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Explainable Impact of Partial Supervision in
Semi-Supervised Fuzzy Clustering

Kamil Kmita, Katarzyna Kaczmarek-Majer and Olgierd Hryniewicz

Abstract—Controlling the impact of partial supervision on
the outcomes of modeling is of uttermost importance in semi-
supervised fuzzy clustering. Semi-Supervised Fuzzy C-Means
(SSFCMeans), a specific model we consider, uses a single hy-
perparameter called a scaling factor α to weigh the impact of
partially labeled data. This concept became widespread and was
reused directly in many works building on SSFCMeans, or even
applied to other fuzzy clustering algorithms such as Possibilistic
C-Means. However, none of the works challenged the original
interpretation of α which suggests that the impact of partial
supervision is directly proportional to the scaling factor. We fill
the above research gap and thoroughly analyze this relationship.
We provide novel explanations of the scaling factor α in terms
of the key element of fuzzy clustering - the membership values.
We prove that the impact of partial supervision is a non-linear
function of α. Our approach is rooted in the explainability frame-
work, which distinguishes interpretation from an explanation
and treats the latter as superior. Explaining the scaling factor
leads to an explainable impact of partial supervision and enables
greater control of it. Finally, built on the novel explanations, we
propose a unified, analytically justified framework for selecting
the value of the hyperparameter α that is based on the cross-
validation approach. We illustrate that the proposed framework
enables an extensive analysis of the impact of partial supervision
in SSFCMeans with a simulation experiment.

Index Terms—Semi-supervised learning, Fuzzy clustering, Ex-
plainable artificial intelligence, Partial supervision, Fuzzy C-
Means, Possibilistic C-Means.

I. INTRODUCTION

SEMI-SUPERVISED learning (SSL) is often said to be
“halfway between supervised and unsupervised learning”

[1, p. 2]. Considering such a description, it does matter from
which end we look at the problem: the unsupervised or the
supervised one. Let us thus consider fuzzy clustering, one of
the major unsupervised learning tasks. The aim is to group
N unlabeled observations into c subgroups (clusters) so that
observations in the same cluster are similar to each other while
being dissimilar to observations from the other clusters. The
unsupervised problem becomes semi-supervised when new
information about a part of M observations out of all N ob-
servations (M < N ) is obtained. This additional information
is hence called partial supervision. In our scenario, it is given
in the form of a label y ∈ {y1, . . . , yc} denoting the class to
which an observation belongs.
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The class of semi-supervised fuzzy clustering models
adapted to handle this type of partial supervision that we
regard (i) is based on the partitioning approach where the
number of clusters c ≥ 2 is fixed, and (ii) defines similarity
as a distance between observations and clusters’ prototypes
measured by a metric d. These models are thus referred to
as to distance-based semi-supervised fuzzy clustering models
(SSFC in short) in the literature [2].

The fundamental design choice of any SSFC model is
how to manage the impact of partial supervision on the
results of clustering: estimated degrees of memberships and
clusters’ prototypes. One technique of controlling the impact
of partial supervision that we call the additive combination
was introduced in [3]. It relies on a special construction of the
associated objective function that combines two components
in an additive manner: the unsupervised one and the super-
vised one. Pedrycz and Waletzky [3] proposed the additive
combination as an element of the Semi-Supervised Fuzzy C-
Means (SSFCMeans) model, the adaptation of the famous
unsupervised Fuzzy C-Means (FCM) described in [4].

Works [5]–[13] extended SSFCMeans in different ways
and modified the mechanism of handling partial supervision
to various extents, but did not change the core idea of
additive combination nor its interpretation. Works [14]–[17]
wrapped SSFCMeans to analyze data streams, primarily in
the problem of monitoring bipolar disorder. Works [18]–[22]
explored safe semi-supervised clustering aiming at handling
mislabeled instances (label errors). Kmita et al. [23] developed
a procedure to estimate the uncertainty of labels resulting from
an indirect annotation process. Last but not least, the very
idea of the additive combination was applied to unsupervised
fuzzy clustering models alternative to Fuzzy C-Means. These
include Possibilistic C-Means (PCM) proposed in [24], and
a mixture of FCM and PCM called Possibilistic Fuzzy C-
Means (PFCM) [25]. The core unsupervised models, Fuzzy
C-Means and Possibilistic C-Means differ in the implemen-
tation and interpretation of the soft assignment mechanism.
PCM, just like FCM, was studied and modified by many
researchers, including [26] who proposed Repulsive PCM. A
semi-supervised version of Repulsive PCM was proposed in
[27], and a semi-supervised adaptation of PFCM was described
in [28].

All the abovementioned SSFC models share the same way
of controlling the impact of partial supervision formulated
originally in [3], although it may not be phrased directly
(as different naming conventions are used). This impact is
controlled with a single hyperparameter of the algorithm that
we call a scaling factor after [3] and denote it with α. Pedrycz
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and Waletzky described the role of this hyperparameter α
“(...) is to maintain a balance between the supervised and
unsupervised component within the optimization mechanism”
[3, p. 789]. They did not quantify the impact nor discuss the
relationship between the value of α and the key outcome
of the SSFCMeans algorithm: the degrees of membership,
and none of the positions in the literature that reused the
additive combination technique in the sense of [3] explained
this relationship either.

The main contribution of this work is to comprehensively
explain the role of the scaling factor α in SSFC because the
existing descriptions can be treated only as interpretations of
it. The distinction between these two terms is receiving close
attention in statistical learning [29]–[31], with an explanation
perceived as superior to an interpretation. We also postulate
to unambiguously quantify the impact of partial supervision
in the form of a function of α denoted as IPS(α).

