
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, MONTH 20XX 1

Emulating Human Play
in a Leading Mobile Card Game

Hendrik Baier, Adam Sattaur, Edward J. Powley, Sam Devlin,
Jeff Rollason, and Peter I. Cowling, Member, IEEE

Abstract—Monte Carlo Tree Search (MCTS) has
become a popular solution for game AI, capable of
creating strong game playing opponents. However, the
emergent playstyle of agents using MCTS is not neces-
sarily human-like, believable or enjoyable. AI Factory
Spades, currently the top rated Spades game in the
Google Play store, uses a variant of MCTS to control
AI allies and opponents. In collaboration with the
developers, we showed in a previous study that the
playstyle of human players significantly differed from
that of the AI players [1]. This article presents a method
for player modelling using gameplay data and neural
networks that does not require domain knowledge, and
a method of biasing MCTS with such a player model to
create Spades playing agents that emulate human play
whilst maintaining strong, competitive performance.
The methods of player modelling and biasing MCTS
presented in this study are applied to the commercial
codebase of AI Factory Spades, and are transferable
to MCTS implementations for discrete-action games
where relevant gameplay data is available.

Index Terms—Artificial Intelligence (AI), Neural
Networks, Monte Carlo Tree Search, Digital Games

I. Introduction
It is now feasible to collect vast quantities of highly

detailed data from digital games [2]. This ease of access
to gameplay data has given rise to an increased use of
data mining approaches during various stages of game
development [3]. Simultaneously, Monte Carlo Tree Search
(MCTS) has become a popular solution for Artificial
Intelligence (AI) in digital games, capable of creating
strong game playing opponents [4]. However, the emergent
playstyle of agents using MCTS is not necessarily human-
like, believable or enjoyable. Creating agents that emulate
human behavior can create more immersive experiences [5],
inform game design [6], and would also be beneficial
for various applications of MCTS in non-game contexts,

Hendrik Baier, Adam Sattaur, Sam Devlin, and Peter I. Cowl-
ing are with the Digital Creativity Labs and Intelligent Games
and Game Intelligence Centre for Doctoral Training, University
of York, UK. (Email: hendrik.baier@york.ac.uk, as1129@york.ac.uk,
sam.devlin@york.ac.uk, peter.cowling@york.ac.uk)

Edward J. Powley is with the Digital Creativity Labs and The
MetaMakers Institute, Games Academy, Falmouth University, UK
(Email: edward.powley@falmouth.ac.uk)

Jeff Rollason is with AI Factory Ltd., Pinner, Middlesex, UK.
(Email: jeff.rollason@aifactory.co.uk)

Manuscript received May 4, 2018. This work was supported by the
U.K. Engineering and Physical Sciences Research Council (EPSRC),
Arts and Humanities Research Council (AHRC) and InnovateUK
under Grants EP/M023265/1 and EP/L015846/1.

e.g. simulations, decision support systems or operations
research (see [7], [8] for examples). Most methods used
to create enjoyable, human-like play to date require sub-
stantial game expertise. This article presents a method of
biasing MCTS using human gameplay data and machine
learning to create agents that emulate human play whilst
maintaining strong, competitive performance. While our
approach needs some machine learning expertise, it does not
require extensive knowledge of the game, which simplifies
application to other games.

To demonstrate the method, we apply it to a digital
implementation of the card game Spades by AI Factory
Ltd., the leading commercial implementation available for
Android devices, with more than 6.5 million downloads.
In previous work with the game’s developers, we analysed
human gameplay data from 27, 592 games and showed
significant differences in the playstyles of the AI controlled
by their current implementation of MCTS [9], compared
to human players [1]. We then demonstrated first steps
towards emulating human play whilst still maintaining
equivalent playing strength to an unbiased agent by
integrating a human gameplay model into MCTS [10]. This
article extends our previous work in the following ways:

1) We are moving from a simplified simulation of the
game to the actual commercial codebase of AI
Factory Spades and improving the MCTS agent
shipped with the game.

2) We are moving from a linear combination of complex
hand-crafted features to neural networks that use
only the raw game state as input—reducing program-
ming effort and making our method more readily
generalizable to other games.

3) We compare direct imitation (simply playing what
the gameplay model predicts) to indirect imitation
(incorporating the gameplay model into MCTS) [11],
both in terms of human-likeness and playing strength.

4) We compare the previously used knowledge bias
technique for indirect imitation [12] with equivalent
experience bias [13], simplifying parameter tuning.

5) We explore the effects of delaying the MCTS bias
to reduce its computational cost [14], creating an
indirect imitation technique that provides strong
human-like play without using increased computa-
tional resources or time.

This article is structured as follows. Section II covers
the necessary background and related work. Section III



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, MONTH 20XX 2

then describes our neural network models of human play
in Spades, and Section IV their integration into an MCTS
agent. The paper ends with conclusions and suggestions
for further work in Section V.

II. Background
This section begins with a brief background on the

application of MCTS (Subsection II-A) and neural net-
works (Subsection II-B) in games. In Subsection II-C, we
then discuss previous related work on player modelling
and imitation learning, to emphasise the place of our
contribution within the existing literature. The section
ends with a discussion of our prior work and ongoing
collaboration with AI Factory in Subsection II-D.

A. Monte Carlo Tree Search
Monte Carlo Tree Search (MCTS) is the underlying

decision-making algorithm used by AI Factory Spades.
Since its invention in 2006 [15], [16], MCTS has shown
state of the art performance in a number of games, most
notably Go [17]. It does not require prior knowledge of how
to play a game, although such heuristic knowledge is often
used to improve performance [4].

MCTS creates an asymmetrical decision tree, with
specific focus on exploring the more promising decisions.
The root node of the tree represents the current state of the
game. MCTS works by repeating the following four-phase
loop until computation time runs out, each iteration of the
loop representing one simulated game.

• Selection: Starting from the root, the tree is traversed
using a tree policy or selection policy. The selection
balances the exploitation of moves with high value
estimates with the exploration of moves with uncertain
value estimates.

• Expansion: When the selection policy leaves the tree
by sampling an unseen move, its successor state is
added as a new node to the tree.

