
IEEE TRANSACTIONS ON GAMES, VOL. 12, NO. 1, MARCH 2020 21

Procedural Puzzle Generation: A Survey
Barbara De Kegel and Mads Haahr , Member, IEEE

Abstract—Procedural content generation (PCG) for games has
existed since the 1980s and is becoming increasingly important for
creating game worlds, backstory, and characters across many gen-
res, in particular, open-world games, such as Minecraft (2011) and
No Man’s Sky (2016). A particular challenge faced by such games
is that the content and/or gameplay may become repetitive. Puz-
zles constitute an effective technique for improving gameplay by
offering players interesting problems to solve, but the use of PCG
for generating puzzles has been limited compared with its use for
other game elements, and efforts have focused mainly on games
that are strictly puzzle games, rather than creating puzzles to be
incorporated into other genres. Nevertheless, a significant body of
work exists, which allows puzzles of different types to be generated
algorithmically, and there is scope for much more research into
this area. This paper presents a detailed survey of existing work
in PCG for puzzles, reviewing 32 methods within 11 categories of
puzzles. For the purpose of analysis, this paper identifies a total of
seven salient characteristics related to the methods, which are used
to show commonalities and differences between techniques and to
chart promising areas for future research.

Index Terms—Procedural content, puzzle games.

I. INTRODUCTION

PROCEDURAL content generation (PCG) has been popu-
lar in digital games for decades; from dungeons and levels

in Rogue (1980) to terrain and resources in Civilization (1991)
and Minecraft (2011), and most recently, entire planets and solar
systems in No Man’s Sky (2016), it has often been used in the
creation of game worlds across genres. Besides worldbuilding,
PCG has also been used in the creation of narrative elements. For
example, Dwarf Fortress (2006), a predecessor and influence on
Minecraft [1] procedurally generate a detailed backstory includ-
ing a dwarven lineage at the start of each game. Characters driven
by artificial intelligence (AI) have also been the subject of PCG,
such as Crusader Kings II (2012), which procedurally generates
character traits that alter the decision-making of the non-player
characters (NPCs), decision making, leading to interesting fam-
ily dramas, whereas Shadow of Mordor (2014) makes players
feel like they are fighting specific enemies by generating each
enemy’s personality independently and retaining it throughout
the game.

Manuscript received January 12, 2017; revised October 31, 2017 and Septem-
ber 20, 2018; accepted May 9, 2019. Date of publication May 20, 2019; date of
current version March 17, 2020. (Corresponding author: Mads Haahr.)

B. De Kegel was with the School of Computer Science and Statistics, Trinity
College Dublin, Dublin, Ireland. She is now with Systems Biology Ireland, Uni-
versity College Dublin, Dublin, Ireland (e-mail: barbaradekegel@gmail.com).

M. Haahr is with the School of Computer Science and Statistics, Trinity
College Dublin, Dublin, Ireland (e-mail: mads.haahr@tcd.ie).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TG.2019.2917792

The benefits of PCG are obvious—by replacing the prob-
lem of creating game worlds, backstory, and characters with
the metaproblem of creating systems that in turn create these
things, content production costs can be reduced. At the same
time, there is potential that the content can be scaled in a near-
unlimited fashion. A particular challenge in the construction
of game worlds, backstory, and characters in this fashion is of
course that the content generated with PCG may become repet-
itive and uninteresting. Filling large open worlds with engaging
content is challenging, and this is particularly true for games
with procedurally generated worlds, such as Minecraft and No
Man’s Sky. While Minecraft has successfully profiled itself as a
crafting sandbox, No Man’s Sky has been criticized by players
for being boring in the moment-to-moment gameplay, leading
many to ask for refunds [2].

A. Why Procedurally Generate Puzzles?

While PCG is popular for generating many types of game
content, including game worlds, entity behaviors, and characters
[3], its use in the creation of puzzles has been limited. Efforts
have focused mainly on puzzles for games that are strictly puz-
zle games, rather than creating puzzles to be incorporated into
other genres, such as role-playing games (RPGs), where they
can improve gameplay by offering players interesting problems
to solve.

We define puzzles as problems to which the player can find
a solution based on previous knowledge (from in or outside the
game) and/or by exploring the solution space [4]. It is clearly
interesting to generate puzzles algorithmically for the simple
reason that they are popular with players but that the replay
value of individual puzzles is low.

In digital games, puzzles are a feature of many game genres
and come in a myriad of forms. Sometimes they are integrated
into game environments, such as the physics puzzles in Half-
Life 2 (2004), and other times they are present as minigames
that serve as intermissions from the main gameplay, such as the
hacking puzzles in Bioshock (2007). Puzzles in digital games are
popular when they offer players interesting problems to solve,
and they work particularly well when they integrate with the
core gameplay.

Procedural generation of puzzles comes with similar chal-
lenges as procedural generation of other game elements. A bar-
rier for mainstream adoption of generated puzzles, compared to
other types of content, may be the strict solvability constraint. As
noted previously, large procedurally generated game worlds of-
ten suffer from repetitive content, and for puzzles, this repetition
can manifest as a single type of interaction or puzzle appearing
in many different places, e.g., the bypass puzzles in Mass Effect 2

2475-1502 © 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-4194-234X
https://orcid.org/0000-0002-9273-6458
mailto:barbaradekegel@gmail.com
mailto:mads.haahr@tcd.ie

22 IEEE TRANSACTIONS ON GAMES, VOL. 12, NO. 1, MARCH 2020

Fig. 1. Map of puzzle categories. Categories toward the left-hand side are fine-grained, containing highly similar puzzles, whereas categories toward the right-hand
side are coarse-grained, containing more dissimilar puzzles. Vertical positioning is not significant.

(2010). The outcome of applying PCG is usually unpredictable,
which can be a deterrent, but also a benefit, especially insofar
that it can aid designer creativity.

In the context of smaller, story-driven games, puzzle genera-
tion can be applied toward improving replayability; a common
complaint for these types of games is that they can only really
be played once. Changing the puzzles integrated into the game’s
story could provide variety in experience without the need for
designers to write branching story lines.

B. Review Methodology

Previous surveys of PCG for games, covered in [3] and [5],
look at generation techniques used for a wide range of game
content—covering everything from 3-D objects to game sys-
tems. Puzzles are one type of game content addressed in that
range, but, given the broadness of these surveys, only a lim-
ited view is provided. Our survey aims to focus specifically on
research in PCG for puzzles.

Work on procedural puzzle generation has mostly focused on
specific puzzles, because creating a generator requires at least
some knowledge of specific puzzle rules. Our approach in this
paper is to review research in puzzle generation by puzzle types;
we divide the space of all puzzles that have been subject to
PCG into categories that reflect common puzzle genres. The
categories are not based on a formal survey of puzzles and are
not intended as a taxonomy of puzzles. Instead, they are based
on our informed reading of how the different puzzle genres are
discussed in the literature and as an approximate grouping of
related puzzles that will allow us to review a considerable body
of work in a methodical manner. Effectively, we divide a wide
domain and look for relationships between PCG techniques and
puzzle types. Puzzles’ characteristics often carry implications
for the possibilities and challenges of PCG. To that end, we
place the category boundaries where we determined the puzzle
characteristics were different enough to influence PCG.

Because the categories are approximations, it is not always
clear-cut which category a given puzzle belongs to, and we will
give examples of this later in the paper. Furthermore, the puzzle
categories are not intended to be exclusive, i.e., there are puzzles
that fall in the intersection of two (or more) categories. The cate-
gories are also not intended to be all-encompassing; in particular,
we do not include categories for puzzles with little associated
PCG work, such as time-based puzzles, such as those found in

Braid (2008) and The Talos Principle (2014) or programming
puzzles, such as those found in Lightbot (2008).

For the same reason, the categories also differ in granularity.
Some categories primarily contain puzzles that are very similar,
whereas others contain puzzles that differ significantly, even if
their core idea is the same. We have tried to show this in Fig. 1
where the 11 puzzle categories are arranged broadly according
to the variability of the puzzles in that category. Our estimate as
captured in the figure should not be considered a formal metric,
but rather an informed assessment based on our reading of the
field. We leave the exhaustive mapping of the domain of puzzles
themselves as future work and instead focus this paper on PCG
techniques.

Not every puzzle type is weighted equally in this survey be-
cause generation is trivial for some types of puzzles, and not
feasible for others. We determined it worthwhile to include cat-
egories with little work in them as they help provide a more
complete picture of the map as a whole.

For our literature search, we searched for works that were
both frequently referenced and those that were somewhat ob-
scure in order to cover what was influential as well as what has
been attempted outside of the mainstream research. We gener-
ally focused on academic and experimental works as opposed
to published games.

For each puzzle type, we give a brief introduction to the puz-
zle characteristics, list some prominent examples of games that
include or consist of puzzles that we deem belong in that cate-
gory, and then we review the work that addresses the procedural
generation of these puzzles. This approach is intended to group
research that has similar objectives and at the same time allows
us to make observations across the puzzle types. A further in-
tention is that this approach will allow us to identify “gaps on
the map” of research into puzzle generation, i.e., areas that are
underdeveloped and, therefore, promising candidates for future
research.

We define eight salient characteristics of PCG methods based
on the taxonomy devised by Togelius et al. [6] in their survey
of search-based PCG , which was later revised by Shaker et al.
[5] in their book on PCG in games.

Our selection of characteristics is tailored to puzzle genera-
tion, so, we have left out some dimensions and added others.
Specifically, we do not include the “necessary versus optional”
dimension, because all the work surveyed generates puzzles that
constitute an entire game, i.e., the puzzles generated are always

DE KEGEL AND HAAHR: PROCEDURAL PUZZLE GENERATION: A SURVEY 23

necessary, and “stochastic versus deterministic,” because deter-
ministic methods are not very interesting for puzzles. The di-
mensions we have added are “direct versus simulation-based
evaluation” (see Section I-B2) and “quality considerations” (see
Section I-B7).

The purpose of these characteristics is primarily to provide
a basis for analysis of PCG methods currently used for puzzle
generation. Similarly to the dimensions listed by Shaker et al.
in their book, the items on the list below should be seen more
as a spectrum than a dichotomy. It should also be noted that the
list does not provide an exhaustive means of comparison, and
we expect it to change as the field evolves.

1) Constructive Versus Generate-and-Test: Constructive al-
gorithms generate the content once and are done, usually per-
forming validity checks at different stages of construction. The
Markov chain is a typical example of a constructive algorithm.
Generate-and-test techniques construct and test in a loop until
a satisfactory candidate is found; here, evaluation occurs each
time a complete candidate has been constructed. Some search-
based algorithms, including answer set programming solvers,
used by various generators in our survey, fall somewhere be-
tween constructive and generate-and-test algorithms. A search
often creates, tests, and rejects partial or potential candidates
before they are fully generated [7].

