Fal Y

”““55?3\/\ HOKKAIDO UNIVERSITY

= =R
S g

Title Reinforcement Learning to Create Value and Policy Functions Using Minimax Tree Search in Hex
Author(s) Takada, Kei; lizuka, Hiroyuki; Yamamoto, Masahito
Citation IEEE Transactions on Games, 12(1), 63-73
https://doi.org/10.1109/TG.2019.2893343
Issue Date 2020-03
Doc URL http://hdl.handle.net/2115/77885
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
Rights any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
g creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.
Type article (author version)

File Information

takada_paper.pdf

L

Instructions for use

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2019.2893343, IEEE

Transactions on Games

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Reinforcement Learning to Create Value and Policy
Functions using Minimax Tree Search
in Hex

Kei Takada, Hiroyuki lizuka and Masahito Yamamoto

Abstract—Recently, the use of reinforcement-learning algo-
rithms has been proposed to create value and policy functions,
and their effectiveness has been demonstrated using Go, Chess,
and Shogi. In previous studies, the policy function is trained to
predict the search probabilities of each move output by Monte
Carlo Tree Search; thus, a number of simulations are required
to obtain the search probabilities. We propose a reinforcement-
learning algorithm with game of self-play to create value and
policy functions such that the policy function is trained directly
from the game results without the search probabilities. In this
study, we use Hex, a board game developed by Piet Hein, to
evaluate the proposed method. We demonstrate the effectiveness
of the proposed learning algorithm in terms of the policy function
accuracy, and play a tournament with the proposed computer
Hex algorithm DeepEZO and 2017 world-champion programs.
The tournament results demonstrate that DeepEZO outperforms
all programs. DeepEZO achieved a winning percentage of 79.3%
against the world-champion program MoHex2.0 under the same
search conditions on 13 X 13 board. We also show that the highly
accurate policy functions can be created by training the policy
functions to increase the number of moves to be searched in the
loser position.

Index Terms—Reinforcement Learning, Hex, Value Function,
Policy Function.

I. INTRODUCTION

EX is a two-player board game that was invented

independently by Piet Hein and John Nash [1]. It is one
of the board games that has been included in the Computer
Olympiad, which is a game-based event involving competition
between computer programs. Typically, computer Hex algo-
rithms employ alpha-beta minimax, e.g., EZO-CNN, or Monte
Carlo tree search (MCTS), e.g., MoHex, methods as game tree
search algorithms [2]. Similar to Go, Hex has large branching
factors. For computer Hex algorithms to efficiently perform
a deep search, it is important to develop methods that can
appropriately select moves to be searched.

The creation of evaluation functions, i.e., value and policy
functions, is essential to develop effective artificial intelligence
(AI) algorithms for game tree searches. The value function
scores a position, and its value is used to determine the next
move; thus, an accurate value function results in efficient
programs. The policy function evaluates the next candidate
moves, after which it determines the moves to be searched
and the game tree search order. Moves are pruned based on

The authors are with the Graduate School of Information Science
and Technology, Hokkaido University, Sapporo, Hokkaido, Japan (e-
mail: takada@complex.ist.hokudai.ac.jp; iizuka@complex.ist.hokudai.ac.jp;
masahito@complex.ist.hokudai.ac.jp)

the policy function, which is called forward-pruning. If the
accuracy of the policy function is low, better moves may
be pruned, which will negatively affect search results. The
development highly accurate evaluation functions is therefore
required to obtain superior computer Al algorithms.

Traditionally, evaluation functions have been created by
combining manually quantified position and move features.
Many methods have been proposed for creating evaluation
functions using extracted features, and their effectiveness
has been demonstrated [3], [4]. However, it is difficult to
create highly accurate functions using such extracted features.
Recently, the use of convolutional neural networks (CNNs),
which can learn such features, has been proposed for many
games [5]. It has been shown that the evaluation accuracy
of functions that use CNNs is greater than that of traditional
evaluation functions [6], [7].

Reinforcement-learning algorithms using games of self-
play have attracted attention because they may be able to
outperform manual evaluations. It has been demonstrated that
employing reinforcement learning to train functions with a
CNN is effective for several board games, e.g., Hex and
Go [8], [9]. Silver et al. proposed a reinforcement-learning al-
gorithm that creates a value function (Value) and a policy func-
tion (Policy). This algorithm has been extremely successful
with Go (AlphaGo Zero [10]), Chess, and Shogi (AlphaZero
algorithm [11]). These methods require the computation of
search probabilities of each move output by the MCTS to
train the policy function, which is trained to predict the search
probabilities. Therefore, a number of simulations are required
to determine the search probabilities and to train the policy
function. The learning algorithm that does not require the
search probabilities can reduce the number of simulations and
computational cost for the learning.

In this paper, we propose a reinforcement-learning algo-
rithm using games of self-play to create value and policy
functions using a CNN in Hex. The self-play player uses the
minimax tree search of depth one with forward-pruning based
on the moves determined by the policy function. The primary
difference between our proposed method and existing methods
(i.e., AlphaGo Zero and AlphaZero algorithm) is the method
to create the policy function, and our proposed algorithm does
not use the search probabilities for learning. When the policy
function does not use the search probabilities, it has to be
trained using the state evaluation values of the evaluation
functions, such as DDPG [12]. The policy always follows the
value function. In the case of the game tree search, the policy

2475-1502 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2019.2893343, IEEE

Transactions on Games

function can be trained to predict the best moves of the search
results by the value function. However, there are bad moves
that have resulted in losses in those search results, and learning
bad moves may decrease the ability to select the good move
for the policy function. Therefore, in our proposed algorithm,
the policy function is trained to predict the search result of the
minimax tree search in the winner position in the case where
the next player won, and to increase the number of moves to
be searched in the loser position in the case where the next
player lost. In order to demonstrate the effectiveness of the
proposed algorithm, we compare the proposed algorithm with
the learning algorithm having the policy function that estimates
the value functions regardless of the winner or loser positions.
Another difference with previous studies (i.e., AlphaGo Zero)
is that the value function is trained based on the depth one
special case of the TreeStrap algorithm [13], which can be
regarded as a type of Value Iteration [14]. We implemented
our proposed methods on the Hex player, and developed the
computer Hex algorithm called DeepEZO, which we compared
with world-champion programs in 2017 to demonstrate the
performance of DeepEZO.