• Playout: A playout policy, often random, completes
the game from the expanded node to the game’s end.

• Backpropagation: The result of the playout is back-
propagated through the tree until it reaches the root,
improving value estimates at the nodes visited during
selection and expansion.

One of the most commonly used MCTS variants is Upper
Confidence Bound for Trees (UCT) [16]. UCT treats each
node in the selection phase as a multi-arm bandit problem.
Each node is assigned a value that describes its average
expected reward, calculated from previous simulations. The
tree policy of the UCT algorithm in each visited node is
to select a child node i that maximises:

UCT(i) = Xi + C

√
ln n

ni
(1)

where Xi ∈ [0, 1] is the average expected reward of the
child node i, C is an exploration constant, n is the number
of times the parent node has been visited, and ni is the

number of times the child node i has been visited. This
formula allows control of the balance between exploitation
and exploration by setting the constant C. We use a value
of C = 0.7 throughout this paper.

A wide variety of MCTS variants and enhancements
have been investigated [4]. Of particular relevance to
this work is Information Set Monte Carlo Tree Search
(ISMCTS) [18], a variant designed to handle games of
imperfect information. The main idea of ISMCTS is that a
new determinization of the root game state is created for
each simulation. This means simulations are split between
different determinizations of the game with a distribution
approximating the likelihood of that determinization. The
work of this paper and the search algorithm in AI Factory
Spades, based on ISMCTS, were developed jointly by some
of the authors and AI Factory [9], [19].

B. Neural Networks
Neural networks have been used for various forms of game

playing in recent years, often with the goal of creating
the strongest agents possible within their domains. For
example, Silver et al. [17] used reinforcement learning to
train neural networks to play Go. These networks were
used to guide Monte Carlo Tree Search, resulting in an
artificial player of superhuman strength—improving on
their previous program that had beaten some of the best
human players in the world [20].

Moravč́ık et al. [21] used neural networks as an evaluation
function for the search performed in heads-up no-limit
Texas hold’em poker. The neural networks were trained
on random games to provide estimates of the value of
holding each card combination in a given game state.
Search was performed to limited depth, and leaf states
were evaluated by the neural networks as an approximation
of the remainder of the search.

Hartford et al. [22] used neural networks to predict the
behavior of human participants in two-player, general-sum
games with a single simultaneous move, as studied in much
of behavioral game theory. Their network architecture is
designed to incorporate assumptions of human behavior
specific to the application, and to express state of the art
models of human bounded rationality.

C. Emulating Human Play
There is a growing body of work which uses gameplay

traces to learn a model for predicting the behaviour of
a human player, including a well established trend of
opponent modeling to exploit weaknesses in their behaviour
[23], [24]. Synnaeve and Bessiere [25] predicted the openings
of opponents in the real-time strategy game StarCraft
by learning the parameters of a Bayesian model from game
logs with labeled openings. Dereszynski et al. [26] used
replays from StarCraft to learn a Hidden Markov Model
for predicting high-level strategic behaviour. These models
were integrated into the existing agents in order to improve
their ability to predict the strategy of a human player,
but the models were not used to bias the agents towards a



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, MONTH 20XX 3

human playstyle. In contrast, our focus in this work was the
emulation of human play. Maintaining the playing strength
of the agent was a secondary objective.

Another area of interest, more closely related to our
goal, is developing an agent that imitates a human player.
Togelius et al. [11] divide behaviour imitation into two
categories: direct and indirect. Direct imitation involves
using a supervised learning method on a data set that
contains a list of states in a game, together with the action
that a human player has taken in that state. The resulting
predictor for human moves is then used as the agent. This
can fail in situations that the predictor was not trained on,
because the agent is unable to plan or learn during play;
for example, an AI agent for a racing game would crash
whenever the controller was in a state too unlike those seen
before. Despite these problems, there have been a number of
attempts to create human-like agents using direct imitation.
Thurau et al. [27] used Bayesian imitation learning to
teach an agent to navigate through a maze in Quake II
using recordings of human players. The results of their
experiments showed that the agents appear human-like,
but their functionality is limited to imitating movement
and would not be able to play against a human player. In
this paper we develop an agent that, whilst human-like,
can act rationally in state unlike those previously observed,
and can safely be deployed within the game.

Alternatively, indirect imitation means that a predictor
for human moves is used by the agent, for biasing an existing
decision-making algorithm towards human-like behaviour
instead of fully specifying it. This approach can overcome
the problem of the agent being unable to act sensibly when
in an unfamiliar state, and is the closest to the method
we propose. Ortega et al. [5] for example trained agents to
play Super Mario Bros using both direct and indirect
imitation methods. Their experiments show that the agents
using indirect imitation were perceived as significantly more
human-like than the agents that used direct imitation, and
also performed better. However, they still showed strongly
inferior performance compared to humans. Therefore, there
is a difficult choice in previous work between maximising
the performance of an AI, and making it appear more
human-like. As we will show in the remainder of this article,
the approach we propose is capable both of playing in a
more human-like way and of maintaining an acceptable
playing strength comparable to an unbiased MCTS agent.

D. AI Factory Spades
Spades is a four-player trick-taking card game, popular

in the USA and played worldwide [28]. It is a partnership
game, with North and South in coalition against East and
West, and has some similarities with, but slightly simpler
rules than, the game of Bridge. A game is played across
multiple rounds where each partnership receives a score
at the end of each round. After being dealt a 13 card
hand from a 52 card deck, the players begin the round by
providing a bid on how many tricks they expect to take from
their hand that round. Each trick consists of each player in

turn playing a card out onto the table, matching the suit of
the first (leading) player if they can, and otherwise playing
any card they choose. The winning card is the highest one
matching the leading suit, unless any ♠ card was played,
in which case the highest ♠ wins. The winner of the trick
becomes the leader of the next trick. The round ends when
all cards have been played. Scoring depends on matching
the total bid of a partnership as precisely as possible. The
full rules are given in [9].

