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Abstract—In this paper, we present a novel computer audition
task: audio-based video game genre classification. The aim of this
study is threefold: 1) to check the feasibility of the proposed task;
2) to introduce a new corpus: The Game Genre by Audio + Mul-
timodal Extracts (G2 AME), collected entirely from social multi-
media; and 3) to compare the efficacy of various acoustic feature
spaces to classify the G2 AME corpus into six game genres us-
ing a linear support vector machine classifier. For the classifica-
tion we extract three different feature representations from the
game audio files: 1) Knowledge-based acoustic features; 2) DEEP
SPECTRUM features; and 3) quantized DEEP SPECTRUM features
using Bag-of-Audio-Words. The DEEP SPECTRUM features are a
deep-learning-based representation derived from forwarding the
visual representations of the audio instances, in particular spectro-
grams, mel-spectrograms, chromagrams, and their deltas through
deep task-independent pretrained CNNs. Specifically, activations
of fully connected layers from three common image classification
CNNs, GoogLeNet, AlexNet, and VGG16 are used as feature vec-
tors. Results for the six-genre classification problem indicate the
suitability of our deep learning approach for this task. Our best
method achieves an accuracy of up to 66.9% unweighted average
recall using tenfold cross-validation.

Index Terms—Audio classification, convolutional neural
network (CNN), deep learning, game genre classification.
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I. INTRODUCTION

V IDEO games, despite being a relativity new form of me-
dia, are a highly important and influential aspect of pop-

ular culture. Moreover, the video game market has become an
established and ever-growing global industry. In terms of to-
tal revenue generated, the video game industry rivals the more
traditional entertainment industries such as music, film, and
television [1], [2]. Due to this popularity, video games have be-
come the subject of an active and expanding research field,
which includes many diverse disciplines such as sociology,
cultural studies, philosophical and behavioral psychology, and
informatics [1].

Genre classification consists of grouping different objects into
categories; for video games these categories are typically de-
rived according to gameplay and interactivity [3], [4]. The study
of video game genre differs considerably from film or literary
genre study, because of the active participation of the gamer (au-
dience), through the surrogate player-character who acts within
the games diegetic world [5]. Research into the classification of
video games into specific genres is of particular interest in both
the video game industry as well as academia [3], [4].

Video games are an interactive audio-visual and tactile
medium, with the soundscape playing a key role in the over-
all gaming experience [6]. The development of game audio can
be considered as the result of a series of technological, eco-
nomic, ideological, social, and cultural pressures [7]. Further,
elements such as genre and audience expectations often con-
strain gameplay audio [7]. Aspects such as space, time, narra-
tive, and gameplay dynamics all play an influencing role in this
regard.

Key audio events in games include: Vocalizations of game
characters, sound effects relating to gameplay, ambient effects
relating to atmosphere, and the music of the game [1]. The mix
of these events within a particular game depends on gameplay
mechanics and is highly related to the genre [6]. For exam-
ple, action and shooting games such as the Call of Duty series
will contain loud, sudden events including punches and gun-
shots; sports games such as the FIFA football series tend to
have ongoing commentary voice-overs; racing games such as
the Forza series contains a substantial amount of car noises
including heavy accelerations and screeching brakes; finally,
classic arcade games, for example, Super Mario or Sonic the
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Hedgehog have chiptune (8-bit synthesized electronic music)
based accompanying sounds.

In the era of machine learning, the field of computational
and artificial intelligence (CI/AI) in games is rapidly develop-
ing and gaining more attention from the scientific community
[8]–[10]. Artificial neural networks (ANNs), support vector ma-
chines (SVMs), and deep neural network based classifiers have
been shown to be effective for improving the logical and ra-
tional decision-making processes in different game genres, and
analysing the training behavior in serious games [11], [12].