Explainable models are especially important in healthcare
data modeling, and are often referred to as eXplainable AI
(XAI); such models enable the comprehension of the reasoning
underlying the predictions that they produce. The motivation
for this work arose also from the previous work of the authors
[23], where a procedure called Confidence Path Regularization
was proposed. This procedure wrapped the SSFCMeans model
to estimate label uncertainty in the semi-supervised problem of
monitoring the health status of patients diagnosed with bipolar
disorder. The scaling factor α is of key importance for this
procedure, and considerations on the topic of Confidence Path
Regularization led to the conclusion that existing descriptions
of α were not sufficient for the improvements of the whole
procedure.

In this article, we fill the identified research gap and explain
the impact of partial supervision in two core SSFC models.
Firstly, we study the aforementioned SSFCMeans model.
The second model we investigate is called Semi-Supervised
Possibilistic C-Means (SSPCMeans). We create it by applying
the additive combination technique to introduce partial super-
vision to the classical PCM. SSFCMeans and SSPCMeans
differ in the implementation of the soft assignment, hence
the explanation of the scaling factor will differ as well. Our
explanations apply to any model extending either SSFCMeans
or SSPCMeans.

The structure of this article is as follows. In Section II, we
discuss preliminaries of semi-supervised fuzzy clustering. We
present the additive combination technique, SSFCMeans, and
SSPCMeans models in detail. In Section III, we formalize
a difference between an interpretation and an explanation
and provide two novel explanations of the scaling factor α.
Section IV is focused on the practical considerations stem-
ming from the novel quantification of the impact of partial
supervision. Finally, Section V concludes the article.

II. SEMI-SUPERVISED FUZZY CLUSTERING
PRELIMINARIES

We now introduce basic definitions related to the semi-
supervised fuzzy clustering. Let j denote any observation
(unsupervised or supervised), j = 1, . . . , N , and k denote a

given cluster, k = 1, . . . , c. In addition to these indices, partial
supervision requires to distinguish between (i) supervised
observations indexed by i = 1, . . . ,M , and (ii) unsupervised
observations indexed by h = 1, . . . ,H . A jth observation
is represented by a p−dimensional feature vector xj ∈ Rp,
and a kth cluster is represented by a p−dimensional vector
vk ∈ Rp called a prototype of the cluster. In the remainder of
this article, d means the Euclidean distance.

The soft assignment of jth observation to kth cluster is
usually expressed by a membership ujk ∈ [0, 1]. This conven-
tion is used in Fuzzy C-Means and all models building on it.
However, Possibilistic C-Means uses a typicality tjk ∈ [0, 1]
convention to stress the fact that the interpretation of the soft
assignment in PCM differs from the one used in FCM. For a
cohesive presentation, we express a general concept of the soft
assignment common for all SSFC models by memberships ujk

when the specific details do not affect the overall reasoning.
The partial information itself is expressed in the form of a

prior memberships matrix F = [fjk] of the same dimension as
memberships matrix U . Every cluster represented by a specific
column of matrix F must be arbitrarily associated with a single
class. To this end, we create a c−tuple Y = ⟨y1, . . . , yc⟩ out
of the set {y1, . . . , yc} and associate kth column in F with
kth label yk from Y . We define fjk as binary entries such
that fjk = 1 only if jth observation is known to belong to kth
cluster (associated with the yk label); otherwise fjk is equal to
0. An unsupervised observation h has all prior memberships
fhk = 0 ∀k. Frequently, an auxiliary variable bj is used;
bj = 1 iff jth observation is supervised. In our scenario,
bj =

∑c
k=1 fjk, hence one could question if this variable is

indeed necessary. The choice whether to use bj and how to
include it in the model is a matter of subtle consequences that
we discuss introducing relevant models in the remainder of
this Section.

With partial supervision introduced in SSFC, a need occurs
for supervised observations to distinguish between their mem-
bership degrees to “unsupervised” and “supervised” cluster.
By “supervised cluster” we mean “the cluster associated with
the class yk that the observation is known to belong to”. To
retrieve this cluster, we define a function s(i) ∈ {1, . . . , c}
that selects the index of the cluster associated with the ith
supervised observation’s class, i.e., fik = 1 iff k = s(i).

Further on, we discuss 3 distinct types of memberships
uhk membership of an unsupervised observation h to any

cluster k,
ui,k ̸=s(i) membership of a supervised observation i to any

non-supervised cluster,
ui,s(i) membership of a supervised observation i to the super-

vised cluster s(i).

A. The additive combination technique

Since semi-supervised fuzzy clustering models modify the
core unsupervised fuzzy clustering models, we introduce the
additive combination technique by first considering a general
form of unsupervised fuzzy clustering model parameterized by
hyperparameters gathered in Θ. The optimization problem is
formulated as
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arg min
U,V

Q(U, V ;X,Θ) (1)

where Q is the objective function, U = [ujk]N×c is a
memberships matrix, V = [vk]c×p is a prototypes matrix, and
X = [xj ]N×p is a features matrix.

SSFC models adapt the minimization problem from (1)
by combining the unsupervised objective function Q with
its counterpart QS which incorporates the partial supervision
(hence the name additive combination), arriving at

J(U, V ;X,F,Θ) = Q(U, V ;X,Θ)︸ ︷︷ ︸
unsupervised comp.

+α ·QS(U, V ;X,F,Θ)︸ ︷︷ ︸
supervised comp.

(2)
where α > 0 is the scaling factor that controls the impact of
partial supervision.

Specific hyperparameters gathered in Θ differ by models,
yet one hyperparameter is common for all of them. It is the
“fuzzifier” m > 1 that controls the fuzziness of the soft
assignments. Bezdek et al. [4, p. 70] described it as “the larger
m is, the fuzzier are the membership assignments”. In this
article, we use the specific value m = 2. The justification is
provided in [3, p. 789]: any value of m ̸= 2 would result in a
situation where the variables optimized were linked together
in the form of a polynomial and numerical procedures would
be needed to solve its roots.