AI Factory1 is a UK-based independent game developer
with over 100 million downloads to date, currently special-
ising in implementations of classic board and card games
for Android mobile devices. AI Factory’s implementation of
Spades has been downloaded more than 6.5 million times,
with an average review score of 4.4/5 from almost 200, 000
ratings on the Google Play store2. The game is a single-
player implementation, in which the user plays as South
with an AI partner as North, against two AI opponents as
East and West.

The results reported in this paper are based on data
collected over a time period of approximately seven months,
from a random sample of 690 unique players, consisting of
27, 592 full games and 1, 356, 082 individual tricks in total.
Each trick contains three AI plays and one human play.

In previous work, we collaborated with AI Factory to
implement ISMCTS-based AI players [9] and then analysed
the data collected to gain insights into the playstyles of
both the AI and human players [1]. One conclusion was that
in certain contexts the AI players were acting significantly
different to human players, as evidenced by differences in
the distributions of abstract moves chosen given the game
state [1]. Abstract moves are a hand-coded categorization
of the specific cards played in a given trick into more
abstract types of moves, using extensive game knowledge
and depending on the current state of the game. Examples
of abstract moves are “follow suit, and play a card of lower
rank than the current highest card in the trick”, or “fail to
follow suit, instead playing a ♠ card”, or “begin a trick with
a non-♠ card”. Abstract moves are further refined into the
different suits, and incorporate game-relevant information
such as whether the played card is the highest or lowest in
its category. There are 68 possible abstract moves in total.

Assuming that a more human-like AI would be more
enjoyable [29], [5], [30], we proposed an indirect imitation
solution with the dual aims of:

1) Reducing the differences between the move choices
of human and AI players;

2) Maintaining a comparable playing strength to the
existing AI players, which was considered appropriate
given the previous analysis of player win rates [1] and
reviews of the game on the Google Play store.

In our previous work on emulating human play [10],
we completed a feasibility study of this approach on a
vanilla ISMCTS agent in a basic implementation of the

1http://www.aifactory.co.uk
2https://play.google.com/store/apps/details?id=uk.co.aifactory.

spadesfree&hl=en



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, MONTH 20XX 4

core mechanics of the game. This article extends that work
by now transferring the findings from the feasibility study
to the ISMCTS agent deployed in the commercial game,
while also improving on the human play model with the
help of neural networks. In the next section we describe our
approach to modelling human gameplay, which we then
use in Section IV to bias the ISMCTS player.

III. Direct Imitation - Modelling Human Play
with Neural Networks

The first part of our work was creating neural network
models of the way humans play Spades.

Early results from neural network models seemed promis-
ing. The first network we created was a feedforward network
with one hidden layer of 200 units and rectified linear
activations. The inputs given to the network were:

1) The abstract moves that were available for the player,
given their cards in hand and the cards on the table,
encoded as a binary vector of length 68;

2) The cards of the other three players already on the
table, encoded as three binary vectors of length 52.
These vectors are “zero- or one-hot”, depending on
whether the player has played a card yet in this trick.

The network was trained to predict which abstract move
would be played by a human given this game state, as
the maximal element of an output vector of length 68.
We separated the data set into a training/validation set
consisting of 90% of the data (1,220,473 individual tricks),
and a test set of 10% (135,603 tricks). This network
achieved an accuracy of 67.8%, which was already a large
improvement on the previous work: the accuracy in [10]
was 45.0%, and with decision trees was 57.0% [1]. This
improvement comes despite the fact that the previous
models were only allowed to select legal abstract moves,
whereas the neural network had no such restriction. For
comparison, always guessing the overall most common
abstract move would yield 16.5% accuracy.

Fig. 1: Inputs and outputs of the networks predicting raw cards,
with tricks inputs (t).

The success of the network trained to predict abstract
moves led us to experiment with networks that would
predict exactly which card to play, given only game state
information but no game knowledge. These take as input

four binary vectors of length 52: the first represents the
cards in the player’s hand, and the other three represent
the cards on the table. This representation does not make
use of any hand-coded abstractions of the game state or
moves, and does not identify which cards in the player’s
hand are legal plays. The number of tricks each player bid
for the current round, and the number of tricks obtained so
far, each represented as a scalar value, were also considered
as additional inputs to the networks. Each network outputs
a vector of length 52, whose maximum element represents
the predicted card. See Figure 1 for a simplified view of
the network structure.

Simple feedforward networks do not learn general re-
lationships between sets of cards (for example, that in
Spades, consecutive cards in hand of the same suit are
essentially identical). For this reason, convolutional network
structures were explored as well. As stated above, inputs
to the network that represented the cards in the player’s
hand and the cards played by the other three players were
given as binary vectors of size 52. To allow the AI players
to spot patterns in their hands—for example, series of
consecutive cards—we trained networks that performed
one-dimensional convolutions over these inputs, using two
kernels of size four, and stride one. We also trained networks
that appended the original input to the convolved input,
to make sure that crucial information was not being lost
by the convolution process.

Various different architectures were trained. We use the
following naming scheme:

• The prefix t indicates that the input is augmented
with the numbers of tricks bid and won by each player.
Networks without these inputs use no prefix.

• The following part of the name conveys the internal
structure. Numbers, e.g. 200→100, represent layers of
hidden units, listed in depth order, the last being the
closest to the output layer. An added letter c denotes a
convolutional layer. Separate convolutions are applied
to the parts of the input vector corresponding to
each player. The letter A means that the result of
the convolution is concatenated with the original,
unconvolved input before being passed to the next
layer.

The networks were trained using mini-batch gradient
descent. Cross-entropy loss was the objective function to
minimize [31]. We used TensorFlow version 1.0.1.

We tested a selection of different network architectures
for accuracy and playing strength. Accuracy results are
based on the test set of 135,603 human moves, and in the
rest of this article—unlike in previous work [1], [10]—refer
to the accuracy in predicting the specific move made, not
just a game-specific abstraction of it.