Given the links between the audio content of a video game
and its genre [1], [6] and the growing influence of CI/AI in
game development [11], [12], this paper explores different ma-
chine learning based acoustic detection paradigms for the task
of Video Game Genre Classification. To the best of the authors’
knowledge, this is the first time such a study has been under-
taken. As well as being a challenging machine learning task,
this work has many potential real-world applications.

1) Development of a remote and unobtrusive tool to automat-
ically monitor game usage. Such a tool could allow parents
to better track their child’s video game habits monitoring
total play-time and, checking if the game is age appro-
priate [13]. Any such tool should of course be developed
under a clear ethical framework ensuring that it has the
goal of monitoring strictly for health and wellness pur-
poses whilst maintaining and protecting privacy [14].

2) General activity monitoring, e.g., in smart homes. An anal-
ogous example are apps that collect TV-viewing data for
advertisers using a smartphone’s microphone; according
to a recent report in The New York Times,1 there are at
least 250 of such apps currently on the market.

3) First step toward a game SHAZAM which can, e.g., iden-
tify game genres, game’s name, game walkthroughs, or
game tutorials based on a short audio sample played and
using the microphone on a device.

4) As a simple objective aid for game designers to boost the
decision making process for choosing the proper game
sound of new games and check if the game has a suitable
soundscape for a particular genre.

5) Aiding the automatic generation of game genre-specific
music tracks.

6) Monitoring of games on YouTube and other social media
platforms. As well as aiding the automatic segmentation of
gameplay clips posted on social media into semantically
meaningful chunks.

7) Automatic social media-based game retrieval system.
Our contribution in this paper includes the introduction of

our video game corpus,2 Game Genre by Audio + Multimodal
Extracts (G2AME), a collection of 1566 audio clips taken from
300 different video games across and grouped into six genres.
These data were collected using our Cost-efficient Audio-visual
Acquisition via Social-media Small-world Targeting (CAS2T)

1Retrieved January 05, 2018, from https://nyti.ms/2E7Iins
2Text (csv) files containing the YouTube video IDs for the videos in each

class of the G2 AME corpus can be downloaded from the following link:
https://www.dropbox.com/s/twpq1cnvvhqbakn/youtubeIDs-game-dataset.zip?
dl=0.Password:nJ-mP10U

toolkit for efficient large-scale big data collection from the video
sharing website YouTube [15].

The classification paradigms explored for the G2AME corpus
have been adopted from techniques successfully used in other
acoustic-detection tasks. Our baseline system is based on acous-
tic feature sets which are extracted from audio clips of different
video games using our openSMILE toolkit [16]. These feature
sets are primarily used in computational paralinguistics based
detection tasks [17]. However, they have also been used for
movie genre classification [18], and music genre classification
[19], [20].

We compare the efficacy of these standard acoustic feature
sets with state-of-the-art feature representations, namely DEEP

SPECTRUM features and their quantised representation. DEEP

SPECTRUM features are derived by first forwarding visual rep-
resentations of audio data through deep convolutional neural
networks (CNNs), such as AlexNet [21], GoogLeNet [22], and
VGG16 [23]. These CNNs have been pretrained on images
from the ImageNet data set,3 including categories, such as birds,
flowers, fruits, furniture, tools, vehicles, and persons for image
classification. The activations of the fully connected layers of
these CNNs, i.e., DEEP SPECTRUM features can then be used as
an audio feature representation. DEEP SPECTRUM features have
shown their versatility in a range of audio classification tasks, in-
cluding snore sound detection [24], [25], audio-based sentiment
analysis [26], acoustic scene classification [27], speech-based
emotion detection [28], and autism severity detection [29].

