
 
 

Delft University of Technology

Orchestrating Game Generation

Liapis, Antonios; Yannakakis, Georgio N.; Nelson, Mark J.; Preuss, Mike; Bidarra, Rafael

DOI
10.1109/TG.2018.2870876
Publication date
2019
Document Version
Final published version
Published in
IEEE Transactions on Games

Citation (APA)
Liapis, A., Yannakakis, G. N., Nelson, M. J., Preuss, M., & Bidarra, R. (2019). Orchestrating Game
Generation. IEEE Transactions on Games, 11(1), 48-68. Article 8466898.
https://doi.org/10.1109/TG.2018.2870876

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TG.2018.2870876
https://doi.org/10.1109/TG.2018.2870876


 

 

 

 

 

Green Open Access added to TU Delft Institutional Repository  

‘You share, we take care!’ – Taverne project 

 

https://www.openaccess.nl/en/you-share-we-take-care 

https://www.openaccess.nl/en/you-share-we-take-care


48 IEEE TRANSACTIONS ON GAMES, VOL. 11, NO. 1, MARCH 2019

Orchestrating Game Generation
Antonios Liapis , Georgios N. Yannakakis , Senior Member, IEEE, Mark J. Nelson ,

Mike Preuss, and Rafael Bidarra

Abstract—The design process is often characterized by and real-
ized through the iterative steps of evaluation and refinement. When
the process is based on a single creative domain such as visual art or
audio production, designers primarily take inspiration from work
within their domain and refine it based on their own intuitions or
feedback from an audience of experts from within the same do-
main. What happens, however, when the creative process involves
more than one creative domain such as in a digital game? How
should the different domains influence each other so that the final
outcome achieves a harmonized and fruitful communication across
domains? How can a computational process orchestrate the various
computational creators of the corresponding domains so that the
final game has the desired functional and aesthetic characteristics?
To address these questions, this paper identifies game facet orches-
tration as the central challenge for artificial-intelligence-based
game generation, discusses its dimensions, and reviews research in
automated game generation that has aimed to tackle it. In particu-
lar, we identify the different creative facets of games, propose how
orchestration can be facilitated in a top-down or bottom-up fash-
ion, review indicative preliminary examples of orchestration, and
conclude by discussing the open questions and challenges ahead.

Index Terms—Artificial-intelligence (AI)-based game genera-
tion, computational creativity, orchestration, procedural content
generation (PCG).

I. INTRODUCTION

GAME design lies at the intersection of a multitude of
creative domains, from art and music to rule systems and

architecture. These domains influence each other, with flashy
visuals reinforcing a fantasy narrative and creepy background
sounds adding to the player’s tension during gameplay. While
the multifaceted nature of games is a great blessing for their
aesthetic expressiveness and functional capacity, it is arguably
a curse for algorithmic processes that attempt to automate the
generation of games. It is one thing to be able to generate a
good level, and another thing to be able to generate a level with
appropriate sound effects, narrative, and game rules; the latter
is several magnitudes more challenging than the former.
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By decomposing games into creative facets (visuals, audio,
narrative, rules, levels, and gameplay), we can simplify the prob-
lem of game generation and allow algorithms to treat each facet
independently. Each game facet, such as a level or a ruleset, of-
fers a controlled area for our exploration. Due to the evident ben-
efits of simplicity and controllability, the focus of commercial
games and academia on procedural content generation (PCG)
has so far been on generating a single creative facet of a game
(e.g., a level generator) [1]. In this paper, we argue that the
dominant practice of designing a generator for a specific type
of content has been detrimental to the grand vision of PCG: the
generation of complete games. When designing a map generator
for the strategy game StarCraft (Blizzard 1997), for instance, it
is easy to completely ignore the remaining components of the
game that contribute to the level generation per se. Components
such as the cost and speed of units, the progression of both
difficulty and storyline from one map to the next, or even the
color palette of the map’s tiles are overlooked. Even in genera-
tors of a broader scope and less specificity [2], certain gameplay
patterns such as the need of balance in a multiplayer shooter
game are presumed to come with the genre. When generating
complete games, however, the computer should be able not only
to generate all of those components, but also to reason whether
generated content of one type (such as visuals) aligns well with
generated content of a different type (such as game rules).

In this paper, we put a particular emphasis on the process
we name orchestration, which refers to the harmonization of
the game generation process. Evidently, orchestration is a nec-
essary process when we consider the output of two or more
content-type generators—such as visuals and audio—up to the
generation of a complete game. To support our definition and ar-
gue for the importance of orchestration for computational game
design, we use the music domain as our core metaphor through-
out this paper. The orchestration process in music can take var-
ious forms that are inspiring for computational game design.
Music orchestration often takes the form of a composer (i.e., an
overseer of each instrument’s output), who makes sure that mu-
sical instruments follow a designated pattern of rhythm, tempo,
and melody as represented through notes and symbols in the
composer’s pentagram. The composer is ultimately responsible
for the final outcome. On the other end of the spectrum, or-
chestration can take the form of improvisation or jamming, as
in freeform jazz or the urban blues. While jamming, musicians
try to adapt to the rhythmic and melodic patterns followed by
the rest of the band; as a result, orchestration is a property that
emerges from the interactions among musicians and the out-
puts of their instruments. The first orchestration paradigm can
be defined as a top-down, composer-driven, process, whereas
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Fig. 1. Key questions of facet orchestration.

the latter paradigm can be viewed as a bottom-up, freeform,
process. Various hybrids between the two paradigms are pos-
sible: for instance, a well-rehearsed and structured song with
an improvisational guitar solo part. Fig. 1 depicts this granular
relationship between top-down and bottom-up via a gradient-
colored arrow. Top-down and bottom-up processes for artificial
intelligence (AI) coordination have been researched extensively
outside of games and will be used as grounding for our proposed
orchestration frameworks.

Music orchestration appears to be an ideal metaphor for de-
scribing the orchestration process of game design. During game
design, the various types of game content can be coordinated,
on one end, by a game designer or game director: this is a
typical top-down process followed by, e.g., AAA studios. On
the other extreme, game design can be coordinated internally
by the different game content designers, e.g., during a game
jam. In this paper, we argue that AI-based game generation
can benefit from following the orchestration patterns met in hu-
man game design (and in music creation). In a similar fashion,
computational creators could be orchestrated by an agent that
acts as the game director or, instead, self-organize and inter-
nally harmonize their creative processes. Hybrids between the
two extremes (top-down versus bottom-up) are also relevant for
AI-based game generation.

By now, it should be obvious that orchestration for game gen-
eration is both a hard and an interesting challenge [3], [4]. It
is a hard problem as it must not only coordinate and initialize
multiple dissimilar generators, but also ensure that the result is
coherent among all game facets. Coherence evaluation is a major
challenge—even in single creative domains such as art—and to
solve it fully would require human-level intelligence (making it
an AI-complete problem). However, this paper proposes several
shortcuts based on the typology of Fig. 1 for ensuring coherence
through a hierarchical generation with human-authored associ-
ations in a top-down process, through semantic labels, which
can be linked together through human-based computation (e.g.,
via Glunet [5]), through machine-learned patterns across facets
from online content such as gameplay videos and reviews, or
through human intervention during orchestration. It is an in-
teresting problem as it potentially realizes the grand vision of

generative systems in games: the generation of complete games
[3], [4]. Given the recent progress of machine and deep learn-
ing as a generative process, the ever-expanding repository of
semantically annotated open data, and the growing number of
academic embryos in this direction, we argue that this is the
ideal time to actively discuss orchestration and its challenges in
greater depth.

This paper places the first stepping stone toward game orches-
tration by questioning what can be orchestrated and how it can
be done, where the process is inspired or initiated from, and, fi-
nally, for whom the final outcome of orchestration is. Answering
these questions yields a computationally creative process that
has an input and an output and targets a class of end users. Fig. 1
depicts what we consider the core dimensions for defining game
orchestration: from its input to the end user. Accordingly, this
paper is structured along these core dimensions. In particular,
the six facets of game content to be orchestrated (i.e., what?)
are elaborated in Section II. Then, the three types of input (from
where?) are discussed in Section III, including direct input from
a human creator, input from online sources (as human-based
computation), and input that is already embedded in the gen-
erative process. How orchestration can take place—along with
related work on AI coordination—is discussed in Section IV,
while how humans can intervene in this process is discussed in
Section V. More specifically, Section IV explores the spectrum
between top-down and bottom-up approaches; Section V ex-
plores the degree of human intervention in the process (from
noninteractive all the way to continuously interactive). The
types of intended end users (for whom?) are briefly presented
in Section VI. In the context of facet orchestration, Section VII
describes some influential work, which combines generation
across facets, with a comparative analysis in Section VIII. Open
questions and challenges are sketched out in Section IX, and
this paper concludes with Section X.

II. CREATIVE FACETS OF GAMES

Games are traditionally realized by a team of creative in-
dividuals with different skillsets and team roles. Based on the
taxonomy of [4], the following subsections detail the six creative
facets of games from the perspective of both human creativity
and AI-based generation.

A. Visuals

As most of the digital games are rendered on a display, their
visual representation is an important component and often a
selling point. Game visuals range from photorealistic to ab-
stract, and everything in-between [6]. Many games rely on the
photorealistic depiction of real people, e.g., in FIFA (Electronic
Arts, 2017) or imaginary people and locations, e.g., in Skyrim
(Bethesda, 2011). On the other hand, games often rely on the ex-
aggeration of caricatures, either to offer visual cues even in low
resolution, e.g., in the extraordinarily large weapons in Final
Fantasy VII (Square Enix, 1997) or to elicit a specific emotion
as in dark grayscale representations of the unfriendly world of
Limbo (Playdead, 2010).
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Algorithmically generated visuals originated around math-
ematical models of noise [7], which were instrumental for the
procedural generation of many visual features, from textures [8]
to terrain [9]. According to the type of features needed in a
game world, a large variety of procedural modeling methods
and techniques have been proposed to generate them [10]. Most
of the methods for generating visuals are based on computer
graphics techniques; however, there have been a few attempts
at AI-based generation of visuals, such as the evolution of
graphic shaders toward a designer-specified color palette [11],
procedural filters based on semantics for slight visual changes to
modeled scenes [12], and evolution of arcade-style spaceships
toward visual properties such as symmetry, simplicity, and
other patterns [13].

B. Audio

While often underestimated, a game’s audio plays a signifi-
cant role in the feel and mood of a game [14]. Background audio
can set players at ease with rhythmic repetitive sequences, as in
the case of Moon Hunters (Kitfox Games, 2016) or increase their
tension with staccato cacophonous string instruments as in Am-
nesia: The Dark Descent (Frictional Games, 2010). Moreover,
the fast heavy metal tracks of Doom (Bethesda, 2016) indicate
moments and locations of high challenge, but also energize the
player to perform the frantic run-and-gun gameplay necessary
to overcome this challenge.

In terms of procedural sound, Proteus (Key and Kanaga 2013)
uses the player’s current location and viewpoint to turn ON and
OFF certain prewritten and carefully designed sound channels,
thus changing the soundscape. Other work, such as Sonancia
[15], chooses from a range of prewritten sound tracks to play at
specific events or areas of a game. Finally, Scirea et al. [16] use
music generated in real time to foreshadow game events accord-
ing to a prewritten narrative arc. Earlier examples of procedural
music in games are surveyed in [17].

C. Narrative

While not all games require an elaborate narrative, a plethora
of large-scale games feature an extensive storyline to connect
the different locales and quest lines. The motivation to play and
complete the game is often built around an in-world narrative.
Role-playing games such as Planescape: Torment (Black Isle,
1999) are especially grounded in the lore of an elaborate world
and introduce nonplayer characters (NPCs) with a rich backstory
and personal growth throughout the game.