Table I shows the results. Networks that used cards as
inputs and outputs were more accurate those that used
abstract moves (67.8%). Using abstract moves requires
more domain knowledge and therefore implementation time
on the part of a developer, thus is less easily generalizable
than the neural network approach. In general, the networks
achieved around 70% accuracy on the test set. Those that



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, MONTH 20XX 5

TABLE I: Performance of the different networks, direct imita-
tion. Direct imitation uses the network to choose moves.

network accuracy win rate win rate
vs. baseline vs. 50 rollouts

200 68.3% 11.5% 45.5%
200→100 68.2% 11.4% 43.2%
t-200 70.5% 17.5% 55.3%
t-200→100 71.3% 18.1% 60.0%
t-200→150→100 71.1% 22.0% 58.9%
t-c→200 70.5% 18.4% 57.9%
t-c→200→100 71.0% 14.0% 56.7%
t-cA→200 71.1% 20.0% 57.4%
t-cA→200→100 70.9% 16.6% 55.3%

ISMCTS baseline 58.2% (50.0%) 87.5%
random player (legal) 44.0% 0.0% 0.4%

used the additional inputs (tricks bid and tricks won)
performed better than those that did not. Deeper networks
were able to perform slightly better, but returns quickly
diminished after two hidden layers. The convolutional
networks did not seem to perform any better than the
feedforward networks.

Strength (win rate) results in the middle column of
Table I are based on 1,000 games with the tested network
playing North and South, against the ISMCTS baseline
playing East and West. The ISMCTS baseline is the
standard AI player of commercial AI Factory Spades,
using 2,500 playouts per move, and a number of game-
specific heuristic improvements in the determinizations,
playouts, and move selection.

The right column of Table I gives some context on the
strength of our networks as standalone players. It shows the
results of playing against a weakened version of the baseline
agent, using only 50 rollouts per move instead of 2,500, but
still using the various hand-coded heuristics of the agents in
AI Factory Spades. All networks that include tricks bid
and taken in their inputs (t-) are significantly stronger than
this agent. However, all networks are still clearly inferior to
the regular 2,500-rollout baseline (middle column), due to
the purely reactive decision making and lack of long-term
planning that is typical for direct imitation. We address
this in the next section.

It is important to note that due to the nature of the
data, achieving 100% prediction accuracy is infeasible. If a
player holds 7♥ and 8♥ for example, the choice of which to
play is almost entirely arbitrary, yet our accuracy measure
will penalize the network for choosing differently from
the human. Furthermore there is often no single “correct”
or “human-like” move, and two different people may well
make different moves given the same in-game situation.
Inspection of the data set shows that players do indeed
disagree with each other. Less than 10% of the game states
in the data set are duplicated (and this decreases further
if tricks bid and won are included as part of the state).
Most of the examples that share the same game state
also lead to the same card being played; however, for any
given state, on average 20% of the corresponding examples

disagree with the move made by the majority. On the other
hand, the fact that our better network architectures achieve
above 70% accuracy indicates that there exist strong trends
underpinning how humans play the game, and that our
models are able to learn these.

Also noteworthy is the fact that the networks very
rarely pick illegal moves, such as cards that cannot be
played, or cards that the player does not have. In cases
where the card valued highest by the network is an illegal
move, the choice is replaced by the highest-valued legal
card (and by a random legal card in cases where all legal
cards are valued equally). But only in 0.05% of cases
is the highest-valued card actually illegal (as measured
for network t-200→150→100 in more than half a million
tricks). This indicates that the networks have learned a
highly accurate model of move legality in Spades, despite
not being explicitly trained to do so and not being given
information on the sets of legal and illegal moves during
training. Consequently, enforcing legal outputs does not
significantly affect the reported accuracy values.

The lack of increase in accuracy in the larger, more
complex networks may be due to the data: there is some
level of inconsistency between players. We are only training
a single model of human gameplay, but we are basing it
on data gathered from a diverse set of players. Another
explanation could be that most human players in our
dataset might not exhibit significantly more complex
strategies than those that can be learnt by a simple
feedforward neural network. Training on a sufficient amount
of expert gameplay data may give different results, and
remains as future work.

IV. Indirect Imitation - Biasing MCTS with
Neural Networks

Armed with our neural network models of human play,
we experimented with two different ways of incorporating
them into the ISMCTS player, as described in Subsection
IV-A. We then demonstrate a tradeoff between prediction
accuracy on the human data set and playing strength for
both techniques in Subsection IV-B, and identify promising
parameter settings to balance the two. Subsection IV-C
introduces delayed bias to enable a tradeoff between
performance—both in accuracy and in playing strength—
and computation time, resulting in a variant of indirect
imitation that is competitive without costing additional
time. Finally, in Subsection IV-D, direct imitation and
indirect imitation are compared directly, demonstrating
the effectiveness of delayed neural network bias for creating
more human-like play than our baseline, at comparable
playing strength and without sacrificing speed.

A. Biasing Techniques
A range of techniques have been proposed for using prior

knowledge in MCTS [32]. The first way of integrating the
neural network model used here was applied in our previous
work [10] and is based on knowledge bias, a technique used
previously by Ikeda and Viennot [12] for the game of Go.



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, MONTH 20XX 6

For this technique, the formula for calculating the UCT
score in the baseline ISMCTS agent is modified to include a
bias term based on the Bradley–Terry value. The modified
UCT score of a node i is calculated as:

UCT(i) = Xi + C

√
ln n

ni
+ CBT

√
K

n + K
P (mi) (2)

where P (mi) is the probability of the move leading to
the node i being chosen by a human player (estimated by
normalizing the output of the neural network such that
it sums up to 1 over all legal moves), CBT is a parameter
controlling the influence of the bias on the UCT score, and
K is a parameter controlling the rate at which the influence
of the bias decreases with the number of parent node visits.
These two parameters are tuned experimentally.