Pretrained CNNs have been chosen for the deep feature ex-
traction from audio data for the following reasons: First, the
convolutional layers of CNNs are able to make strong assump-
tions with regard to locality of the pixel dependencies [21], [30]–
[32]. Furthermore, because of the richness of the time-frequency
information in (mel-)spectrograms, local structures relating to
properties such as loudness, pitch, rhythm, and spectral energy
distribution are inherently present, and are in turn readable for
the CNNs. This is verified by the strong performance of the
DEEP SPECTRUM features in a range of audio tasks, e.g., [24],
[26]–[29]. Second, if fine-tuning or training a new deep learn-
ing model are performed on our G2AME data set (in which data
quantity is limited), we would have a high risk of over-fitting to
the training data.

In order to quantize the DEEP SPECTRUM features, we also
compute a Bag-of-Audio-Words (BOAW) representation, herein
denoted as Bag-of-Deep-Features (BODF). BODF representa-
tions are considered more robust than raw features; the quanti-
zation step can be seen to be quasifiltering against small amounts
of noise in a data set [26], [33].

The rest of this paper is laid out as follows. Section II in-
troduces the G2AME corpus. Section III outlines our machine
learning methods for extracting acoustic and DEEP SPECTRUM

features from the audio files. The classification experiments and
the evaluation metrics are outlined in Section IV. The obtained
results are given in Section V, before concluding the paper in
Section VI.

3Summary and statistics of the ImageNet data set: http://image-net.org/about-
stats
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TABLE I
THE DISTRIBUTION OF AUDIO CLIPS IN THE G2

AME CORPUS ACROSS THE SIX GENRES

The number of 5-s clips per genre
is denoted in parentheses.

II. G2AME CORPUS

The G2AME data set was collected directly from YouTube.
Using CAS2T, our complex network analyser toolkit [15] we
identified and downloaded 1566 unique gameplay videos repre-
senting 300 individual games. The data collection process was
particularly time consuming, due in part to two main limitations:
First, while using YouTube API it is only possible to iterate or
process a given finite number of videos per day, and Second,
a lot of YouTube game videos had a commentator voice in-
cluded which was talking during the gameplay. Hence, we had
to thoroughly check all targeted videos to ensure they contained
gameplay audio only.

The downloaded videos were then converted from their orig-
inal .mp4 or .webm video formats into 16-kHz wav files cut
into chunks of one minute in length. The total net playtime of
G2AME is 26 hours of gameplay. Further, each clip is cut to 12
individual five second chunks which are later used as a basis for
feature extraction and classification in the non-(BoDF) systems.
This results in a total of 18 792 audio chunks (cf. Table I).

Using the popular online shopping platform Amazon4 as a
guide, we categorized the games and according audio clips into
six different genre groups.

1) Action or Shooter (ACS) games; 258 instances picked
from games such as Battlefield 1, Assassin’s Creed, Dark
Souls, Diablo, or Call of Duty.

2) Arcade or Platform (ARP) games; 205 instances picked
from games such as Sonic the Hedgehog, Donkey Kong,
Golden Axe, Pac-Man, or Super Mario Brothers.

3) Fighting (FHT) games; 330 instances picked from games
such as Mortal Kombat, Street Fighter, or Tekken.

4) Racing (RCG) games; 296 instances picked from games
such as Forza, Gran Turismo, or Need For Speed.

5) Sports (SPT) games; 266 instances picked from games
such as FIFA, NBA, MLB, Pro Evolution, or WWE2.

6) Simulation or World Building (SWB) games; 211 in-
stances picked from games such as Age of Empires,
Minecraft, Tropico, Warcraft, or The Sims.

Two different versions of the same game are treated as one
game, e.g., the football games FIFA 16 and FIFA 15 are both
considered examples of the FIFA game. Each genre contains

4www.amazon.com

clips from 50 distinct video games. For our cross-validation
(CV) scheme, each of the tenfolds contains the instances of
five distinct games from every genre.5 This provides “game-
independence” ensuring that our machine learning algorithms
do not focus on recognizing specific games instead of their
respective genres.

As already mentioned, the work presented in this manuscript
focuses on the recognition of game genre using the audio modal-
ity only. We have focused on this strictly audio approach for the
following reasons.