The remainder of this paper is organized as follows. In
Section II, we review the rules and features of Hex and
conventional evaluation functions. In Section III, we propose
the value and policy functions and a reinforcement-learning
algorithm. In addition, we describe how games of self-play
are played and how the functions are trained. In Section IV,
our proposed algorithm is compared with the conventional
policy training method. Those algorithms were implemented
on computer Hex algorithms called DeepEZO (using our learn-
ing algorithm) and DeepEZO-Cross (the same, except for the
learning algorithm for the policy), and compared them to show
that the evaluation accuracy of the policy function created by
our proposed algorithm is higher. In Section V, we develop
DeepEZOs, which perform deep searches, and the tournaments
are played by DeepEZOs and world-champion programs.
We show that DeepEZOs have high winning percentages
compared with the other programs under the same search
conditions, and that DeepEZO using the evaluation functions
created by the proposed algorithm has a high elo score. A
general discussion is given in Section VI, and conclusions
are presented in Section VII, including suggestions for future
work.

II. HEX
A. Rules and Features

Hex is played on a rhombic board consisting of hexagonal
cells. The game was developed for an n x m board (where
n and m are natural numbers); however, an n X n board
is generally used (e.g., Fig. la shows a 13 x 13 board).
Recently, both 11 x 11 and 13 x 13 boards have been used
in the Computer Olympiad [15]. Two players have uniformly
colored pieces (e.g., black and white), and the game proceeds
with players placing their stones in turn on empty cells. The
two opposing black sides of the board are assigned to the
black player, and the other opposing sides are assigned to
the white player. The goal of the game is to connect the two

JOURNAL OF KAIgX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

(a) Hex game board

(b) Game board showing a winning
configuration for white

Fig. 1. 13 x 13 Hex board. The top and bottom sides are assigned to the
black player, and the left and right sides are assigned to the white player. The
player who connects the assigned sides using their stones wins.

opposing sides using the player’s colored pieces. Fig. 1b shows
a winning configuration for a white player. In this study, black
was assigned as the first player and white was the second
player.

It has been shown that there exists a winning strategy for the
Hex game [16], i.e., the game result is determined based on the
first move if two players play perfectly. Currently, a specific
winning strategy for all first moves has been demonstrated
for 9 x 9 or smaller boards [17]. It has also been shown
that the game cannot end in a draw, and that the game is a
PSPACE-complete problem [18], [19]. The first computer Hex
algorithm was developed by Claude Shannon and E.F. Moore
in 1953; [20] since then, many computer Hex algorithms have
been developed.

B. Conventional Methods to Build Value Functions

In Hex, the value and policy functions can be designed
based on the network characteristics of the position. Positions
on the Hex board can be expressed as a network by considering
the cells as nodes and connecting adjacent nodes with links (or
edges) [21]. Position features can be quantified by calculating
the network characteristics based on the board graphs. A
previous study proposed and demonstrated the effectiveness
of a value function that employs an electric resistance model
that considers the board graph as an electric circuit [22].
Wolve is a computer Hex algorithm that uses the electric
resistance model, and it placed second at the 2012 Computer
Olympiad [23]. EZO-CNN is a computer Hex algorithm that
uses a value function based on 12 network characteristics. In
addition, our submission placed second at the 2017 Computer
Olympiad [2]. These computer Hex algorithms use iterative
deepening depth-first search, and play the next move based on
their evaluation functions.

The results of the recent Computer Olympiad indicate that
the accuracy of evaluation functions that use the board graph
is insufficient [2]. This is because EZO-CNN and Wolve
cannot defeat MoHex2.0, which is based on MCTS. MoHex2.0
plays the next move based on the playout simulations, which
improves the quality using expert game records. As a result,
a CNN has been proposed to create more accurate evaluation
functions [24], [25]. The CNN is expected to learn position
features that cannot be represented by network characteristics.

Several reinforcement-learning algorithms that train value
and policy functions independently have been proposed [8],

2475-1502 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2019.2893343, IEEE

Transactions on Games

TAKADA et al.: REINFORCEMENT LEARNING IN HEX

Fig. 2. Creation of position input. The left diagram shows positions on a
5 X 5 board. The middle diagram shows the sides in the left diagram with
stones. Here, cells on corners are considered cells in which both black and
white stones are placed. The right diagram is the input of the left diagram.
Places corresponding to three mutually adjacent cells patterns become one.

[24], and it has been demonstrated that CNNs provide greater
evaluation accuracy than that of classical evaluation functions.
In addition, the reinforcement-learning algorithm called Expert
Iteration(ExIt), which trains two functions, has been proposed;
the effectiveness of ExIt is shown on a 9 x 9 board [26]. ExIt is
a method that is similar to the AlphaZero algorithm, and uses
the search probability output from MCTS to train the policy
function.

To train the value function, the TD-Leaf and TreeStrap
algorithms have been proposed in chess [13], [27]. For TD-
Leaf, when s; is defined as the position at the ¢-th turn, the
weights of the value function are updated to move the evalua-
tion value of minimax search at s; towards the evaluation value
of minimax search at s;; 1. For the TreeStrap algorithm, the
weights are updated to move the evaluation value of position
s towards the evaluation value of minimax search at s, where
the position s is the interior position within the tree search. In
both methods, the learning is performed to move the evaluation
value of the current position towards the evaluation value of
the position after playing the moves, but the sensitivity to the
strength of the player is different. In TD-Leaf, the quality of
the player is important because the positions that occur at
subsequent time steps are used for learning, and it is known
that the convergence of learning takes time when the player
is weak. However, TreeStrap is less sensitive to the strength
of the player because the positions that are used are based on
hypothetical minimax play.

III. PROPOSED REINFORCEMENT-LEARNING ALGORITHM
WITH GAMES OF SELF-PLAY

We propose value and policy functions that use CNNs. The
functions are trained using games of self-play with minimax
tree search. The value function is trained to predict the
game result, and the policy function is trained to determine
appropriate moves to be searched for each position.

In this section, we first describe the proposed functions and
how the CNN input is created. Then, we describe the self-play
player, propose the learning algorithm, and describe the loss
function of the proposed functions.

A. Representation of Board Position for CNN

We used the input proposed in our previous study, and ex-
pect this input to make it easier to learn the cell adjacency [25].
Next, we describe how to create the previously proposed CNN
input.

TABLE I
NETWORK STRUCTURE OF PROPOSED VALUE FUNCTION.

Layer type Image size | Channel | Kernel size

Input 14 x 14 27 -
Conv 1 12 x 12 128 3x3
Conv 2 10 x 10 128 3x3
Conv 3 8 x 8 128 3x3
Conv 4 6 X6 128 3 x3
Conv 5 4 x 4 128 3x3
Conv 6 2 x2 128 3x3
Conv 7 1 x1 128 2 x2

Full Connection — 168 -
Output — 1 —

In Hex strategy, it is important to consider cell adjacency
because the goal of Hex is to connect two opposite sides.
To make it easier to learn cell adjacency, we focus on three
mutually adjacent cells to create the input. A cell can take
three states corresponding to the placement of a player’s stone,
placement of the opponent’s stone, and where no stone is
placed. Therefore, the combined states of three adjacent cells
yield 27 patterns. Here, the position is represented by 27
channels, and each pattern forms a channel. Fig. 2 shows
an example of creating inputs from a position at which the
black player makes a move. In each channel, the number
corresponding to a specific channel pattern becomes one, and
the others remain zero.