The second way of integrating the model of human
play into ISMCTS is based on a technique by Gelly and
Silver [13]. It biases the selection of nodes in the tree
by integrating prior knowledge in the form of equivalent
experience, meaning that we do not initialize a new tree
node i with a visit count of ni = 0 and an average reward of
Xi = 0. Instead, heuristic knowledge about the represented
state is added to the node before sampling any rollouts
from it, in a similar way as results from a given number
of such rollouts would be added—equivalent to a given
amount of experience. For a subset-armed bandit as used
in ISMCTS, where visit counts ni and availability counts
navail

i are maintained separately [18], this means

Xi = P (mi)× wprior

ni = wprior

navail
i = m× wprior

(3)

where P (mi) as above is the probability of the move
leading to node i according to the network—our heuristic
knowledge—, wprior is the number of rollouts this knowl-
edge is equivalent to and controls the influence of the bias
on the UCT score, and m is the number of legal moves
available in the parent node of node i.

B. Accuracy/Strength Tradeoff
In our first set of experiments, we explored the parameter

landscape of the knowledge bias and equivalent experience
bias techniques. For knowledge bias, we tested CBT ∈ {0,
0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2} and K ∈ {10, 20, 50,
100, 200, 500, 1000, 2000}. For equivalent experience bias,
we tested wprior ∈ {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}.
All players were allowed 2,500 rollouts per move, as in
the baseline commercial player. The neural networks were
called in every node at the time of expansion of its first
child node, in order to have their prediction of human
play available for biasing every selection step of ISMCTS.
As one of our strongest networks according to Table I,
t-200→150→100 was used in all experiments.

For visualization, we use 10, 100, and 1,000 as represen-
tative values of K. For these settings and for all tested
values of CBT and wprior, Figures 2 and 3 show for both
biasing techniques the results of predicting human play

on the 135, 603 tricks in the test set (accuracy), as well
as the results of playing North and South against the
ISMCTS baseline playing East and West in 1,000 games
per condition (win rate). The figures demonstrate a tradeoff
between accuracy on the one hand, and playing strength
on the other hand. Lower values of CBT (for knowledge
bias) or wprior (for equivalent experience bias) give less
influence to the neural network model on tree selection,
leading to lower human-likeness, but undiminished playing
strength compared to the baseline. Higher values of CBT
or wprior give a higher weight to the neural networks and
therefore predict human moves increasingly better, but also
lead to a drop in playing performance. This is because as
CBT or wprior increase, indirect imitation gradually turns
into direct imitation, with the network outputs eventually
overruling ISMCTS search results. As a result of the lack
of planning, we approach the low direct imitation win rate
shown in Table I.

A promising parameter setting for further experiments
with knowledge bias is CBT = 0.2 and K = 1000, which
achieves nearly maximal accuracy while not yet playing
significantly weaker than the baseline. Note that previous
work observed the same for CBT = 0.03 and K = 1000 [10],
but for prior knowledge of a different nature. It is likely that
our neural networks are effective at higher CBT weights
because they are more accurate models of human play. A
promising parameter setting for equivalent experience bias,
based on similar reasoning, is wprior = 10.

0 0.01 0.02 0.05 0.1 0.2 0.5 1 2

20%

30%

40%

50%

60%

CBT

w
in

ra
te

win rate with K = 100
win rate with K = 1000
win rate with K = 10

60%

65%

70%

ac
cu

ra
cy

win rate with K = 10
win rate with K = 100
win rate with K = 1000
accuracy with K = 10
accuracy with K = 100
accuracy with K = 1000

Fig. 2: Tradeoff between accuracy and win rate for knowledge
bias, network t-200→150→100. Network is used to bias every
expanded node.

C. Performance/Speed Tradeoff
All experiments in the previous subsection used 2,500

rollouts per move for all players, just like the baseline
ISMCTS agent. This however does not take the additional
time into account that the indirect imitation players need
to call their neural network models. On a laptop computer
with an Intel Core i7-3667U CPU at 2 GHz, for example,



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, MONTH 20XX 7

0 1 2 5 10 20 50 100 200 500 1000

20%

30%

40%

50%

60%

wprior

w
in

ra
te

60%

65%

70%

ac
cu

ra
cy

win rate
accuracy

Fig. 3: Tradeoff between accuracy and win rate for equivalent
experience bias, network t-200→150→100. Network is used to
bias every expanded node.

the baseline needs about 34 ms on average to make a move,
while the indirect imitation players need about 85 ms. This
small difference for powerful hardware becomes highly
significant when we consider Spades running on a mobile
phone, and would result in unacceptable delays. A 2.5-
fold increase in computation time would also restrict the
applicability of our methods to other games.

In order to tackle this issue, we implemented delayed
bias for both biasing techniques. Delayed bias means that
the network is not called in every node at the time its
first child node is expanded, but only in nodes that have
exceeded a certain minimum number d of visits. Until this
number of visits is reached, selection in any given node
uses unbiased UCT scores. d = 1 for example means that
the network is called at the second visit to a node, when
its first child is expanded—as in the previous subsections;
d = 2 means it is called at the third visit, etc. This restricts
the influence of the human gameplay model to a subset
of more relevant nodes in the tree, ignoring those nodes
that are revisited rarely due to their less promising value
estimates. The technique is similar to one proposed for the
game of Go in [14].

Table II shows the effects of the delay parameter d on
both knowledge bias and equivalent experience bias. The
table demonstrates that the more the neural network calls
are delayed, the faster an indirect imitation player can
search with a fixed number of rollouts (“Time” columns),
because fewer network calls are executed (“Calls” columns).
Bias delayed by 1 visit (d = 1) leads to the type of player
we tested in the last subsection; bias delayed by more than
the number of playouts used (d =∞) leads to the baseline
ISMCTS agent. The “Rollouts” columns show how many
rollouts a player with the given d can execute in order to
play at roughly the same speed as the baseline ISMCTS
player with 2,500 rollouts.

These data enabled us to do experiments on the tradeoff
between performance and playing speed for our indirect
imitation agents with delayed bias. For d ∈ {1, 2, 5, 10, 20,
50, 100, 200, 500, 1000, 2000,∞}, we tested the accuracy on
predicting human play and the win rate against the baseline

of delayed knowledge bias and equivalent experience bias.
Using the parameter settings identified as promising in the
last subsection, we compared two different conditions: one
where both the indirect imitation player (playing North
and South) and the baseline (playing East and West) use
2,500 rollouts per move as in the previous subsection, and
one where the indirect imitation player uses the number
of rollouts indicated in Table II in order to play with
comparable speed to the baseline.