In terms of algorithmic narrative generation or mediation,
there is extensive work in interactive narrative and drama man-
agement [18]; games such as Façade [19] and Prom Week [20]
model the game state in a way that allows the manager to choose
which NPCs utter which lines of preauthored dialogue. A recent
survey [21] has pointed out that a stronger orchestration between
plot and level generation techniques has a huge potential and
impact on the authoring process of computational narratives for
games.

D. Levels

Just as most of the digital games are displayed visually, their
gameplay takes place in a virtual space. This virtual space is
identified as a game level and can range from the extremely
simple in Pong (Atari, 1972) to the labyrinthine in Dishonored
(Arkane, 2012). A game may consist of numerous short levels,
e.g., in Super Mario Bros. (Nintendo, 1985), or take place in
one level spanning galaxies, e.g., in Stellaris (Paradox, 2016).
Game levels need to combine form and function: the former
should aid navigation via memorable visible landmarks, while
the latter should constrain the paths of players (e.g., forming
chokepoints in strategy games). Exceptions to these level design
patterns abound: the horror feel of Amnesia: The Dark Descent
is enhanced by low lighting and winding corridors, which limit
visibility and increase the chance of “jump scares.”

Level generation is by far the most popular domain of
PCG in games, both in academia and in commercial titles of
the last 35 years, from Rogue (Toy and Wichman, 1980) to
Civilization VI (Firaxis, 2016). Level generation can be per-
formed in a constructive manner [22] and via many other meth-
ods such as generative grammars [23], artificial evolution [24],
declarative modeling [25], and constraint solving [26].

E. Rules

Regardless of the level they are in, players are bound by
the game’s rules and have access to its mechanics. Mechanics
allow the player to interact with the world [27] and are usually
described as verbs [28] such as “jump” in Super Mario Bros.
or “take cover” in Gears of War (Epic Games, 2006). On the
other hand, game rules determine the transition between game
states, e.g., after a player uses a mechanic. Some rules may lead
to winning or losing, e.g., if Pac-man eats (mechanic) the last
pellet in Pac-Man (Namco, 1980), then the level is won (rule),
or if Mario fails to jump (mechanic) over a gap in Super Mario
Bros., then they lose a life (rule). While rules are different from
mechanics, as “rules are modeled after [player] agency, while
mechanics are modeled for agency” [27], for brevity, we use the
term “rules” for this facet in the typology to include mechanics,
rules, winning and losing conditions, etc.

AI-based generation of rules and mechanics is one of the
most challenging aspects of game generation [29], not only be-
cause they greatly affect the playability of the game, but also
because arguably their quality can only be assessed via playtest-
ing. Ludi evolves interaction rules in board games [30], [31],
and is analyzed in Section VII. In digital games, several early
attempts at automated game design have focused on abstract ar-
cade games, generating movement schemes and collision rules
based on designers’ constraints [32] or based on the ability of
an AI controller to learn the game [33].

F. Gameplay

While the other facets focus on how a team of human or
computational developers create a game, the experience of the
end user playing through the game cannot be ignored. Sicart
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specifies that “gameplay, or the experience of a game, is the phe-
nomenological process of an epistemic agent interacting with a
formal system” [34, p. 104]. Each player interprets the visuals,
level structures, narrative, and game rules in their own way,
based as much on cultural and ethical preconceptions as on their
in-game decisions (e.g., the order in which they visit locales in
an open-world game such as Skyrim). The game’s mechanics are
prescripted when the player launches a game for the first time;
however, when the mechanics are combined together and used
to advance players’ ad-hoc goals or approaches, they can lead
to emergent dynamics [35]. Such dynamics can be influenced
by social and competitive concerns on the part of the gamer
community, which can lead to an ever-changing metagame [36]
of strategies and counterstrategies. In extreme examples, play-
ers exploit unforeseen ramifications of the game rules in order
to bypass the intended challenge. An exemplar player exploit
(turned emergent game mechanic) is “rocket-jumping,” where
a player shoots a rocket at the ground, receiving damage and
propelling through the air by the blast. Rocket jumping allows
players to travel faster (breaking movement speed restrictions
in the game rules) or access unreachable areas (breaking the
intended level design limits). Beyond the primarily functional
concerns of dynamics, however, the interaction among all
facets (and especially visuals and audio) can evoke strong
emotional responses by the player. These responses range from
basic emotions such as fear and joy [37] or a broader range
of aesthetics such as sensation and discovery [35]. While the
intended emotions and aesthetics of players can be designed a
priori, they can only be elicited during gameplay and may vary
immensely from player to player and from those imagined by the
designer.

Simulating human play via computational processes is the
primary goal of AI agent control, which is the oldest and most
popular field in game AI research [38]. Most important to our
perspective of generator orchestration is the challenge of auto-
mated playtesting, where AI agents can learn to play any type of
generated game and evaluate its quality (in terms of, e.g., playa-
bility, fairness, memorability, uniqueness, and more). Gameplay
logs produced by AI agents are often used to derive the qual-
ity of generated content, e.g., in simulation-based fitness func-
tions [24] for evolving game levels. In such simulations, the
AI playtester often attempts to follow the optimal strategy to
achieve the designated goal (such as gaining maximum score),
e.g., when creating levels for an AI competition [39]. Such AI
playtesters simulate an achiever type of player [40] or presume
an aesthetic of challenge [35]. Assessing challenge does not
require objectively optimal agent behavior, however. Artificial
drivers [41] have attempted to maximize “objective” efficiency
(i.e., distance covered in a preset time), while minimizing devi-
ations from captured player data in terms of steering and accel-
eration; this project attempts to more closely match how human
players approach this challenge. In other work on AI playtest-
ing, a broader set of agents attempt to solve the MiniDungeons
puzzle game [42] targeting different objectives, such as collect-
ing the largest treasure or taking the least steps. In this way, the
notion of performance is personalized based on the priorities
of players; the artificial playtraces of such agents can then be

Fig. 2. Creative facets of games.

compared with human traces in order to classify players into
“archetypical personas” akin to [40].

G. Meta-Facet Issues

So far, we have attempted to categorize elements of games
into the six general facets of Fig. 2. However, we acknowledge
that not all elements of games can be described in this way, and
some elements seem not to fit under just one facet. We now
attempt to address these more contentious issues.

1) Question of Blurred Borders: It is expected that any
game, as a multifaceted experience, would have unclear dis-
tinctions between the different elements of visuals, audio, etc.
Since level design combines form and function, the borders
between level and visuals become somewhat blurred. For exam-
ple, a level in Amnesia: The Dark Descent has carefully placed
lights: the rest of the level consists of dark shadows. The place-
ment of lights is strategic, as it forces the player along specific
pathways. However, lighting and ambient brightness are directly
tied to the game’s visuals, renderer settings, etc. In this case, the
placement of lights is as much a part of the level design as it is
of the game’s visuals.

A more ubiquitous instance of blurred borders is gameplay.
While a designer defines rules and mechanics, how these me-
chanics will be used—or the rules be exploited—by the player
is a part of gameplay. Following the mechanics-dynamics-
aesthetics framework [35], the borders between rules and game-
play become even more blurred: while defining the mechanics is
firmly part of the rules facet, the designer should anticipate how
mechanics will be used or combined (into dynamics) in order to
balance different strategies. However, gameplay dynamics are
saturated by context and trends in a player community, walk-
throughs on third-party websites, viral videos, etc. Finally, only
through gameplay can a player experience emotions or the aes-
thetics of play, and thus, even a game designer must resort to
gameplay testing (i.e., become a player) to verify these aesthetic
outcomes.

2) Question of NPC Behavior: NPCs are by themselves mul-
tifaceted elements of games, relying on a memorable appear-
ance, voice-acting, character growth, etc. On the other hand,
considering NPCs as intelligent agents begs the question if such
intelligence requires an additional facet. We consider NPC be-
havior traditionally exhibited in games (and in AI research)



52 IEEE TRANSACTIONS ON GAMES, VOL. 11, NO. 1, MARCH 2019

to belong primarily to the gameplay facet. Specifically, NPCs
playing the game in a similar way as the player count as au-
tomated gameplay. This is especially true for agents that play
the game using the same rules as the player (e.g., in adversarial
symmetrical games such as chess) or with minor changes (e.g.,
asymmetrical gameplay, where the AI has more knowledge of
the game state as in the Civilization series). For all intents and
purposes, the AI is attempting to emulate a player’s decision-
making processes, and thus, it generates functional aspects of
the gameplay facet.

Beyond playing the game strategically as a player would,
research in believable agent behavior where NPCs attempt to
emulate how humans would react to a situation similarly tar-
gets automated gameplay. For example, Prom Week [20] uses a
complex internal model for each NPC regarding relationships,
traits, and cultural knowledge. These NPCs do not attempt to
“win” the game as a player would; they attempt to be human-like
in their reactions and thus emulate a human experience when
seeking a date to the prom. While not a player per se in this
case, emulating human-like dynamics and aesthetics in a multi-
agent system is akin to prompting the aesthetic of fellowship in
multiplayer games and falls under gameplay.

That said, simple NPC behaviors such as the rule-based sys-
tem of monsters in Spelunky (Yu, 2008) or Super Mario Bros.,
which patrol to the edge of a platform and then change direction,
would be a stretch to ascribe to gameplay. In such games, NPCs
(if they can even be named so) act as dynamic obstacles which
move in a simple deterministic pattern; their behavior rules are
merely part of the rules facet, while their placement in a level is
a part of the level design facet, but their resulting behavior does
not quite match the gameplay facet.

3) Question of Genre: The notion of game genre has not
been highlighted in the above distinction between facets, as
most of the genres affect all facets—although usually not in
equal degrees. It could be argued that genre conventions can be-
come the connecting thread between different facets. Based on
the long history of games and their categorization, specifying a
genre such as turn-based strategy comes with many assumptions
that narrow down the possibility space of most of the facets (e.g.,
top-down visuals, rock-paper-scissors game rules, war narrative,
etc.). While most of the game genres primarily define interac-
tions with the game system (i.e., rules, mechanics, goals, and
winning conditions), merging genre with the rules facet would
be a risky generalization. A game genre often describes and con-
strains more than one facet: the music game genre constrains the
rules (i.e., synchronize player input to the sounds), the level de-
sign (i.e., a level structure that allows a player to foresee the
next few keys that must be pressed), and of course the audio. As
genre imposes constraints on several facets, it can provide the
necessary context and anchor for orchestration if it is identified
before any generation takes place. Demonstrably, all case stud-
ies in Section VII were constructed with a specific game genre
in mind (e.g., arcade).

4) Question of Facet Hierarchy: When attempting to gen-
erate content for many different facets, it is perhaps inevitable
to ask “where do we start from?” as some facets may hinge on
the pre-existence of others. An obvious example is gameplay,

which requires game rules and a level (at the minimum) in order
to occur. On the other hand, a computational or human designer
can draw inspiration for a game from a song or a book and can
pitch a game to the studio based on its visual style or historical
setting. When it comes to actual game production, however,
we argue that the rules facet comes first. In a generative
pipeline, the rules of the game and its goals would need to be
generated ahead of the level, visuals, or a concrete narrative.
In many examples of game generation, including those in
Section VII, the game rules and ending conditions are implied
(e.g., reaching 0 hit points loses the game) based on genre
conventions.