1) For practical use in a game monitoring application; the
genre can be recognized from distance, such as in a per-
sonal assistant device, with no need to see or analyse the
screen content. Furthermore, audio processing, in general,
is often considered more lightweight than visual process-
ing and hence is potentially better suited for real-time
classification in embedded devices.

2) As discussed in the introduction, audio is an essential part
of video game experience that helps to enhance the gaming
experience. In this regard, music, which is not visible,
plays a key role in establishing atmospheric difference
between various game genres. Audio also provides instant
feedback to the player’s inputs, such as shooting a gun.
This is an important factor to get a better analysis of
player’s gaming behavior.

3) Classification of the game genres is potentially more re-
liable from the audio modality. For example, role playing
games, such as Dark Souls, Witcher 3, or Fallout 4 are
often visually diverse making it harder to infer the genre.
Audio also gives cues about the visually invisible objects,
monsters, animals, or persons in gameplay (e.g., a person
behind a wall or a monster hidden in bushes). Obtaining
such information can improve the performance of a game
analysis toolkit.

III. FEATURE REPRESENTATIONS

Before starting to classify the game genres (cf. Section IV),
we need to extract feature representations from each audio in-
stance in the G2AME corpus. In this section, we discuss three
kinds of feature representations: 1) acoustic features; 2) DEEP

SPECTRUM features; and 3) BODF, i.e., the quantized represen-
tation of DEEP SPECTRUM features. We only quantized the best
chunk-level features. In addition, quantized DEEP SPECTRUM

features have been shown to be effective in related audio classi-
fication tasks [26], [34].

A. Acoustic Feature Sets

In order to better understand the nature of the G2AME corpus
and the advantages of the proposed classification approaches,
we also compared the performance of our deep learning sys-
tem based on DEEP SPECTRUM features with two conventional,
expert-designed, acoustic feature sets used for the INTER-
SPEECH 2009 Emotion Challenge (IS09) [35] and the INTER-

5For reproducibility, the make up of the fold will be included in the data set
release.
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Fig. 1. Example spectrograms, mel-spectrograms, delta-mel-spectrograms and chromagrams (left-to-right and top-to-bottom) of audio samples contained in
the six different classes of the G2 AME corpus. (a) Alice: Madn. Ret. (Action or Shooter). (b) Dr. Robotnik (Arcade or Platform). (c) AquaPazza (Fighting).
(d) Daytona USA (Racing). (e) Cricket (Sports). (f) Cossacks (Sim. or World Building).

Fig. 2. Illustration of the proposed deep feature extraction method. A detailed account of the procedure is given in Sections III-B and III-C. Figure adapted
from [34].

SPEECH 2010 Paralinguistic Challenge (IS10) [36], with 384
and 1582 features, respectively.

For full information on the extraction and formation of these
feature sets, the interested reader is referred to the corresponding
references as well as to [37].

B. Deep Spectrum Features

We use a state-of-the-art system based on CNN image de-
scriptors which extracts the DEEP SPECTRUM features from plots
of audio data, in particular spectrograms, mel-spectrograms,
chromagrams, and their deltas or temporal transitions (cf.
Section III-B1).

To highlight the audio similarities and differences that poten-
tially exist between the game genres, the visual representations

of audio samples contained in the six different classes taken
from an exemplar game within each genre are shown in Fig. 1.

The basic system architecture is shown in the left part
of Fig. 2. The features are extracted from audio data as follows.
First, suitable representations are created using the audio and
music analysis library librosa [38]. For our experiments on the
G2AME corpus, we extended the selection of audio representa-
tions to include mel-spectrograms and chromagrams apart from
the standard spectrograms, since they have been successfully
applied for various audio-based classification tasks [39]–[41].