Figures 4 and 5 show the results for the two biasing
techniques. Two observations can be made. First, delayed
bias with d > 1 leads to the expected improvement in
playing strength at equal time, and the technique is not
very sensitive to its parameter d in Spades. As d is increased,
strength at equal time quickly catches up to strength at
equal rollouts. Second, the accuracy and therefore human-
likeness of the delayed bias agents is relatively independent
of how often the neural network model is used per move
search, as long as it is used at all (it is not used only in
the d =∞ conditions).

1 2 5 10 20 50 100 200 500 1k 2k 5k

30%

40%

50%

60%

bias delay d

w
in

ra
te

win rate at equal rollouts
win rate at equal time

60%

65%

70%

ac
cu

ra
cy

win rate at equal rollouts
win rate at equal time

accuracy at equal rollouts
accuracy at equal time

Fig. 4: Tradeoff between performance (accuracy and win rate)
and speed for delayed knowledge bias. Network t-200→150→100,
K = 1000, CBT = 0.2. “Equal rollouts” conditions all use 2,500
rollouts per move. “Equal time” conditions all use the same
time the baseline needs for 2,500 rollouts per move.

This last observation led us to decide on the final design
of our indirect imitation agents. By calling the neural
networks only once for each move search—in the root
node—we may gain both accurate emulation of human
play, and good playing speed. Figures 6 and 7 show the
results of repeating the parameter exploration of Figures 2
and 3 when using the network models only in the root
node instead of every expanded node. Playing strength
and accuracy are very similar—but now based on using
the same computation time as the baseline agent at 2,500
rollouts per move.

As a final remark on these data, it appears that equiv-
alent experience bias and knowledge bias achieve similar
performance to each other if tuned correctly. Equivalent
experience bias at wprior = 10 wins 46.5% of games against
the baseline and has an accuracy of 69.6%; knowledge bias



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, MONTH 20XX 8

TABLE II: Speed of delayed knowledge bias and equivalent experience bias, network t-200→150→100. Knowledge bias uses
CBT = 0.2 and K = 1000; equivalent experience bias uses wprior = 10. “Time” is the average time taken per 2,500-rollout move
search; “Calls” is the average number of calls to the network per 2,500-rollout move search; “Rollouts” is the number of rollouts
per move that achieves equal playing speed to the baseline at 2,500 rollouts per move.

bias delay in visits knowledge bias equivalent experience bias

Time Calls Rollouts Time Calls Rollouts
1 85.56 ms 343.17 989 83.71 ms 339.69 1031
5 63.66 ms 173.70 1329 79.44 ms 305.27 1086
20 45.88 ms 59.25 1844 49.97 ms 88.86 1727
100 38.71 ms 13.53 2185 38.81 ms 13.64 2223
500 35.68 ms 3.36 2371 36.53 ms 3.17 2362
2000 35.46 ms 1.64 2386 35.37 ms 1.52 2439
∞ (no bias) 33.84 ms 0 2500 33.84 ms 0 2500

1 2 5 10 20 50 100 200 500 1k 2k 5k

30%

40%

50%

60%

bias delay d

w
in

ra
te

win rate at equal rollouts
win rate at equal time

60%

65%

70%

ac
cu

ra
cy

win rate at equal rollouts
win rate at equal time

accuracy at equal rollouts
accuracy at equal time

Fig. 5: Tradeoff between performance (accuracy and win rate)
and speed for delayed equivalent experience bias. Network
t-200→150→100, wprior = 10. “Equal rollouts” conditions all
use 2,500 rollouts per move. “Equal time” conditions all use the
same time the baseline needs for 2,500 rollouts per move.

0 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5

20%

30%

40%

50%

60%

CBT

w
in

ra
te

win rate with K = 10
win rate with K = 100
win rate with K = 1000

60%

65%

70%

ac
cu

ra
cy

win rate with K = 10
win rate with K = 100
win rate with K = 1000
accuracy with K = 10
accuracy with K = 100
accuracy with K = 1000

Fig. 6: Tradeoff between accuracy and win rate for knowledge
bias, network t-200→150→100, at equal time. Network called in
the root node only.

0 1 2 5 10 20 50 100 200 500 1000

20%

30%

40%

50%

60%

wprior

w
in

ra
te

60%

65%

70%

ac
cu

ra
cy

win rate
accuracy

Fig. 7: Tradeoff between accuracy and win rate for equivalent
experience bias, network t-200→150→100, at equal time. Network
called in the root node only.

at CBT = 0.2 and K = 1000 wins 45.2% and is 70.3%
accurate, at CBT = 0.5 and K = 100 wins 47.5% and is
70.5% accurate, and at CBT = 1 and K = 10 wins 46.5%
and is 69.6% accurate. Since equivalent experience bias
has only one tunable parameter compared to the two of
knowledge bias, it may be the preferable method for biasing
MCTS with heuristic knowledge. However, we are using
knowledge bias in the following subsection because of its
slightly higher accuracy at the specific parameter settings
we tested.

D. Comparison of Direct Imitation and Indirect Imitation
In our last set of experiments, we compared our indirect

imitation agents from the last subsection with the direct
imitation agents from Section III. The indirect imitation
agents all used knowledge bias with CBT = 0.2 and K =
1000. Using all tested networks, we computed their accuracy
in predicting human play as well as their win rate playing
North and South against the ISMCTS baseline playing
East and West.

Table III shows the results, contrasting them with
the direct imitation results copied from Table I. The
indirect imitation players reach almost the same accuracy
as the direct imitation players—over 70%—while avoiding
the networks’ weakness in actual gameplay thanks to



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, MONTH 20XX 9

their integration into ISMCTS. Finding a compromise
between emulating humans and searching for the best
moves to play increases the win rates of the indirect
imitation players against the baseline from 11–22% to 45–
47%, despite the mixed quality of the human gameplay
data. This successfully demonstrates, for the first time
in a commercial digital game, that indirect imitation via
combining neural networks with MCTS can emulate human
play and maintain competitive play with a state-of-the-
art MCTS implementation, without requiring increased
computational resources or time.