When the white player has the next move, we reflect the
board about one of the diagonals, and swap the black and
white cells because the Hex board is symmetric. When the
board is reflected, the left and right sides become the top and
bottom sides, respectively. This configuration is obtained to
eliminate the learning cost required to consider that the side
to be connected by the player is different.

B. Proposed Value Function Using CNN

The network structure of the proposed value function is
similar to that of our previous study, with the exception of the
parameters [8]. The proposed value function takes the board
position as the input, and outputs a scalar evaluation value
of the given position. Table I shows the network structure
for the proposed value function. The value function consists
of convolution layers and a fully connected layer, and all
activation functions are rectified linear units (ReLU) [28]. The
stride size is one for all convolutional layers. In the output
layer, the output range is 0 to 1 because a sigmoid activation
function is used. The value function aims to output 1 if the
next player has a winning position, and O if the next player
has a losing position.

C. Proposed Policy Function Using CNN

The network structure of the proposed policy function is
similar to that of our previous study [25]. The proposed policy
function takes the board position as its input and outputs the
probability distribution of all next candidate moves. Table II
shows the network structure for the proposed policy function.
The policy function consists of only convolutional layers, and

2475-1502 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2019.2893343, IEEE

Transactions on Games

TABLE II
NETWORK STRUCTURE OF PROPOSED POLICY FUNCTION.

Layer type || Image size | Channel | Kernel size
Input 14 x 14 27 —

Conv 1-7 14 x 14 128 3x3
Conv 8 13 x 13 128 2 x2
Output 13 x 13 1 -

all activation functions in each convolutional layer are ReLUs.
Convolutional layers 1 to 7 use 3 x 3 filters with a stride and
zero-pad of one, and convolutional layer 8 uses 2 x 2 filters
with a stride of one. We introduce a 10% SpatialDropout to
the input layer to increase generalization ability [29]. In the
output layer, the probability distribution is output using the
softmax function.

D. Self-Play Player with Proposed Selective Search

The self-play player uses a minimax tree search of depth
one with forward-pruning. Here, the moves to be searched are
determined by the proposed policy function. The output of
the policy function is a probability distribution of next moves,
and only moves with a high-probability value are searched.
Specifically, moves for which the probability value exceeds
1/C are searched, where C is the number of cells on the
board (e.g., C' = 169 on a 13 x 13 board). Exceptionally, if the
number of moves that exceed the threshold is less than three,
the three highest moves are searched, i.e., the minimum search
width is three. When there are no more than three empty cells
at the given position, the player searches all empty cells. There
are no specific methods available for determining the minimum
search width. Here, it was determined by considering the
balance between the risk of pruning good moves and the
efficiency of the search carried out by reducing the number of
moves to be searched. Where the selected moves are played
from the root position, each position is evaluated by the
proposed value function. The move with the highest evaluation
value is selected as the next move.

E. Proposed Learning Algorithm with Games of Self-Play

Algorithm 1 shows the proposed learning algorithm. Here,
positions that have appeared in games of self-play are used to
train the proposed functions. We define a position at the ¢-th
turn as s;, a move at s; as a;, and the evaluation value at s;
as v(s¢). In addition to the position-move pairs in games of
self-play, the rotated position-move pairs (sjotated grotated)
are used as training data because they are essentially the
same as the original pairs. The rotation operation is similar
to the method described in Section IV A. The training data
set D is initialized (D becomes an empty set) for each epoch
because high-quality data are required to create highly accurate
functions.

Because learning various positions leads to improved gen-
eralization ability for the proposed functions, the following
techniques are introduced to games of self-play in order to
increase the number of training positions.

JOURNAL OF KAIgX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Algorithm 1 Proposed learning algorithm.

1: function LEARNING
for epoch =0 to E do
3 Initialize training data set D
4 for game=0to G do
5 pl uses the latest functions
6: p2 uses the latest or past functions
7
8
9

»

Randomly select which player is first
Get random number T’

: t<T
10: St < GETSTARTINGPOSITION(p1,p2,T")
11: while not terminal s; do
12: p < Next player selected from pl and p2
13: p searches best move a; at s;
14: (s¢,a¢) is added to D
15: (syotated grotated) jg added to D
16: s¢+1 < Position playing a; at s;
17: t—t+1
18: end while
19: (5¢,0) and (stoteted () are added to D
20: end for
21: Update the proposed functions using D
22: end for

23: end function
24: function GETSTARTINGPOSITION(p1,p2,T)

25: 5o + Initial position

26: 51 < Position playing the random move at sg. The
move is selected from the cells within two rows from the
side.

27: if 7" is 1 then

28: return s

29: end if

30: fori=1to7T —1 do

31: p < Next player selected from pl or p2

32: p searches best move a; at s;

33: Si+1 < Position playing a; at s;

34: end for

35: st < Position playing random move at s7_;

36: return sp

37: end function

1) Player Randomness: We introduce two randomness
techniques to a player’s search, one of which is related to
the moves to be searched. The player searches moves with
a low-probability value. Moves with a probability value that
is less than 1/C are searched with a probability of 20%.
This is done to avoid searching only the currently favored
moves. This operation is not performed to play the next move
randomly, as with e-greedy, but to determine the moves to
be searched that are evaluated by the value function. The
other technique is related to the evaluation value output by
the value function. A small random number is added to the
evaluation value. The value function has an output ranging
from O to 1 because it uses the sigmoid function. The range
of the random number to be added is -0.05 to 0.05. This range
was determined empirically; however, by adding this random
number, the player can approximate random play if they use

2475-1502 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2019.2893343, IEEE

Transactions on Games

TAKADA et al.: REINFORCEMENT LEARNING IN HEX

an untrained instance of the proposed value function.

2) Random First Move: The first moves of games of self-
play are selected randomly from cells within two rows from
the side of the board. In Hex, first moves near the center
of the board are advantageous for the first player. When
starting a game near the center, it is expected that many
favorable positions will appear for the first player. The value
function must accurately evaluate positions where it is difficult
to determine which player has an advantage. Learning from
many difficult positions can be expected to lead to accurate
evaluations by the proposed value function; thus, games of
self-play begin at cells within two rows from the side of the
board. The number of cells at the start of the game is 88 in a
13 x 13 board (al to al3, bl to b13, [1 to I13, m1 to m13,
cl to k1, c2 to k2, 12 to k12 and ¢13 to k13).

3) Random Move During Games of Self-play: A random
move is played during a game of self-play. The self-play
players play a game over 7' moves until position sp. Here,
T is a random integer (1 < 7' < 60). The maximum value
of T' was determined empirically, and it is possible that the
game will end within the maximum 7" value even if the player
plays randomly. At position sr, the next move ar is played
randomly from all empty cells. The self-play players play the
game from position sy, after playing ap at sp until the game
terminates.