In general, finding optimal (U⋆, V ⋆) per (1) is intractable
and approximation algorithms are often used. A typical opti-
mization procedure for fuzzy clustering is described in [32]. It
relies on fixing one variable and optimizing the other at a time.
Such an iterative procedure is performed until a convergence
criterion is met. The formulae for two variables Û and V̂
are obtained by studying first-order necessary conditions for a
global minimizer (U⋆, V ⋆) of a respective objective function.
SSFC models can follow the same optimization procedure
as long as functions J(U) = J(U ;V,X, F,Θ) and J(V ) =
J(V ;U,X, F,Θ) remain convex. Indeed, this is the case for
the functions JSSFCM and JSSPCM introduced in the remainder
of this Section.

The two models we discuss, SSFCMeans and SSPCMeans,
draw heavily from those introduced in [3] and [27], respec-
tively. Our subtle yet important modifications are discussed
in Subsection II-B and Subsection II-C. Whenever we present
original equations from the referenced articles, we adapt them
to follow the nomenclature introduced in this Section. We
annotate all formulae from [3] with subscript (or superscript)
P97.

B. Semi-Supervised Fuzzy C-Means

The objective function JSSFCM(U, V ;X,F,Θ) proposed in
this article has a form

JSSFCM =

c∑
k=1

N∑
j=1

u2
jkd

2
jk + α

c∑
k=1

N∑
j=1

bj(ujk − fjk)
2
d2jk,

(3)

where the first component corresponds to the objective func-
tion QFCM of the classical unsupervised Fuzzy C-Means model
described in [32]. The minimization problem to solve is thus

argmin
U,V

JSSFCM(U, V ;X,F,Θ) (4a)

s.t.
c∑

k=1

ujk = 1 ∀j = 1, . . . , N, (4b)

0 <

N∑
j=1

ujk < N ∀k = 1, . . . , c, (4c)

ujk ∈ [0, 1], (4d)

where constraints (4b), (4c), (4d) are the same as in unsu-
pervised FCM. Below we present the objective function JP97
from [3, Eq. (2)]

JP97 =

c∑
k=1

N∑
j=1

u2
jkd

2
jk + α

c∑
k=1

N∑
j=1

(ujk − bj · fjk)2d2jk. (5)

As opposed to JSSFCM (3) proposed in this article, it was
only fjk that was multiplied by bj , not the entire expression
(ujk − fjk)

2. Pedrycz and Waletzky [3] presented in detail a
solution to (4) w.r.t U - but using JP97, not JSSFCM.

We applied the same analysis as presented in [3], but for
the objective function JSSFCM (3) proposed in this article,
obtaining the formula for the optimal membership

ûjk =
1 + α

(
bj − bj

∑c
g=1 fjg

)
1 + αbj

ejk +
αbj

1 + αbj
fjk. (6)

We do not present full derivation, referring the reader inter-
ested in details to [3]. An important part of (6) is

e(xj , V, k) = ejk =
1∑c

g=1 d
2
jk/d

2
jg

=

( c∑
g=1

d2(xj ,vk)

d2(xj ,vg)

)−1

(7)
that we call the data evidence. Note that the data evidence ejk
is a function of the feature’s vector xj , the prototypes, and the
index of the cluster considered. Consequently, the membership
ujk (6) is also a function ujk = u(xj , V, k, α), but the notation
ujk is used for brevity.

Let us now apply the generic formula from (6) to distinct
types of the membership ûhk, ûi,k ̸=s(i), ûi,s(i). First, consider
an unsupervised observation h. In such case, bh = 0 and fhg =
0 ∀g. Then, (6) simplifies to

ûhk =
1 + α

(
0− 0

)
1 + α · 0

· ehk +
α

1 + α · 0
· 0 = ehk. (8)

For the unsupervised observation, there is no direct impact of
partial supervision on the value of the membership. It depends
only on the data evidence, just as in FCM [32, p. 66].

Investigating ith supervised observation and its member-
ships, we first consider a degree of membership to any non-
supervised cluster k ̸= s(i)
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ûi,k ̸=s(i) =
1

1 + α
· ei,k ̸=s(i). (9)

The data evidence ei,k ̸=s(i) is decreased by the factor of 1
1+α .

It is a desired result of the partial supervision mechanism. Even
if the data evidence were to support the belonging of the ith
observation to the k ̸= s(i) cluster, the additional information
we possess would decrease this membership.

The equations above clarify the mechanism of the SS-
FCMeans, but it is the membership of the supervised obser-
vation i to the supervised cluster s(i) that is of major interest

ûi,s(i) =
1

1 + α
· ei,s(i) +

α

1 + α
. (10)

We can observe that it includes a data-invariant component
α

(1+α) that depends only on the value of the scaling factor.

We now recall the formula for the optimal membership ûP97
jk

presented in [3, p. 789] without equation number as

ûP97
jk =

1 + α
(
1− bj

∑c
g=1 fjg

)
1 + α

ejk +
α

1 + α

(
bjfjk

)
. (11)

While (11) differs from (6), the distinct types of memberships
ûP97
hk , ûP97

i,k ̸=s(i) ûP97
i,s(i) do not differ from their counterparts

derived from JSSFCM and presented in (8), (9), (10). We leave
the simple calculus confirming this statement to the reader
and state that the difference between JSSFCM and JP97 does
not result in different estimated memberships. However, this
difference between the objective functions affects estimated
prototypes V̂ . Let us note that [3] did not permit partial
supervision to influence clusters’ prototypes, associating V̂ P97

with formulae from unsupervised FCM. Therefore, to present
the effect of treating bj differently in JSSFCM and JP97, we
derive V̂ from scratch. Let us define

JSSFCM(vk) =

c∑
k=1

N∑
j=1

(
u2
jk + αbj(ujk − fjk)