We also tested teams of the indirect imitation players
as South and the baseline player as North. The resultant
performance, in terms of win rate against the baseline was
closer still to 50%. This demonstrates robustness of our
proposed indirect imitation agent to differences in their
partner’s playing style, as will be needed when playing
with human players.

V. Conclusions and Further Work
In this article, we proposed a method for biasing ISMCTS

with gameplay data to emulate human play. We studied
AI Factory Spades, a commercial mobile game which
uses ISMCTS to control non-player characters. Previous
work had indicated that adding a bias towards human
play can enable ISMCTS agents to play in a style more
similar to that of human players whilst maintaining playing
strength equivalent to unmodified ISMCTS agents. In
this article, we moved this work from a simulation of
the game to the commercial codebase; removed the need
for domain expertise, using neural networks to train our
gameplay models to predict raw cards instead of game-
specific abstract moves, which simplifies the transfer of
this work to different games; and significantly increased
the accuracy of the prediction over previous work. In
addition, we empirically demonstrated the superiority of
indirect imitation (combining the network’s prediction with
search) over direct imitation (directly playing the prediction
of the network) in this domain; showed the comparable
performance of the easier to tune equivalent experience bias
technique to the previously used knowledge bias technique
for implementing indirect imitation; and alleviated the
added computational demands of using neural networks by
employing delayed bias.

The result of this work is a biased ISMCTS agent
that can emulate human play and maintain competitive
play with a state-of-the-art ISMCTS implementation,
without requiring increased computational resources or
time. This successfully demonstrates, for the first time in
a commercial game, the benefits of indirect imitation for
creating believable non-player characters. The methodology
is in principle applicable to any game currently played by an
MCTS variant, provided that gameplay data from human
players is available and that the agents’ actions are (or
could be modelled as) discrete.

Promising directions for future work include the follow-
ing. First, we have so far used machine learning only to
predict human moves and bias MCTS in their direction.

It would also be possible to use it to predict the cards in
hand, i.e. the hidden part of the game state (similar to
the work on Android: Netrunner [33]), and use that to
bias ISMCTS determinizations in order to achieve more
intelligent play. Such approaches have proved enormously
successful for Bridge [34]. AI Factory Spades currently
uses hand-designed heuristics for this, so this is another
opportunity to use machine learning to supplant the need
for game-specific expertise.

Second, the application of this method to more games
and different genres would help to analyze its generality
and allow us to explore two aspects of this work more
deeply: the ability of neural networks to learn the rules of
a game, and to model multiple playstyles. Regarding the
former, our networks effectively learned the rules of Spades
(or at least the definition of a legal move) from simply
observing human gameplay. This could be a key ability
in scaling planning algorithms to complex, modern video
games, where an approximation of the game rules learnt
by a neural network could be used as a computationally
efficient forward model. In Spades it appears that a single
neural network was sufficient to model human playstyle

— but in other games multiple models may be needed to
capture significantly different clusters of playstyles.

Finally, it would also be desirable to empirically test the
somewhat understudied assumption underlying all work
on emulating human play: that human-like agents are
more fun to play with or against [29], [5], [30]. This would
require a significant user study in close collaboration with
psychologists and human-computer interaction researchers.
Given the advances we have made in emulating human play
and the potential to get feedback from millions of human
players of this commercial game, such a study becomes
feasible and could help to further emphasise the importance
of both this paper’s contribution and the existing work on
believable characters done by the community [27], [11], [5].

References

[1] P. I. Cowling, S. Devlin, E. J. Powley, D. Whitehouse, and
J. Rollason, “Player preference and style in a leading mobile card
game,” IEEE Transactions on Computational Intelligence and
AI in Games, vol. 7, no. 3, pp. 233–242, 2015.

[2] J. Bohannon, “Game-miners grapple with massive data,” Science,
vol. 330, no. 6000, pp. 30–31, 2010.

[3] M. S. El-Nasr, A. Drachen, and A. Canossa, Game analytics:
Maximizing the value of player data. Springer Science & Business
Media, 2013.

[4] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and
S. Colton, “A survey of Monte Carlo Tree Search methods,”
IEEE Transactions on Computational Intelligence and AI in
Games, vol. 4, no. 1, pp. 1–43, 2012.

[5] J. Ortega, N. Shaker, J. Togelius, and G. N. Yannakakis, “Imitat-
ing human playing styles in Super Mario Bros,” Entertainment
Computing, vol. 4, no. 2, pp. 93–104, 2013.

[6] A. Zook, B. Harrison, and M. O. Riedl, “Monte-Carlo Tree Search
for simulation-based strategy analysis,” in 10th Conference on
the Foundations of Digital Games, FDG 2015, 2015.

[7] T. Cazenave, F. Balbo, and S. Pinson, “Using a Monte-Carlo
approach for bus regulation,” in 12th International IEEE Con-
ference on Intelligent Transportation Systems, ITSC 2009, 2009,
pp. 340–345.



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, MONTH 20XX 10

TABLE III: Performance of the different networks, comparison of direct and indirect imitation. Direct imitation uses the network
to choose moves; indirect imitation uses the network to bias ISMCTS (knowledge bias with CBT = 0.2, K = 1000). Indirect
imitation results use equal time per move to the ISMCTS baseline with 2,500 playouts.

direct imitation indirect imitation

accuracy win rate accuracy win rate
200 68.3% 11.5% 69.0% 47.3%
200→100 68.2% 11.4% 69.1% 46.2%
t-200 70.5% 17.5% 70.0% 45.8%
t-200→100 71.3% 18.1% 70.4% 46.6%
t-200→150→100 71.1% 22.0% 70.3% 46.1%
t-c→200 70.5% 18.4% 70.1% 46.0%
t-c→200→100 71.0% 14.0% 70.3% 45.9%
t-cA→200 71.1% 20.0% 70.3% 44.9%
t-cA→200→100 70.9% 16.6% 70.3% 48.8%

ISMCTS baseline 58.2% 50.0%
random player 44.0% 0.0%

[8] J. van Eyck, J. Ramon, F. Güiza, G. Meyfroidt, M. Bruynooghe,
and G. V. den Berghe, “Guided Monte Carlo Tree Search for
planning in learned environments,” in 5th Asian Conference on
Machine Learning, ACML 2013, 2013, pp. 33–47.