4) Older Trained Functions: The most recent functions and
older functions are used in games of self-play. The proposed
functions are stored every 25 epochs. Here, an epoch is the
period required to learn positions that have appeared in a given
number of games of self-play. One player always uses the most
recent value and policy functions. However, another player
may use older functions. The functions to be used are selected
randomly from the latest, second, or third latest functions, and
the selection of these functions is performed randomly for each
game.

5) Determined Move at Position Where Winning Connection
Exists: The winning connection is a special virtual connection.
The virtual connection is a link between two cell groups that
can be connected by playing the best move even if the player
has the second move at the current positions [21]. Virtual
connections can be found using an h-search algorithm, and the
virtual connection between two opposite sides is referred to
as a winning connection [30]. A winning connection indicates
that either player can connect two opposite sides by playing
perfectly, where the best move is found by the h-search
algorithm. Therefore, if one player has found a winning con-
nection by performing an h-search, the game tree search is not
necessary. At the position where a winning connection exists,
the player with the winning connection plays the winning
move to connect two opposite sides, and the other player plays
the most obstructive move (referred to as the mustplay [31]).

F. Loss Functions

In games of self-play, the weights of the proposed functions
are updated by the stochastic gradient descent method using
the position-move pairs (s,a). Here, we describe the loss
function of each function.

1) Value Function: The proposed value function is trained
by the depth one special case of the TreeStrap algorithm [13],
and predicts the game’s result. The reason for which the
TreeStrap algorithm is used is that the method that is less
sensitive to the strength of the player is necessary because
the value function is initialized to random weights in the
proposed algorithm. We give the final reward to only terminal
positions. The loss function LosSeqq; 1S minimized and defined
as follows.

L0SSepal = Z losse(s,a), (D
(s,a)eD
—log(1l —v(s)) (s is terminal)

2

losse(s,a) = (0(5) — 0(s))?
where D is a set of position-move pairs (s,a) in games of
self-play, v(s) is the evaluation value of the position output
by the proposed value function at position s, and s’ = m(s, a)
is the position at which move a was played at position s. In
terminal positions, the player who lost the game has the next
move. Thus, the proposed value function should output zero
at the terminal positions in D.

A log loss is used at terminal positions to evaluate the
terminal position accurately. The error given to the value
function at the terminal position is larger than that when using
the squared temporal-difference error. The value function is
trained more strictly to the terminal positions.

2) Policy Function: To determine the moves to be searched
according to the positions, the loss function of the proposed
policy function differs depending on whether the position is
a“ winner position” where the next player won or a ’loser
position’ where the next player lost. If the training position
is the winner position, the policy function learns to reduce
the search width because the search width was sufficient.
However, if the training position is a loser position, the policy
function learns to increase the search width. The reason for
increasing the search width in the loser position is to search
for better moves that are pruned from the tree search. The
policy function is used as the deciding search width for the
player; therefore, one of the reasons for losing the game is that
the policy function has a low evaluation accuracy, and prunes
the better moves from the search. To play a good move in the
loser position, it is necessary to search widely. By changing the
learning policy according to the position, it becomes possible
to determine the number of moves to be searched.

The proposed policy function is trained to minimize the
following loss function Losspoticy:

(otherwise),

Losspoticy = Z loss,(s,a), 3)
(s,a)eD
—logm(a,s) (s is winner position)
lossp(s,a) = 4 —) Z m(m, s)logm(m, s) (otherwise),
meA
“4)

where A is a set of all moves on the board, 7(a, s) is the output
of the proposed policy function for move a at position s, and
m(a, s) is the probability value. Here, A is a constant parameter

2475-1502 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2019.2893343, IEEE

Transactions on Games

6

that controls the search width, and we used A = 10! in this
study. As a result, we minimize the cross-entropy loss in the
winner position and maximize the entropy loss in the loser
position.

IV. TRAINING THE PROPOSED FUNCTIONS

We trained the value and policy functions using the pro-
posed learning algorithm (Section III), and developed the
computer Hex algorithm DeepEZO using the proposed func-
tions. To demonstrate that the learning is properly performed
by the proposed learning algorithm, we indicate the winning
percentages of DeepEZO against the previous computer Hex
algorithm MoHex2.0. To demonstrate the effectiveness of
the proposed learning algorithm, the proposed algorithm is
also compared with the learning algorithm, where the policy
function predicts the moves selected by the search based on
the value function.

The only difference between the proposed algorithm and the
learning algorithm to be compared is the update method of the
policy function. In the learning algorithm to be compared, the
policy function is trained to predict the search results in both
winner and loser positions, which means that the loss function
uses only cross entropy loss. In our proposed algorithm, the
policy function is trained to predict the good moves in the
winner position, and to increase the number of moves to be
searched in the loser positions. The policy function is used
when deciding the moves to be searched; therefore, if we
assume that the highly accurate value function is obtained,
there is no reason to be lost, except for the cases where
the policy function prunes the winning moves, or when it is
impossible to win the game. In this sense, the moves in the
loser positions should not be entrained, and the function should
increase the number of moves to be searched.

In this section, we first describe the computer Hex algorithm
used in this section, and then we train the proposed functions.
Next, two policy functions are compared. We used a computer
with an Intel(R) Core(TM) i7-7700KCPU (4.20GHz) and an
Nvidia GTX 1080 GPU. The CNN models, value and policy
functions, were developed using Torch [32].

A. Computer Hex Algorithms

The computer Hex algorithms used in this study were
implemented using the open-source Benzene framework [33],
[34]. All players are allowed to prune provably inferior moves
and play the mustplay [31]. These methods exclude moves that
are meaningless to the search, and it allows the player to play
definitive moves to win or lose.

1) DeepEZO: DeepEZO is the proposed computer Hex
algorithm. DeepEZO uses the iterative deepening depth-first
search as the game tree search algorithm [35], as well as the
proposed value and proposed policy functions. The method
employed to determine the moves to be searched is the same
as that described in Section III-D. We do not add randomness
to the search during the evaluation games. DeepEZO only
searches moves with a high-probability value from the policy
function (no other moves are searched). Here, the minimum
search width is three.

JOURNAL OF KAIgX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

We also prepared DeepEZO-Cross, where the policy func-
tion is obtained by the learning with only cross entropy. The
evaluation functions used for DeepEZO-Cross are obtained by
the learning, where only the cross entropy loss is used as the
loss function of the policy function. The policy function is
always trained to predict the search results regardless of the
winner or loser positions. DeepEZO and DeepEZO-Cross use
the same algorithms, except for the value and policy functions.