2
)
∥xj − vk∥2

=

c∑
k=1

N∑
j=1

ϕjk∥xj − vk∥2,

(12)
where ϕjk = u2

jk + αbj(ujk − fjk)
2 is called an individual

contribution. We now find the stationary point of JSSFCM(vk),
by setting ∂JSSFCM(vk)/∂vk = −2

∑N
j=1 ϕjk(xj − vk) to 0,

and obtain

v̂k =

N∑
j=1

(ϕjk · xj)

N∑
j=1

ϕjk

. (13)

Optimizing JP97(vk), one would arrive at the similar equa-
tion to (13), but instead of individual contributions ϕjk, there
would be ωjk = u2

jk + α · (ujk − bj · fjk)2.
Let us compare the form of individual contribution ϕjk and

ωjk in 3 distinct types of the soft assignment:

ϕhk = u2
hk, (14a)

ϕi,k ̸=s(i) = (1 + α)u2
i,k ̸=s(i), (14b)

ϕi,s(i) = u2
i,s(i) + α(ui,s(i) − 1)2, (14c)

and

ωhk = (1 + α)u2
hk, (15a)

ωi,k ̸=s(i) = (1 + α)u2
k ̸=s(i), (15b)

ωi,s(i) = u2
i,s(i) + α(ui,s(i) − 1)2. (15c)

In the case of v̂P97
k , the individual contribution of the unsuper-

vised observation ωhk is the same as the contribution of the
supervised ωi,k ̸=s(i). It is undesired and does not occur in the
case of ϕhk and ϕi,k ̸=s(i). Note that in SSFCMeans, uhk is not
impacted by the scaling factor α in any way, and this is why
we postulate the same for v̂k when considering a contribution
of the unsupervised observation h.

C. Semi-Supervised Possibilistic C-Means

We now apply the additive combination technique from (2)
to introduce partial supervision to PCM. The idea of PCM
comes from a relaxation of the probabilistic constraint in
FCM presented in (4b). To avoid a trivial solution where
each membership was estimated to be 0, a special form of
the objective function was proposed in [24]:

QPCM(T, V ;X,Θ) =

c∑
k=1

N∑
j=1

tmjkd
2
jk +

c∑
k=1

γk

N∑
j=1

(1− tjk)
m
,

(16)
where T = [tjk] is a typicalities matrix, and vector Γ =
(γ1, . . . , γc)

T contains cluster-specific scalars γk > 0. Note
that [24, p. 101] allowed m ∈ (1,∞), but recall that in this
article we set m = 2.

The supervised component QS
SSPCM that we propose is the

same as in [27]

QS
SSPCM(T, V ;X,F,Θ) =

c∑
k=1

N∑
j=1

bj · (tjk − fjk)
2 ·d2jk. (17)

Since we regard classical approaches in this article, we propose
to combine (17) with (16) to obtain the objective function

JSSPCM(T, V ;X,F,Θ) = QPCM(T, V ;X,Θ)

+ α ·QS
SSPCM(T, V ;X,F,Θ).

(18)

The minimization problem is

argmin
T,V

JSSPCM(T, V ;X,F,Θ) (19a)

s.t. 0 <

N∑
j=1

tjk < N ∀k = 1, . . . , c, (19b)

tjk ∈ [0, 1]. (19c)
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where the constraints (19b) and (19c) are the same as in the
unsupervised PCM.

Compared with our approach, Antoine et al. [27] combined
(17) with the objective function of Repulsive PCM, defined as

QRPCM(T, V ;X,Θ) = QPCM +

c∑
k=1

ηk
∑
l ̸=k

1

∥vk − vl∥2
. (20)

However, since the objective functions (16) and (20) include
tjk in the same way, the formula for the optimal typicality in
SSPCMeans is thus the same as derived in [27] and presents
as

t̂jk =
γk + α · bj · d2jk · fjk
γk + (α · bj + 1)d2jk

. (21)

Considering distinct types of t̂jk:

t̂hk =
γk

γk + d2hk
, (22a)

t̂i,k ̸=s(i) =
γk

γk + (α+ 1) · d2i,k ̸=s(i)

, (22b)

t̂i,s(i) =
γs(i) + α · d2i,s(i)

γs(i) + (α+ 1) · d2i,s(i)
. (22c)

The optimal cluster’s prototype in our SSPCMeans differs
from [27], because (16) and (20) differ in treating V , and has
a form

v̂k =

N∑
j=1

(
t2jk + αbj(tjk − fjk)

2

)
· xj

N∑
j=1

t2jk + αbj(tjk − fjk)2
, (23)

where derivation is analogous to the one presented for SS-
FCMeans in the previous subsection.

III. EXPLANATIONS OF THE SCALING FACTOR α

Despite a wealth of literature spanning over 30 years on
the topic of SSFC, surprisingly little attention was paid to the
sound understanding of the scaling factor α. One of the main
contributions of this article is that we systematically reviewed
existing descriptions of the scaling factor [5]–[23], [27], [28]
and concluded that these are highly alike and do not challenge
the core meaning of the interpretation of the scaling factor α
provided by Pedrycz and Waletzky in [3]. Therefore, we treat
the interpretation from [3] as canonical and formulate

Interpretation 1: The role of the scaling factor α is to
maintain a balance between the supervised and unsupervised
components within the optimization mechanism.

A critical issue with Interpretation 1 is that the scaling factor
α is considered only in the context of the objective function.
We thus extend this definition and provide a discussion about
a connection between the scaling factor and the outcome of
the model, i.e. the estimated memberships matrix Û .

Furthermore, the descriptions of the scaling factor α in
the literature are imprecise and inconsistent. Below we list

selected citations that use naming conventions different than
Interpretation 1:

- “α be proportional to the rate N/M” [3, p. 788];
- “α parameter is set in such a way that two terms of the
objective function have the same importance” [33, p. 57];
- “β is the impact intensity of the semi-supervised compo-
nent” [13, p. 671];
- “where λ is the ratio of labeled sample points in the data
sample” [11, p. 135];
- “where λ1 and λ2 are the regularization parameters which
control the tradeoff between FCM and SSFCM” [22, p. 387].