These representations are then further transformed to im-
ages by creating color mapped plots. The second step consists
of feeding these plots to CNNs pretrained on ImageNet [42]
and extracting the activations of a specific fully-connected
layer as large feature vectors. These features, denoted as DEEP
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Fig. 3. Sample spectrogram taken from the action/role-playing game Dark
Souls displayed using three different color maps. (a) Hot. (b) Vega20b.
(c) Viridis.

TABLE II
OVERVIEW OF THE ARCHITECTURAL SIMILARITIES AND DIFFERENCES

BETWEEN THE TWO CNNS USED FOR THE EXTRACTION OF

DEEP SPECTRUM FEATURES, ALEXNET AND VGG16

conv denotes convolutional layers and ch stands for channels. The table is
adapted from [24].

SPECTRUM features are a high-level representation of the plots
created from low-level audio features. All deep spectrum fea-
tures were extracted using our purpose built toolkit.6 Details
about the used low-level audio features and pretrained CNN
networks are described in the following subsections.

1) Audio Plots: In addition to standard spectrograms which
are computed from Hanning windows of width 256 and over-
lap of 128 samples, we also use mel-spectrograms and chro-
magrams. The Hanning window helps to preserve both the
frequency resolution and the amplitude of a signal. Mel-
Spectrograms are computed from the log-magnitude spectrum
by dimensionality reduction using a mel-filter. We use 128 filter
banks equally spaced on the mel-scale defined as follows:

fmel = 2595 · log10

(
1 +

fH z

700

)
(1)

where fmel is the resulting frequency on the mel-scale computed
in mels and fH z is the normal frequency measured in hertz. The

6 https://github.com/DeepSpectrum/DeepSpectrum

Fig. 4. Inception module used in the GoogLeNet architecture. Small 1 ×
1 convolutions reduce dimensionality and filters of different patch sizes are
concatenated to combine information found at different scales.

mel-scale is based on the frequency response of the human
ear which has better resolution at lower frequencies. We also
display the mel-spectrogram on this scale. Chromagrams are a
mapping of the spectrogram bins into structures based around
pitch relationships as defined by the western music tonality sys-
tem. Compared to spectrograms, chroma features relate to the
12-pitch classes defined in the 12 tone equal temperament which
are represented by the pitch spelling attributes: C, C#, D, D#,
E, F, F#, G, G# A, A#, and B. As video games are often accom-
panied by scores or soundtracks, we hope that chromagrams
capture some genre specific musical characteristics. Different
ways of computing chroma features exist [43], we use the de-
fault implementation provided by the librosa Python library.
Further, we compute the first-order derivatives (deltas) of the
mel-spectrograms and chromagrams to incorporate more of the
dynamics of the underlying features.

For the spectrogram plots, we use three different color map-
pings: viridis, hot, and Vega20b. These color mappings are
shown in Fig. 3. It is during testing (cf. Section V) that we
identify the optimal color map for the different spectral and
chroma feature spaces.

2) CNN-Descriptors: To form suitable feature representa-
tions from the plots described in Section III-B1, three different
ImageNet-trained CNNs are used as feature extractors.

AlexNet’s and VGG16’s architectures are compared in
Table II. Here, we use the activations of the 4096 neurons on the
second fully connected layer—denoted as fc7—as features be-
cause of their robustness for audio classification tasks [24], [26],
[28]. The third network architecture—GoogLeNet—differs sub-
stantially from these two due to its so-called inception mod-
ules which concatenate convolutional filters of different size
(cf. Fig. 4). These are then stacked with intermittent pooling
layers and finally, a fully connected layer with 1000 neurons is
used for ImageNet classification. Here, we apply the last pool-
ing layer as feature vector. This results in feature vectors of size
1024.