2) Direct Versus Simulation-Based Evaluation: In direct
evaluation, the fitness score of a candidate is based on features
that can be extracted directly from the generated content, e.g., the
level layout. In simulated-based evaluation, an AI agent attempts
to solve the puzzle, implying that automatic solvers are some-
times used in puzzle generation. There is also a third, less com-
mon, kind of evaluation—interactive—where a human implic-
itly or explicitly scores candidates [8]. Evaluation functions are
necessary for any algorithm that has some form of generate-and-
test loop and are often not relevant for constructive algorithms,
such as constraint-based methods, because those formulate the
suitability of puzzles as a property of the allowed solutions.

3) Online Versus Offline: Online generation takes places
while the game is running, allowing the player to see a lot of
content variation, whereas offline generation occurs during game
development, or at the start of the game. An algorithm must be
both sufficiently fast and reliably accurate to be suitable for on-
line generation.

4) Degree and Dimension of Control: Designers can control
which content is generated by a PCG technique in different ways.
Shaker et al. mention the random seed and a vector of content
features as examples. In some cases, this control is in the form
of optional tweaking of the generator but it can also refer to
the amount of input a game designer has to feed into the puzzle
generator. For generators that require a lot of input, the quality of
the resulting puzzles tends to be heavily dependent on the quality
of the input. While an input requirement allows for creative
control, it also means that the generator will not work out of the
box. Examples of input are templates of level layout pieces or
databases of game item specifications.

5) Automatic Generation Versus Mixed Authorship: Mixed
authorship is closely linked to the previous characteristic; it
refers to content that is generated as the result of cooperation

between the game designer and the generation algorithm. How-
ever, while the dimension of control is always about input that the
designer feeds to the algorithm, mixed authorship may also refer
to designers continuing the work of the generator, i.e., complet-
ing the design of a partially generated puzzle. Mixed authorship
necessarily implies the algorithm running offline.

6) Generic Versus Adaptive: The output of generic algo-
rithms is independent of the individual player, and this is the
category most generators fall under. However, there is some in-
vestigation into adaptive PCG, which uses the player’s actions
as inputs to the generator. While the use of PCG is often cited
as useful for creating replayability, PCG can also be used to
introduce adaptiveness [9].

7) Quality Considerations: Puzzle generators that include
quality constraints/specifications attempt to generate puzzles
that are also interesting and appealing, in addition to being sim-
ply solvable. Different methods may devote varying amounts of
resources toward puzzle quality. One aspect of quality is diffi-
culty, i.e., whether the puzzle generation algorithm allows for
the creation of puzzles of different, specified levels of difficulty.

C. Traditional Versus Digital Puzzles

Some puzzle types covered in this survey originated on paper
or in other tangible formats, whereas others, such as physics-
based puzzles, can only really exist in digital games, due to their
interactive and dynamic nature. Dynamic puzzles present unique
challenges for generation, as will be discussed further in this pa-
per. Traditional puzzles are often digitalized as is, i.e., they are
adapted to a digital platform without changes to the core puz-
zle mechanics. Popular examples of such puzzles are Sudoku
and crossword puzzles. Digitalization can make traditional puz-
zles more available, e.g., on smart phones, and accessible, by
providing ways to easily undo and check partial solutions.

One notable difference between traditional and digital puzzles
is that the latter can employ brute force as a game mechanic. For
example, for each set of maze puzzles in The Witness (2016), the
puzzler has to figure out the rules by using brute force to solve
several small puzzles. Although the digital context makes brute
force possible as a game mechanic, there are also computer-
based puzzles that do not lend themselves to this, such as the
path-building puzzles in The Talos Principle.

Another difference between paper-based and digital puzzles
is the existence of temporal aspects; digital puzzles more fre-
quently use time as a mechanism or constraint than traditional
puzzles, where it is only common in competitions. Time pres-
sure can be used to increase the difficulty of a puzzle, e.g., Tetris
(1984), an interactive puzzle, would not be challenging without
its temporal component.

Distinctly from games with a time dimension, there are games
that use time as a puzzle mechanic. The solutions of these puzzles
require player-directed manipulation of time, e.g., the puzzles
in Braid.

Spatial thinking is required for a broad set of puzzles in differ-
ent media. Interlocking puzzles, such as the assembly of a cube
out of irregular pieces, are an example of nondigital 3-D puzzles
based on spatial thinking. In digital games, a puzzler would use

24 IEEE TRANSACTIONS ON GAMES, VOL. 12, NO. 1, MARCH 2020

Fig. 2. Screenshot from JSoko, an open source version of Sokoban.

spatial thinking to, for example, conceive of logical placements
of items in space to form a solution. This description applies to
both 2-D and 3-D path-building puzzles, e.g., Refraction (2010)
[10].

II. SURVEY OF PROCEDURAL PUZZLE GENERATION

A. Sokoban-Type Puzzles

This category of puzzles is named after the 1982 Japanese
video game in which a player character pushes crates around
a constrained grid-based area to get them to goal positions. A
defining factor of this type of puzzles is that no items/characters
are ever lost or added to the board; the solution exists as a re-
arrangement of the original configuration. Many variations and
offshoots of Sokoban (1982) now exist, a level from one version,
JSoko, is shown in Fig. 2. Game developer Stephen Lavelle,
creator of Stephen’s Sausage Roll (2016), a popular take on
Sokoban, has even created a scripting language for this type of
game, called PuzzleScript [11], which has been used as a tool for
automatic generation and evaluation of Sokoban-style puzzles
[12], [13].

The constraints imposed by limited space and possible ac-
tions, e.g., crates can be only be pushed, not pulled, are a key
characteristic of Sokoban puzzles. The player has to think a few
moves ahead, as some sequences of moves may lead to a state
from which the solution is unreachable. In practice, Sokoban
puzzles often have an undo functionality that allows for avoid-
ing that scenario. This facilitates the puzzler’s problem-solving,
as it allows exploration of solution sequences, and means the
use of brute force is technically possible. However, all but ele-
mentary Sokoban puzzles tend to have several open lines of play
at any given time, making brute force unfeasible.

Well-designed Sokoban puzzles must strike the balance be-
tween trivially easy and outright impossible, a difficult task for
all but experienced Sokoban level designers [14]. Procedural
generation can function as an aid to puzzle designers. Generally
Sokoban levels do not have many, if any, alternative solutions.
The problem-solving process involves using spatial thinking to
pursue promising sequences, and discarding those that are futile.

Despite the simplicity of the rules, Sokoban puzzles can be
challenging to solve [15], for both human and machine players.
Past research has determined that solving generalized Sokoban
puzzles, i.e., on an n×n board, is PSPACE-complete [16]. Au-
tomatic puzzle solvers are not the focus of this paper, but are
relevant insofar that they are often used to test the solvability of
a generated puzzle.

Sokoban-type puzzles are relatively popular in the domain
of procedural puzzle generation, possible due to the fact that
Sokoban exhibits compelling challenges in this field, including a
large space of possible configurations, which hinders exhaustive
search algorithms and may make it difficult to guarantee solv-
ability [15]. Additionally, there is no good method to evaluate
if an initial state will lead to a nontrivial or interesting solution
sequence.

One of the earliest forays into puzzle generation was by
Murase et al. [17] who developed a program to create Sokoban
problems in three stages; generation, checking, and evaluation.
This is a generate-and-test approach: a level layout is generated
through a random combination of level templates and random
placement of game items, and then a breadth-first search (BFS)
solver is used to check for a solution. However, BFS will only
manage to solve puzzles with short solution sequences, so those
with long sequences were incorrectly discarded [17]. After test-
ing for solvability, trivial, and uninteresting, albeit legal, levels
are discarded at the hand of an evaluator that checks solution
length, number of direction changes, and number of detours.
One of the main issues with this generation program is that the
restriction on solution length prevents the creation of complex
problems. This method can be controlled through the use of the
level templates, and is not suitable for online generation because
the BFS results are unpredictable.

Taylor and Parberry [14] generated Sokoban levels that are
guaranteed to be solvable on the basis of working backward
from the goal positions. As in the approach by Murase et al.,
empty rooms are generated with templates, but here, invalid or
low-quality rooms are immediately discarded. A brute force al-
gorithm is used to evaluate all possible combinations of goal
positions. While this can lead to the discovery of compelling
levels, it is an expensive process; the runtime of the algorithm
is exponential. For each goal placement, the system finds the
furthest possible starting position, i.e., the shortest longest path
according to the box line metric, by moving in reverse [14].

Taylor and Parberry claim their technique produces interest-
ing levels, but it is only suitable for offline generation because it
runs in exponential time and cannot handle levels with more than
six boxes. The authors mention that their methodology could be
applied for generation of other puzzles, but there would be quite
some effort involved in reducing the amount of game-specific
information; as mentioned, a major issue in puzzle generation
efforts.

Taylor et al. [18] performed an auditory Stroop test that indi-
cated that players are as engaged with the generated puzzles by
Taylor and Parberry [14] as they are with hand-crafted puzzles
by experienced designers. The experiment exploits the fact that
attention is a finite resource; focusing on Sokoban will decrease
participants attention on the Stroop test and vice versa. That

DE KEGEL AND HAAHR: PROCEDURAL PUZZLE GENERATION: A SURVEY 25

players found generated puzzles equally interesting demonstrate
value in procedurally generated puzzles.

Recently, Kartal et al. [15] have worked on procedurally gen-
erating Sokoban levels of varying sizes and difficulty using a
Monte Carlo tree search (MCTS) approach. They apply MCTS
by defining the puzzle generation as an MCTS optimization
problem. This approach has been successful for other problems
with high branching factors, the search tree structure guaran-
tees solvability, and it has the anytime property, meaning the
algorithm will return a valid solution regardless of when it is
interrupted. The best puzzles found after different roll-outs can
be stored; the search could optionally be terminated at a certain
quality threshold. The authors state that their method is able to
generate puzzles quickly enough for them to be used in proce-
durally generated minigames.

The puzzle generation method by Kartal et al. [15] splits up the
creation of the initial room layout and the placement of the goal
locations. Initially the board is composed entirely of obstacles
except for one empty tile with an agent, and the possible actions
that can be undertaken at each node in the search tree are: “delete
obstacles,” “place boxes,” or “freeze level.” Once the “freeze
level” action is chosen, saving a start configuration, the action set
is replaced by the “move agent” and “evaluate level” actions. The
“move agent” action simulates Sokoban game play; the boxes are
pushed around to determine the goal positions. Like Taylor and
Parberry, Kartal et al. exploit the fact that generating a puzzle
through game play guarantees solvability, but they execute game
moves in the forward direction, whereas Taylor and Parberry
went backward.

MCTS requires an evaluation function to guide the search.
Kartal et al. have published two different approaches for this
function, both are direct but one is theory driven, whereas the
other is data driven. The theory-driven approach uses a com-
bination of two metrics based on the level layout: terrain, the
number of neighboring obstacles, and congestion, the number
of obstacles and items between each box and its corresponding
goal [15]. While this method eliminates the need for human in-
put, the evaluation function did not capture all aspects of difficult
Sokoban puzzles, and has no formal validation.