The terms “balance”, “intensity” or “tradeoff” may impli-
cate the proportional impact of the scaling factor α on the
outcomes of the model, but do not have to. There are no clear
statements about the functional character of the impact in the
corresponding articles. Only Pedrycz and Waletzky [3] use the
word “proportional” directly, but they use it to establish α as
a function of the data (the number of labeled observations),
not to discuss how much α impacts the outcomes of modeling
(regardless of the data).

The above problems lead to inconsistent processes of se-
lecting the value of the hyperparameter α that are not justified
analytically. The importance of the scaling factor α is clearly
seen in (2). Regardless of the functional form of Q or QS , the
role of α is the same. It clearly impacts the estimated variables
Û and V̂ .

A. Differences between interpretation and explanation

To distinguish between an interpretation and an explanation,
we propose 3 criteria that an explanation of the scaling
factor α must satisfy: (C1) interpretability, (C2) completeness,
(C3) quantification.

Any description that satisfies criterion (C1) and one more
criterion (C1 or C2), but not all 3 criteria, is considered an
interpretation. Gilpin et al. [30] provide two criteria for eval-
uating explanations: interpretability and completeness, which
are referred to as (C1) and (C2) in this article. Criterion (C3)
is our additional requirement specific for the scaling factor
α: we want to express the impact of partial supervision as a
function IPS(α).

Let us now elaborate on how to check criteria (C1) - (C3)
for a given description of the scaling factor α. For (C1)
interpretability, Broniatowski [29] states that “an interpretable
model should provide users with a description of what a
stimulus (a data point or model’s output) means in context”.
Regarding SSFC, the scaling factor α is the stimulus we
require to be put in a context. Moreover, it does not suffice to
provide any context as an interpretable description should be
“understandable to humans” [30].

(C2) completeness is satisfied when a description of the
system’s operation is accurate [30]. We associate this criterion
with a proposition from [29] “an explanation of a model result
is a description of how a model’s outcomes came to be”. Note
that in the case of SSFC, the key outcome of the model is the
estimated memberships matrix Û . Taking all the above into
account, we require a complete description of the scaling factor
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α to describe in an accurate way the relationship between α
and Û .

Finally, criterion (C3) quantification stems from the need
to numerically assess the difference between an impact of
different α1 and α2, α1 ̸= α2 values on the results of SSFC
model. Explainable impact of partial supervision must asso-
ciate a function IPS(α) that allows calculation of a difference
IPS(α1) - IPS(α2).

B. Explanation of the scaling factor α in Semi-Supervised
Fuzzy C-Means

It is clearly shown in (10) that for ûi,s(i), regardless of the
data evidence, we are guaranteed that

ûi,s(i) >
α

1 + α
. (24)

We propose to call the quantity α
1+α the Absolute Lower

Bound to stress its nature. To our knowledge, the Absolute
Lower Bound has not been discussed in the literature so
far even though it is a straightforward conclusion that stems
from well-known equations and may significantly impact the
outcomes of the model. Let us now formulate an explanation
of the impact of partial supervision in SSFCMeans.

Explanation 1 (IPS in SSFCMeans): The scaling factor α
quantifies the impact of partial supervision as IPS(α) = α

1+α ,
and establishes an Absolute Lower Bound for a membership
of a supervised observation to the supervised cluster ui,s(i) >
IPS(α).

C. Explanation of the scaling factor α in Semi-Supervised
Possibilistic C-Means

Let us first consider an interpretation of the hyperparameter
γk provided in [24].

Interpretation 2: The value of γk determines the distance
at which the typicality value of a point in a cluster becomes
0.5.

It comes from the fact that if we consider a distance d2hk :=
γk, then for the typicality in unsupervised PCM (22)

thk =
γk

γk + d2hk

d2
hk:=γk
=

γk
γk + γk

= 0.5. (25)

With the aim of providing an explanation of the scaling
factor α in Semi-Supervised Possibilistic C-Means, we will
make a similar assumption and study the difference between:
(I) a possibility of a supervised observation to the supervised
cluster ti,s(i) from (22c) and (II) a possibility of unsupervised
observation to any cluster thk from (22).

Let us consider arbitrary observation a and arbitrary cluster
b. First, assume t

(I)
ab is unsupervised typicality to any cluster,

as in (22). We know that if we set γb := d2ab, then the typicality
t
(I)
ab is 0.5.

Suppose that we obtain the label of observation a so
it becomes supervised, and b = s(a) happens to be the
supervised cluster. Therefore, the typicality value takes form
from (22c), and assuming d2ab = γb

t
(II)
ab

d2
ab:=γb
=

γb + αγb
γb + (α+ 1)γb

=
1 + α

2 + α
. (26)

TABLE I
A COMPARISON OF THE INTERPRETATION 1 OF THE SCALING FACTOR α

WITH TWO NOVEL EXPLANATIONS PROPOSED.

description
criteria1

C1 C2 C3

Interpretation 1 + − ±
Explanation 1 (SSFCMeans) + + +

Explanation 2 (SSPCMeans) + + +
1 Convention: + means a criterion was met, − means it was not; ± denotes

a partially met criterion.

Note that the only change includes the value of typicality
t
(II)
ab : this is still the same observation a, the same cluster
b, the same hyperparameter γb, and the same fixed distance
d2ab.Therefore, we can quantify the impact of partial supervi-
sion

IPS(α) = t
(II)
ab − t

(I)
ab =

1 + α

2 + α
− 1

2
=

α

2(2 + α)
. (27)

We can now propose an explanation of the scaling factor α.
Explanation 2 (IPS in SSPCMeans): In the supervised case,

the scaling factor α increases the typicality of a supervised
observation to the supervised cluster ti,s(i) by IPS(α)= α

2(2+α)
for the same distance γs(i) at which the typicality in the
unsupervised case was equal 0.5.

