
on 3D domains.

through quadrature rules with RBFs. Increasing the sampling
density of Ω (Fig. 13), the behaviour of the out-of-sample ex-
tensions of the input signal and the corresponding generalised
FT remain almost unchanged and coherent in terms of the
variation of the colourmap and distribution/shape of the iso-
surfaces. Furthermore, the maximum variation of Ef , Ff , and
E(Ff) on the different samplings is lower than 10−2.

V. APPROXIMATED OUT-OF-SAMPLE DATA-DRIVEN FT
Since the out-of-sample extensions (ψi)

n
i=1 are not or-

thonormal, we introduce a pseudoscalar product that ap-
proximates the L2(Ω) product and makes the out-of-sample
eigenfunctions orthonormal (Sect. V-A). This pseudoscalar
product also induces an approximation of the out-of-sample
FT that is independent of the evaluation of the integral∫
Ω
f(p)ψ(∥p− pi∥2)dp and converges to (10), as the sam-

pling density of Ω increases. The approximated out-of-sample
data-driven FT still satisfies the main properties of the
FT, such as linearity and continuity, self-adjointness and
eigensystem, surjectivity, convergence and fast computation
(Sect. V-B).

A. Pseudoscalar product

Given f, g ∈ C0(Ω) and P := {pi}ni=1 samples of Ω, let us
consider the pseudoscalar product

⟨f, g⟩⋆ := ⟨f ,g⟩D = f⊤Dg, (11)

where f := (f(pi))
n
i=1, g := (g(pi))

n
i=1, and D is a positive

definite matrix (e.g., D := I or the mass matrix in Sect. IV-A).
Since ∥ · ∥D is a norm, the pseudo norm

• satisfies the triangle inequality: ∥f + g∥⋆ ≤ |f∥⋆ + ∥g∥⋆;
• is absolutely homogeneous: ∥αf∥⋆ = |α|∥f∥⋆ and sat-

isfies the scalar multiplication: ⟨αf, βg⟩⋆ = αβ⟨f, g⟩⋆,
α, β ∈ R;

• is positive but does not satisfy the nullity condition;
∥f∥⋆ ≥ 0 and ∥f∥⋆ = 0 implies only that f(pi) = 0,
i = 1, . . . , n;

• is distributive ⟨f, (g + h)⟩⋆ = ⟨f, g⟩⋆ + ⟨f, h⟩⋆ and com-
mutative: ⟨f, g⟩⋆ = ⟨g, f⟩⋆ ;

• is convergent: increasing the sampling density of Ω, we
get that the pseudo inner product

f⊤Dg =

n∑
i,j=1

D(i, j)f(pi)g(pj) = ⟨f, g⟩2

provides an increasingly more accurate approximation of
the L2(Ω) scalar product.

Furthermore, the function fapprox :=
∑n

i=1⟨f ,xi⟩Dϕi is
the best least-squares approximation of f in the space
S := span{ϕi}ni=1 with respect to the pseudo-norm ∥ · ∥⋆; in
fact, the minimum of the error∥∥∥∥∥f −

n∑
i=1

αiϕi

∥∥∥∥∥
2

⋆

=

∥∥∥∥∥f −
n∑

i=1

αixi

∥∥∥∥∥
2

D

=

n∑
i=1

|αi − ⟨f ,xi⟩D|2,

is achieved for αi := ⟨f ,xi⟩D. Indeed, among all the inter-
polating functions of f the function fapprox is unique and
minimises the ∥ · ∥⋆ norm.

Comparison between generalised and out-of-sample ex-
tension of the FT: Let us now estimate the difference between
the generalised FT Ff and the out-of-sample extension of the
discrete FT E(LKf). From the definition of the generalised FT
and the spectral representation of the our-of-sample kernel, we
get that

Ff(p) =
∫
Ω

n∑
i=1

λiϕi(q)ϕi(p)f(q)dq =

n∑
i=1

λi⟨f, ϕi⟩2ϕi(p).