For the data-driven approach, Kartal et al. performed a user
study to annotate a set of existing Sokoban puzzles with per-
ceived difficulty. Statistical analysis was performed on the re-
sults to discover which features correlate most strongly with
difficulty, and these were then used in the evaluation function.
Features were restricted to those that are efficient to compute, in
order to maintain the efficiency of this method. Each given run
of the MCTS algorithm will generate several levels of increas-
ing difficulty. A second user study was performed for validation;
there was a high correlation between the score assigned by the
MCTS and the perceived difficulty [19].

There is still future work to be done on generating large
Sokoban puzzles of high difficulty; for all described methods,
generation time increases exponentially for linear increases in
the number of boxes and tiles.

Fling! (2013), shown in Fig. 3, is an example of a puzzle that
falls in the overlap of Sokoban-type and tile-matching puzzles,
though more toward the former. In this game, the puzzler flings

Fig. 3. Sample moves on a Fling! (2013) board, from [20].

balls into each other to sequentially remove all but one ball from
an empty grid. The balls act in turn as the player character, an
obstacle, or a crate, when compared with Sokoban.

Sturtevant [20] looked at using large-scale BFS—a complete
and uninformed search approach—for analysis and content gen-
eration for Fling!. This is unusual as PCG methods generally
favor selective search techniques due to the large state space.
Sturtevant attempts to answer a question posed in [6], namely
whether search-based PCG can be combined with a top–down
approach.

The focus of his research is the development of a tool for de-
signers that can analyze and explore Fling! puzzles, rather than
generating them from scratch, although it can be used for this
also. The tool uses an endgame database, generated by solving
all Fling! boards of sizes 1–10 using a retrograde search. For any
given board, the tool can determine the following metrics: the
number of states legally reachable, using forward BFS; the legal
moves that lead to a goal state, using depth-first search (DFS)
with endgame data; and how adding/removing pieces from the
board changes the solvability. As such, the tool could be used in
a generate-and-test puzzle generation approach.

The difficulty of a given Fling! board is most intuitively mea-
sured by the number of reachable states from an initial con-
figuration. Experiments showed a strong correlation between
levels (difficulty) and number of states in the state space. Like
for Sokoban, more domain-specific metrics may be useful, e.g.,
counting the number of times the player has to switch which ball
is being flung.

B. Sliding Puzzles

Sliding puzzles are closely related to Sokoban-style puzzles
because they also involve moving items, or tiles, toward goal
positions in a constrained grid-based space. There are, however,
some differentiating characteristics that qualify this as a different
puzzle type: there is no player character and items can be moved
in any free direction. Often, the grid is square-shaped without
obstacles and there are only a few open spaces to slide a tile onto.
Like for Sokoban puzzles, the player must look a few moves
ahead to determine possible winning sequences.

26 IEEE TRANSACTIONS ON GAMES, VOL. 12, NO. 1, MARCH 2020

Fig. 4. Screenshot from Rush Hour (1996).

The most well-known examples of sliding puzzles are Rush
Hour (1996), the 15-puzzle, and the picture-forming sliding puz-
zles, which all existed in a nondigital format first. There are
generally no unrecoverable states, as all moves are reversible,
which encourages exploration of the solution space, possibly us-
ing brute force. Unlike in Sokoban-type puzzles, sliding puzzles
may have one-to-one pairings between items and goal positions,
in which case, figuring out the best mapping is not part of the
solving process. In Rush Hour and similar puzzles, there is one
item that must reach one defined goal position—in Rush Hour,
shown in Fig. 4, it is the red car that must reach the exit. Like
Sokoban, the Rush Hour puzzle has been shown to be PSPACE-
complete [21], and exhibits similar challenges in determining
the difficulty of a given puzzle.

Block-sliding puzzles can conceivably be generated by start-
ing from the end configuration and working backward, in a
similar fashion to some of the generation methods described in
Section II-A. However, the number of moves used to play back-
ward to a start layout could be greater than the shortest path, so
it is not necessarily a good metric for difficulty.

Some work has been done on the generation of hard configura-
tions of the Rush Hour puzzle game [22], [23]. They define a hard
puzzle as one requiring a large number of moves to solve, noting
that a puzzle with many moves will still be easy if there are al-
ways only a few possible moves. The researchers used symbolic
methods to iteratively compute reachable configurations from a
set of solvable initial configurations for Rush Hour. This implies
a constructive method. Symbolic methods are a way to bypass
combinatorial explosion in many typical applications: sets are
represented symbolically, in this case, through use of binary de-
cision diagrams (BDDs) instead of element-wise. This allowed
for studying the huge graph of all possible initial configurations
of the 6 × 6 Rush Hour puzzle. A dual encoding of the board,
i.e., one that works on a line and column level, is used to limit
the size of the BDDs. The hardest initial configuration, found
by Collette et al. takes 93 steps to solve. Additionally, there
are 24 132 configurations that can be reached from it. As part
of discovering the hardest configuration, the researchers classi-
fied every solvable configuration according to minimal solution
length.

Fig. 5. Screenshot from Fruit Dating.

C. Tile-Matching Puzzles

The player’s objective in tile-matching games is to manipulate
tiles on a grid in order to make matches [24]. When a match is
made, the corresponding set of tiles disappears and the player
scores points. Common matching criteria include shapes, colors,
and symbols. Puzzles of this category are relatively simple—
they have very few rules—and are often categorized as casual
games. Unlike other types of puzzles, tile-matching puzzles are
almost exclusively randomly generated, and generally do not
have one specific solution.

This history of tile-matching puzzles could be traced back to
Tetris, which falls in the overlap between the tile-matching and
packing puzzle categories. Like in Tetris, each player action in
a tile-matching puzzle permanently changes the level layout.

The most popular subcategory of the tile-matching game is
match-three games, e.g., Bejeweled (2001), in which players
swap the positions of tiles to make a row or column of at least
three matching tiles. Juul [24] observes that this category of
puzzles has a “low status,” perhaps due to their low barrier to
entry, or the large number of similar games that now exist. Most
tile-matching puzzles have an element of time pressure that in-
troduces a fail state; without a timer, the puzzles would be too
easy and the puzzlers would not feel a sense of achievement.

The initial layout of tiles on the grid and/or the choice of
tiles/pieces that appear during the game are likely always pro-
cedurally generated using random number generators. The gen-
eration of these simple tile-matching puzzles is a rather trivial
task, but for hybrid games, more interesting approaches exist.

Rychnovsky procedurally generated all the levels for his game
Fruit Dating (2014) [25], a more complex tile-matching puzzle
that draws elements from Sokoban and sliding puzzles, and has
similar mechanics to the popular mobile puzzle game Threes
(2014). Fruit Dating, shown in Fig. 5, consists of moving items
on a grid-based board with walls and obstacles, with the goal of
getting matching characters onto adjacent tiles. Unlike Sokoban,
it lacks a player character, and each action can affect between
zero and all items on the board. Items are moved by swiping
in one of the four cardinal directions; each swipe will move all
objects in the chosen direction while they are not blocked by
obstacles.

DE KEGEL AND HAAHR: PROCEDURAL PUZZLE GENERATION: A SURVEY 27

As is characteristic for the Sokoban and sliding puzzle types,
Fruit Dating requires the puzzler to rearrange items while an-
ticipating the outcome of each move to prevent dead ends. A
matched pair is eliminated, and there are a few items on the
board with special abilities, which are common traits of tile-
matching games. The challenge for Fruit Dating stems from the
puzzler having to discover a specific sequence of moves; this
game has well-defined solutions, whereas typical tile-matching
games tend to be more open-ended.

Rychnovsky developed a level editor tool that can generate
new levels and evaluate the solvability of any given level. The
automatic solver uses a BFS approach with pruning and returns
the shortest path. The level editor interface means that the de-
signer can tweak a generated level, and then retest it to make
sure it is still solvable.

The process of generating a Fruit Dating level is divided into
two steps: generating the level structure and placing the on-board
items [25]. The level structure is created by first randomly plac-
ing the external wall tiles, and then the internal ones. The game
objects, including the pair(s) of fruits that must be matched, are
placed randomly according to predefined weights assigned to
empty tiles. Rychnovsky took aesthetic qualities into account
when creating the layout in order to facilitate the creation of
interesting looking levels.

All levels are checked for solvability after generation, and
those that are not solvable are simply discarded. The main issue
with this generation approach is that there is no way to control
difficulty, other than by simply adding more items to the board.
Overall, the output is not of high quality, and the approach func-
tions more to aid rather than to replace the designer.

D. Assembly Puzzles

In an assembly puzzle, a number of shapes must be assembled
into a larger shape without overlap or gaps. Generally, all the
provided shapes must be used to achieve this. The process of
fitting the pieces into the larger shape may be entirely based
on shape-matching, or it could involve creating a picture out
of the images printed on the pieces, as is the case for jigsaw
puzzles. Puzzles of this type could exist in either a 2-D or 3-D
format, and may or may not be digital, though the 3-D versions
tend to tangible. A famous 3-D assembly puzzle, also called an
interlocking puzzle, is the Soma cube, invented by Piet Hein in
1936, which consists of seven irregular pieces made up of unit
cubes that must be assembled into a cube with side length three.

In The Talos Principle, unlocking new areas requires solving
an assembly puzzle with tetromino pieces. As mentioned ear-
lier, we consider Tetris to be a combination of an assembly and
tile-matching puzzle; the goal there is to assemble pieces into
rectangles without overlap, and matching tiles into a line shape
will cause them to disappear. Tetris is set apart from other as-
sembly puzzles by its time pressure element and the inability
of the player to move pieces once they have been placed. Time
pressure is a label that can be applied across puzzle types, rather
than being a type on its own.

A famous example of an assembly puzzle is the Eternity
puzzle created by Christopher Monckton in 1999. Composed

Fig. 6. Example interlocking puzzle with LEGO bricks, from [26].

of assembling 209 irregular polygons of the same color into
a dodecagon, this puzzle is extremely difficult and came with a
£1 million prize for whoever could solve it in the first four years.
The prize was awarded to two Cambridge mathematicians in Oc-
tober 2000.

There is no formal research into the generation of 2-D assem-
bly puzzles, likely because they are relatively uncomplicated
to create. Conceivably, such a puzzle could be generated by an
algorithm that splits a region into areas, e.g., a Voronoi diagram.

Song et al. [26] developed a constructive approach for gener-
ating interlocking puzzles, such puzzles are made up of a num-
ber of pieces that can be assembled into an structure that can be
locked by a single key piece. They are challenging to solve and
compute as the pieces have no orientation and can be combined
in an extremely large number of ways. In a standard interlock-
ing puzzle, all pieces are immobilized until the key piece is
removed, at which point they all become mobilized. However,
in a recursive interlocking puzzle, which was the specific focus
of the research, pieces are also locked in intermediate states.