D. Checking the criteria

Table I contains a comparison of the Interpretation 1 with
two new explanations of the scaling factor α proposed in this
article with respect to criteria (C1)-(C3). First and foremost,
all the descriptions considered in Table I meet the criterion
(C1) interpretability. They put the role of the scaling factor α
in a broader context of the model in a “human understandable”
language.

Regarding the criterion (C2) completeness, let us recall that
Interpretation 1 relates α with the objective function. The
implicit statement “(...) a balance between the supervised and
unsupervised component (...)” [3, p. 789] means in fact “a
balance between the supervised and unsupervised component
of the objective function”. It is unclear from this interpretation
how the outcome Û of the SSFCMeans model came to be since
Interpretation 1 does not relate α to the variable ûjk. On the
contrary, both Explanation 1 (SSFCMeans) and Explanation 2
(SSPCMeans) explain the scaling factor α in terms of its
impact on the soft assignment variables by precise referral
to the models’ mechanisms. Explanation 1 relates IPS to the
membership of a supervised observation to the supervised
cluster ui,s(i), and Explanation 2 discusses IPS in terms of
a difference between the supervised typicality ti,s(i) and the
typicality as if the observation was treated as unsupervised.

Regarding the criterion (C3) quantification, Pedrycz and
Waletzky [3] suggested that the value of α should be set to
the rate M

N , relating it to the data. We enhance this proposition
and express it in terms of the impact of partial supervision as a
function IPSP97(α) = α. Nonetheless, we show that the impact
of partial supervision is not directly proportional to α.
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IV. PRACTICAL CONSIDERATIONS

In the preceding sections, our analyses have contributed to
the establishment of theoretically sound explanations regarding
the impact of partial supervision in semi-supervised fuzzy
clustering. In the context of SSFCMeans and SSPCMeans
models, this impact is regulated by the scaling factor α.
Despite the provided explanations, practical questions arise:
which values of α should be used? How can one empirically
assess the impact of partial supervision when fitting the model
to the data? In this Section, we build on the results from
the preceding analyses and delve into these specific practical
considerations.

The source code for reproducible simulations described in
Section IV-B is publicly available on CodeOcean [34]. In
the absence of open-source implementations of SSFCMeans,
we implemented it in R language from scratch and made it
publicly available on GitHub1.

A. Constructing cross-validation grids

A standard practice for selecting the value of a hyperparam-
eter of any model is to cross-validate (CV) it, i.e. to create
a K−tuple of K different values to be checked (called a
grid), fit a model for each value, and finally find the best
model with respect to some criterion; the selected value of
the hyperparameter is the one associated with the best model.
In the SSFC domain, a common CV approach is to select a
few α values that divide the search space roughly equally.

For instance, Bouchachia and Pedrycz [8] tried gridB =
⟨0.3, 0.5, 0.7, 0.9, 1⟩, whereas Antoine et al. [28] tried gridA =
⟨0.01, 0.05, 0.1, 0.5, 1⟩. These CV grids cover the space of α
values, since they implicitly follow Interpretation 1 and the
associated proportionality assumption that was expressed as
IPSP97(α) = α. Such a function has a significant analytical
disadvantage: it is bounded only from below. Theoretically,
using Interpretation 1, one could think about increasing the
value of α infinitely, expecting that each increase in α will
result in the directly proportional increase of the impact of
partial supervision. In practice, none of the works reviewed
in Section III analyzed this issue, and a maximum value of α
considered in CV rarely exceeds 1 (as can be seen in gridA
and gridB).

On the contrary, IPS(α) functions for both Explanation 1
and Explanation 2 do not suffer from such problems. They are
non-linear, monotonically increasing functions of α bounded
from up and below. Their properties enable an analytically
justified procedure tailored to creating CV grids for α in SSFC.
One can analyze the derivative IPS’(α) and decide on a point
where the decrease in IPS becomes negligible. We call this
point a β boundary. Fig. 1 presents IPS functions together with
derivatives IPS’=∂IPS/∂α for SSFCMeans and SSPCMeans
models. Fig. 2 contains the proposed Algorithm for selecting
the α grid based on β boundary.

Let us construct an exemplary CV grid for the SSFCMeans
model that we call gridIPS. Examining Fig. 1, one can decide
on a boundary IPS’=β beyond which the increase in IPS is

1https://github.com/ITPsychiatry/ssfclust

0 1 2 3 4 5
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SSPCM
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e
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Fig. 1. The impact of partial supervision IPS(α) for α ∈ [0, 5] for both
SSFCMeans and SSPCMeans. The IPS(α) for SSFCMeans is shown as a
solid blue line, and the corresponding derivative is shown as a dotted blue
line. The IPS(α) for SSPCMeans is shown as a dashed red line, and the
corresponding derivative is shown as a red dash-dotted line.

1: choose a boundary value β beyond which IPS’(α) is treated as
negligible,

2: retrieve αβ from the equation IPS’(αβ) = β,
3: calculate the value of IPS(αβ),
4: decide on the number of folds K in CV procedure,
5: calculate stepK = IPS(αβ) · 1

K
,

6: derive grid
(
IPS(α)

)
= ⟨stepK , 2 · stepK , . . . ,K · stepK⟩,

7: derive grid(α) by applying IPS−1 to each element of
grid

(
IPS(α)

)
.