2) MoHex2.0: MoHex2.0 uses the Monte Carlo tree search
as the game tree search algorithm [36]. MoHex2.0 has been
the world-champion program at the Computer Olympiad (2013
to 2017), and is the strongest computer Hex algorithm.

MoHex-CNN was the world-champion program for the
13 x 13 board at the 2017 [2], [37]. To demonstrate the
effectiveness of the proposed functions, it is important to
compare the proposed functions with the currently best pro-
gram. However, MoHex-CNN is not currently available. Thus,
MoHex2.0 was used in this study because it was the world-
champion for the 11 x 11 in 2017, and is a sufficiently strong
program.

In this paper, MoHex2.0 uses one thread for the search, and
does not use pondering. This means that MoHex2.0 parameters
“num_threads,” “lock_free,” and “ponder” are one, zero, and
zero, respectively.

B. Experiments

Our proposed functions were trained in reinforcement learn-
ing using self-play. We show that the learning is properly
performed based on the winning percentages of DeepEZO
against MoHex2.0. The effectiveness of our proposed training
method is shown compared with that of DeepEZO-Cross in
terms of the winning percentages against MoHex2.0.

In order to show that the trained policy function can
prune bad moves and keep good moves properly, we indicate
the difference in the winning percentages against MoHex2.0
between the two types of DeepEZO with a different search
width (DeepEZO and DeepEZO-all). DeepEZO-all searches
all next candidate moves at all positions. The search results
of DeepEZO and DeepEZO-all are the same unless the policy
function prunes the best move because they use the same value
function. We also compared DeepEZO-Cross and DeepEZO-
Cross-all, and the only difference between DeepEZO-Cross
and DeepEZO-Cross-all is also the search width.

1) Game Conditions Between DeepEZO and MoHex2.0 :
The games between DeepEZO (DeepEZO-all, DeepEZO-
Cross, and DeepEZO-Cross-all) and MoHex2.0 started at all
opening cells in the board. There are 169 opening cells on a
13 x 13 board. One game was played for the first and second
players for each opening. A total of 338 games were played.
The search depth of DeepEZOs was two, and the search time
of MoHex2.0 was up to 30s per move. These computer Hex
algorithms used one thread for the search, and they did not
use a parallel solver.

2) Training Conditions: The number of games of self-play
in a single epoch G was 1,000, and the total number of
epochs was 2,600, which means that 2.6 million games were
played. The weights of the value and policy functions were

2475-1502 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2019.2893343, IEEE

Transactions on Games

TAKADA et al.: REINFORCEMENT LEARNING IN HEX

70
T 11T
£50 -
8
=]
% 40
~ 30
%1) DeepEZO
E 20 -~ DeepEZO-all
§ 10 —=— DeepEZO-cross
DeepEZO-cross-all
0 0 500 1000 1500 2000 2500
Epoch

Fig. 3. Winning percentages of DeepEZO and DeepEZO-all compared with
MoHex2.0 in the training process (error bar shows the standard error of games;
95% confidence).

initialized to random weights. We used a mini-batch size of 32
positions and Adam [38] as the optimizer to train the proposed
functions. Training was performed once.

3) Training Result: Fig. 3 shows the winning percentages
of DeepEZOs against MoHex2.0 in the training process. The
average total search time in a game for DeepEZO, DeepEZO-
all, DeepEZO-Cross, DeepEZO-Cross-all, and MoHex2.0 was
30s, 295s, 26s, 283s, and 505s, respectively. The training
periods were approximately 45 days and 54 days for DeepEZO
and DeepEZO-Cross, respectively.

Both DeepEZO and DeepEZO-all had winning percentages
greater than 50% against MoHex2.0, and the search time
of DeepEZO was less than that of MoHex2.0. These results
show that the learning of the proposed algorithm was properly
performed, and the evaluation accuracy of the evaluation
functions was high. In addition, the results confirm that the
winning percentages of DeepEZO and DeepEZO-all are not
significantly different, and that the search time of DeepEZO
is less than that of DeepEZO-all. It is expected that our policy
function can appropriately determine the moves to be searched.

There is no significant difference between the DeepEZO
and DeepEZO-Cross algorithms. This result means that both
methods can create a policy function that can appropriately de-
termine moves to be searched and the value function with high
evaluation accuracy. However, in this experiment, two policy
functions may not be compared properly because DeepEZO
and DeepEZO-Cross mainly select the next move based on
the value function.

C. Analysis of Policy Function

In this section, we analyze the trained policy function in
terms of the number of moves to be searched and direct match
performances in order to demonstrate the difference between
the trained policy functions.

1) Number of Moves to be Searched: To show that the
proposed policy function can reduce the number of moves to
be searched, we compared the number of moves searched by
DeepEZO, DeepEZO-all, and DeepEZO-Cross at each posi-
tion in games against MoHex2.0 in 2,600 epochs. The number

7

125 B DeepEZO-all
. EE DeccpEZO
)
z 100 DeepEZO-Cross
£
G
5]
B
©
=
5
=i
o
<=
H

0
0 20 40 60 80
Turn

Fig. 4. Number of moves to be searched at each position classified based on
the number of turns from the positions in games against MoHex2.0 in 2,600
epochs.

of moves to be searched for DeepEZO-all is equal to the
number of possible moves. Fig. 4 shows the number of moves
to be searched by DeepEZO, DeepEZO-Cross, and DeepEZO-
all. The number of positions of DeepEZO, DeepEZO-Cross,
and DeepEZO-all is 8,239, 8,516, and 16,381, respectively.
All of the positions were categorized according to the number
of turns, and the number of moves to be searched in each
category was averaged. The results confirm that many moves
were pruned from the game tree search by the proposed
policy function, and there is no significant difference between
DeepEZO and DeepEZO-Cross algorithms.

2) Game of Two Policy Functions: To demonstrate which
policy function can select good moves, two policy functions
were compared directly. We prepared two players who play the
move with the highest evaluation value of the policy function,
and two players play the games directly. P,..p is the player
who uses the policy function created by the proposed learning
algorithm, and P,..,ss is the player who uses the policy
function created by the other learning algorithm. The game
conditions are the same as those described in Section IV-B1,
with the exception of the players used.

Fig. 5 shows the winning percentage of P,.., against
P.ross. The results confirm that P,.., can realize a higher
winning percentage against P,..,ss, which means that the
evaluation accuracy of the policy function created by the
proposed learning algorithm is higher than the policy function
created by the learning in which the policy function is trained
to always predict the search result.