A model for generating new interlocking geometric structures,
given a general voxelized shape as input, was derived from the
analysis of interlocking mechanics. Song et al. [26] prove that
the whole model can be interlocking if every three consecu-
tive pieces are interlocking. A puzzle is created by iteratively
extracting pieces from the given shape, in such a way that va-
lidity is guaranteed. This technique provides a designer with a
lot of control as it can create puzzles from any voxelized shape,
enabling the creation of, for example, custom puzzles that use
LEGO bricks, as shown in Fig. 6.

E. Mazes

We define mazes as puzzles that require the puzzler to find a
valid path from a starting point (entry) to an ending point (exit).
A huge variety of puzzles could be created from rules for safe
movement in an otherwise hazardous environment [27]. These
puzzles could have explicit barriers, such as in most traditional
mazes, where the path is obstructed by physical walls, or im-
plicit boundaries, such as in some grid-based puzzles, which are
sometimes referred to as logic mazes.

Many of the puzzles from The Witness fall under the second
category; the player has to traverse a path through a grid ac-
cording to some logical rules. For example, Fig. 7 shows two

28 IEEE TRANSACTIONS ON GAMES, VOL. 12, NO. 1, MARCH 2020

Fig. 7. Screenshot of two maze puzzles from The Witness.

Fig. 8. Puzzles based on those from The Witness that were generated by Sturte-
vant and Ota. The correct solution is the one that works for all three puzzles.

solved implicit mazes for which the correct path corresponds to
an outline that can incorporate an arrangement of all tetronimo
shapes. The puzzles, and puzzle progression, in The Witness are
carefully designed, e.g., some puzzles will “break” the heuris-
tics, the player may have previously learned from other puzzles.
This sort of design is difficult for a machine, but Sturtevant and
Ota [28] have worked on an algorithm for generating a version
of the tetronimo maze puzzle from The Witness where multiple
puzzle panels must be solved jointly. They use a branch and
bound (semi-exhaustive) search to enumerate possibilities and
then select subsets where there is only one solution that works
for all puzzles in the subset. Fig. 8 shows one such subset [28].

Obstacle course navigation can be classified as a type of maze;
the player must navigate an area along a correct path to reach
an endpoint without taking too much damage. Many obstacle
courses are a cross between a maze and a path-building puzzle,
where a player must utilize a number of items to create the
desired path between entry and exit. Loderunner (1983) and
Lemmings (1991) also fall into that overlap of puzzle types; they
both include dynamic mazes that the player must navigate by
making decisions in real-time. As such, they can also be viewed
as early real-time strategy (RTS) games, and do not always have
a clear-cut solution.

Constructive maze generation is an old topic in computer sci-
ence, mainly popularized in the context of dungeon and/or level
generation. A practical approach to random maze generation,
which could be used for a number of applications and which
covers classic algorithms, such as the binary tree algorithm and
Kruskal’s algorithm, is given in Buck’s book Mazes for Pro-
grammers: Code Your Own Twisty Little Passages [29]. Shaker
et al. [30] describe four main categories of constructive maze
generation: space partitioning, which performs (usually binary)
spatial subdivisions in a hierarchical fashion; agent-based algo-
rithms; cellular automata; and algorithms based on generative
grammars. The last two categories are also delineated by van
der Linden et al. [31] in their survey on procedural generation
of dungeons, which additionally includes sections on evolution-
ary and constraint-based algorithms. Nelson and Smith cover

Fig. 9. Example of a chess maze for a rook from [27]. E represents the entry
tile, X the exit tile, and the K tiles have knights on them. The left-hand side image
is what appears to the player and the right-hand side image has the obstructed
squares marked in blue.

this last category in their application of answer set programming
(ASP) to mazes (ASP is described later in this section); they rep-
resent mazes as grid-embedded trees and impose constraints on
reachability and path length [32]. Recently, Brewer conducted
a general audience survey on the history of dungeon genera-
tion, ranging from Rogue (1980) to Minecraft (2011) [33]. We
will not go into more depth on these algorithms, because most
of the literature is about generating level structures as opposed
to stand-alone puzzles and, thus, not within the scope of this
survey. However, some work in this domain, particularly under
grammar-based algorithms, focuses on the gameplay, i.e., nar-
rative progression, aspect of dungeons, and we will look at this
work in the narrative puzzles section.

Ashlock uses an evolutionary algorithm to generate chess-
based and chromatic mazes of varying levels of difficulty [27].
Evolutionary algorithms are well suited to creating a large col-
lection of unique puzzles because they can quickly locate many
diverse optima in a complex function. The fitness function,
which returns a measure of the quality and/or difficulty of puz-
zles in a generation, uses dynamic programming to calculate the
minimum number of steps required to traverse the maze. Dy-
namic programming is a method for solving a complex problem
by decomposing it into simpler subproblems, and storing the
solutions to those problems.

Both the chess and chromatic mazes are grid-based and have
implicit barriers; players must figure out which tiles are safe
according to the puzzle rules. Entry and exit squares are marked
on the grids. In the chess maze, shown in Fig. 9, the player must
move across the board according to their assigned chess piece
and without traversing any squares covered by the other pieces.
In the chromatic puzzle, a safe move consists of continuing onto
a tile whose color is adjacent in the color wheel to the color of
the current tile. In digital format, some form of repercussion can
be used to prevent the use of brute force.

To determine the fitness of a maze, dynamic programming is
used to traverse a network and record the cost of arriving at each
node, computing the shortest path to traverse the maze. During
evolution, the aim is to maximize the length of this shortest path,
theoretically increasing the difficulty of the maze. The evolution-
ary algorithm is straightforward; each generation, seven popu-
lation members are randomly selected, and the two most fit out
of those are picked for reproduction, which includes crossover
and mutation operations [27].

Experiments had a zero rate of duplication of solutions, show-
ing the diversity that can be achieved with an evolutionary

DE KEGEL AND HAAHR: PROCEDURAL PUZZLE GENERATION: A SURVEY 29

Fig. 10. Example of a chromatic maze from [7], with a shortest solution path.

algorithm. The size of the sample space aids in this, but for
smaller sample spaces, diversity-promoting measures could eas-
ily be introduced. By adjusting the dynamic programming code,
the technique described could be used for other types of puz-
zles. However, the authors warn that dynamic programming is
not a very human way of solving a maze, so it may not pro-
vide the best estimation of what a puzzler would find difficult
[27].

Smith and Mateas reimplemented Ashlock’s chromatic and
chess maze generators using answer set programming [7]. ASP
is a form of declarative logic programming where constraints
and logical relations are declared in a Prolog-like language;
specifically, common answer set solvers use AnsProlog [34].
Answer set programs contain two structures—facts and rules—
which capture the design space model. Facts are statements that
describe configurations and properties; rules control the produc-
tion of new facts. There are three types of rules: choice rules,
deductive rules, and integrity constraints. An answer set solver
often works by performing a heuristic, back-tracking search that
applies one choice at a time and eliminates large subspaces of
potential solutions when it can deduce a forbidden property, as
specified by the constraints, in these solutions [34].

For the application of chromatic maze generation, the facts
correspond to which color is assigned to each grid cell, and which
cells are the start and end. The choice rules ensure exactly one
fact is produced per grid position. This simple formulation can
already create mazes, albeit ones where the end is possibly not
reachable from the start. Desirable solutions can be assured by
adding a constraint on reachability. One of the generated mazes
is depicted in Fig. 10.

Compared to Ashlock’s method, where the fitness function is
essentially a black box, the ASP approach for maze generation
is a “white box model” [7]. While the space of possible outputs
is smaller than for a black box model, a designer can control
it directly through constraints. For example, while the longest
shortest path length is used to evaluate fitness in Ashlock’s gen-
erator, the desired path length can be declared as a constraint
in the ASP generator. Additionally, constraints provide a way
to improve the quality of generated mazes, e.g., a designer can
add constraints on which colors are traversed on all shortest
paths [7].

Fig. 11. Screenshot from BioShock (2007).

Williams-King et al. [35] used a genetic algorithm (GA) com-
bined with agent simulation to generate levels for a variety of
Loderunner. The game can be considered a maze because the
puzzler must discover a path through the level to collect all pieces
of gold without encountering an enemy. The presence of moving
enemies makes this maze dynamic, and the ability of the puzzler
to dig indicates a path-building element.

This generation process has two phases that each employ a
method of evaluation. The fitness function that steers the GA
comprises direct static analysis, which alone cannot guarantee
solvability but does allow for consideration of other interesting
properties. Levels with high fitness are passed forward to the
next phase where they are simulated with an AI player, to test the
dynamic aspect, using 20 different paths. Difficulty is measured
by the number of valid solution paths found in this process.

Williams-King et al. [35] state that their system can generate
interesting levels in an online scenario. This two-part technique
has potential to be applied to other puzzle games with dynamic
elements. The scope for future work is mainly in the improve-
ment of the evaluation function—an observation that can be
made for several types of puzzles.

F. Path-Building Puzzles

This type of puzzle requires the player to build a path from
a point A to a point B using a number of provided items. The
path could be built for an entity in the world to traverse, such
as an enemy AI; tubes, such as the BioShock minigame, shown
in Fig. 11; a laser, such as in some Portal (2007) levels; or for
the player character themself. This survey discusses gameplay
paths, such as those undertaken by a player traversing a dungeon,
in the narrative puzzle category, though one can also construe
this as path building.

Path building is somewhat related to mazes but is differen-
tiated by the nature of the game environment; in a maze, the
player cannot change the environment, only find the best path
through it, whereas in a path-building puzzle, the objective is to
create a new path by altering the environment at the hand of tools
or items. For some of these puzzles, the challenge stems from
figuring out the correct placement of a limited number of items,
whereas in others, there are more items than needed, i.e., decoy

30 IEEE TRANSACTIONS ON GAMES, VOL. 12, NO. 1, MARCH 2020

Fig. 12. Screenshot from Refraction.

items, and the player must determine which ones are most suit-
able, in addition to placing them. The latter usually lends itself
to multiple possible solutions.

Smith et al. [10] studied the problem of hard constraints in
procedural generation, e.g., that a generated puzzle is necessarily
solvable, in the context of the path-building game Refraction.
Many generators have not incorporated a way to guarantee that
certain constraints, including aesthetic or difficulty concerns, are
satisfied in their output. In other words, the constraints require
the puzzle not only to be solvable, but solvable under certain
prescribed conditions.

Refraction, shown in Fig. 12, is an educational game that
aims to teach proportional reasoning (fractions) through a puzzle
about redirecting laser beams toward a spaceships. The beams
can be bent, split, etc., using different components, the place-
ment of which also trains spatial problem-solving abilities. The
game is set in a constrained space formed by walls of asteroids.

Smith et al. [10] present implementations of three constraint-
based generation tools—mission generation, grid embedding,
and puzzle solving—that each solve part of the problem of
procedural puzzle generation. The first is responsible for cre-
ating a general outline with possible level solutions; it trans-
forms a set of math expressions and a target number of pieces
into a directed acyclic graph (DAG). Grid embedding trans-
lates a mission, specifically the DAG, to a geometric layout.
Finally, puzzle solving aims to construct alternative reference
solutions.