Fig. 2. Algorithm for establishing cross-validation grid for α.

negligible. Since in SSFCMeans IPS(α) = α
1+α , we arrive at

the equation

∂IPS
∂α

(αβ) =
1

(1 + αβ)2
= β, (28)

with αβ corresponding to the chosen boundary being

αβ = β−1/2 − 1. (29)

Let us set β = 0.2, and according to (29), a correspond-
ing α0.2 ≈ 1.24. Further on, we calculate IPS(α0.2) ≈
0.55. For a 5−fold CV, a single step is equal to 0.55

5 =
0.11, so that gridIPS

(
IPS(α)

)
= ⟨0.11, 0.22, 0.33, 0.44, 0.55⟩.

Translating this in terms of α, the final gridIPS(α) =
⟨0.12, 0.28, 0.49, 0.79, 1.22⟩.

B. Empirical impact of partial supervision

When working with data, a need frequently occurs to
ascertain how the introduction of partial supervision alters the
outcomes of modeling a given dataset when contrasted with
lack of supervision, or when the impact of partial supervision
is reduced by a certain factor (e.g., twofold). We call it the
analysis of the empirical impact of partial supervision, as it
depends not only on the theoretical explanations but also on
the specific data patterns. In the context of the SSFCMeans
model, we postulate that the examination of the distribution of
supervised memberships {ui,s(i)}i=1,...,M

is not the optimal
choice albeit an intuitive one. This is due to the combined
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theoretical and empirical nature of ui,s(i) from (10). Denoting
this membership in the functional convention, we obtain

ui,s(i) = u
(
xi, V, k = s(i), α

)
=

1

1 + α
· e
(
xi, V, k = s(i)

)
+

α

1 + α
.

(30)

It is the data evidence ei,s(i) that contains the truly empirical
impact of the partial supervision, as it is the direct function
of the data. Therefore, analysis of the distribution {ei,s(i)}
enables a direct investigation of the extent to which the
impact of partial supervision affected the prototypes, and
consequently, the relative distances between the observation
and these prototypes in a given model.

Let us now illustrate the above approach in a concrete data
analysis scenario. We consider a 3-class semi-supervised prob-
lem, i.e. Y = ⟨y1, y2, y3⟩. The data is simulated in a nested
loop. The outer loop consists of sampling 100 observations
for each class from a two-dimensional Gaussian distribution
N2(µk,Σk), where µ1 = (5, 5)T , µ2 = (7, 7)T , µ3 = (9, 9)T ,
and Σ1 = Σ2 = Σ3 = diag(5, 5). Each kth distribution
is associated with the kth class. Such a procedure yields
spherical, overlapping clusters, which are hardly separable. An
outcome of this outer loop is a features matrix X[300,2]. Fig. 3
presents an example of such a matrix with colors and shapes
denoting the classes of observations. An inner loop relies on
randomly selecting 15% observations from each class that
will remain supervised (leading to 45 observations treated as
supervised in each simulated dataset). We performed 10 outer
loops with 10 inner loops for each simulated X , arriving at
100 simulation runs.

We now build CV grids. Specifically, we compare a
proposition from the literature gridB(α) = ⟨0.3, 0.5, 0.7, 0.9,
1⟩ [8] with gridIPS(α) = ⟨0.12, 0.28, 0.49, 0.79, 1.22⟩ that we
constructed based on the Algorithm from Fig. 2 proposed in
this work. The results for these grids are presented against a
dense reference gridref composed of 50 α values dividing the
interval [0, 1.5] equally (the equivalent interval expressed in
terms of IPS(α) is [0, 0.6]). Owing to gridref, we can observe
a global pattern that one typically does not examine due to
time and computational resource constraints.

Fig. 4 presents the summary of the results of fitting the
SSFCMeans model to the data from each simulation run r =
1, . . . , 100 for each α from the respective grid. We present the
total median e(α)

e(α) = Me
(
{eα,r=1

1,s(1) , e
α,r=2
1,s(1) , . . . , e

α,r=1
45,s(45), . . . , e

α,r=100
45,s(45) }

)
(31)

together with the interquartile range (IQR). For the range
IPS(α) ∈ [0, 0.25], e(α) is growing approximately proportion-
ally to α

1+α , which confirms the theoretical quantification of
the impact of partial supervision. Starting at IPS(α) ≈ 0.25,
the total median reaches the value of ≈ 0.55 and remains
stable regardless of the increasing IPS(α). The exact results –
in the form of pairs (IPS(α), e(α)) – present as: (0.12, 0.38),
(0.28, 0.54), (0.49, 0.57), (0.79, 0.57), (1.22, 0.57) for gridIPS
and (0.3, 0.54), (0.5, 0.57), (0.7, 0.57), (0.9, 0.57), (1, 0.57)
for gridB.

0 5 10 15

0

5

10

15

X1

X
2

Fig. 3. An example of a single simulated features matrix X[300,2]. The
orange triangles represent data points belonging to class y1, the red diamonds
represent data points belonging to class y2, and the blue circles represent data
points belonging to class y3.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

IPS(α) = α
1+α

e(
α
)

Fig. 4. Simulation results for e(α) presented against IPS(α). Solid black
lines represent Q1 and Q3 for gridref, the grey area represents IQR, and
white line represents total median. Red crosses represent total medians for
gridIPS, and blue pluses represent total medians for gridB. The black dotted
line corresponds to IPS(α) = α

1+α
.

The growth of ē(α) described above is associated with
the increasing quality of true clusters’ prototypes estimation.
Table IV-B presents mean estimated prototypes coordinates V̂1

and V̂2 together with their standard deviations for models for
3 values of IPS(α): 0 denoting no supervision at all, 0.12 and
0.28 being two first entries from gridIPS that enable to grasp the
trends in simulation results described above. The total median
ē(α) reaches a plateau at approximately IPS(α) = 0.28, since
the SSFCMeans already identified the true clusters’ prototypes.
The model cannot result in higher median data evidence ei,s(i)
despite the increasing impact of partial supervision due to the
noise in the data. This is an example of the empirical impact
of partial supervision deviating from the theoretical one.