V. COMPUTER HEX ALGORITHM TOURNAMENT

Here, we discuss the performance of DeepEZO and
DeepEZO-Cross when performing the deep search in order
to demonstrate that DeepEZO, which uses the evaluation
functions created by the proposed algorithm, is superior than
DeepEZO-Cross. In Section IV, we trained the proposed
functions, and it is shown that the policy function created by
the proposed algorithm has a higher evaluation accuracy. In
addition, there is no significant difference between DeepEZO

2475-1502 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2019.2893343, IEEE

Transactions on Games

8

-
)

(o))
[e)

Winning Percentage (%)
AN ()]
S S

(98]
)

0 500 1000 1500

Epoch

2000 2500

Fig. 5. Winning percentage of Pprop against Peross in the training process
(error bar shows standard error of games; 95% confidence).

and DeepEZO-Cross with a 2-ply search. There is no problem
if the policy function can make the good moves the search
target, even if the evaluation accuracy of the policy function
is low because it is possible to finally select the good moves
by performing the search with the value function. However,
in a deep search, the policy function with a low evaluation
accuracy may have the negative effect on the search result
because the number of positions to be evaluated increases.

A. Computer Hex Algorithms

To demonstrate the performance of DeepEZO under the
same search conditions, we also prepared Wolve and EZO-
CNN, which are classical computer Hex algorithms.

1) EZO-CNN: EZO-CNN uses iterative deepening depth-
first search [25], and placed second at the 2017 Computer
Olympiad. EZO-CNN was the strongest computer Hex al-
gorithm of the programs based on the minimax tree search.
The value function employed by EZO-CNN is an optimized
function consisting of 12 network characteristics. EZO-CNN
uses a policy function with a CNN created by supervised
learning. The search width of EZO-CNN is constant at each
position, which means that moves are searched in descending
order of the probability value of the move obtained by the
policy function.

2) Wolve: Wolve uses iterative deepening depth-first search,
and was the second-place computer Hex algorithm at the 2012
Computer Olympiad [39]. The value and policy functions
employed by Wolve are based on the electric resistance model,
which is used by many other programs, such as Hexy and Six.

B. Game Conditions

The tournaments were played by DeepEZO, DeepEZO-
Cross, MoHex2.0, EZO-CNN, and Wolve. The search depth
of EZO-CNN and Wolve was four, and the search width
was eight. The search time of MoHex2.0 was up to 30s per
move. To ensure equal conditions as the existing computer
Hex algorithms, we prepared two types of DeepEZO, i.e.,
DeepEZO-4ply, which searched at a depth of four and has

JOURNAL OF KAIgX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

no time limit, and DeepEZO-30s, which searches for 30s per
move and has no depth limit. We also prepared DeepEZO-
Cross-4ply and DeepEZO-Cross-30s. In total, seven computer
Hex algorithms were used in the tournament.

The games started at all opening moves in the board.
Two games were played for the first and second player for
each opening, and 676 games were played in total. With the
exception of the number of games, the experimental conditions
were similar to those described in Section IV-B1.

C. Tournament Results

Table III shows the tournament results. The elo score is
computed by BayesElo [40], and the standard error is about
411 with 95% confidence. As can be seen, DeepEZO-30s
has the highest elo score. To show the specific difference
of the search between DeepEZO and DeepEZO-Cross, we
indicate the number of positions to be evaluated and the search
depth. The average number of positions to be evaluated in
one position of DeepEZO-4ply and DeepEZO-Cross-4ply is
501.5 and 575.4, respectively. DeepEZO-Cross-4ply searches
wider than DeepEZO-4ply, and this difference may be one of
the reasons for which the average search time of DeepEZO-
Cross-4ply is longer than that of DeepEZO-4ply. In addition,
the average search depth in one position of DeepEZO-30s
and DeepEZO-Cross-30s is 5.3 and 5.0, respectively. Further,
the maximum search depth of DeepEZO-30s and DeepEZO-
Cross-30s is 22 and 21, respectively. While the difference is
small, it is shown that DeepEZO-30s searches deeply with the
same search time.

DeepEZO-30s obtained a winning percentage of 79.3%
against MoHex2.0 with the same search time. DeepEZO-4ply
obtained a winning percentage of approximately 80.0% against
programs based on the minimax tree search with the same
search depth. DeepEZO obtained a very high winning percent-
age against world-champion programs, and it is obvious that
the evaluation accuracy of the proposed evaluation functions
is very high.

The search time of DeepEZO-30s was greater than that
of MoHex2.0 even when the search time per move for each
method was 30s because MoHex2.0 stops the search if the
best move cannot change, even if it uses the remaining time.
The average search time for each game differed; however, both
programs required 30s per move.

VI. DISCUSSION

The experimental results indicate that the alpha-beta search
using the proposed value and policy functions created by the
proposed learning algorithm perform more pruning than the
alpha-beta search using the functions created by the learning
method that trains the policy function to predict the search
result in both winner and loser positions. Fig. 4 shows that
there is not much difference in the number of positions to
be searched between two functions at each position. However,
the number of positions to be evaluated for DeepEZO-4ply
is smaller than that for DeepEZO-Cross-4ply. In addition,
even within the same search time, DeepEZO-30s has a deeper
search than DeepEZO-Cross-30s. These results indicate that

2475-1502 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2019.2893343, IEEE

TAKADA et al.: REINFORCEMENT LEARNING IN HEX

STANDARD ERROR OF ELO IS ABOUT +11 WITH 95% CONFIDENCE.

Transactions on Games

TABLE III
WINNING PERCENTAGE % OF EACH TOURNAMENT (FIRST/SECOND PLAYER) FOR ROW PLAYER AGAINST COLUMN PLAYER
AND SEARCH TIME OF EACH PROGRAM (= IS STANDARD ERROR; 95% CONFIDENCE).

B C D E F G 'Search time Elo
in one game score
A DeepEZO-30s 54.1 +3.8 54.4 + 3.8 52.8 + 3.8 79.3 + 3.1 84.6 + 2.7 90.4 + 2.2 645.3 [sec] 491
(65.1/43.2) | (61.8/47.0) | (62.4/43.5) | (86.1/72.5) | (93.5/75.7) | (92.0/88.8)
B DeepEZO-4ply) 52.1 + 3.8 48.2 + 3.8 75.3 +3.3 80.6 + 3.0 86.2 + 2.6 488.7 [sec] 450
(63.0/41.1) | (57.4/39.1) | (80.5/70.1) | (89.3/71.9) | (88.2/84.3)
C DeepEZO-Cross-30s)) 52.1 £ 3.8 79.6 = 3.0 84.5 £ 2.7 89.2 + 2.3 655.4 [sec] 465
(64.2/39.9) | (83.1/76.0) | (89.3/79.6) | (93.2/85.4)
D DeepEZO-Cross-4ply - - - 7794 3.1 85.5 4 2.7 88.24+2.4 533.4 [sec] 464
(82.2/73.6) | (90.5/80.5) | (90.5/85.8)
E MoHex2.0 - - - - 69.143.5 81.542.9 499.3 [sec] 237
(77.8/60.4) | (85.2/77.8)
F EZO-CNN - - - - - 68.6 + 3.5 619.7 [sec] 125
(79.3/58.0)
G Wolve - - - - - - 327.5 [sec] 0

DeepEZO-4ply performs more pruning than DeepEZO-Cross-
4ply. It is believed that these results can be obtained because
the policy function created by the proposed learning algorithm
has a higher evaluation accuracy, as can be seen from Fig. 5.
These are among the reasons for which DeepEZO-30s has the
highest elo score from among all computer Hex algorithms.
The reason for which the evaluation accuracy of the policy
function created by the proposed learning algorithm is high
is that only the good moves are learned. The moves at the
loser position may be poor moves because they eventually
lead to losses. It is considered that learning only good moves
consistently improved the evaluation accuracy of the policy
function.