The overall level generator uses the structure defined by Dor-
man and Bakkes, which distinguishes between missions and
spaces; missions are the logical order of goals the player must
accomplish, whereas spaces are the physical layouts of the levels
[36]. This distinction is valid for many puzzle games, and may
be especially useful for approaching puzzles set in 3-D space,
such as those in The Talos Principle. Part of a path-building
from The Talos Principle is shown in Fig. 13; the mechanic of
redirecting lasers to solve the puzzle is similar to that found in
some Portal levels. While Refraction is a 2-D grid-based video
game, the high-level formulation of the different components
could lend themselves to a 3-D adaptation—mission generation
would not need to change.

Fig. 13. Screenshot from The Talos Principle (2014), showing path-building
with lasers.

Smith et al. [10] made two implementations of each of the
three tools. The initial implementation of mission generation
uses a constructive feedforward approach where pieces are in-
serted one by one, and the generated mission DAGs all repre-
sent feasible solutions by construction. The first grid-embedding
and puzzle solving implementations both used DFS. The main
bottleneck in a system comprised of these tools was the grid-
embedding step, which the authors identified as a constrained
search problem that could not be fruitfully addressed with a
generate-and-test approach.

The second implementation of the tools is based on ASP, and
Smith et al. [10] found that these performed better than the orig-
inal tools, both in terms of speed and output quality. The quality
is better because the ASP approach allows for the specification
of style constraints. They also found that declarative languages
can be a powerful expressive tool for reliable, controlled puzzle
generators. Constraint-focused generator design can allow aes-
thetic failures to be treated the same as absence of solvability.
Few other generators reviewed in this paper have reached the
stage of taking aesthetics into account.

In a later study, motivated by the sequel Refraction 2, Smith
et al. [34] looked at constraining undesirable solutions, which
they also refer to as shortcut solutions. In path-building puz-
zles, the unforseen combination of pieces, either those from the
primary solution or those added as distractions, can introduce
alternative solutions that were not intended by the designers.
Since Refraction is an educational game, the designers require
tight control over the puzzle progression, though this tends to
also be a concern for game designers in general. Easier and/or
alternative solutions, which could occur in Refraction as mathe-
matical or spatial shortcuts, are potentially unacceptable, if they
demonstrate a pattern that the designer did not anticipate.

Smith et al. formalize the generation of solvable puzzles with
no undesirable solutions as an NPNP complete search problem.
To address this problem, they added two design-oriented ex-
tensions to their previous ASP approach [10] that allows the
space of desirable, i.e., shortcut-free, solutions to be declara-
tively posed. This improved generation technique resulted in a
reliable qualitative leap in the produced puzzles.

Butler et al. [37] used the ASP-based puzzle generator by
Smith et al. as part of their tool for designing level progressions
through mixed-authorship. The tool uses constraints, which are
specified by designers and are incorporated into the original

DE KEGEL AND HAAHR: PROCEDURAL PUZZLE GENERATION: A SURVEY 31

Fig. 14. Representation of Anza Island, showing two possible solutions for
the constraints “Dark Obelisk cannot be connected to Monumental Stone Head.
Monumental Stone head cannot be connected to Hidden Grotto. Bubbling Pool
must be connected to Hidden Grotto” [9].

generator, to address the generation of a logical progression of
levels. Combining a high-level view with the creation of indi-
vidual puzzles is interesting, e.g., the incremental introduction
of concepts.

Encouraged by Smith and Mateas’ work on using ASP for
the generation of mazes, as covered in Section II-E, Compton
et al. [9] used ASP in making an adaptive procedurally gen-
erated puzzle game called Anza Island. In this game, a human
plays against an AI, Anza. The human must visit a number of
landmarks in different zones to win, while Anza attempts to
thwart this by controlling, i.e., activating and deactivating the
bridges between zones. The human player must create a number
of constraints, based on collected logic cards, that force Anza
to create the bridges they require (this is the path-building el-
ement). Two possible solutions for three given constraints are
shown in Fig. 14. This novel approach to PCG directly incor-
porates the generation into the game—the constraints specified
by the player modify the answer set program at runtime. The
declarative nature of ASP makes it possible to ensure all gener-
ated content would be valid.

G. Narrative Puzzles

Narrative puzzles can be defined as puzzles that form part
of the progression of a narrative, whose solutions involve ex-
ploration and logical as well as creative thinking. They are a
key component of adventure and story-driven games, and often
feature in large open world games, including RPGs. Narrative
puzzles can be viewed as temporary obstacles to the narrative’s
advancement, though they do not always have to be solved in a
precise order.

Adventure games have many subgenres, including text adven-
tures, point and click adventures, and escape the room games,
such as The Room (2012) series. Not all of the puzzles in this
range belong in the narrative puzzle class; adventure games
could choose to include any of the puzzle types mentioned in this
classification. However, narrative puzzles is one of the broader
puzzle classes; it incorporates many logical thinking and pattern
matching type puzzles, such as those in Myst (1993).

A good narrative puzzle should have a satisfying solution,
i.e., one that ultimately makes sense to the puzzler. Puzzlers
find solutions by exploring the environment and investigating
ways in which objects can be manipulated and combined. Some

examples of narrative puzzle patterns, as outlined in [38], are as
follows.

1) Figuring out which item a character desires, usually lead-
ing to a reward in exchange.

2) Logically combining two objects to change their proper-
ties or to create a new object.

3) Disassembling an object into useful components.
4) Saying the right thing to convince a character to provide

aid.
5) Acquiring a key to open a new area.
Unexplored (2017) is a published procedurally generated

roguelike that integrates varied, generated lock and key- and-
code based puzzles [39].

The use of the label “narrative puzzle” could be debated be-
cause it is possible to switch out the specific puzzles without
affecting the overall narrative—the focus of the research in [40].
However, the label has been used in past research and fits when
viewing story progression as centered on player action.

A different take on a narrative puzzle is Framed (2014), a
puzzle game set up like a noir comic in which the player must
rearrange the order of events to prevent the protagonist from get-
ting caught or shot by the police. As some of the rearrangements
are focused on creating physically feasible path, rather than a
narrative one, this game is considered a blend of a narrative and
path-building puzzle.

The puzzle-dice system was developed by the MIT Media Lab
Singapore for the purpose of generating narrative puzzles [38].
Their motivation was to add replayability to adventure games,
which frequently have only one linear path. The use and devel-
opment of the puzzle-dice system is demonstrated through two
proof-of-concept games: Symon (2010) and Stranded in Singa-
pore (2011).

Symon was an early prototype with a dreamlike setting that al-
lowed for fantastical logic, i.e., using something cold to change
an object’s color to blue. It was small in scope but succeeded at
demonstrating the generation of a short, replayable game. The
initial system for Symon used a puzzle map that concatenates
narrative puzzle patterns into the structure of a game. Both this
map and the possible puzzle patterns need to be specified by
a designer; the generation process then inserts characters and
objects into patterns, and patterns into the map, using a brute
force approach. This grammar-based method of generation en-
sures that all puzzles will be solvable because the generation is
constructive.

The full puzzle-dice system is more flexible than the initial
one built for Symon and gives designers more control. It was used
to create Stranded in Singapore, shown in Fig. 15; an adventure
game in which the puzzler must fulfill the demands of a number
of characters, often through logical combination of items found
in the world. The full system is based on puzzle building blocks
that can be customized by designers; a modular approach that
aims to allow for expansions. This system’s puzzle map is a map
structure resulting from the combination of building blocks and
defines the chronology of actions the players must undertake, in
terms of dependencies.

Puzzle maps are paired with a database of designer-defined
game items that have attributes and relationships to other items.

32 IEEE TRANSACTIONS ON GAMES, VOL. 12, NO. 1, MARCH 2020

Fig. 15. Screenshot from Stranded in Singapore [38].

The relationships are used to determine which items can fit into
certain puzzle building blocks. For example, each item has a
“madeby” property that links it to two other items that can be
combined to create that item. Building blocks perform genera-
tion of narrative puzzles independently given a desired output.
The generation process is composed of three steps: generating
the output item with the desired properties, generating inputs,
and finally creating a relationship between the input and outputs.
The possible relationships include: combine, property change,
insertion, request, and area connection.

The motivation behind the development of the puzzle-dice
system [38] is threefold; the researchers wanted to create a tool
that guarantees solvability in its output, is accessible to design-
ers, and is general enough to allow for a range of narrative-type
puzzles. The tool is more like a framework than an out-of-the-
box puzzle generator as both the item database and puzzle map
must be constructed by the designer. Narrative puzzles, by na-
ture, require a large amount of designer input compared to other
puzzle classes.

Dart and Nelson worked on adventure-game puzzle gener-
ation using smart terrain causality chains (STCCs) [40]. They
focused on creating a drop-in solution for the issue of replayabil-
ity: generating variations on puzzles that fit in the same place in
an existing story line. In other words, this technique introduces
replayability without high-level narrative variation, and stands
in contrast to the common branching story lines approach. The
puzzles do change the low-level narrative significantly and, thus,
fit this puzzle class.

The puzzle generation relies on a database of smart terrain
items to create causality chains that form puzzle solutions. Smart
terrain items, introduced by Will Wright, developer of The Sims
(2000), have a set of associated actions and properties that de-
termine how they behave and how the environment can affect
them. In contrast to the puzzle-dice system, items are not aware
of their specific relationships to other items. Interactions be-
tween objects are executed through use of physics simulations,
such as phase transitions, collisions, or indirect energy [40].

An STCC is a directed graph that defines dependencies be-
tween all the objects in the scene and the objective of the
puzzle [40]. The sequence of items represented by the STCC

corresponds to the sequences of actions that the puzzler must
perform to solve a puzzle. A list of possible actions for an item,
along with the causes and effects, allows the creation of an STCC
using a backward chaining algorithm. The generation starts from
a set of scene objectives and runs till it reaches primitive smart-
terrain objects, which are then placed in the scene. This is a
constructive process that guarantees at least one solution, and
that each item in the scene is relevant for at least one solution.

Dart and Nelson tested their generation method in the adven-
ture game Space Dust (2014). Players have to replay this game
several times to acquire all the information needed to win, and
on each playthrough, have to solve different puzzles to progress.
They discovered that 70% of players found the puzzle scenarios
easier when there were more possible, parallel solutions, and
most players said that longer causality chains corresponded to
more difficult puzzles [40]. Their experiments also showed that
players found the game engaging, despite the repetition in over-
all story.

Object placement in the physical game world is currently not
automated, but could be added in by also storing semantic in-
formation about the environment. Another area of future work
is actions/effects inference; similar to in the puzzle-dice system,
all cause and effect information has to be manually specified by
a designer, but it would be desirable to automate this process.

Generally, procedural generation for dungeons has focused
on the level layout, but van der Linden et al. [31] also looked
at generating sequences of player actions for a gamed called
Dwarf Quest (2013). These actions include fighting enemies as
well as basic narrative puzzle constructs, such as key-and-lock
challenges.