This does not mean that a ruleset should be emphasized in the
final game, i.e., the argument is not for “mechanics-heavy” de-
sign. Different games may foreground different factors of player
experience or different design elements in the final product (e.g.,
adventure games often foreground the story and dialog). How-
ever, the main gameplay loop (itself in the gameplay facet)
and the aesthetics of the player experience [35] are ultimately
shaped by the game’s mechanics, goals, losing conditions, and
their interrelation.

III. INPUTS TO ORCHESTRATION

In this paper, we assume that AI is the main driver not only
of the orchestration process (discussed in Section IV), but also
of every generative task. However, the inspiration or guidelines
for these tasks may originate from sources outside the confines
of the algorithmic codebase. We shortly survey possible inputs
to the generative processes being orchestrated.

A. Input From a Human Creator

A human creator or player can often customize a generative
process based on their preferences. The degree and impact of hu-
man input varies. Many games such as Stellaris allow the player
to customize a few intuitive parameters such as the number of
players (enemies), which directly affects the game’s difficulty
and dynamics. Parameterization of the generator on a case-by-
case basis by the user is also available, where orchestration is
concerned: in GAME FORGE [43], a user can express spatial
preferences for the final level (e.g., “branchiness”), but the level
generator must still obey the narrative structure of the underly-
ing storyline. While in Stellaris the user customizes parameters
of a scripted generator, in GAME FORGE, player preferences di-
rectly affect the objective of an evolutionary algorithm. Similar
objectives can be tailored through a graphical user interface as
a target hue selected by the user on a color wheel [11], less
directly as an intended tension curve [15], or inferred based
on player interactions with generated results [44]. Human input
can also take the form of English text: A Rogue Dream [45] and
WikiMystery [46] require a single word or a person’s name as
input, respectively, to draw inspiration from. Extensive human
authoring may also be required: Game-O-Matic [47] requires
a user-created graph with customized edges and nodes, while
mission graphs in Dwarf Quest must similarly be hand-authored
along with their node types [48].
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B. Input From Human-Based Computation

There is an ever-expanding volume of data available on-
line, and human users constantly engage with each other and
with web content. A multitude of software programs perform
human-based computation by outsourcing several steps of their
processes to a crowd of human users. It is not common for gen-
erators to rely on human-based computation, although there
are several noteworthy examples beyond games. Google N-
grams have been used to find associations and similes between
words [49] and transform one character role into another [50].
In nongame orchestration, online newspaper articles have been
used as a seed to create collages, the constituent images of which
were collected based on Flickr searches [51].

For game generation, human computation has been used to
learn patterns from stored game content available online, such
as video playthroughs [52] and human-authored game levels
[53] to inspire level generation for arcade games. On the other
hand, data games [54] transform open data into playable content.
Data Adventures [55] and Angelina [56] use online sources,
which are constantly updated such as Wikipedia or The Guardian
newspaper (respectively); thus, a generated game may differ
from one day to the next based on recent changes. Finally, games
such as A Rogue Dream [45] and Game-O-Matic [47] use online
repositories such as Google images to find appropriate artwork
to integrate in their games; this bypasses the serious challenge of
generating appropriate and visually relatable visuals for many
of the complex or contemporary content semantics that these
games produce.

C. Embedded Input

For automated generation, there tends to be an assumption
that the entirety of the world knowledge is encoded (or gener-
ated) within the codebase, which creates content. This decision
is due to practical concerns (e.g., not all human-editable pa-
rameters are intuitive, and online queries can be mercurial or
finite) as much as it is due to the desire for fully autonomous
generation—as computational creativity often aspires to [57].
The simplest type of embedded input is a random seed: how
this seed is transformed into content depends on more complex
embedded structures such as rulesets (e.g., in cellular automata)
or lookup tables (e.g., random encounter tables). For many gen-
erators of narrative, a full world model must be embedded [58].
Similarly, most of the level generators encode all possible tiles
and their relationships a priori; if the evaluation of generated
levels requires a simulated playthrough, the gameplaying agent
is also hard-coded a priori into the system, e.g., in [59]. Orches-
tration is arguably easier when the entire system is contained
within the codebase, especially if the orchestrating software has
knowledge of each generator’s world model. For instance, Ludi
[30] orchestrates level and rule generation by integrating both in
the same genotype; a game player encoded in the same software
can directly return a fitness score to the search-based rule/board
generator. On the other hand, orchestration may not rely on ex-
ternal inputs except on specific generative steps: for instance,
while Sonancia can generate the intended tension progression
and level without any human input, the last step where sounds are

added to the level requires external input from crowd-sourced
tension models [60].

In theory, a fully internalized orchestration module seems
ideal for fast and efficient coordination; however, the main chal-
lenge is the onerous and sometimes infeasible task of encoding
a world model into the generator. While narrative generators
include a thorough knowledge model, embedding it is a very
tedious task, which requires extensive textual input even for
minimal story domains. When more game facets are consid-
ered, such as visuals that represent real people, then the com-
plexity of such an internal model is too large and external input
(e.g., online sources) is the only viable solution.

IV. ORCHESTRATION PROCESSES

As noted in Section I, we borrow the metaphor of orchestra-
tion to contextualize the collaboration of multiple computational
designers, each focusing on the creation of content primarily for
one facet: examples include level generators, ruleset generators,
artificial playtesters, etc. In that context, we identify two ends
of the spectrum, which have been heavily researched both for
game development and for general production (algorithmic or
not). On one end, the top-down process features a composer,
which provides as much detail as possible to musicians (indi-
vidual generators), leaving little room for creativity to each mu-
sician. On the other end, the bottom-up process features a group
of musicians “jamming” until they find a common frame of ref-
erence and adjust their performances toward a shared emergent
rhythm and complementing melodies (see Fig. 1).

The sections below attempt to unpack the notions of top-down
and bottom-up processes for orchestration, proposing possible
implementations for each of them, as well as framing them in
the context of other possible metaphors and related work in
broader AI coordination. Moreover, the fertile middle ground
between these two ends of the generation spectrum is identified
with some examples.

A. Top-Down Process: The Composer

The simplest way to achieve a consistent design seems to be
to impose it a priori to all constituent members of a production
team. In our music metaphor, this would be a composition writ-
ten by a musical luminary, such as a concerto written by Vivaldi.
Distributed as sheet music to each instrument player, the con-
stituent musical pieces are played by the respective instruments.
Taken at the face value, this resembles a production line at a
manufacturing plant where machines (or humans, for that mat-
ter) are given a firm set of instructions, which they must execute
with precision. In game production, this could be likened to the
waterfall model [61], where a thorough game design document,
created before production begins, informs all creative decisions
down the line. In the waterfall model (see Fig. 3), the game is
first designed on paper; then, implementation (be it graphical,
functional, or other) takes place following the design document
closely, followed by postprocessing and testing. The core
principle of the waterfall model is that each step can start only
after the steps before it are completed. As with a concerto,
some common understanding on how to interpret the design
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Fig. 3. General view of the waterfall game design process.

document is necessary—mediated by a maestro in orchestras
and by art directors or tech leads in game development. This
common understanding is further strengthened and finalized
during postproduction, where all components come together
and additions or fixes are made to better adhere to the design
document. Admittedly, we oversimplify the role of maestros,
art directors, or postproduction in this example to present the
extreme end of the orchestration spectrum as a production
line; often the creativity and influence of such individuals is
imperative, and we will discuss this in Section IV-C.

1) Related Background Work: In generative systems, a wa-
terfall model is best represented as the generative pipeline, also
called a feedforward or linear approach. A general input is fed
to one process marked as first in the pipeline. The first process
produces some kind of output, which is handed off as input to
the next process in the pipeline. The second process elaborates
on or transforms its input as necessary and hands off its output
to the third, and so on down the line until the final product is
output. This is perhaps the most straightforward way of combin-
ing multiple generative systems and has, therefore, been used
frequently in many domains, including in most of the multi-
facet game generation systems discussed in Section VII. It is
important to highlight the role of input in this approach: this
is most often a user specification (i.e., preauthored by a human
designer) although the level of detail of this specification af-
fects the creative leeway afforded by the generators within the
pipeline.

Linear generative pipelines are also common as an architec-
tural foil held up by systems that wish to move beyond them,
perhaps because they are easy to make work but are unsatisfying
as a model of the creative process. Critics correctly point out
that humans do not produce creative artifacts in this purely linear
manner, and instead, different facets of a creative domain may
impact others in a multidirectional manner that includes interac-
tion between facets and multiple revisions. For example, work-
ing in AI jazz improvisation, Horowitz [62] proposes several
different interacting areas, such as melodic concepts, melodic
lines, goals and emotions, context (meter and harmony), solo
lines, low-level features (pitch and rhythm), etc. Each of these
areas mutually impacts the others and, furthermore, may itself
have multiple subfacets. In this system, a spreading-activation
network is used for multiway interaction between those facets.

2) Envisioned Framework: Many of the case studies in
Section VII use a generative pipeline of some sort. As an ex-
ample, Sonancia [63] first generates the desired progression of
tension (following film tropes), then uses it to generate a level
that matches it as closely as possible, and then uses the actual
tension in the generated level to choose sounds for each room.

Fig. 4. Example top-down generative process based on frames that are refined
by subsequent generators (as directors).

In order to give a broader and more inspiring framework
for top-down generation, we envision a full game generation
pipeline illustrated in Fig. 4. This system starts from a general
game description and uses a pipeline to introduce more details
until a complete game can be composed out of the outputs of
specialized small-scale generators. This general game descrip-
tion acts as a frame [64], which can be generated or provided by
a human designer, and it must identify the core principles, tech-
nical and semantic, in each creative facet. An example frame
can include one or more semantically rich labels for each facet
(e.g., “a 3-D horror game set in claustrophobic levels with warm
visuals and foreboding audio, in a castle setting with enemies
attempting to chase away the player”). Ideally, the frame should
be described in natural human language [65], although it suffices
if the frame is only machine interpretable (described as fitness
functions, grammars, ontologies, text files, or other parameters).
The frame is the blueprint for the generated game and acts as
producer in a game studio [66].

The high-level frame can be disseminated among the differ-
ent single-facet generators, which produce content appropriate
to the directives and constraints of this frame. However, the
frame will need to be further refined in terms of each facet be-
fore content can be generated. Refinement can be done by lower
level directors, focusing exclusively on each facet: an analogy
can be made with, e.g., art directors in game studios, who coor-
dinate artists via moodboards or concept art. The example frame
above can be refined by a generator of art frames into art-specific
guidelines such as “the game needs stone castle textures, 3-D
meshes of narrow corridors, 3-D meshes of creepy statues, and
animated meshes of undead monsters.” These frames can be
further refined (e.g., to define the exact dimensions and compo-
nents of the wall meshes or the monsters), leading to a series
of generated “primitive” components, which are recombined by
the directors and provided back to the producer/frame to form



LIAPIS et al.: ORCHESTRATING GAME GENERATION 55

the generated game. This generative model allows for a more
directed flow of information and a clear task allocation to the
generators of “primitive” components. These generators do not
need to be particularly “intelligent” or “creative” in that regard:
constructive PCG methods likely suffice for the speedy creation
of content. Assurance of quality and consistency is done by di-
rectors who narrow down the generative parameters sufficiently
to ensure that any content generated will be appropriate. This
top-down generative model follows largely the waterfall model
of software development, where each phase leads to a subse-
quent phase more grandiose (and expensive) than the next. This
holds true in the generative “waterfall” orchestration, as genera-
tors of high-level frames are computationally and conceptually
simpler than generators of “primitive” components.