[9] D. Whitehouse, P. I. Cowling, E. J. Powley, and J. Rollason,
“Integrating Monte Carlo Tree Search with knowledge-based
methods to create engaging play in a commercial mobile game.” in
Ninth AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, AIIDE-13, 2013.

[10] S. Devlin, A. Anspoka, N. Sephton, P. I. Cowling, and J. Rollason,
“Combining gameplay data with Monte Carlo Tree Search to
emulate human play,” in Twelfth AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, AIIDE-16,
2016, pp. 16–22.

[11] J. Togelius, R. De Nardi, and S. M. Lucas, “Towards automatic
personalised content creation for racing games,” in 2007 IEEE
Symposium on Computational Intelligence and Games, 2007, pp.
252–259.

[12] K. Ikeda and S. Viennot, “Efficiency of static knowledge bias in
Monte-Carlo Tree Search,” in Eighth International Conference
on Computers and Games, CG 2013. Revised selected papers.
Springer, 2014, pp. 26–38.

[13] S. Gelly and D. Silver, “Combining online and offline knowledge
in UCT,” in 24th International Conference on Machine Learning,
ICML 2007, ser. ACM International Conference Proceeding
Series, vol. 227, 2007, pp. 273–280.

[14] G. M. J. B. Chaslot, M. H. M. Winands, J. W. H. M. Uiterwijk,
H. J. van den Herik, and B. Bouzy, “Progressive strategies
for Monte-Carlo Tree Search,” New Mathematics and Natural
Computation, vol. 4, no. 03, pp. 343–357, 2008.

[15] R. Coulom, “Efficient selectivity and backup operators in Monte-
Carlo Tree Search,” in 5th International Conference on Comput-
ers and Games, CG 2006. Revised Papers, ser. Lecture Notes in
Computer Science, vol. 4630, 2007, pp. 72–83.

[16] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo plan-
ning,” in 17th European Conference on Machine Learning, ECML
2006, ser. Lecture Notes in Computer Science, vol. 4212, 2006,
pp. 282–293.

[17] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen,
T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel,
and D. Hassabis, “Mastering the game of Go without human
knowledge,” Nature, vol. 550, no. 7676, pp. 354–359, 2017.

[18] P. Cowling, E. J. Powley, and D. Whitehouse, “Information set
Monte Carlo Tree Search,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 4, no. 2, pp. 120–143, 2012.

[19] E. J. Powley, P. I. Cowling, and D. Whitehouse, “Memory
bounded Monte Carlo Tree Search,” in Thirteenth Artificial
Intelligence and Interactive Digital Entertainment Conference,
AIIDE-17, 2017, to appear.

[20] BBC News. (2017) Google AI defeats human Go champion. http:

//www.bbc.co.uk/news/technology-40042581. Accessed: July
13th 2017.

[21] M. Moravč́ık, M. Schmid, N. Burch, V. Lisỳ, D. Morrill, N. Bard,
T. Davis, K. Waugh, M. Johanson, and M. Bowling, “DeepStack:
Expert-level artificial intelligence in heads-up no-limit poker,”
Science, vol. 356, no. 6337, pp. 508–513, 2017.

[22] J. S. Hartford, J. R. Wright, and K. Leyton-Brown, “Deep
learning for predicting human strategic behavior,” in 29nd
Conference on Neural Information Processing Systems, NIPS
2016, D. D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon, and
R. Garnett, Eds., 2016, pp. 2424–2432.

[23] D. Billings, D. Papp, J. Schaeffer, and D. Szafron, “Opponent
modeling in poker,” in AAAI/IAAI, 1998, pp. 493–499.

[24] F. Schadd, S. Bakkes, and P. Spronck, “Opponent modeling in
real-time strategy games.” in GAMEON, 2007, pp. 61–70.

[25] G. Synnaeve and P. Bessiere, “A Bayesian model for opening
prediction in RTS games with application to StarCraft,” in 2011
IEEE Conference on Computational Intelligence and Games,
CIG 2011, 2011, pp. 281–288.

[26] E. W. Dereszynski, J. Hostetler, A. Fern, T. G. Dietterich, T.-T.
Hoang, and M. Udarbe, “Learning probabilistic behavior models
in real-time strategy games,” in Seventh AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment,
AIIDE-11, 2011.

[27] C. Thurau, T. Paczian, G. Sagerer, and C. Bauckhage, “Bayesian
imitation learning in game characters,” International Journal
of Intelligent systems Technologies and Applications, vol. 2, no.
2-3, pp. 284–295, 2007.

[28] Pagat. (2016) Spades. http://www.pagat.com/boston/spades.
html. Accessed: May 20th 2016.

[29] P. Hingston, Believable bots. Springer, 2012.
[30] A. Khalifa, A. Isaksen, J. Togelius, and A. Nealen, “Modifying

MCTS for human-like General Video Game Playing,” in 25th
International Joint Conference on Artificial Intelligence, IJCAI
2016, S. Kambhampati, Ed. IJCAI/AAAI Press, 2016, pp.
2514–2520.

[31] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT
press, 2016.

[32] E. J. Powley, P. I. Cowling, and D. Whitehouse, “Information
capture and reuse strategies in Monte Carlo Tree Search, with
applications to games of hidden information,” Artificial Intelli-
gence, vol. 217, pp. 92–116, 2014.

[33] N. Sephton, P. I. Cowling, S. Devlin, V. J. Hodge, and N. H.
Slaven, “Using association rule mining to predict opponent deck
content in Android: Netrunner,” in 2016 IEEE Conference on
Computational Intelligence and Games, CIG 2016, 2016, pp. 1–8.

[34] M. L. Ginsberg, “GIB: Imperfect information in a computa-
tionally challenging game,” Journal of Artificial Intelligence
Research, vol. 14, pp. 303–358, 2001.