An action graph is generated from a gameplay grammar in
which player actions are defined as a verb and a target, which is
typically a game item. Additionally, actions may have sequences
of subactions, which may represent disjoint alternatives. For ex-
ample, a subaction of unlocking a door with a key might be
fighting an enemy from whom the key can be looted. Designers
can control generation through the authoring of the grammar, and
through the initial actions, since those steer the recursive sub-
stitution of compound actions with subactions (or subgraphs).
The produced action graphs are converted to physical dungeon
levels, but that aspect falls outside the scope of this survey.

Another category of PCG that can fall under narrative puzzles
is quest generation. Quests are commonly used in RPGs as plot
advancement devices but tend to represent higher level narrative
elements than the narrative puzzles previously discussed in this
section.

Doran and Parberry analyzed the structure of almost 30 000
quests from four popular MMORPGs—Eve Online (2003),
World of Warcraft (2004), EverQuest (1999), and Vanguard:
Saga of Heroes (2007)—to develop a quest generator [41]. They
determined that the structure of a quest, which a player ob-
tains from an NPC, can be described by: the NPC’s motiva-
tion, the strategy, as assigned by the NPC, for completing the
quest, and the individual sequence actions that lead to the im-
plementation of these strategies. From the surveyed games, the
top NPC motivations appear to be conquest, equipment, protec-
tion, and knowledge. Some example strategies are “spy,” “attack

DE KEGEL AND HAAHR: PROCEDURAL PUZZLE GENERATION: A SURVEY 33

enemies,” and “treat or repair,” and some possible actions are “go
to” and “give.”

The researchers use a context-free grammar in Backus–Naur
form to describe the quest structure formally. The terminals of
this grammar correspond to the atomic actions that can be un-
dertaken by a player. As such, quests can be expressed as trees,
where the root represents the entire quest, and the leaf nodes,
visited in preorder traversal of the tree, detail the sequence of
player actions necessary to complete the quest.

The quest generator starts by randomly picking a motivation
and selecting an associated strategy. This becomes the root of
the tree, and from there nodes are recursively replaced according
to the grammar rules to generate substrategies (subquests) and
actions. The choice of rule to use for a replacement is dependent
on the state of the game at that point to, for example, prevent
creating a quest for obtaining an item that player already has.

Many RPGs use recurring quest structures in which the de-
tails are just replaced to generate “different” quests; Doran and
Parberry propose that their generator can also change the struc-
ture, to provide a wider range of useful content. However, in the
cited paper, they had not evaluated whether the quests created
by their generator were equal in quality to hand-crafted quests
[41].

H. Physics Puzzles

Puzzlers have to use game physics to complete the puzzles be-
longing to this class. Physics in games is (most often) modeled
after real-life physics, and so finding a solution requires play-
ers to predict the physical outcomes of possible actions. These
puzzles naturally only exist in digital games. Physics puzzles
have an element of unpredictability, as the game environment
changes in real-time according to the laws of physics.

In contrast to many other puzzle classes, the solutions to these
puzzles may require precise timing and/or execution of actions
on the player’s part; for example, shooting a new portal while
falling in a Portal puzzle room. This is dexterity difficulty, mod-
eled by Isaksen et al. [42] as one of two orthogonal components
of perceived difficulty—the other being strategy. Dexterity dif-
ficulty is an element of interactive puzzle games and speaks to
the execution of a solution. In comparison, strategic difficulty
refers to the derivation of a solution and is influenced by the size
of the search space and the required application of logic. The
dexterity component poses a challenge for generating physics
puzzles because a generator must ensure solutions are feasible,
i.e., they have a margin of error that accommodates human reac-
tion time. Diversely, viewing the dimensions independently may
allow a generator to create puzzles that are tuned for a certain
skill.

Shaker et al. [43] focused on the generation of levels for
physics-based puzzle games, using a clone of the mobile game
Cut The Rope (2010) as a test ground. The goal in Cut The Rope,
shown in Fig. 16, is to make the candy drop in such a way that
it reaches a frog monster placed at a fixed position. There are
different game objects that can be used to change the movement
direction of the candy, including ropes, air cushions, bubbles,

Fig. 16. Screenshot from Cut The Rope [43].

bumpers, and rockets. All these objects obey the laws of New-
tonian physics.

The game generator by Shaker et al. [43] evolves levels based
on a context-free grammar, which is a set of recursive rewriting
rules. Design grammars offer a concise way of describing a huge
variety of possible level structures. Grammatical evolution (GE)
is a technique that combines an evolutionary algorithm with a
grammatical representation. They constructed the grammar by
analyzing original levels for design patterns.

Levels, which are the phenotypes, are represented by lists
of objects that can be placed anywhere in the map and may
have some properties. As mentioned, the structure of a level
is described by a design grammar, which is what is used to
evolve levels. The GE process includes a genotype-to-phenotype
mapping using production rules from the design grammar. This
results in phenotypic programs that are syntactically correct—
these programs are then evaluated for fitness.

A fitness function based on direct heuristic measures, which
are theory driven, is used to rate and consequently evolve lev-
els. However, high fitness is only an indication of playability,
not a guarantee. Consequently, Shaker et al. experimented with
a simulation-based fitness function that works by randomly se-
lecting actions based on game state until the game is won, lost,
or times out.

To estimate the expressiveness of their generation, which cor-
responds to the range of all levels, the researchers defined three
measures: frequency, orientation, and density of game items.
They saw promising results in terms of efficient exploration of
the content space, and also reflections of the constraints imposed
by their grammar and fitness functions.

In later research, Shaker et al. [44] developed a deliberative
Prolog-based agent to improve the simulation-based evaluation
component of their original generator. The agent uses inference
to determine a set of sensible actions and a depth-first search is
then performed on this (reduced) search space. Two different rule
sets were used for the agents; the first focused on the all game
objects’ properties and their placement in the level, whereas the
second contains only objects the candy can reach while in a
given position, direction, and velocity. The use of the notion of
reachable components in the second ruleset greatly improved the
processing speed, because it disregarded more branches. Overall

34 IEEE TRANSACTIONS ON GAMES, VOL. 12, NO. 1, MARCH 2020

the evaluation technique is effective at detecting playable levels,
but it does not address difficulty.

Finally, Shaker et al. [45] researched a progressive approach
for content generation; this approach combines constructive and
search-based approaches to create a system that is fast, flexible,
and reliable. The progressive approach has two components:
timeline generation, where GE is used to evolve a timeline of
in-game events, and timeline simulation, where the timelines are
simulated using an intelligent agent. The agent maps the timeline
to a possible level layout in a constructive manner and assigns
it a fitness based on level design, playability, and aesthetic.

The progressive approach provides a one-to-many mapping
between genotypes and phenotypes; each timeline (genotype),
which described the rhythmic feel of the game, could be mapped
to several different level layouts (phenotypes). The timeline
simulation component combines the generation of the com-
plete design with a playability check, and guarantees that
all placed components are needed in the completion of the
puzzle.

Compared to their previous approaches, Shaker et al. found
that the progressive approach was much faster and resulted in
a greater variety of generated puzzles. They state that this tech-
nique could be applied to many games to induce a significant
decrease in generation time. Future work includes providing a
way to control difficulty as part of the timeline generation.

Ferreira and Toleda used a genetic algorithm to generate lev-
els for another popular 2-D physics puzzle game: Angry Birds
(2009) [46]. Briefly, the objective in Angry Birds is to crush
all the pigs, in the allotted time, by using a slingshot to throw
birds against a structure of blocks and pigs. The player must use
physics knowledge to estimate how hard and at what angle to
fling the bird to trigger an optimal collapse of the structure. Since
the source code of Angry Birds is not available, the researchers
created a clone using the Unity game engine.

The game clone is used as part of their genetic algorithm to
perform simulation-based evaluation. The structure of candidate
levels is encoded as an array of columns with elements (block,
pig, or composed block), but at the evaluation stage, all the in-
dividuals in the current population are transcribed to an XML
file that can be used to build the level for simulation. The results
of each simulation—specifically the average velocity and num-
ber of collisions for the blocks and pigs, plus end rotation for
the blocks—are recorded for use in determining the stability of
structures in a level. The genetic algorithm considers the most fit
levels to be those that are the most stable and performs crossover
and mutation by manipulating the associated arrays of columns
[46].

An important parameter in these simulations, which the re-
searchers determined experimentally, is the time limit: if the
simulation time is too short, game items may not have started to
fall when the timer runs out; if it is too long, all elements will
end up at rest. The algorithm initializes the population accord-
ing to some probabilities that prevent randomly creating start
individuals with extremely unstable structures.

Ferreira and Toleda, such as Shaker et al., defined metrics for
evaluating the expressivity of their level generator, specifically
frequency, linearity, and density, which refer to the blocks’ types

Fig. 17. Example of a generated structure for an Angry Birds level, from [47].

and orientations. These metrics showed that there was variation
in the generated levels, e.g., structures with varying heights.

Stephenson and Renz came up with an algorithm for gener-
ating Angry Birds levels that is dependent on a self-contained
structure generator [47]. The structure generator creates inde-
pendent structures, using a variety of different blocks, for dif-
ferent randomly sized subsections of the level. This generator
works top down: it starts by picking a block for the peak of a
structure, and then recursively determines blocks to place un-
derneath. Block choices are made at the hand of a probability
table and a validity check, for the stability of the structure, is
used to determine the layout of the blocks. An example of a
fully generated structure is shown in Fig. 17.

After the structures have been placed, they are analyzed to
determine possible pig placement locations. This is followed
by a structural analysis to determine weak points that should be
protected from the player, by the introduction of extra blocks, so
that the level is not too easy. Finally, a number of birds is added,
which also affects difficulty in that it determines the number of
“shots” the player gets.

This generator is highly controllable by a designer as there
are many inputs, such as the block selection probabilities and
number of structures that can be customized. Stephenson and
Renz also used a number of metrics to evaluate their generator:
frequency of block types, structural height variety, density, dif-
ficulty, which is dependent on the input parameters, and playa-
bility. The researchers concluded that their generator is flexible
enough to be applied to other games, and that it can come up
with a broad range of levels [47].

I. Logic Puzzles

Logic puzzles are solved through deductive reasoning; the
player arrives at a solution through a series of deductions made
from some given premises. The first logic puzzles appeared in
Carroll’s book The Game Of Logic [48] and were akin to syl-
logisms. Popular puzzles in this category are Sudoku, in which
the player makes deductions about placements of numbers, and
logic grid puzzles. The latter is so named because the puzzler
is provided with a grid on which to fill in information obtained
from clues.

DE KEGEL AND HAAHR: PROCEDURAL PUZZLE GENERATION: A SURVEY 35

There is a significant amount of research on, and commercial
interest in, the generation of Sudoku puzzles, likely due to their
popularity in newspapers and magazines. Some of the research
is summarized ahead.