For each of these CNN descriptors, we first evaluate the
suitability of each color map on standard spectrograms and
then use the best performing color map for the remaining
experiments.
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C. Bag-of-Deep-Features

In order to form BODF we combine the BOAW representa-
tion with the DEEP SPECTRUM features using OPENXBOW, our
open-source toolkit for the generation of bag-of-words represen-
tations [44]. BOAW involves generating a fixed length histogram
representation of an audio clip. This is achieved by first identify-
ing a set of “deep audio words” from some given training data,
and then quantizing (bagging) the original feature space, with
respect to the generated codebook, to form the histogram repre-
sentation. The histogram shows the frequency of each identified
deep audio word in a given audio instance [33], [44]–[46]. It
is worth noting, that the audio words do not represent words in
their semantic meaning, but rather fragments of the audio signal
defined by features [45]. The codebook can be the result of, e.g.,
a clustering algorithm [47] or a random sampling of low-level
descriptors [48]. The histogram finally describes the distribution
of the codebook vectors over the whole audio segment [44].

As shown in Fig. 2, we first extract a DEEP SPECTRUM repre-
sentation for each five second chunk, then we bag them (12 per
audio file, cf. Section II), to form a clip-level representation.

We normalize the features to [0, 1] and random sample a
codebook with fixed size from the training partition. After-
wards, each input feature vector is applied a fixed number of
its closest vectors from the codebook. We then use logarith-
mic term-frequency weighting to the resulting histograms. The
size of the codebook and the number of assigned codebook
words (cw) are optimized with size ∈ {100, 200, 500, 1 000},
cw ∈ {1, 10, 25, 50, 100, 200}.

IV. CLASSIFIERS AND EVALUATION METRICS

In order to predict the class labels for the audio instances in the
G2AME corpus, we train a linear SVM classifier on the extracted
feature representations. The evaluation measure is unweighted
average recall (UAR). We use UAR, as this measure gives equal
weight to all classes of our G2AME corpus and is accordingly
more suitable than a weighted metric (e.g., accuracy) for our data
set which has slightly imbalanced class distribution (cf. Table I).

We use the open-source linear SVM implementation pro-
vided in the scikit-learn machine learning library [49]. Feature
standardization, i.e., subtracting the mean and dividing by the
standard deviation is applied to the openSMILE feature sets.
For the DEEP SPECTRUM features, both standardization and nor-
malization have been found to negatively impact classifier’s
performance. We use the built-in balancing option of the SVM
classifier to counteract the slight imbalance of our data set.
The classifiers complexity parameter is optimized in ten steps,
equally spaced on a logarithmic scale between 10−9 and 100 .

V. RESULTS

An extensive series of experiments has been conducted to
evaluate the performance of the extracted feature representations
(cf. Section III) using the proposed classifiers (cf. Section IV).

First, we evaluate the performance of the acoustic feature
sets extracted with openSMILE (cf. Section III-A). We then
obtain the classification results for the DEEP SPECTRUM fea-
tures (cf. Section V-B). Afterwards, we evaluate the effect of

TABLE III
PERFORMANCE OF THE SVM CLASSIFIER USING DIFFERENT OPENSMILE

AUDIO FUNCTIONALS ON THE G2 AME CORPUS

UAR on concatenated folds is provided. Mean and standard devia-
tion are reported in parentheses.

quantizing the best performing feature plots for each CNN de-
scriptor (cf. Section V-C). In Section V-D, we perform model
(late) fusion on the DEEP SPECTRUM and acoustic feature rep-
resentations. Finally, we compare our best classification result
with human performance (cf. Section V-E).

We perform statistical T-tests, comparing the results from
acoustic feature sets (cf. Table III) with the best DEEP SPECTRUM

results (cf. Table V) and the overall best performance (cf. Ta-
ble VI) in a pairwise fashion to determine if they are statistically
different. We reject the null-hypothesis at a significance level
of p < 0.05. For each comparison, the p-values can be found
in Table VIII. We checked the results of the cross-validation for
the normality using a Shapiro–Wilk test [50], [51].

A. Acoustic Feature Sets

The two sets of audio functionals extracted with openSMILE
were also evaluated using tenfold CV with linear SVM clas-
sifier. We observe that the larger feature set (IS10) with 1582
features outperforms the smaller one (IS09) with 384 features
(cf. Table III) reaching a maximum UAR of 55.2%. We also
show that there is statistically significant difference between
these two features (cf. Table VIII).