Indeed,

∥Ff(p)− d(i)(ELKf)(p)∥22

≈

∥∥∥∥∥
n∑

i=1

φ(λi) [⟨f, ϕi⟩2ϕi − d(i)⟨f ,xi⟩2]ϕi

∥∥∥∥∥
2

⋆

=

n∑
i=1

|φ(λi)|2|⟨f, ϕi⟩2 − d(i)⟨f ,xi⟩2|2,
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Fig. 13. Out-of-sample extension Ef : Rd → R of the input signal and its out-of-sample extension E(Ff) : Rd → R of the FT on a 3D domain with an
increasing sampling density.

which converges to zeros as the sampling density increases;
in fact, λi → 0 and d(i)⟨f ,xi⟩2 → ⟨f, ϕi⟩2, as i→ +∞.

Approximated out-of-sample data-driven Fuzzy transform

From Eq. (11), we have that

⟨f, ϕi⟩⋆ = ⟨
n∑

j=1

⟨f ,xj⟩Dϕj , ϕi⟩⋆ =

n∑
i,j=1

⟨f ,xj⟩D⟨ϕi, ϕj⟩⋆

=

n∑
i,j=1

⟨f ,xj⟩D⟨xi,xj⟩D = ⟨f ,xi⟩D.

(12)

Recalling Eq. (4), we define the approximated out-of-sample
FT Lapprox

Kφ
: C0(Ω) → C0(Ω) as

(Lapprox
Kφ̃

f)(p) := ⟨f,Kφ̃(p, ·)⟩⋆ = ⟨f,
n∑

i=1

φ̃(λn)ϕi(p)ϕi⟩⋆

=

n∑
i=1

φ̃(λi)⟨f, ϕi⟩⋆ϕi(p) =Eq.(12)

n∑
i=1

φ̃(λi)⟨f ,xi⟩Dϕi(p).

(13)

Then, Eq. (13) is efficiently computed as the term ⟨f, ϕi⟩2 in
Eq. (10) is now replaced by ⟨f ,xi⟩D.

B. Properties

a) Linearity & continuity: The ap-
proximated out-of-sample FT is linear
Lapprox
Kφ̃

(αf + βg) = αLapprox
Kφ̃

f + βLapprox
K ˜̃φ g, and “pseudo”

continuous, according to the following uppper bound

∥Lapprox
Kφ̃

f∥2⋆ =

∥∥∥∥∥
n∑

i=1

φ̃(λi)⟨f ,xi⟩Dϕi

∥∥∥∥∥
2

⋆

=

∥∥∥∥∥
n∑

i=1

φ̃(λi)⟨f ,xi⟩Dxi

∥∥∥∥∥
2

D

=

n∑
i=1

|φ̃(λi)|2|⟨f ,xi⟩D|2

≤ ∥f∥2D
n∑

i=1

|φ̃(λi)|2 ≤ ∥f∥2D∥φ̃∥22 = ∥f∥2⋆∥φ̃∥22.

Furthermore, Lapprox
Kφ̃

is linear with respect to the input filter,
i.e., Lapprox

Kαφ̃1+βφ̃2
= αLapprox

Kφ̃1
+ βLapprox

Kφ̃2
.

b) Self-adjointness and spectrum: The approximated
out-of-sample FT is self-adjoint with respect to the pseu-
doscalar product, i.e.,

⟨Lapprox
Kφ̃

f, g⟩⋆ =

+∞∑
n=0

φ̃(λn)⟨f ,xi⟩D⟨g,xi⟩D = ⟨f,Lapprox
Kφ̃

g⟩⋆.

The eigensystem of Lapprox
Kφ̃

is (φ̃(λn), ϕn)
+∞
n=0, i.e.,

Lapprox
Kφ̃

ϕj =

n∑
i=0

φ̃(λi)⟨xj ,xi⟩Dϕi = φ̃(λj)ϕj .