Mantere and Koljonen used a genetic algorithm to generate,
rate, and solve Sudoku puzzles [49]. As for some other ap-
proaches documented in this survey, this method closely relates
puzzle solving and generation. However, Mantere and Koljonen
use evolution to solve the puzzle instances, whereas it has been
more commonly seen as part of puzzle generation. The genotype
used for evolution is an array of 81 integers, in blocks of nine.
Crossover can only occur between blocks, whereas mutations
can only occur within blocks. A puzzle is created by randomly
drawing 20–50 fixed numbers from a Sudoku solution and then
solving that instance up to 10 times to check that only one so-
lution exists. While GA is not the most efficient way to solve a
Sudoku puzzle, experiments showed that the number of genera-
tions required in solving is a good indication of difficulty [49].

Boothby et al. [50] generated Sudoku puzzles by applying
the inverse of solving methods; they started with a completed
Sudoku board and worked backward. A constrained BFS search,
with heuristics to prune the search space, was used to ensure
that each puzzle would be uniquely solvable. Puzzle difficulty
is rated according to the solving techniques used in generation,
based on the fact that puzzlers will apply simpler techniques first.
Notably, this technique allows for generating puzzles of desired
difficulty, an uncommon characteristic in puzzle generators.

A similar method was applied by Xue et al. [51]. They con-
structed a valid board using the Las Vegas algorithm and then
applied a “dig-hole” strategy that effectively corresponds to a
pattern-based erasure of some of the digits on the board. Gebser
developed a little-known Sudoku generator that uses ASP to cre-
ate puzzles that are guaranteed to have a unique solution. Addi-
tionally, all clues in the generated puzzle are essential, meaning
that the player would reach an alternative solution if a clue was
removed. Generally, this also implies a Sudoku level with a low
number of clues and, thus, a relatively high level of difficulty.
Gebser’s program uses choice rules, disjunction, and cardinality
constraints to specify a generator in less than 40 lines of code
[52].

Finally, Fatemi et al. [53] generate Sudoku puzzles of dif-
ferent levels of difficulty using a hill climbing approach. The
evaluation of board difficulty is based on constraint satisfaction
problems (CSPs). A CSP can be defined as a set of variables, all
the possible values for those variables, and the constraints be-
tween one or more of the variables. The solution to a CSP is an
assignment of values to variables that respects all the given con-
straints. They use consistency techniques with domain splitting,
meaning the search space is reduced through removal of values
that cannot be in the solution, and the problem is decomposed
into smaller problems. The number of times a consistency call
is made correlates to the difficulty of the puzzle.

Shinro, shown in Fig. 18, is a Japanese logic puzzle in an 8 ×
8 grid similar to Sudoku. To solve it, players must determine
the locations of 12 stones using two types of clues; the number
of stones located in each row and column, and arrows placed
in the grid that point to at least one stone. As is common for
logic puzzles, the player uses elimination to reach one of two

Fig. 18. Example Shinro puzzle.

conclusions; a square must contain a stone, or it absolutely can-
not contain a stone.

Oranchak used a genetic algorithm to automatically gener-
ate Shinro puzzles with desired qualities [54]. The basis of the
evolutionary algorithm is an automated solver that uses a list of
possible deductions to solve Shinro puzzles. Among others, de-
ductions are made based on the following observations: row or
column count is satisfied, arrow points to only one free square,
and locations that can be excluded based on the pigeonhole prin-
ciple. Some deductions are easier to make than others, so it is
reasonable to say that the difficulty of a Shinro puzzle, and a
Sudoku puzzle, can be measured by the difficulty of the required
deductions.

The automated solver tries to solve the generated puzzles us-
ing a greedy search, i.e., one that looks for easy moves first.
During the search, the number of times each type of move is ex-
ecuted is tracked, and these numbers are then used to compute
fitness.

The evolutionary algorithm is initialized with a small pop-
ulation of genomes because the fitness evaluation has a long
run-time [54]. Genomes are matrices of integer values repre-
senting different grid square types. It is also possible to specify
a target pattern that will restrict the possible values for some
grid squares, offering designers a way to influence the output of
the generator. Evolution occurs through mutation, which proba-
bilistically changes the values of randomly selected squares and
randomly decides whether to employ symmetry. When the al-
gorithm stops due to no more improvements in fitness, a brute
force search is used to make sure the resulting puzzle only has
one unique solution.

Oranchak found that optimizing puzzles according to the
number of required moves did not necessarily lead to difficult
puzzles. As mentioned, the more important factor is how chal-
lenging the moves (deductions) themselves are, so concentrating
on maximizing specific types of moves made more sense. How-
ever, this is challenging due to the nature of the greedy search.
Aesthetics, such as symmetry, can make a puzzle more appeal-
ing to a player, and introducing the symmetry mutator greatly
contributed to generating puzzle with symmetry in the stone and
arrows positions.

J. Word Puzzles

This is a broad category that incorporates any puzzle that is
dependent on words. Some puzzles only exist as word-based

36 IEEE TRANSACTIONS ON GAMES, VOL. 12, NO. 1, MARCH 2020

puzzles, e.g., riddles, crossword puzzles, and anagrams, but
many word puzzle formats also have numerical or symbolic
equivalents, e.g., analogies and odd-one-out puzzles. Different
subcategories of word puzzles that are based on the semantic
similarities, or dissimilarities, of words pairs have a lot in com-
mon. For example, odd-one-out and next-in-sequence word puz-
zles require the player to discover the most plausible concept that
relates a set of words [55].

Word puzzles have a long history on paper, but digital adapta-
tions and novel-types of these puzzles are now a popular category
of mobile games. Procedural generation is useful for word puz-
zles due to specific word-related issues: new words get created,
old words go out of common use, and existing words get new
meaning [55].

Colton investigated three types of word puzzles: odd-one-out,
analogy, and next-in-sequence [4]. These puzzles have a com-
mon characterization: each puzzle consists of a question, a set
of choices including the answer, and an embedded concept, i.e.,
a single plausible solution. Finding a solution is generally based
on player’s previous knowledge about the characteristics of the
objects, but obtained by systematically exploring the solution
space.

Colton proposes that the difficulty of these puzzles can be in-
fluenced by the number of choices, the complexity of the solution
concept, and the number of disguising concepts, i.e., concepts
that may look like a possible solution at first glance. He ex-
tended a system for automated theory formation in mathematics
[56] to generate puzzles [4]. This system takes one or two exist-
ing concepts as input and uses production rules to invent a new
concept.

The generating process is largely similar for the three different
kinds of puzzles and while generally constructive, a check is
required after generating each puzzle to ensure that the solution
is the simplest one that exists. The main challenge was ensuring
each generated puzzle had only one solution, which needs to
happen reliable in order to use complex embedded concepts.
Colton’s approach relies on highly structured datasets, which
requires a lot of human annotation effort in comparison to the
system by Pinter et al. [55].

The automated word puzzle generator developed by Pinter
et al. [55] uses: a corpus, an unstructured, and unannotated doc-
ument collection; a topic model, which creates a topic dictio-
nary from the input corpus; and a semantic similarity measure of
word pairs. The semantic similarity is computed using a concept
repository; one such repository used by the authors is Wikipedia.
A word is considered to be closely related to a certain concept
if it appears frequently in an article about that concept. This
method would allow for domain specific puzzles, e.g., to fit into
a narrative, by using a relevant corpus. Odd-one-out puzzles are
produced through two consecutive algorithms. The first identi-
fies consistent sets of words by generating candidate consistent
sets and keeping or discarding them based on the similarity of
the two most dissimilar words. The second algorithm combines
each set with a weakly related, or unrelated, word. The quality
of the word puzzles is closely linked to their difficulty, and fu-
ture work includes testing whether humans find the generated
puzzles interesting.

While the described generation methods output word puzzles,
the words could be replaced by objects to place the puzzle in a
3-D environment. This would only impose restrictions on the
types of words that can be used as the choices.

Crosswords are a popular topic for puzzle PCG for the same
reasons as Sudoku; both are still prevalent in print media.
Rigutini et al. [57] present a system that can generate cross-
word puzzles without human intervention. This system extracts
definitions from the Internet using natural language processing
techniques and compiles a valid crossword schema using CSP
solving in a similar fashion as discussed for logic puzzles in
Section II-I.

K. Riddles

Riddles are puzzles that are solved by finding a plausible ex-
planation for an unusual description, often posed as a question,
and require the puzzler to use lateral thinking. The solution, or
answer, is rarely immediately obvious, but should make sense
to the puzzler upon its discovery. Riddles feature in The Hob-
bit by J. R. R. Tolkien, e.g., “A box without hinges, key or lid,
Yet golden treasure inside is hid,” to which the answer is, “An
Egg” [58]. It is uncommon to see riddles in video games be-
cause parsing a natural language explanation is difficult for a
computer. Exceptions are cases in which the answer to a riddle
does not need to be stated but rather gives players a hint as to an
object they need or a direction they should travel in.

Riddles are difficult to generate because they often rely on a
play of words—a difficult concept for computers. Galvan et al.
[59] generated riddles of the format “What is as hot as soup?”
and stringing several such comparisons together to make the
riddle solvable. Only one comparison leads to too many possible
answers, and would be impossible to solve without turning into
a lengthy guessing game. The most well-designed riddles are
based on nuanced meanings of words, and the generator in [59]
does not possess that level of semantic power.

Galvan et al. [59] used the Thesaurus Rex, a database of word
associations that assigns words categories and attributes, accord-
ing to their use in everyday language. Each category and attribute
has an associated weight for each concept (word). The riddle
generation process involves finding links between the target con-
cept and other concepts using the categories and attributes. Dif-
ficulty of the riddles can be adjusted by changing the threshold
of how similar concepts must be to be used as one of the com-
parisons.

The randomly generated riddles sometimes suffered from
comparisons that did not add new information, and new com-
parisons that were contradictory to old comparisons due to the
polysemy of some concepts. These issues feed into the problem
of ambiguity and having one best plausible solution (a satisfying
answer), a challenge that also exists for other categories of word
puzzles.

Guerrero et al. [60] developed a Twitter bot that generates
riddles about celebrities and well-known characters by extract-
ing information from sources such as Wikipedia. The riddles
are composed of vague descriptions of the attributes of the per-
son or character in question. Sometimes the riddles do include

DE KEGEL AND HAAHR: PROCEDURAL PUZZLE GENERATION: A SURVEY 37

nonliteral meanings of words, but overall their standard is not
high, and often too complex, as only about 16% if users found
the correct answer. It is difficult for a generation program to
achieve a satisfying level of nuance.

III. ANALYSIS

In the framework of a puzzle classification, we have examined
32 projects on procedural generation of puzzles in detail. These
projects represent a variety of approaches and puzzle types. In
an effort to provide a complete picture of this research field, a
summary of the observations made about the different puzzle
generation methods—in terms of the characteristics for PCG,
outlined in Section I-B—is given in Table I. The table covers
most of the approaches mentioned in the survey, but due to space
constraints, leaves out a few that were only briefly mentioned.