B. Deep Spectrum Features

The comparison of different feature plots as basis for
DEEP SPECTRUM extraction (cf. Table V) indicates that
chromagrams—in contrast to their relevance to music
analysis—do not provide suitable input for ImageNet pre-
trained CNNs. We explain this partially by the inherent “unnat-
ural” look of these plots, leading to an inability to extract infor-
mative structural features using an Image CNN. Applying mel-
spectrograms on the other hand, slightly improves performance
for both AlexNet and GoogLeNet. Using the deltas decrease
the performance for all CNNs. The overall best performance is
achieved by AlexNet features extracted from mel-spectrograms
with a UAR of 59.9%.

C. Bag-of-Deep-Features

For the BODF representations, we chose the best perform-
ing feature plots for each CNN, i.e., mel-spectrograms for both
AlexNet and GoogLeNet and regular spectrograms for VGG16.
We optimized the BODF parameters codebook size and number
of assigned codebook words cw (cf. Section III-C) as well as
the SVM’s complexity parameter. The results in Table VI show
a maximum UAR of 66.9% achieved by BODF with a code-
book size of 500 and cw of 25 formed from DEEP SPECTRUM
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TABLE IV
PERFORMANCE OF THE SVM CLASSIFIER USING DEEP SPECTRUM FEATURES EXTRACTED FROM SPECTROGRAM PLOTS WITH DIFFERENT

COLOR MAPS BY THREE CNN-DESCRIPTORS ON THE G2 AME CORPUS

UAR on concatenated folds is provided. Mean and standard deviation are reported in parentheses.

TABLE V
PERFORMANCE OF THE SVM CLASSIFIER USING BEST PERFORMING DEEP SPECTRUM FEATURES ON THE G2 AME CORPUS FROM TABLE IV

UAR on concatenated folds is provided. Mean and standard deviation are reported in parentheses.

TABLE VI
PERFORMANCE OF THE SVM CLASSIFIER USING BODF REPRESENTATIONS OF THE BEST DEEP SPECTRUM FEATURES ON THE G2 AME CORPUS

S: codebook size; cw: number of assigned codebook words; C: SVM classifier’s complexity. UAR on
concatenated folds is provided. Mean and standard deviation are reported in parentheses.

features and GoogleNet mel-spectrograms as CNN descriptor.
We also show that there is statistically significant difference be-
tween GoogLeNet BoDF system and the other tested approaches
(cf. Table VIII). A confusion matrix for this system is displayed
in Fig. 5(b).

D. Fusion Experiments

In addition to the quantization method employed in
Section V-C, we also perform late fusion on the different chunk-
level feature representations. We fuse the best performing DEEP

SPECTRUM features with each of the three audio functional fea-
ture sets and also all four of them together. Note that, we also
attempted an early fusion, however initial analysis revealed this
approach was not suitable.

Our late fusion scheme uses the trained and optimized SVM
models obtained in Section V-B and Section V-A and combines
their predictions data by majority vote. These results (cf. Ta-
ble VII) further indicate that the different feature sets are not
complementary.

E. Comparison With Human Performance

To gain perspective into how well our best classifica-
tion approach performed (cf. Table VI) we conducted human

TABLE VII
PERFORMANCE OF LATE FUSION USING LINEAR SVM CLASSIFIER

ON THE G2 AME CORPUS

We employ a majority vote using the best individual models
obtained during previous experiments. UAR on concatenated
folds is provided. Mean and standard deviation are reported in
parentheses.

classification tests through our browser-based crowdsourcing
platform iHEARu-PLAY [52]. iHEARu-PLAY is a modular,
browser-based crowdsourcing platform and is publicly avail-
able for users.7 For the perception task, we presented the human
raters with one 5-s clip (picked at random) for each file. A total
of 12 individuals (seven male, five female, average age 27.3,
nonprofessional gamers) completed the full classification task
on iHEARu-PLAY platform. The average per rater decision time
was 3.31 s.