3) Challenges: As discussed earlier, the main argument
against a generative pipeline is, perhaps counterintuitively, the
simplicity in which it can be implemented. The pipeline’s sim-
plicity hides another danger that the constituent generators in
the pipeline merely obey rules similar to a machine on the pro-
duction line. A generative pipeline itself, under that lens, does
not contain any AI or creativity. The creative challenge in this
case is twofold: 1) how the original “frame” is generated; and
2) how the high-level frame is iteratively interpreted into pro-
gressively more precise descriptions and actionable generative
commands. On the other hand, the top-down process handles
the challenge of harmonization fairly efficiently by breaking it
into smaller parts (sub-frames) and by ensuring that generators
only produce content under very specific constraints that match
that frame.

B. Bottom-Up Process: The Jam

As mentioned in Section I, music orchestration does not nec-
essarily need a composer or maestro but can instead be done
through jamming, e.g., freeform jazz musicians creating music
by feeding off each other’s riffs. A similar brainstorming and it-
erative development method is followed in more freeform game
development settings, such as in game jams. Based on the sur-
vey of [67], when developing a game, the (human) participants
of the Global Game Jam start from many ideas and iteratively
reduce scope, or start from vague ideas and add mechanics and
features during implementation, or start from a core idea and
build it up based on testing and feedback. Of these processes, the
first two hinge on the iterative refinement of one or more vague
ideas, which are formalized both through testing and through
conversation among team members.

Can generators “jam” like freeform jazz musicians or Global
Game Jam participants? A possible bottom-up approach re-
quires multiple generators, each contributing content pertaining
to one facet, producing initially random content and then observ-
ing how their output matches other generators’ output. Initially,
random content should be produced at a more abstract repre-
sentation than the intended end results, e.g., as map sketches [2]
rather than 3-D levels. Like freeform jazz musicians, the genera-
tors would then need to adapt and refine their generative process
in order to better match the output of the other generators, aim-
ing to reach a consensus. To achieve this, the generators would

need a way to evaluate both their outputs and the outputs of other
generators in order to assess how well the primitive components
that each generator produces match. This can be done in several
ways, e.g., based on labels as discussed in Section IV-A2: a mesh
generator creating pieces of a castle (label) would not match a
texture generator creating sci-fi tiles or an NPC name generator
for cyberpunk settings. Several functional flaws of nonmatch-
ing components could be recognized during playthroughs by a
generic AI player, e.g., when combining narrow maze-like levels
with a control scheme of racing games. Finally, consistency can
be evaluated in a completely data-driven fashion, which uses a
vast database of existing games to learn patterns (e.g., via deep
learning) and assess whether typical [68] associations between
facets are present in the output of the different generators.

It is clear, therefore, that the proposed bottom-up approach
to facet orchestration likely needs fewer generators than the
top-down approach, as generators of framing information be-
come unnecessary. On the other hand, the generators must be:
1) highly expressive, i.e., able to create a broad range of content;
2) able to adapt their process to match the output of other gen-
erators; and 3) able to assess how well their output matches that
of other generators. For the latter point, evaluating asset consis-
tency can be either included in every generator or take the form
of an external AI playtester or an external AI data processing
unit. Regardless, it would seem that achieving a fully automated
bottom-up generative approach requires human-level aesthetic
evaluation and adaptation capabilities.

1) Related Background Work: A set of independent genera-
tors collaborating in a shared design space is reminiscent of the
blackboard system [69], [70], which is found in a large amount
of classical AI work [71], [72]. These systems are based around
a central data structure called the blackboard, which multiple
independent processes can read from and write to. In this type of
architecture, processes generally do not directly communicate;
instead, they communicate implicitly through the blackboard
by recognizing content on the blackboard that is relevant to
their own operation. The intention is to couple processes only
loosely, avoiding both the n2 process-to-process communica-
tion explosion and the need to specify a fixed control flow and
data model at the outset. To facilitate this, processes in black-
board systems must be able to ignore the blackboard content
that they do not recognize. In fact, there is typically no explicit
control flow at all; instead, processes asynchronously read the
blackboard and take action as they see fit, thereby decentral-
izing the decision-making logic. However, a central scheduler
may exert some high-level control by modifying, when each
process is scheduled, its resources.

One early use of a blackboard approach to generate content
in a creative design domain is in a series of systems from Hofs-
tadter’s group at Indiana University, which have been applied to
generate creative analogies [73] and typefaces [74]. In these sys-
tems, the blackboard (which they call the Workspace) contains
the current artifact in progress, along with a number of anno-
tations that generative processes (which they call Codelets) can
add to items on the Workspace, in addition to changing the items
themselves. Codelets come in several flavors: some codelets no-
tice low-level patterns and add an annotation proposing that
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Fig. 5. Example bottom-up generative approach based on an external or in-
ternal system that evaluates the components’ consistency and playability as a
whole and may adapt the individual generators’ parameters (shown as dashed
arrows) based on these evaluations.

these patterns may be useful, other codelets try to enact a high-
level goal (such as a particular analogical schema), and yet other
codelets notice and/or attempt to fix specific types of problems
that the distributed operation of the other codelets has produced.

2) Envisioned Framework: Inspired by blackboard systems,
we envision a bottom-up process similar to Fig. 5, where a num-
ber of “general” generators for each creative facet produce arti-
facts that are then placed on the workspace. The generators are
general in the sense that a generator can produce a broad range
and style of artifacts, such as medieval textures (e.g., for stone
castles or wooden carts) as well as sci-fi or modern textures.
However, it is likely that these generators could be composed of
more specific generators: a general audio generator could con-
sist of generators for background music and generators for short
sound effects. The workspace is a combination of all types of
game content, which must be checked for coherency by some
internal system (e.g., a data processing unit) or some external
system (e.g., a general AI playtester). This coherence evalu-
ation would, at the very least, reject a combination of game
content and clear the workspace; it could also remove the most
incoherent content, leaving more coherent content as a seed for
future combinations. Ideally, the coherence evaluation system
should adjust parameters of the generators so that they would
produce content more appropriate for the workspace. Alterna-
tively, the generators themselves could inspect the workspace
and adjust their own parameters to harmonize with the patterns
that emerged already. This is similar to how jazz musicians
attempt to change their pace or notes to match the emerging
melody created by the band.

3) Challenges: The largest challenge for generators able to
brainstorm and eventually coalesce to a common goal and final
artifact is the requirement for a very sophisticated appreciation
model to assess not only their own but also other generators’
creations. It should not be understated that jazz musicians jam-
ming together are accomplished musicians individually, and that
game jam participants have a common real-world model of the
popular games’ features in any facet. Thus, in a fully bottom-up
approach, each generator should have a knowledge model, e.g.,

learned from existing games, which it can use to identify pat-
terns in the generated data of other generators and adjust its own
creative process to match those patterns more closely. The abil-
ity to appreciate other generators’ output or the ability to adapt
its own output can quickly escalate to an AI-complete problem.
Similarly, a general AI playtester, which can account for (and
take advantage of) nonfunctional elements, such as visuals or
narrative cues during play, is similarly beyond the scope of the
next decade of game AI research. However, several shortcuts
can alleviate this challenge: for instance, using common labels
between generators (which can create sci-fi themed visuals and
sci-fi themed rules, for instance) would allow for a fairly sim-
ple coherency evaluation. This shortcut comes at the cost of
expressiveness, since only certain labels or game themes can
be accommodated in this case, but it is a stepping stone toward
realizing more ambitious bottom-up generation.

C. Intermediate Approaches

Sections IV-A and IV-B elaborated on two edge cases, where
generation follows a top-down or a bottom-up flow. To better
illustrate each process, analogies with musical composition and
commercial game production processes were used. However,
many of the assumptions for how musicians or game develop-
ers are creative were oversimplified to offer the extreme ends
of a spectrum. Orchestra musicians are hardly production line
robots, and jazz musicians come to a jamming session with some
assumptions (e.g., that they will be playing jazz). Similarly, even
the most complete game design document does not contain the
coordinates of all vertices in a 3-D model, and even in the most
rigorous waterfall model, most of the discrepancies—often iden-
tified via internal playtests—are fixed during the postprocess-
ing step. In game jams, jammers share abstract ideas first via
sketches, agreeing on a basic premise before starting to create
content. There is, therefore, a fertile middle ground between a
strictly top-down and a purely organic bottom-up process when
it comes to automating game generation. Using similar musi-
cal and game production analogies, we briefly highlight some
promising directions for orchestration, which bridge the two
extremes.

1) Creative Maestro: The top-down process of Section IV-A
assumes that a composer is the solitary genius who disseminates
more-or-less explicit orders to the musicians or, in our case, to
generators of specific artifacts. The role of a director in Fig. 4
is to interpret the specifications of the high-level frame into ac-
tionable commands for simple constructive generators beneath
it. However, these directors could interpret the provided frame
much more loosely and creatively: for instance, the visual di-
rector of Fig. 4 could identify a castle as the expected medieval
castle made of stone walls or—with a creative interpretation—
as a flying fortress with sci-fi or mechanical walls. Such creative
interpretations could lead to dissonance between, e.g., the vi-
sual output of a flying fortress and audio output for medieval
throne rooms. To overcome this and achieve better orchestra-
tion, a dissonant direction (from the different directors) could
suggest a change in the common frame, and that change would
then have to be interpreted and propagated to all directors (and
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Fig. 6. General view of the iterative game design process.

thus all generators) for every facet. Having a director suggest
a change of frame is contrary to the top-down process, where
past decisions (or generative steps) are frozen. The benefit of
such a change, on the other hand, could be a more creative pro-
cess than a strict top-down process; at the same time, since only
directors (using high-level labels) can suggest changes to the
frame means that the process is more controlled than in pure
bottom-up approaches, where the shared workspace is equally
likely to contain low-level content such as textures or dialogue
lines.

2) Jamming With Fake Sheets: The ambitious nature of
bottom-up approaches has been highlighted in Section IV-B3.
To take a plausible intermediate step toward fully bottom-up
approaches, the notion of a “frame” similar to that in Fig. 4 (and
discussed above) can be introduced. In the case of bottom-up
approaches, a frame could act more as a “fake sheet” (or lead
sheet) in music: fake sheets specify only the essential elements
of a song (melody, harmony, and lyrics) and is often the only
form of written music in jazz ensembles. A musician plays this
melody, while other musicians improvise accompaniments or
solos on top of this basic chord progression. In a bottom-up
generative process, a fake sheet would then be a frame which all
generators agree to build on and expand, following its essential
structure without being subdued to it. The frame can originate
from a human or a computational designer (similar to the frame
generator in Fig. 4). The frame can be disseminated to the in-
dividual generators for adjusting their parameters and ensuring
that their content more or less fits the frame; alternatively, it
can be placed on the workspace just like any other artifact and
inform the coherency evaluation system, which must not only
ensure that generated content is coherent with each other, but
also with that specific frame.

3) Vertical Slices: The grandiose vision of the previous sec-
tions has been the generation of full games as a result of com-
bined efforts of orchestrated generators. The assumption has
been that everything needed for this game is generated at the
same time—no matter how long that takes. On the other hand,
game development companies often follow an iterative approach
(see Fig. 6), where each small game mechanic, level element, or
idea is developed in isolation (so as not to endanger the general
development schedule and pipeline) and tested, refined, and re-
designed until it is ready to be integrated into the existing game.
Working on such vertical slices, development becomes flexi-
ble and open to innovations, since any feature can be designed,
tested, and refined or discarded without hurting the game. This
can be integrated as a generative process: arguably, any level
design task is a large vertical slice as the level can be tested

(with existing game rules), refined, and included in the level
collection or discarded. However, vertical slices can be useful
for other facets as well as for a combination of facets, provided
that game generation proceeds in an iterative fashion. As an ex-
ample, an iteration can introduce a new game mechanic, which
allows climbing vertical surfaces; this affects the level design,
which now can feature sheer walls, and possibly other facets
such as sound effect or animation for climbing. If any of these
generated components underperforms (e.g., no appropriate ani-
mation can be devised for climbing, or levels become too easy
regardless of adjustments), then the iteration is ignored, and the
game content already generated remains as it was at the start of
the iteration. Working on vertical slices allows for a more man-
ageable breadth of possible content, as modifications of already
generated content, which is suitable both for a top-down pro-
cess (e.g., with the high level directive “Levels must be easier to
speed run through”) or for a bottom-up process (e.g., with a rule
generator pitching a new mechanic). The smaller scale of these
vertical slices will likely speed up generation of the slice itself
but may also slow down the final development of the game if
a large portion of the vertical slices are discarded because they
produce worse results.