The primary differences between the proposed learning
method and the existing methods (i.e., AlphaGo Zero and
the AlphaZero algorithm [10], [11]) are the game tree search
algorithm and the method employed to create the policy
function. In both methods, the policy function is created to
increase the evaluation value of good moves and to reduce
the value of bad moves. However, with the proposed method,
the number of moves to be searched must be less than that
of the existing methods. For each method, the number of
moves to be searched depends on the evaluation value of
the policy function, and moves with high values are more
likely to be searched. The proposed method trains the policy
function to increase the evaluation value of only the selected
move in the winner position; thus, the number of moves to be
searched tends to decrease at the winner position. However,
the existing method trains the policy function to learn the
search probability of each candidate move, and does not learn
to increase the evaluation value of only the selected move. Of
course, the number of moves to be searched will become small
in the position where the winning move is obvious, but in the
position where several actions are equally suitable, the number
of moves to be searched will not become small. As a result, the
proposed method may increase the risk of pruning the good
moves by reducing the number of moves; however, there is a
possibility that deeper searches and better move selection can

be performed if the evaluation accuracy of the policy function
is sufficiently high.

In terms of the training cost, the proposed learning algo-
rithm may incur a lower cost than the AlphaZero algorithm.
The AlphaZero algorithm requires the search probabilities of
each candidate move to train the policy function. To obtain
the search probabilities, many simulations are required, and
this increases the computational cost. However, the proposed
algorithm uses the search results instead of the search proba-
bilities to train the policy function. The search result can be
obtained from a 1-ply search, which means that each candidate
move is sufficient to be evaluated only once. Because our
proposed algorithm can reduce the number of evaluations and
the computational cost, it may be possible to create the highly
accurate evaluation functions more rapidly with the proposed
learning algorithm.

We confirmed that the winning percentage of DeepEZO-30s
against MoHex2.0 was greater than that of DeepEZO-4ply
against MoHex2.0 (Table III). This shows that the strength
of DeepEZO-30s was greater than that of a limited-width 4-
ply search, and that the generalization ability of the proposed
value function is very high. The search result of the minimax
tree search changes if the evaluation of a certain position
changes; therefore, the search result will be a worse move
if the value function evaluates a certain position incorrectly.
Although the number of positions to be evaluated is increased
by performing a deep search, DeepEZO-30s can play a better
move by evaluating the position appropriately.

Learning for the proposed functions required 45 days;
however, this can be reduced easily. Most of the learning time
was spent on games of self-play; therefore, the learning time
can be reduced by increasing the speed of games of self-play.
Each game is completely independent, and parallelization can
be implemented easily. In this study, we used only a single
CPU and a single GPU, and we expect that the learning time
can be reduced considerably by parallelization of additional
computational resources.

2475-1502 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2019.2893343, IEEE

Transactions on Games

10

VII. CONCLUSION

In this paper, we proposed a reinforcement-learning algo-
rithm to create value and policy functions through games of
self-play in Hex. In this study, games of self-play were played
by players based on a minimax tree search. The value function
was trained to predict the game result, and the policy function
was trained to change the number of moves to be searched
according to the given position. To demonstrate the effective-
ness of the proposed learning algorithm, we compared the
proposed learning algorithm with other learning algorithms. In
addition, we developed the computer Hex algorithm DeepEZO
using the minimax tree search, and compared it to other
computer Hex algorithms. Based on the experimental results,
we demonstrated that DeepEZO outperforms all of the other
programs, which means that the trained value function has a
high evaluation accuracy and generalization ability, and that
the trained policy function can appropriately determine moves
to be searched at each position. We also demonstrated that the
policy function trained by the proposed learning algorithm has
a higher evaluation accuracy than the policy function that is
trained to always predict the search result.

In future, we aim to implement parallelization of the learn-
ing algorithm in order to improve the learning efficiency. In
addition, we plan to investigate how the search depth in games
of self-play affects the accuracy of the evaluation functions.

ACKNOWLEDGEMENT

This work was supported by Grant-in-Aid for JSPS Re-
search Fellow Grand Number JP 16J02092 and the Global
Station for Big Data and CyberSecurity, a project of the
Global Institution for Collaborative Research and Education
at Hokkaido University.

REFERENCES

[1] C. Browne, Hex Strategy: Making the Right Connections. A. K. Peters,
Natick, MA, 2000.

[2] R. B. Hayward and N. Weninger, “Hex 2017: Mohex wins hex 11x11
and 13x13 tournaments,” in ICGA Journal, vol. 39, 2017, pp. 222-227.

[3] K. Hoki and T. Kaneko, “Large-scale optimization for evaluation func-
tions with minimax search,” Journal of Artificial Intelligence Research,
vol. 49, p. 527568, 2014.

[4] G. Tesauro, “Temporal difference learning and TD-Gammon,” Commu-
nications of the ACM, vol. 38, no. 3, pp. 58-68, 1995.

[5]1 C.J. Maddison, A. Huang, I. Sutskever, and D. Silver, “Move evaluation
in go using deep convolutional neural networks,” in 3rd International
Conference on Learning Representations, 2015.

[6] R. Coulom, “Computing elo ratings of move patterns in the game of
g0,” ICGA Journal, vol. 30, pp. 198-208, 2007.

[71 C.J. Maddison, A. Huang, I. Sutskever, and D. Silver, “Move evaluation
in go using deep convolutional neural networks,” in 3rd International
Conference on Learning Representations, 2015.

[8] K. Takada, H. lizuka, and M. Yamamoto, “Reinforcement learning
for creating evaluation function using convolutional neural network in
hex,” 2017 Conference on Technologies and Applications of Artificial
Intelligence (TAAI), pp. 196-201, 2017.

[9]1 D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, 1. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484-489, 2016.

[10]

[11]

[12]

[13]

[14]

[15]

[16]
(17]

(18]

[19]
[20]
[21]
(22]
(23]
[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]
[33]
[34]
[35]

[36]

JOURNAL OF KAIgX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap,
F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis,
“Mastering the game of go without human knowledge,” Nature, vol.
550, pp. 354-359, 2017.