Finally, let us note the differences between gridIPS and
gridB . The former splits the IPS(α) space in equal intervals
and allows to identify a changing trend in the behavior of e(α)
as compared with the latter, which covers a narrower interval
of IPS(α). This specific simulation scenario confirms the need
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TABLE II
MEAN ESTIMATED CLUSTERS’ PROTOTYPES TOGETHER WITH THE

STANDARD DEVIATIONS (IN BRACKETS) FOR SELECTED VALUES OF α

cluster 1 cluster 2 cluster 3

IPS(α) V̂1 V̂2 V̂1 V̂2 V̂1 V̂2

0 7.29
(2.02)

7.16
(1.99)

6.86
(2.06)

7.06
(1.95)

7.02
(2.16)

6.71
(2.02)

0.12 5.71
(1.6)

5.71
(1.5)

7.05
(1.85)

6.89
(1.77)

8.35
(1.66)

8.32
(1.63)

0.28 4.78
(0.85)

4.93
(0.72)

7.19
(1.15)

6.82
(1.11)

9.16
(0.78)

9.15
(0.91)

TABLE III
DATA FOR EXEMPLARY CONFIDENCE PATH REGULARIZATION

PROCEDURE, α = 2

columns used in [23] explainability
approach

regr αr wr ûr
i,s(i)

IPS(αr) er
i,s(i)

0.25 0.5 4 0.34 0.33 0.01
0.5 1 2 0.51 0.5 0.02
1 2 1 0.67 0.66 0.01

for the analytically justified creation of CV grids presented in
the Algorithm from Fig. 2.

C. Estimating label uncertainty

In the previous subsection, we knew the process generating
the data, hence the obtained labels yi were certain. In practice,
this process is typically unknown, therefore the certainty of the
labels may be questioned. [3] proposed to handle this situation
by incorporating a confidence factor confj ∈ [0, 1] to the
objective function of SSFCMeans. However, their approach
requires to assess the uncertainty upfront. Frequently, such
knowledge is not available, especially when the data annota-
tion process is a complex one [23].

To overcome this problem, [23] proposed the Confidence
Path Regularization (CPR) procedure to estimate the ad-
justed confidence factor conf⋆i from the data. CPR wraps
SSFCMeans, implementing the regularization assumption:
highly certain supervised observations should be consistently
assigned high ui,s(i) across varying values of confi. A path of
r = 1, . . . , R models is fitted, each decreasing the default α
uniformly for all observations by confi = regr∀i. The adjusted
conf⋆i for ith observation is then obtained as a weighted
summary of the memberships from R models

conf⋆i =
1∑R

r=1 wr

·
R∑

r=1

ur
i,s(i)wr, (32)

where weights wr compensate for the decreased αr = α ·regr.
[23] proposed to use the proportionality rule, i.e., set wr =
1

regr
. The first 4 columns of Table III contain exemplary data

required to calculate conf⋆i in a CPR procedure composed of
R = 3 steps.

Note that the above procedure is implicitly based on In-
terpretation 1 quantifying the impact of partial supervision as

IPSP97(α) = α, and hence may lead to inaccurate conclusions.
For the example from Table III, the adjusted conf⋆i = 0.43,
and we conclude that this ith observation is not the most
certain labeled observation, but definitely not the least certain
one. However, if we focus on the information contained in
2 last columns of Table III, we clearly see that the above
conclusion is inaccurate, as the data evidence is extremely
low; this labeled observation should be thus considered as
highly uncertain. This exemplary problem shows potential
issues resulting from the use of incorrect quantification of the
impact of partial supervision and motivates the introduction of
explainability framework into the procedures such as CPR.

V. CONCLUSIONS

The scaling factor α weighs the impact of partial supervision
in semi-supervised fuzzy clustering and thus has a substantial
effect on the estimated memberships and clusters’ prototypes.
All the models building on the additive combination technique
introduced in [3], ranging from semi-supervised adaptations of
Possibilistic Fuzzy C-Means [28] to complex workflows that
wrap the SSFCMeans model [23], share the same mechanism
of regulating the impact of partial supervision by means of the
scaling factor α.

We reviewed the existing interpretations of α and its rela-
tionship with the impact of partial supervision and concluded
that these interpretations are imprecise. They lack complete-
ness, since they interpret α only in terms of the objective
function, not the membership degrees. They also suggest a
directly proportional relationship between the impact of partial
supervision on the memberships and the scaling factor, which
we prove to be non-linear.

Therefore, in this article, we introduced model-specific
explanations of the scaling factor α for both SSFCMeans
and SSPCMeans that overcome the aforementioned limita-
tions. They fulfill the three necessary criteria of an expla-
nation (interpretability, completeness and quantification) that
we proposed based on the discussions on the explainability
framework [29]–[31]. Each explanation defines an associated
function IPS(α) that quantifies the impact of partial supervi-
sion on the memberships.

The benefits of using our novel explanations are substantial.
Not only do the explanations clarify the role of α, but also
prove its impact to be a non-linear bounded function of α. This
enables analytically justified procedures for selecting the value
of α to use, such as building cross-validation grids based on
IPS functions proposed in the Algorithm from Fig. 2. We also
discussed the differences between theoretical and empirical
impact of partial supervision, providing a simulation example
to illustrate them.

Explanation 1 is of particular importance for procedures that
estimate label uncertainty, such as Confidence Path Regular-
izatio [23]. The concepts of Absolute Lower Bound and data
evidence encourage treating label uncertainty with respect to
the ALB rather than to the nominal supervised membership.

Finally, further assessment of modeling the impact of partial
supervision in the spirit of the additive combination technique
remains open for future work. Firstly, Explanation 2 for
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SSPCMeans requires a simulation or real-life data experiment
that we performed for SSFCMeans only. Secondly, it seems
a promising direction to assess if one could introduce custom
flexibility into the shape of the Absolute Lower Bound curve
α

1+α from Explanation 1.
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