4) Postproduction (Repair): In the general top-down game
development process of Fig. 3, the combined content after the
implementation step is not immediately sent for testing but in-
stead goes through a postproduction step. This step is largely
overlooked in the described top-down orchestration process of
Section IV-A2, which assumes that all content generated by the
primitive generators can be combined together without issue.
However, postproduction can identify flaws in the integration
of different content (or codebases, in the case of both commer-
cially developed and computationally generated settings). It can
also take steps to smooth out any errors introduced during in-
tegration or, more ambitiously, any dissonance or incoherence
among the different components being combined. Postproduc-
tion can be simulated programmatically and is often identified
as a “repair” function on generated content. In PCG research,
repair functions have been applied based on a constructive algo-
rithm, which, for instance, removes inaccessible tiles in a level
[75], and also modifies levels by applying filters learned from
the high-quality content [76]. It is likely that deep learning can
be used to produce repair filters similar to those in [76], but for
a broader variety of content and facets—provided a sufficient
corpus of such data to train from. Regardless of the method,
postproduction is a necessary step for top-down processes in
commercial settings and should be considered for top-down or-
chestration as well. However, bottom-up processes that place a
diverse set of content on a workspace would likely also require a
postproduction step in order to smoothly integrate such content
into a playable game. Iterative generation through vertical slices
would also require a postproduction step when the iteration is
deemed successful and its changes need to be integrated with the
game created so far. In short, a high-quality postproduction step
that can identify and smoothen dissonance between generated
content is a core element of orchestration and, in certain cases,
could be considered the main method for orchestration itself.



58 IEEE TRANSACTIONS ON GAMES, VOL. 11, NO. 1, MARCH 2019

V. HUMAN INTERACTION IN ORCHESTRATION PROCESSES

This paper assumes that orchestration is largely automated
by an AI; however, human intervention during the orchestration
process should also be considered. Unlike human input to each
generator discussed in Section III, in this context, intervention
occurs during (rather than before) orchestration. As an exam-
ple, interactive evolution [77] can be applied on the orchestration
level to select the most appropriate or harmonious facet com-
binations. Interactive evolution allows users to directly select
which content they find most appropriate in cases of single-
facet content such as tracks [78], flowers [79], or spaceships
[44]. Beyond mere selection of favorite content by visual in-
spection, humans can create data on the gameplay facet by
playing the generated content; based on the gameplay facet,
content of other facets such as levels [80] can be orchestrated.
Interactive evolution has also allowed human intervention on or-
chestration between multiple game facets, such as space shooter
weapons’ visuals and trajectories (game rules) in Galactic Arms
Race [81]. AudioInSpace [82] requires the player to test the
weapons and select which weapons’ visuals and rules are best
orchestrated with the game’s generated soundscape; the player
can select which weapon they prefer but also which audio they
prefer, allowing for more direct control over which facet should
be adjusted to become more harmonious.

As with bottom-up and top-down approaches, there are dif-
ferent degrees of human interaction, which can be included
in the orchestration process. Human interaction can use direct
selection as in [78], [79], and [82] to replace the coherence eval-
uation of Fig. 5, indirectly learned designer preference models,
which can automate evaluation until new data are offered by
the player [44], [83], [84], or human-provided gameplay data
to replace automated playtesting for the gameplay facet [80],
[81]. Expanding on the latter case, gameplay data have so far
been used to help generate new game rules, visuals, or levels
based on a preauthored mapping between gameplay and the
other content being generated: better levels feature more play
time spent in combat [80]; better weapons are fired more of-
ten than others [81]. On the other hand, this mapping between
different types of content is of paramount importance to orches-
tration (amounting to the coherence evaluation of Fig. 5) and
could be further refined based on human associations, e.g., by
players’ self-reports that can be modeled via machine learning
into a predictive model of coherence similar to [85].

VI. END USERS OF THE ORCHESTRATION PROCESS

Ultimately, AI-based game generation aims to create com-
plete games that are immediately playable. For most of the
generators (in one or more facets), the output is playable by a
human or AI player [86]. However, other generators produce
intermediate or unfinished content, which must be verified or
edited by a designer before becoming playable. WorldMachine
(Schmitt, 2005) produced masks and heightmaps [87] that are
then edited by level designers to add 3-D meshes and game-
specific objects for Battlefield 3 (EA, 2011). Tanagra [26] gen-
erated platformer levels which the designer could then adjust
further in the same interface before making them available for

play. Sentient Sketchbook [88] generated map sketches in re-
sponse to a designer’s actions; these map sketches were used for
concept development rather than as final playable output. Gener-
ators of Role-Playing Game content1 provide a springboard for
game masters, who can adapt (or ignore) the generated results
to fit their current needs or their campaign’s backstory.

When it comes to the output of orchestration, the question
of intended end user becomes even more pertinent. While ide-
ally the outcome of orchestration should be a game ready to be
consumed by a player, this requires a perfectly harmonized and
balanced set of artifacts. As noted already, the problem of coher-
ence evaluation can be AI-complete, while designing generators
for every type of content (of every genre, and every facet) could
be infeasible. Until these problems are solved—or instead of
attempting to solve these problems—the output of a creative set
of generators can be provided to designers as a springboard for
authoring a game themselves. When the end user is a designer,
the granularity of the generated output is far more flexible. AI-
based orchestration can provide a broad direction such as a game
pitch described textually or visually (e.g., a collage or logo), or
it can provide a full game (e.g., structured as Fig. 4) but with
the necessary options for a designer to adjust or reconfigure any
level of the generation (e.g., on the broad art direction level or
on the color level).

VII. CASE STUDIES OF ORCHESTRATION

Several research projects have targeted, in one way or another,
the cocreation of multiple game facets. While these projects do
not fully realize the goals set out in this paper, they are worth
studying as their principles can be extended for a better orches-
tration between facets. Section VIII summarizes and compares
these projects along the dimensions of Fig. 1.

A. Angelina

Angelina is a creative software developed from 2011 to 2016,
which makes tracking its different versions difficult. For the
purposes of this paper, we focus on a version described in [56],
which scrapes information from online sources (e.g., stories
from The Guardian news site) to create simple platformer games.
Angelina evaluates the mood of the article based on natural lan-
guage processing and chooses appropriate image backgrounds
and sound-bytes based on the text contents (e.g., an image of
a sad British Prime Minister if the article has a negative piece
on U.K. politics). While the generated platformer level is not
affected by the article’s content or mood, the game’s visuals and
soundscape are orchestrated by the (high-level) narrative of the
news piece (see Fig. 7).

B. Game-O-Matic

Game-O-Matic is an AI-based game generator, which trans-
forms human-authored microrhetorics [90] into playable arcade
games. Game-O-Matic is intended for journalists to quickly cre-
ate newsgames, i.e., a type of game where “simulation meets

1Many RPG generators can be found online at chaoticshiny.com

https://www.chaoticshiny.com


LIAPIS et al.: ORCHESTRATING GAME GENERATION 59

Fig. 7. Facet orchestration in Angelina, where different online sources are
used to combine visuals and audio based on the mood and keywords of a
Guardian article acting as (external) narrative. The level generator, however,
was not connected to the remaining facets. The in-game screenshot is from [56].

political cartoons,”2 by constructing relationships between en-
tities. These relationships take the form of a concept map, a
directed graph connecting entities through verbs: e.g., “cows
make burgers,” “man eats burgers” [90]. While the author can
create any sort of entity, the verb in each relationship must be
chosen from a predetermined yet extensive list. These verbs are
transformed algorithmically into game mechanics via predeter-
mined rules. Thus, “man eats burgers” may be transformed into
a game, where the player controls a “burger” chased by “man”
avatars, and the game is lost if it collides with a “man” avatar, or
the player controls the single “man” avatar who wins by collid-
ing with all on-screen “burgers.” When combined together, the
different verb-entity triplets may create infeasible game rules
[47] or games which cannot be completed: the partial game
description is then modified by one of many possible recipes,
which best fits the partial game description. Sprites for entities
(e.g., “burger”) are based on Google image search results for
that entity’s name.

Game-O-Matic, therefore, primarily interprets human-
authored concept maps (microrhetorics) into a complete ruleset
(i.e., with custom game mechanics, goals, and instruction sets).
Additionally, the visuals of the game are fully dependent on
the entities chosen in the microrhetoric. While one could argue
that the visual generation in this case is superficial, it cannot be
denied that different visuals (and underlying entities) result in
a wholly different message. Treanor [89, g. 27] demonstrates
how the same mechanics can have very different political and
religious messages by merely changing the visuals of the game
objects. Finally, since Game-O-Matic determines how entities
of each type will be instantiated, the system superficially con-
figures the level setup (see Fig. 8).

C. Rogue Dream

A Rogue Dream [45] is a roguelite game prototype, which
uses online sources to discover associations between game ob-
jects in order to instantiate preauthored rules templates such as
“〈enemy〉 damages 〈avatar〉.” Unlike Angelina, the human in-
put for the narrative is a single word: the name of the player’s
avatar. Users provide this name as a form of proto-narrative,
which is strengthened algorithmically with names for enemies,
edible items, and game goal. These are discovered through

2The slogan of newsgaming.com by Gonzalo Frasca et al.

Fig. 8. Facet orchestration in Game-O-Matic, where a human-authored mi-
crorhetoric (small-scale narrative) informs which game objects and rules exist
in the gameworld; game objects get their visuals from online sources through a
search query based on the microrhetoric. In-game screenshot is from [89].

Fig. 9. Facet orchestration in A Rogue Dream, where a user-provided name
for the avatar becomes the seed for discovering the names (and from them,
the visuals) of enemies, goals, and healing items. A special ability name and
mechanic is based on the avatar name (and a pre-authored list of possible game
mechanics). The level generator, however, was not connected to the remaining
facets. In-game screenshot is from [45].

Google’s autocomplete results using templates such as “why
do 〈avatar〉 hate...” for discovering enemies (as the next word of
Google’s autocomplete results). The game mechanics are pre-
scripted (e.g., the player will have to reach the goal and edible
items heal a prespecified amount of damage up to a maximum
prespecified hit point limit). The only generated component
for the game rules is the avatar’s ability, which is also discov-
ered through Google autocomplete result for the query “why do
〈avatar〉....” The verbs found as results of this query are matched
to a prescripted list of possible abilities such as ranged attacks;
if no match is found, a random ability is linked to the verb
(i.e., there is a fallback that decouples narrative and rules, if or-
chestration is impossible). Similar to Angelina, A Rogue Dream
generates a simple grid-based level with enemies, healing items,
and a goal dispersed in it, disregarding their instantiated names.
Similar to Game-O-Matic, the names of avatar and discovered
associations (including abilities) are used as search queries to
find the visuals used in the level and user interface (see Fig. 9).