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan,
and D. Hassabis, “Mastering chess and shogi by self-play with a general
reinforcement learning algorithm,” arXiv:1712.01815, December 2017.
T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” CoRR, vol. abs/1509.02971, 2015.

J. Veness, D. Silver, A. Blair, and W. Uther, “Bootstrapping from game
tree search,” in Advances in Neural Information Processing Systems 22,
2009, pp. 1937-1945.

B. Scherrer, M. Ghavamzadeh, V. Gabillon, B. Lesner, and M. Geist,
“Approximate modified policy iteration and its application to the game of
tetris,” Journal of Machine Learning Research, vol. 16, pp. 1629-1676,
2015. [Online]. Available: http://jmlr.org/papers/v16/scherrerlSa.html
R. Hayward, J. Pawlewicz, K. Takada, and T. van der Valk, “Mohex
wins 2015 hex 11x11 and hex 13x13 tournaments,” in ICGA Journal,
vol. 39, 2017, pp. 60-64.

J. Nash, “Some games and machines for playing them,” Rand Corp
D-1164, Tech. Rep., February 1952.

J. Pawlewicz and R. B. Hayward, “Scalable parallel dfpn search,”
Computers and Games CG2013 LNCS, vol. 8427, pp. 138-150, 2013.
S. Even and R. E. Tarjan, “A combinatorial problem which is complete
in polynomial space,” Joutnal of ACM, vol. 23, no. 4, pp. 710-719,
October 1976.

D. Gale, “The game of hex and the brouwer fixed-point theorem,” The
American Mathematical Monthly, vol. 86, no. 10, pp. 818-827, 1979.
C. E. Shannon, “Computers and automata,” in Proceedings of the
Institute of Radio Engineers, vol. 41, no. 10, 1953.

V. V. Anshelevich, “A hierarchical approach to computer hex,” Artificial
Intelligence, vol. 134, no. 1-2, pp. 101-120, 2002.

P. T. Henderson, “Playing and solving the game of hex,” Ph.D. disser-
tation, University of Alberta, 2010.

R. B. Hayward, “Mohex wins hex tournament,” in ICGA Journal,
vol. 35, no. 2, June 2012, pp. 124-127.

K. Young, G. Vasan, and R. Hayward, “Neurohex: A deep g-learning
hex agent,” in Compute Games Workshop, 1JCAI, 2016.

K. Takada, H. lizuka, and M. Yamamoto, “Computer hex using move
evaluation method based on convolutional neural network,” in Computer
Games Workshop IJCAI, 2017.

T. Anthony, Z. Tian, and D. Barber, “Thinking fast and slow with deep
learning and tree search,” in Neural Information Processing Systems
2017, 2017.

J. Baxter, A. Tridgell, and L. Weaver, “TDLeaf(\): Combining temporal
difference learning with game-tree search,” CoRR, vol. cs.LG/9901001,
1999. [Online]. Available: http://arxiv.org/abs/cs.LG/9901001

Y. B. Xavier Glorot, Antoine Bordes, “Deep sparse rectifier neural
networks,” in Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, vol. 15. PMLR, 2011, pp.
315-323.

J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler, “Efficient
object localization using convolutional networks,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2015,
pp. 648-656.

J. Pawlewicz, R. Hayward, P. Henderson, and B. Arneson, “Stronger
virtual connections in hex,” IEEE Transactions on Computational Intel-
ligence and Al in Games, vol. 7, no. 2, pp. 156-166, 2015.

R. B. Hayward, Y. Bjrnsson, M. Johanson, M. Kan, N. Po, and J. van
Rijswijck, “Solving 7 X 7 hex with domination, fill-in, and virtual
connections,” Theoretical Computer Science, vol. 349, pp. 123-139,
2005.

R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like
environment for machine learning,” in BigLearn, NIPS Workshop, 2011.
B. Areson, P. T. Henderson, and R. B. Hayward, “Benzene,”
http://benzene.sourceforge.net/, 2009-2012.

K. Young, “benzene-vanilla,” https://github.com/kenjyoung/benzene-
vanilla, 2013.

R. S. Sutton, “Learning to predict by the methods of temporal differ-
ences,” Machine Learning, vol. 3, no. 1, pp. 944, Aug 1988.

S.-C. Huang, B. Arneson, R. B. Hayward, M. Miiller, and J. Pawlewicz,
“Mohex2.0 : A pattern-based mcts hex player,” Computer and Games,
Springer LNCS, vol. 8427, pp. 60-71, 2014.

2475-1502 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2019.2893343, IEEE
Transactions on Games

TAKADA et al.: REINFORCEMENT LEARNING IN HEX 11

[37] C. Gao, R. B. Hayward, and M. Miiller, “Move prediction using deep
convolutional neural networks in hex,” IEEE Transactions on Games,
2017.

[38] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in Proceedings of the 3rd International Conference on Learning
Representations (ICLR), 2014.

[39] P. T. Henderson, “Playing and solving the game of hex,” Ph.D. disser-
tation, the University of Alberta, 2010.

[40] R. Coulom, “Bayesian elo rating,” https://www.remi-
coulom.fr/Bayesian-Elo/, 2010.

Kei Takada Kei Takada received a MS degree
in Graduate School of Information Science and
Technology, Hokkaido University, Japan, in 2016.
He is currently working toward the PhD degree
at Graduate School of Information Science and
Technology, Hokkaido University, Japan. He is a
fellow of Japan Society for the Promotion of Science
(JSPS) Research Fellowship for Young Scientist. His
research interests include reinforcement learning,
artificial player of the game, and human-machine
interface.

Hiroyuki lizuka Hiroyuki lizuka received a PhD
in multi-disciplinary sciences from the University
of Tokyo, Japan, in 2004. Since 2005, he has been
a research fellow of the Japan Society for the
Promotion of Science. In 2005 and 2006, he was
also a visiting research fellow at the Centre for
Computational Neuroscience and Robotics at the
University of Sussex. He was an assistant professor
at the human information engineering laboratory,
Osaka University (2008-2013). Currently, he is an
associate professor at the autonomous systems engi-
neering laboratory, Hokkaido University, Japan (2013-). His research interests
include embodied cognition, complex adaptive systems, deep learning, swarm
behavior, virtual reality, and the origin of life.

Masahito Yamamoto Masahito Yamamoto received
a PhD in Graduate School of Engineering from
Hokkaido University, Japan, in 1996. Since 1996,
he has been a research fellow of the Japan So-
ciety for the Promotion of Science. He has been
an assistant professor (1997-2000) and associate
professor (2000-2012) in Hokkaido University. Cur-
rently, he is a professor at the autonomous systems
engineering laboratory, Hokkaido University, Japan
(2012-). His research interests include artificial life
and intelligence, swarm intelligence, combinatorial
optimization, and board game artificial intelligence (AI) programming.

2475-1502 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