In particular, Lapprox
Kφ̃

1 = 0.
c) Convergence: Let us now estimate the approximation

error between the out-of-sample FT and its approximation,

∥LKφ̃
f − Lapprox

Kφ̃
f∥22 =

∥∥∥∥∥
n∑

i=1

φ̃(λi) (⟨ϕi, f⟩2 − ⟨xi, f⟩D)ϕi

∥∥∥∥∥
2

2

=

n∑
i=1

|φ̃(λi)|2 |⟨ϕi, f⟩2 − ⟨xi, f⟩D|2 ,

which converges to zero as ⟨xi, f⟩D converges to ⟨ϕi, f⟩2, as
the sampling density of Ω increases. The same result applies
when considering the norm ∥ · ∥⋆.

d) Fast computation: According to the upper bound

∥Lapprox
Kφ̃1

f − Lapprox
Kφ̃2

f∥2⋆ = ∥Lapprox
Kφ̃1−φ̃2

f∥2⋆

=

∥∥∥∥∥
n∑

i=1

(φ̃1(λi)− φ̃2(λi))⟨f ,xi⟩Dϕi

∥∥∥∥∥
2

⋆

=

[
n∑

i=1

|φ̃1(λi)− φ̃2(λi)|2|⟨f ,xi⟩D|2
]2

≤ ∥f∥2D∥φ̃1 − φ̃2∥22,

a good approximation φ̃2 of φ̃1 guarantees that Lapprox
Kφ̃2

is a good approximation of Lapprox
Kφ̃1

. For instance,
let p be a polynomial (or rational polynomial)
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approximation of φ̃ such that r∞ := ∥φ̃− p∥∞. Then,
∥LKφ̃

f − LKpf∥2⋆ ≤ ∥φ̃− p∥∞∥f∥2D ≤ r∞∥f∥2D. Indeed,
the filter φ̃ is approximated with a polynomial (or a rational
polynomial) p, which allows us to evaluate (Lapprox

φ̃ f)(p)
without computing the Laplacian spectrum, which is
generally unfeasible in terms of computational cost and
storage overhead.

e) Restriction and out-of-sample extensions: Applying
the linearity of the out-of-sample extension and restriction
operators, and the relations E(xi) = ϕi, R(ϕi) = xi, we
have that LKφ̃

is the out-of-sample extension of the dis-
crete spectral operatir Lφ̃, i.e., LKφ̃

f = E(Lφ̃f). In fact,
(LKφ̃

f)(pi) = (Lφ̃f)(i), i = 1, . . . , n. According to the pre-
vious relations, the pseudoscalar product and the approximated
out-of-sample FT provide a coherent approximation of the
FT. Similarly, we derive the relations R(LKφ̃

f) = Lφ̃f and
LKφ̃

(Ef) = LKφ̃
f .

f) Experimental tests: Given a discrete function f
(Figs. 12, 13), we compute its out-of-sample extension ac-
cording to Eq. (9), its discrete FT F := LKf , and the cor-
responding out-of-sample extension E(F). The behaviour of
the discrete FT F is represented through its colour map
and level sets; the behaviour of the out-of-sample exten-
sion E(F) : Rd → R is represented through its iso-surface
Σα := {p ∈ Rd : EF(p) = α}. We notice the consistency be-
tween the behaviour of F and EF, where each level set γα
on Ω corresponds to an iso-surface Σα of E(F).

VI. CONCLUSIONS AND FUTURE WORK

This paper has presented the definition and computation
of the out-of-sample membership functions and the resulting
out-of-sample FT, which extend their discrete counterparts to
the continuous case. Through the out-of-sample FT, we have
achieved a coherent analysis of the discrete and continuous
FTs, which is applied to extrapolate the behaviour of the FT
on new data and to achieve an accurate approximation of the
continuous FT of signals on arbitrary data. As main future
work, we plan to investigate (i) the class of functions used for
the out-of-sample FT and (ii) the definition of the generating
kernel from the input data better to adapt the out-of-sample
approximation of the input signal and of the FT to the data
itself, e.g., generating these functions and kernels from the
input data through learning and manifold learning.
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