D. Data Adventures

While most of the instances of multifaceted generators are
based on content generated from scratch, this does not have
to be the case. The Data Adventures series [46], [55], [91]
create simple adventure games based on components already
existing and freely available as open access data. Using primary
sources of open content such as Wikpedia for data, Wikimedia
Commons for images, and OpenStreetMap for levels, Data

https://www.newsgaming.com
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Fig. 10. Facet orchestration in Data Adventures, which links Wikipedia ar-
ticles together into a generated plot and searches for visuals based on article
titles. Level design is based on the real location of cities on the globe, while city
layouts are based on OpenStreetMap. In-game screenshot is from [91].

Fig. 11. Facet orchestration in GAME FORGE where a generated narrative
informs level generation. Level properties (e.g., side paths) that do not break
narrative constraints can be customized by the player. In-game screenshot is
from [43].

Adventures recombine that information in novel (and often
absurd) ways to create adventures for finding an NPC specified
at the start of the game [55] or for discovering the culprit of a
murder [46], [91]. The generative system finds links between
people, places, and topics in Wikipedia and crafts a series
of encounters with different “real” people (i.e., existing in
Wikipedia) in locations around the globe, the maps of which
are collected from OpenStreetMap; finally, the images of places
and people are collected from Wikimedia Commons. From an
orchestration perspective, the Data Adventures system acts as
the “maestro” that collects semantic associations and generates
proto-narratives from them (“the culprit may be X because it
has the same profession as Y”), geolocations of different cities
to generate the level (world map), and appropriate visuals for
these people and locations. While Data Adventures operate on
a different level than traditional PCG approaches, and not all
their constituent generators are as sophisticated, the outcomes
are some of the most elaborate instances of game generation in
the form of an extensive highly branching adventure game.

E. Game Forge

An earlier instance where generated content of one facet is
used as input for generating another facet is GAME FORGE [43].
This system begins from a generated narrative, where the story
is represented as a sequence of hero and NPC actions at specific
plot points, and generates a level layout so that the positions
specified in the plot are visited in order. As an example, if a
paladin must kill Baba Yaga to earn the king’s trust in order
to receive information about a secret treasure cave, then the

Fig. 12. Facet orchestration in AudioInSpace, where players select which
weapon or music mappings to evolve. Weapon particles can have different
colors. Audio affects the weapon’s behavior; a fired particle, its speed, and color
can affect the audio pitch or volume. In-game screenshot is from [82].

generated level places the lair of Baba Yaga close to the king’s
palace, but the treasure cave is accessed from the palace only
by crossing the lair. Moreover, the generator adds variety with
locales unrelated to the plot to increase unpredictability. The
level’s target features (e.g., world size, number, and length of
side paths) are specified by the player and form an objective for
evolving the level toward the player-specified features and the
narrative constraints. GAME FORGE uses the designer-provided
or computer-generated narrative (quest-line) to guide level gen-
eration, but also accounts for player preferences (see Fig. 11).

F. AudioInSpace

AudioInSpace [82] is a space shooter similar to R-type (Irem
1987), where the game’s soundtrack affects the behavior of the
player’s weapons and vice versa. The weapon’s bullets are repre-
sented as particles, the position and color of which are controlled
by a compositional pattern producing network (CPPN) [92] that
uses the game audio’s current pitch information and the position
of the bullet (relative to where it was fired from) as its input.
This allows the audio to indirectly control the trajectory, speed,
and color of the players’ bullets; the player can control the be-
havior of their weapons via interactive evolution, choosing their
favorite weapon among 12 options.

On the other end, the player’s bullets (part of the rules facet)
and the player’s firing actions (part of the gameplay facet) affect
the audio being played. New notes occur when the bullet hits an
enemy or otherwise at the end of the current note. The audio,
represented as the note’s pitch and its duration, is controlled by
a second CPPN, which uses as input the position from where
the last bullet was fired, the time since it was fired, whether it
hit an enemy, and its color. Thus, the player’s firing behavior
(i.e., how often they fire, and how accurately) and the weapons’
visuals can affect the notes played. This creates an interesting
loop, where one CPPN uses the audio to influence the weapons,
while another CPPN makes the weapons’ and player’s behavior
affect the music played. Both CPPNs can be evolved by the
player, which makes interfacing with the system difficult as it
is unclear which facet is currently influencing the other. To our
knowledge, this is the first attempt at creating a closed loop,
where rules, gameplay, visuals (as the particles’ color), and
audio are orchestrated with the player acting as a “maestro”
controlling how each facet affects the others (see Fig. 12).
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Fig. 13. Facet orchestration in Sonancia, which generates levels based on a
generated or authored tension progression; the level’s progression is then used
to sonify each room. In-game screenshot is from [93].

Fig. 14. Facet orchestration in Mechanic Miner, where existing game code is
adjusted to allow new gameplay, and then, levels are evolved to take advantage of
the new mechanics, assessed on random agents’ gameplay. In-game screenshot
is from [94].

G. Sonancia

Sonancia [63] is a generative system, which evolves levels
for horror games based on a desired progression of tension and
then uses the levels themselves to produce a soundscape for the
experience. The model of tension defines how tension should in-
crease or decrease as the players get closer to the end of the level;
this tension model is generated first—or alternatively provided
by a game designer [15]—and acts as the blueprint which the
level generator tries to adhere to. Level generation is performed
via an evolutionary algorithm, which tries to match the provided
model of tension to the generated level’s progression of tension,
which is affected by the presence or absence of monsters in the
rooms of the level.

Once the level is generated, its own tension model is used
to allocate preauthored background sounds to it, in a fashion
that corresponds to the tension progression. Each sound has a
tension value, which can be defined by an expert designer [15]
or derived from crowd-sourcing [60]. Each room is assigned a
background sound, which loops while a player is inside it. By
using the generated room’s tension value (which depends on
whether the room has a monster and whether there are monsters
before this room), the evolutionary level design facet affects the
constructive audio facet. Both facets are also guided more or
less directly by the framing information of tension, which can
include narrative terms such as “rising tension” or “cliffhanger”
[63], although such framing information could be considered a
narrative structure only at a very high level (see Fig. 13).

H. Mechanic Miner

Mechanic Miner [95] generates game rules by adapting the
source code of a platformer game (e.g., generating a player

Fig. 15. Facet orchestration in Ludi, where the rules for black, white and neu-
tral pieces are evolved alongside a board layout (i.e., a game level). Evaluation
of the board and game piece rules is based on simulated playthroughs of two
artificial agents using the same evolved policy based controllers. Screenshot of
generated game Yavalath is from [30].

action that sets gravity to a negative value) and then generates
levels, which can be completed (i.e., the exit can be reached)
with these new rules. Playability of generated levels is ensured
by an agent performing random actions. A more intelligent
agent that learns to use the mechanics could lead to a stronger
orchestration of AI-based gameplay taking advantage of
AI-based rule generation to adapt AI-based level design.

I. Ludi

While this paper has focused on AI-based generation of digital
games, work on orchestration of board game facets shows great
promise in the Ludi project [30], [31]. Ludi creates two-player
adversarial games, abstract in nature and similar to checkers or
tic-tac-toe. The game’s winning and losing conditions, rules for
piece movement, and board layout are described in a custom
general description language with ludemes as “units of game
information” [30] (e.g., a board ludeme or start ludeme). The
game description combines game rules and the design of the
level (board), although the possible board layouts are fairly lim-
ited compared to levels in digital games. The game description
is then tested through simulated gameplay by two adversarial
agents that use a policy evolved specifically for this game from
a set of pre-authored policy advisors. The produced gameplay
logs from a set of such playthroughs are parsed to assess ob-
jective properties (e.g., completion rate and game duration), but
also aesthetic properties (e.g., drama and uncertainty). Ludi’s
generated gameplay simulates players’ learning (initial moves
are random, for instance). Gameplay logs are processed exten-
sively to find 57 gameplay features, which are then combined
into an aggregated fitness score to bias the genetic selection
of game descriptions. Orchestration in Ludi largely follows a
bottom-up approach, adapting game rules and board layouts
based on feedback from the artificial players, which, in turn,
adapt to the specific generated game and take advantage of its
board layout (see Fig. 15).

J. Other Examples

The limited survey above describes a few exemplars of AI-
based game generation that incorporate multiple game facets.
The survey is far from exhaustive, but it aims to highlight a broad
range of approaches, different facets, and different inputs that
seed generation. However, several other projects on AI-based
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game generation have attempted to orchestrate content and are
worth noting.

Arguably, any generate-and-test PCG method or simulation-
based evaluation in search-based PCG [24] generates the game-
play facet in one way or another. Gameplay is simulated in level
generators via pathfinding between the level’s start and finish,
e.g., in [96] or via rules on when players should use a mechanic,
e.g., in [97], or via solvers for optimal puzzle solution, e.g., in
[26] and [98]. Such simulation-based evaluations usually trivial-
ize the player’s expected experience or aesthetics. On the other
hand, Cook[99] uses the same trivial A* pathfinding playtraces
but uses the computer agent’s viewport to assess whether certain
markers are visible or not visible. This artificial playtrace eval-
uates generated levels based on the visual stimuli rather than
purely functional aspects of player experience (i.e., completing
the level). On the other hand, rule-based systems in [97] simulate
player precision by introducing some randomness to the timing
of an artificial player’s use of a mechanic. This better captures
player experience and can be used to assess how accessible or
difficult a game is to novice players. Focusing instead on hu-
man players’ different priorities when playing a game, levels for
MiniDungeons [59] were evolved for different procedural per-
sonas, i.e., artificial agents with archetypical player goals such
as treasure collection, challenge (monster killing), or survival
[42]. Finally, racing track generation in [100] was informed by
gameplay traces of computational agents that simulated specific
players’ skills captured via machine learning.

Beyond simulation-based fitness functions for level genera-
tion, gameplay and rulesets are orchestrated in a similar way.
For instance, constraint programming can produce “optimal”
gameplay traces for a broad set of generated collision-based ar-
cade games in [32]. Game-O-Matic in Section VII-B performs
a similar playability check; however, such gameplay generation
is deemed too trivial to include as a generated facet.3 In contrast,
Ludi creates gameplay logs by agents that use customized poli-
cies to that particular game and simulate learning (or initial lack
of understanding). Similarly, Togelius and Schmidhuber [33]
evaluate generated collision and scoring rules for simple arcade
games based on controllers evolved explicitly for this game.
Unlike Ludi, the evaluation is based on the average fitness of
these controllers throughout evolution, simulating how difficult
it would be for a player to learn (optimize) their gameplay to-
wards maximizing the score.

Nelson and Mateas [101], [102] proposed a four-facet model
that partly overlaps with that of Fig. 2 and implemented a gener-
ator of WarioWare (Nintendo, 2003) style games orchestrating
a subset of those facets. Those four facets were: abstract me-
chanics (corresponding to our rules facet), concrete game rep-
resentation (a mixture of our visual and audio facets), thematic
mapping (our narrative facet, plus the aspects of visuals that es-
tablish setting and meaning), and control mappings (subsumed
in our rules facet). Their generator takes a high-level micronar-
rative provided by the user (such as a game about chasing)
and finds a combination of game mechanics and sprites from a

3Similarly, Sonancia uses A* pathfinding to check that the objective in a level
can be reached, but that is not considered generated gameplay.

TABLE I
PROPERTIES OF THE CASE STUDIES OF SECTION VII

preauthored set to produce the narrative. It thus follows a top-
down process that starts from the narrative facet and then jointly
searches the rules and visuals facets for a suitable content pair.