7https://www.ihearu-play.eu
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TABLE VIII
p-VALUES FOR T-TEST SCORES COMPARING CROSS-VALIDATION RESULTS OF DIFFERENT CONFIGURATIONS

Except for AlexNet vs. VGG16 and VGG16 vs. IS10 the difference between other feature sets is statistically significant.

Fig. 5. Confusion matrices from the human performance and our best classification result. (a) Confusion Matrix from classification labels for 297 audio files
gained by the best human rater. (b) Confusion Matrix from classification labels for the 1 566 audio files in the G2 AME data set gained by our best BODF system
with cw = 25 and S = 500.

Taking the average of the UAR scores gives us an overall
human rater UAR of 59.7%. The best human performance was
63.8% UAR which is 3.1 percentage points less than the best
classification result. The confusion matrix for this prediction is
given in Fig. 5(a).

While the raters’ scores give us a reference baseline on which
to gauge our machine learning approaches, it should be noted
that due to the differing amounts of training, as well as the cross-
validation paradigm used in the machine learning approaches,
such a comparison should not be considered like-for-like. Fur-
thermore, our machine learning approaches were trained on a
large amount of data (cf. Table I) which the raters did not have
access to. However, given the prevalence of video games in to-
day’s society [1], [2], one cannot say that the raters received no
training. Further, the terminology associated with each genre
label would have helped the raters form preconceptions of what
a “typical” audio clip from a particular genre should sound like.
Despite these factors, the stronger performance of our system
indicates the suitability of using machine learning for the task
of video game genre classification.

VI. CONCLUSION AND FUTURE WORK

Video games as a rapidly growing entertainment medium
have a complex and evolving taxonomy. The associated

genrefication receives considerable attention both in research
and industry. In this regard, the work presented in this paper ex-
plored, for the first time, audio-based video genre classification.
In Section I, we listed potential real-world applications of such
a system. In Section II, we presented the novel G2AME data set,
which comprises 1566 unique gameplay samples taken from 300
individual video games. The samples were downloaded from
YouTube using a graph based search toolkit [15], that exploits
the small-world nature of YouTube’s recommendation system
to efficiently source data. In Section III, we then explored the
efficacy of a range of acoustic event detection paradigms for
the task, including state-of-the-art DEEP SPECTRUM features.
Our results in Section V indicated that BoDF, a combination of
DEEP SPECTRUM features and BoAW, are well suited to the task
of audio-based game-genre classification. This system achieved
the strongest UAR of 66.9% an improvement of 3.1 percentage
points over humans performing the same task. We also per-
formed statistical T-tests to compare the results obtained from
various feature sets in a pairwise manner and showed that there
is statistically significant differences between the overall best re-
sult and the results obtained from other proposed feature vectors
(cf. Table VIII).

An in-depth analysis of the results reveals that Racing games,
which normally feature a substantial amount of automotive
noises, were the easiest to recognize. Simulation and World
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Building games were the most difficult to analyse, having con-
fusion with the Action, Adventure, or Shooter genre.

We have a wide-ranging set of future work plans in associa-
tion with this task. First, we aim to greatly grow the G2AME data
set. We will verify and expand on the audio based classification
task offered within this paper. We will also consider visual-
based, linguistic-based (YouTube comments), and multimodal
classification, which has shown to improve classifier accuracy
in related tasks such as audio-visual based sports genre classi-
fication [53]. Given the complexity of video game labels, other
future work will include using advanced clustering techniques,
treating each video game as being associated with a set of genre
labels, rather than our current method of assigning each a single
label, in a multimodal framework. We speculate such an ap-
proach could aid the identification of new sets of video game
genre descriptors and labels.
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