An unusual example is the extensible graphical game gen-
erator [103], an automated programming system that generates
playable user interfaces for games that are specified in a de-
scription language, where the interfaces respect features of the
ruleset such as keeping hidden information hidden. In addition,
for two-player games, it generates an AI player specialized to
that game. This can be seen as a generative pipeline from rules
to visuals and to gameplay.

Another system that couples the level design and audio facets
is Audioverdrive [104], a side-scrolling space shooter for iOS
that sets up a feedback loop between level design elements and
a procedural audio system. For example, the height of the bot-
tom terrain (level design facet) controls the pitch of the bass
synth (audio facet), and in turn, treble sound events (audio
facet) trigger the placement and timing of enemies (level de-
sign facet). Unlike the—similarly themed—AudioInSpace, the
mapping between the two facets is controlled by the game’s
designer/composer, not by the player.

Some work in interactive narrative can also be viewed as
performing facet orchestration. Charbitat [105], for example,
has a pipeline that generates game worlds and then generates
quests to fit them. Likewise, the General Mediation Engine [106]
creates levels (as sequences of rooms) based on a narrative
created via planning (which adapts to player actions while the
game is played) and can also take some decisions regarding
game rules (such as the presence of an inventory).

VIII. COMPARATIVE ANALYSIS OF THE CASE STUDIES

Table I summarizes how the case studies4 of Section VII
tackle the issue of facet orchestration in different ways. Along
the dimensions considered, the order of generation is important
as it is indicative of a more top-down approach (in the case
of sequential generation using previous steps as scaffolds) or
a bottom-up approach (in the case of content generated con-
currently). Note, however, that order of generation does not
necessarily mean that all content concurrently generated are
actually orchestrated or checked for coherence as suggested
in Section IV-B. The only truly bottom-up approach is Ludi,

4aRD: A Rogue Dream; GoM: Game-o-Matic; Son: Sonan-
cia; GF: Game Forge; Ang: Angelina; MM: Mechanic Miner; DA: Data Ad-
ventures; AiS: AudioInSpace.
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where the boards and rules are generated simultaneously and
independently from each other,5 with gameplay traces created
based on policies customized for that specific board and rules.
In contrast, Sonancia uses a clear sequential process as it first
generates the frame of tension progression; then, the frame is un-
changed, while a level is generated to match it; then, the level is
unchanged, while a generator finds appropriate sounds for each
room. As noted in Section VII-J, any generator with simulation-
based evaluation, e.g., [59], has to generate the gameplay con-
currently with another facet (usually level or rules); a sequential
approach would finalize the level and the rules and then create
controllers for that combination (which will remain unchanged
until the end of generation).

In terms of facets being combined in the cases studied, most
of the systems combine in a nontrivial way at least three facets.
As noted, any simulation-based evaluation generates the game-
play facet, so, in that sense, two facets are relatively easy to
orchestrate. GAME FORGE is noteworthy as it does not generate
gameplay but instead focuses on the mapping between story and
spatial arrangement of story elements. Among the most ambi-
tious projects in terms of facets combined are A Rogue Dream,
Angelina, and Game-O-Matic, although the role of facets such
as narrative is subdued (a story’s mood or a proto-narrative).
Moreover, these three systems include fairly simple level gener-
ators, which do not consider any of the other facets and can thus
operate concurrently without actual orchestration. On the other
hand, Ludi only generates content for three facets, but it is the
only instance of complete game generation, as the simple and
abstract board games generated by Ludi do not require or ben-
efit from visual, audio, or narrative generation. In terms of the
types of facets often generated, among the nine case studies, the
most popular is level design (eight cases) followed by narrative
(six cases), although it should be noted again that the latter is
used loosely, as it is also interpreted as story’s mood (Angelina),
entity relationships (Game-O-Matic), or progression of tension
(Sonancia).

Finally, many of the surveyed systems include human or
crowdsourced input as well as human intervention. Table I lists
case studies, which make use of human input, online sources,
or are only working on an internal knowledge model. Among
projects that rely on user input, the differences are notable:
A Rogue Dream requires only one word as a seed, while
Game-o-matic requires the user to create a graph and name its
nodes and edges. GAME FORGE and Sonancia do not require
users to customize generative parameters, but it is likely that
computer-provided parameterization may lead to unwanted
results. AudioInSpace is the only case studied, which requires
human intervention to affect the orchestration process, while the
game is played. On the other hand, all projects that use online
sources (except Sonancia) do so to retrieve images on specific
keyword search queries. In addition to this, A Rogue Dream
uses Google search autocomplete for mechanics and game
objects, while Data Adventures bases most of its generation on
open data repositories (OpenStreetMap, Wikipedia). In terms

5The fact that both facets are part of the same genotype is not relevant as
genetic operators applied on rules do not affect board layouts and vice versa.

Fig. 16. Spectrum of the case studies on orchestration.

of systems that only orchestrate content internally generated,
of special note is Mechanic Miner, as it discovers new rules by
manipulating source code, and thus, the world model it uses is
far more granular than in other systems.

Fig. 16 shows where the case studies are found in terms
of sequential (alluding to top-down) or concurrent (alluding to
bottom-up) processes, as well as how much human customiza-
tion goes into each. The latter conflates human input before
generation (e.g., Game-O-Matic) and during generation (for Au-
dioInSpace) and is assessed on the effort needed from a designer
to initiate or guide the orchestration process. Fig. 16 clearly
shows that there is much ground left unexplored on different
dimensions and for most facet combinations.

IX. OPEN PROBLEMS

Section I already highlighted that orchestration is an inter-
esting but hard problem. The analysis of how existing work in
Section VII handles orchestration, and the dimensions of full
orchestration discussed in Sections III, IV, and VI are important
stepping stones. However, as in any hard problem, many and dif-
ficult challenges still need to be surpassed before orchestration
can hope to achieve complete game generation.

A. Combinatorial Explosion

We have emphasized that in order to orchestrate several facets
into a complete game, the individual generators must be highly
controllable. Otherwise, we run into the problem of having lots
of superfluous single generators with many interdependencies,
which leads to a combinatorial explosion. Lightweight scripted
approaches can work for a top-down process, where a num-
ber of generators that do one thing well (e.g., castle wall texture
generation) could be chosen by the art director among an expan-
sive set of such generators, as in Fig. 4. However, crafting all
those generators would be a grand undertaking. Modular and
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expressive generators, which, e.g., can customize their out-
put based on top-down or cocreator directives, are much more
desirable.

B. Learning the Mapping Between Facets

While Section IV focused on the architecture and generation
sequence, at the core of orchestration is the challenge of assess-
ing to which extent different content match. This task can be
somehow simplified in top-down approaches, where a human-
authored hierarchy of content per game type is feasible. In the
example of Fig. 4, for example, the visuals director refines the
labels in the frame, based on a human-provided grammar, e.g.,
warm visuals can be mapped to red or orange or purple, cas-
tles can be mapped to a series of walls, floors, doors, columns,
etc. The task of mapping every possible game in this way in
a database is certainly tedious, but genre conventions could be
exploited to streamline the process. Since the top-down genera-
tive commands are one-way, it is not vital to verify that the final
content match.

A more automated approach to this task could be via existing
ontologies beyond games. Capturing the use of associations be-
tween entities as, for example, between action and agent/patient
(e.g., VerbNet) or between a verb and its possible usage contexts
(e.g., FrameNet) can be instrumental in deriving such mappings
between facets. Similarly, semantic knowledge bridging game
facets may be captured from large knowledge ontologies such
as Wikipedia, from which, e.g., the structure or color palette
of castles can be mined, or the fact that castles are tied to me-
dieval times and narratives. Incipient work has been done on
integrating existing lexical databases in a computational narra-
tive context [5]; the resulting GluNet, however, could also be
deployed to bridge knowledge between game facets as, e.g.,
narrative, level, and visuals.

On the other end of the spectrum, purely bottom-up ap-
proaches hinge on a coherence evaluation mechanism; this was
already identified in Section IV-B as the main challenge of these
approaches. In such cases, recent advances in machine learning
could offer a solution. Deep learning has already shown its po-
tential in purely visual tasks, but is also making good progress
on finding associations between content from dissimilar do-
mains such as text and images [107] or images and sound [108].
Given sufficient data, we can assume that a deep learning ap-
proach can assess whether game content match. For instance,
deep learning was used to predict how levels and weapon pa-
rameters, combined, affect gameplay balance [109]; in [110], a
similar mapping was used to adapt hand-authored or generated
levels to be more balanced for specific matchups between char-
acter classes. It has been already shown that machine learning
can capture level structures from gameplay videos [52], which
can drive the generation of new levels. Mapping the actual vi-
sual output (in terms of color palette or structures) on top of
the discovered level structure could provide a simple coherence
evaluation for a specific game. Beyond that, many games could
be used from a variety of “Let’s play” videos on YouTube or
e-sports streaming on Twitch. This would allow a more gen-
eral model to be trained to assess consistency across games.

Although far from straightforward, there is sufficient data avail-
able today and sufficiently sophisticated algorithms for machine
learning to make the claim that machine learning-based orches-
tration is possible [111]. Even with limited data, decision trees
were able to find mappings between color and Pokémon types in
[112], and statistical models could match a pawn’s shape with its
in-game importance [113]. However, some facets will be easier
for coherence evaluation in this way than others. For example,
visuals, sounds, and even levels are straightforward inputs to a
deep learning network, whereas narrative and game rules are far
less so. Moreover, game rules may need to be translated into
machine-readable input by a human designer, as there are no
explicit descriptions for them in most of the cases.

C. Orchestration With Human Designers

Section V highlighted that a human can directly interact with
the orchestration process (e.g., via interactive evolution), while
Section VI highlighted that the final output could be a canvas
for designers to work on. It is interesting, however, to further
hypothesize how content generators could work along a human
development team to create games from start to finish. Questions
of coherence evaluation can be trivially answered by having a
human expert verifying which elements match and possibly
manually removing others from a blackboard [69]. Rather than
treating designers as input (for parameter tweaks) or interven-
tion for verification, it is more interesting to consider designers
in other roles in the proposed frameworks. Can designers work
alongside generators, not as a composer that dictates the frame
of the generated game as in Fig. 4, but instead jam with gener-
ators in a bottom-up approach? Generated content has already
been used as a seed for human creativity during a creative pro-
cess [26], [88], [114], and algorithmic expressiveness can be
used to broaden the creative potential of casual creators [115].
However, game design where the computer is providing creative
suggestions in domains dissimilar to the domain the human de-
signer is working on (e.g., suggesting visual art while the human
designer is editing rulesets) is largely unexplored. The closest
attempt to such a human-inclusive orchestration is likely the
game sprite recommender of [116], where similarity to game
rules edited by a human user is used to find recommendations
for sprites (including their rules and visuals). However, more
computationally creative approaches, e.g., where the computer
provides the frame or where more game facets are combined,
could lead to breakthroughs in AI-assisted orchestration.

D. Evaluating Orchestration

One of the core challenges of any computationally creative
approach is assessing its performance and its creativity. The task
becomes more difficult when generation is on aesthetic domains
such as game art and music, and it is likely a reason for a stronger
research focus on the more quantifiable facets of level generation
and ruleset generation. Unfortunately, if evaluating one such do-
main on its own is already difficult, evaluating the orchestration
of several domains is a far greater challenge. Such evaluation
may be subjective and likely qualitative, while the results that are
shown in a publication may be curated. The conclusions drawn
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from such work may be subject to human biases by each author,
reviewer, and/or reader. Admittedly, identifying which facets
were mapped in each of the case studies of Section VII—as well
as deciding which facets were considered too trivial a contribu-
tion, and even the relative size of each facet in the figures—was
based on personal intuition and, ultimately, opinion.

There is no easy solution to this problem, and the best way to
move forward for orchestration research is to look at domains
which have struggled with such issues already. As noted above,
the research community around computational creativity has
faced similar issues for several years, and many frameworks
have been proposed for assessing creativity [65], [68], [117].
Even today the topic of trivial versus creative generation is
pertinent [57] and is reminiscent of our discussion on trivial
generation of gameplay in Section VII-J.

Rather than question the creativity of their systems, inter-
active narrative research has struggled with how the authored
narrative components impact the user’s experience. In interac-
tive narrative, “the dynamism of the content makes authoring
for these goals a challenge” [118]. Similarly, in games, it is
unknown—and largely untraceable—how players perceive (in
their own gameplay experience) the world and the interaction
between game mechanics. As with stories, the “readability” of
the game environment, the points of visual or aural interest,
and the use of mechanics to overcome challenges can all be
presumed by a human or computational designer, but remain
difficult to benchmark based on human play.

Finally, evaluation is a contentious topic in mixed-initiative
co-creative systems [119], where the system provides sugges-
tions to human users. Whether suggestions are selected, which
patterns the selected suggestions have (over suggestions that are
not selected, for instance), and at which point in the creative pro-
cess they were selected can be monitored and reported in a quan-
titative manner [88], [119], [120]. However, assessing whether
such suggestions are of value to users as creative stimuli is dif-
ficult, as users may not explicitly select a suggestion received,
but instead be simply inspired by a suggestion to change their
design patterns. Similarly, users may not necessarily correctly
perceive at which point in the creative process they were influ-
enced, although this could be assessed by an audience of human
experts instead [119]. The challenge is similar for AI-based or-
chestration, as a system can randomly generate content (e.g., in
a bottom-up approach) and only an audience (of, e.g., human ex-
perts) could assess whether at any point in the process, there was
a creative breakthrough when pieces (i.e., content of different
facets) fall into place and become more than a sum of parts.

X. CONCLUSION

This paper analyzed the current state of the art in game orches-
tration of different generative systems for multiple game facets
such as audio, visuals, levels, rules, narrative, and gameplay. The
topic was discussed along the dimensions of how, from where,
and for whom orchestration takes place, and for what types of
content. We provided several suggestions regarding the rela-
tionships between different game facets and envisioned several
high-level orchestration processes along a spectrum between

purely hierarchical top-down generation and organic bottom-
up generation. Nine case studies were presented and compared
along the above dimensions of orchestration. While this paper
does not answer many of the questions it poses, it aims to create
a roadmap so that orchestration of game generation can be more
systematically and more ambitiously explored in the coming
years.

ACKNOWLEDGMENT

This paper extends the work performed by the same authors
during the 2015 Dagstuhl seminar 15051 on “Artificial and Com-
putational Intelligence in Games: Integration.” A preliminary
report titled “Creativity Facet Orchestration: the Whys and the
Hows” was included in [121].

REFERENCES

[1] N. Shaker, J. Togelius, and M. J. Nelson, Procedural Content Generation
in Games: A Textbook and an Overview of Current Research. New York,
NY, USA: Springer, 2016.

[2] A. Liapis, G. N. Yannakakis, and J. Togelius, “Towards a generic method
of evaluating game levels,” in Proc. AAAI Conf. Artif. Intell. Interact.
Digit. Entertainment, 2013, pp. 30–36.

[3] G. N. Yannakakis and J. Togelius, Artificial Intelligence and Games.
New York, NY, USA: Springer, 2018.

[4] A. Liapis, G. N. Yannakakis, and J. Togelius, “Computational game
creativity,” in Proc. Int. Conf. Comput. Creativity, 2014.

[5] B. Kybartas and R. Bidarra, “A semantic foundation for mixed-initiative
computational storytelling,” in Proc. 8th Int. Conf. Interact. Digit. Sto-
rytelling, 2015, pp. 162–169.

[6] A. Järvinen, “Gran Stylissimo: The audiovisual elements and styles in
computer and video games,” in Proc. Comput. Games Digit. Cultures
Conf., 2002, pp. 113–128.

[7] A. Lagae et al., “State of the art in procedural noise functions,” in Proc.
Eurographics 2010 State of the Art Reports, 2010.

[8] K. Perlin, “An image synthesizer,” in Proc. 12th Annu. Conf. Comput.
Graph. Interact. Techn., 1985, pp. 287–296.

[9] G. J. de Carpentier and R. Bidarra, “Interactive GPU-based procedural
heightfield brushes,” in Proc. Int. Conf. Found. Digit. Games, 2009,
pp. 55–62.

[10] R. M. Smelik, T. Tutenel, R. Bidarra, and B. Benes, “A survey on pro-
cedural modeling for virtual worlds,” Comput. Graph. Forum, vol. 33,
no. 6, pp. 31–50, 2014.

[11] A. Howlett, S. Colton, and C. Browne, “Evolving pixel shaders for
the prototype video game subversion,” in Proc. AISB Symp. AI Games,
2010.

[12] T. Tutenel, R. van der Linden, M. Kraus, B. Bollen, and R. Bidarra,
“Procedural filters for customization of virtual worlds,” in Proc. FDG
Workshop Procedural Content Gener., 2011.

[13] A. Liapis, “Exploring the visual styles of arcade game assets,” in Evo-
lutionary and Biologically Inspired Music, Sound, Art and Design (ser.
Lecture Notes in Computer Science), vol. 9596. New York, NY, USA:
Springer, 2016.

[14] K. Collins, Playing With Sound: A Theory of Interacting With Sound
and Music in Video Games. Cambridge, MA, USA: MIT Press,
2013.

[15] P. Lopes, A. Liapis, and G. N. Yannakakis, “Targeting horror via level
and soundscape generation,” in Proc. AAAI Conf. Artif. Intell. Interact.
Digit. Entertainment, 2015.

[16] M. Scirea, B. C. Bae, Y.-G. Cheong, and M. Nelson, “Evaluating musi-
cal foreshadowing of videogame narrative experiences,” in Proc. Audio
Mostly: Conf. Interact. Sound, 2014, Art. no. 8.

[17] K. Collins, “An introduction to procedural music in video games,” Con-
temporary Music Rev., vol. 28, no. 1, pp. 5–15, 2009.

[18] Y.-G. Cheong, M. O. Riedl, B.-C. Bae, and M. J. Nelson, “Planning with
applications to quests and story,” in, Procedural Content Generation in
Games: A Textbook and an Overview of Current Research. New York,
NY, USA: Springer, 2016.

[19] M. Mateas and A. Stern, “Procedural authorship: A case-study of the
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[76] R. Jain, A. Isaksen, C. Holmgård, and J. Togelius, “Autoencoders for level
generation, repair, and recognition,” in Proc. ICCC Workshop Comput.
Creativity Games, 2016.



LIAPIS et al.: ORCHESTRATING GAME GENERATION 67

[77] H. Takagi, “Interactive evolutionary computation: Fusion of the capa-
bilities of EC optimization and human evaluation,” Proc. IEEE, vol. 89,
no. 9, pp. 1275–1296, Sep. 2001.

[78] L. Cardamone, D. Loiacono, and P. L. Lanzi, “Interactive evolution for
the procedural generation of tracks in a high-end racing game,” in Proc.
Genetic Evol. Comput. Conf., 2011, pp. 395–402.

[79] S. Risi, J. Lehman, D. B. D’Ambrosio, R. Hall, and K. O. Stanley, “Petalz:
Search-based procedural content generation for the casual gamer,” IEEE
Trans. Comput. Intell. AI Games, vol. 8, no. 3, pp. 244–255, Sep.
2016.

[80] L. Cardamone, G. N. Yannakakis, J. Togelius, and P. L. Lanzi, “Evolving
interesting maps for a first person shooter,” in Proc. Appl. Evol. Comput.,
2011, pp. 63–72.

[81] E. J. Hastings, R. K. Guha, and K. O. Stanley, “Automatic content
generation in the Galactic Arms Race video game,” IEEE Trans. Comput.
Intell. AI Games, vol. 1, no. 4, pp. 245–263, Dec. 2009.

[82] A. K. Hoover, W. Cachia, A. Liapis, and G. N. Yannakakis, “Au-
dioInSpace: exploring the creative fusion of generative audio, visuals and
gameplay, ” in, Evolutionary and Biologically Inspired Music, Sound, Art
and Design. New York, NY, USA: Springer, 2015.

[83] A. Liapis, G. N. Yannakakis, and J. Togelius, “Designer modeling for
personalized game content creation tools,” in Proc. AIIDE Workshop
Artif. Intell. Game Aesthetics, 2013.

[84] A. Liapis, G. N. Yannakakis, and J. Togelius, “Designer modeling for
Sentient Sketchbook,” in Proc. IEEE Conf. Comput. Intell. Games, 2014,
pp. 1–8.

[85] N. Shaker, G. N. Yannakakis, and J. Togelius, “Towards automatic per-
sonalized content generation for platform games,” in Proc. AAAI Conf.
Artif. Intell. Interact. Digit. Entertainment, 2010.

[86] N. Shaker et al., “The 2010 Mario AI championship: Level generation
track,” IEEE Trans. Comput. Intell. AI Games, vol. 3, no. 4, pp. 332–347,
Dec. 2011.

[87] A. Hamilton, “Inside DICE: Creating the beautiful environments in
Battlefield 3: Armored Kill,” 2012. [Online]. Available: https://www.
ea.com/en-gb/news/battlefield-3-armored-kill-environments

[88] A. Liapis, G. N. Yannakakis, and J. Togelius, “Sentient Sketchbook:
Computer-aided game level authoring,” in Proc. Int. Conf. Found. Digit.
Games, 2013.

[89] M. Treanor, “Investigating procedural expression and interpretation in
videogames,” Ph.D. dissertation, , Univ. California, Santa Cruz, CA,
USA, 2013.

[90] M. Treanor, B. Schweizer, I. Bogost, and M. Mateas, “The micro-
rhetorics of Game-o-Matic,” in Proc. Int. Conf. Found. Digit. Games,
2012.

[91] M. C. Green, G. A. B. Barros, A. Liapis, and J. Togelius, “DATA agent,”
in Proc. 13th Conf. Found. Digit. Games, 2018.

[92] K. O. Stanley, “Exploiting regularity without development,” in Proc.
AAAI Fall Symp. Develop. Syst., 2006.

[93] P. Lopes, A. Liapis, and G. N. Yannakakis, “Sonancia: A multi-faceted
generator for horror,” in Proc. IEEE Conf. Comput. Intell. Games, 2016,
pp. 1–2.

[94] M. Cook and S. Colton, “A Puzzling Present: Code modification for
game mechanic design,” in Proc. Int. Conf. Comput. Creativity, 2013.

[95] M. Cook, S. Colton, A. Raad, and J. Gow, “Mechanic Miner: Reflection-
driven game mechanic discovery and level design,” in Proc Eur. Conf.
Appl. Evol. Comput., 2012, pp. 284–293.

[96] N. Sorenson, P. Pasquier, and S. DiPaola, “A generic approach to chal-
lenge modeling for the procedural creation of video game levels,” IEEE
Trans. Comput. Intell. AI Games, vol. 3, no. 3, pp. 229–244, Sep.
2011.

[97] A. Isaksen, D. Gopstein, J. Togelius, and A. Nealen, “Exploring game
space of minimal action games via parameter tuning and survival analy-
sis,” IEEE Trans. Games, vol. 10, no. 2, pp. 182–194, Jun. 2018.

[98] A. M. Smith, E. Andersen, M. Mateas, and Z. Popović, “A case study
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