We can make some observations across the puzzle types for
each characteristic of PCG methods, i.e., for each column. Look-
ing at the first column, search-based and generate-and-test ap-
proaches, as described in Section I-B1, appear slightly more
popular overall. For some categories there is a distinct empha-
sis on a single technique being employed—for example, all the
narrative puzzle generators we looked at use a constructive ap-
proach. We also noted that combining techniques has been met
with some success.

From the evaluation column, we can observe that simulation-
based testing is used in 7 of the 11 generate-and-test methods,
possibly because puzzle solvers, which can be used for testing,
are also a major area of research. Simulation-based testing is par-
ticularly common for physics puzzles, likely due to the dexterity
component that is not present for most other puzzle types. An
evaluation step is not usually applicable to constructive methods,
as was mentioned in Section I-B2. Constraint-based techniques
have been labeled as such to distinguish them from independent
types of evaluation.

Most current approaches are intended for offline rather than
online generation. The offline trend could be a reflection of the
fact that many works are experimental and are focused initially
on developing methods for generating interesting content of re-
liable quality.

Generally, puzzle types that tend to have simpler rules, e.g.,
Sokoban-type puzzles, have less designer input requirements
than an open-ended category, such as narrative puzzles. Gener-
ation methods that require designer input are more like frame-
works than out-of-the-box generators. Narrative puzzles require
the most designer input as they are loosely defined, and depen-
dent on creativity and common-sense logic—challenging do-
mains for PCG. Most methods that provide a medium degree of
control do so through templates or fitness function parameters.

While mixed authorship is popular for PCG in general (e.g.,
for dungeon generators), it is only used by 5 of the 32 puzzle
generation methods. However, generators with a high degree
of control can additionally be viewed as a collaboration be-
tween designer and algorithm. Some papers make no reference
to mixed authorship, and in this case, we assume automatic be-
cause many puzzles (e.g., Sokoban) would potentially become

unsolvable even by minor designer tweaks to the generated con-
tent.

There are very few approaches that allow puzzles to be gen-
erated in an adaptive fashion, i.e., where the player’s actions
are used as input to the generator. There is clear scope for fu-
ture work that attempts to generate puzzles tailored to individual
players.

The first step for any puzzle generator is to ensure solvability
of the generated puzzle. In the quality consideration column, we
list notable quality-focused features that go beyond solvability.
Most generators attempt to estimate quality after generation has
completed, but only constraint-based generators reliably gener-
ate puzzles with given, desired qualities.

In addition to the immediate observations we have made from
Table I, the intention is also that this review will serve as a map
of the state of the art in the procedural generation of puzzles.
To facilitate this, we pinpoint “gaps in the map,” i.e., promising
areas for future research.

A question is why ASP has been applied in some places and
not others. One requirement of ASP is of course that it must
be possible to specify constraints (e.g., like in Sokoban), but
this may not be possible for all puzzles. In terms of general
applicability, Smith and Mateas observe that ASP is “appli-
cable to problems where the task is to select structures with
desirable properties from a vast but countably finite space”
[7, p.193]. Additionally, it is plausible that in some cases, ASP
has not been tried because it requires learning an unfamiliar lan-
guage paradigm; software libraries may make constraint solving
more accessible through familiar paradigms. Since puzzle rules
can be considered constraints, constraint-based techniques are a
promising future direction for puzzle PCG.

One “gap” is formed by the lack of application of techniques
that can execute in an online environment. Decreasing the gener-
ation time while maintaining quality and solvability is an impor-
tant challenge to overcome in the face of integration of procedu-
rally generated puzzles into commercial games. This could be
achieved by improving the performance and reliability of some
of the presented techniques, or by trying alternative techniques
that are known to work online. Puzzles can provide a more sur-
prising and interesting experience for players when they are cre-
ated on the fly, i.e., while the player is progressing through the
game. Some puzzle types, such as narrative puzzles, could even
be tailored according to the player’s style of play and previous
in-game choices.

In addition to the “gaps in the map” that are clear, there are
of course also gaps that are not shown in the table, namely the
puzzle types that were not covered in this survey, because they
have only recently been subject to PCG, or not yet at all. This
includes time manipulation puzzles, i.e., puzzles in which the
puzzler must use time as a puzzle solving mechanic. For exam-
ple, The Talos Principle includes puzzles that require the player
to find a solution using parallel timelines. Braid is perhaps the
most well-known game to use time manipulation as its core
mechanic—each world of the game has a distinct time-based
concept, such as linking time to the player’s location. Procedural
generation for time manipulation puzzles would be challenging

38 IEEE TRANSACTIONS ON GAMES, VOL. 12, NO. 1, MARCH 2020

TABLE I
SUMMARY OF PUZZLE GENERATION METHODS

DE KEGEL AND HAAHR: PROCEDURAL PUZZLE GENERATION: A SURVEY 39

due to the need to define structures for parallel timelines and the
nonlinear causality relationships between events.

A puzzle type for which PCG has only recently been applied is
programming puzzles. Dong and Barnes developed a template-
based puzzle generator for an educational programming game
similar to LightBot [61], and Valls-Vargas et al. [62] created a
constructive generator for parallel programming puzzles based
on graph grammars.

We identified four open challenges associated with procedu-
ral puzzle generation that are repeated by many of the papers
we reviewed. The first challenge, in particular, for educational
puzzles, such as Refraction and the programming puzzles, is
difficulty progression, including the step-wise introduction of
new concepts. Generators for these puzzles should be capable
of outputing puzzles that both teach specific concepts and are of
a given difficulty—the latter is harder to quantify, and achieve.
As for narrative puzzles, replayability without repetition makes
PCG attractive for educational puzzles.

The second challenge is developing techniques that are not
narrowly focused on the rules for one specific puzzle type. Gen-
erality is difficult to obtain without sacrificing the ability of the
generator to come up with novel puzzles, which is of course a
core reason to use PCG in the first place: the creation of unan-
ticipated content from a set of known inputs.

The third challenge is the assessment of quality, i.e., the
development of good evaluation metrics. Metrics are puzzle-
dependent and not standard, but there several common charac-
teristics of puzzles that many researchers attempt to measure,
including difficulty, variety, freshness, and aesthetics. Previous
PCG surveys have also highlighted evaluation as an important
area for future work [3], [6].

Aesthetic quality in itself poses the fourth challenge. We ob-
served that procedural generation techniques for puzzles strug-
gle to create designs that are as aesthetically pleasing as human
designs.

IV. CONCLUSION

Given the increasing fidelity of game worlds in terms of vi-
suals, backstory, characters, and behaviors, there is little doubt
that PCG is set to become more important in games over the next
years. As the critique of recent PCG-centric titles show, there are
many associated challenges, but we believe that improvements
in existing PCG techniques, wider adoption of PCG for new
types of content (such as puzzles), as well as increased adoption
of PCG across genres are unquestionably positive developments
for games as a medium. They will put more creative agency into
the hands of developers, allowing them to realize more ambi-
tious projects with the same resources. However, there is also
a less obvious possible benefit. By replacing the problem of
creating content with the metaproblem of creating systems that
create content, we obtain a deeper understanding of the essential
nature of that content. Building a system that creates good puz-
zles requires a deeper understanding of the fundamental nature
of puzzles than crafting an individual puzzle does. The same
holds true for backstory, plot, and characters. Such improved
understanding is likely not only to benefit games as an art form

(resulting in better games and more profound experiences of
playing them) but also to advance our understanding of our very
human fascination with stories and games.

REFERENCES

[1] A. Handy, “Interview: Markus ‘notch’ persson talks making Minecraft,”
Mar. 2010. Accessed: Oct. 30, 2017. [Online.] Available: https://www.
gamasutra.com/view/news/27719/Interview_Markus_Notch_Persson_
Talks_Making_Minecraft

[2] D. Heaven, “When infinity gets boring: What went wrong with No
Man’s Sky,” Sep. 2016. Accessed: Oct. 30, 2017. [Online.] Avail-
able: https://www.newscientist.com/article/2104873-when-infinity-gets-
boring-what-went-wrong-with-no-mans-sky/

[3] M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup, “Procedural con-
tent generation for games: A survey,” ACM Trans. Multimedia Comput.,
Commun. Appl., vol. 9, no. 1, 2013, Art. no. 1.

[4] S. Colton, “Automated puzzle generation,” in Proc. AISB02 Symp. AI Cre-
ativity Arts Sci., 2002, pp. 99–108.

[5] N. Shaker, J. Togelius, and M. J. Nelson, Procedural Content Genera-
tion in Games: A Textbook and an Overview of Current Research. Berlin,
Germany: Springer, 2016.

[6] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” IEEE
Trans. Comput. Intell. AI Games, vol. 3, no. 3, pp. 172–186, Sep. 2011.

[7] A. M. Smith and M. Mateas, “Answer set programming for procedural
content generation: A design space approach,” IEEE Trans. Comput. Intell.
AI Games, vol. 3, no. 3, pp. 187–200, Sep. 2011.

[8] J. Togelius and N. Shaker, “The search-based approach,” in Procedural
Content Generation in Games: A Textbook and an Overview of Current
Research, N. Shaker, J. Togelius, and M. J. Nelson, Eds. Berlin, Germany:
Springer, 2016, pp. 17–30.

[9] K. Compton, A. M. Smith, and M. Mateas, “Anza island: Novel gameplay
using ASP,” in Proc. 3rd Workshop Procedural Content Gener. Games,
2012, pp. 1–13.

[10] A. M. Smith, E. Andersen, M. Mateas, and Z. Popović, “A case study
of expressively constrainable level design automation tools for a puzzle
game,” in Proc. Int. Conf. Found. Digit. Games, 2012, pp. 156–163.

[11] “Increpare/puzzlescript: Open source html5 puzzle game engine,” 2013.
[Online]. Available: https://github.com/increpare/PuzzleScript. Accessed
on: Aug. 29, 2016.

[12] A. Khalifa and M. Fayek, “Automatic puzzle level generation: A gen-
eral approach using a description language,” in Proc. Comput. Creativity
Games Workshop, 2015.

[13] C.-U. Lim and D. F. Harrell, “An approach to general videogame evaluation
and automatic generation using a description language,” in Proc. IEEE
Conf. Comput. Intell. Games, 2014, pp. 1–8.

[14] J. Taylor and I. Parberry, “Procedural generation of Sokoban levels,” in
Proc. Int. North Amer. Conf. Intell. Games Simul., 2011, pp. 5–12.

[15] B. Kartal, N. Sohre, and S. Guy, “Generating Sokoban puzzle game levels
with Monte Carlo tree search,” in Proc. IJCAI-16 Workshop Gen. Game
Playing, 2016, pp. 47–54.

[16] J. Culberson, “Sokoban is PSPACE-complete,” in Proc. Inform., 1999,
vol. 4, pp. 65–76.

[17] Y. Murase, H. Matsubara, and Y. Hiraga, “Automatic making of Sokoban
problems,” in Proc. Pacific Rim Int. Conf. Artif. Intell., 1996, pp. 592–600.

[18] J. Taylor, T. D. Parsons, and I. Parberry, “Comparing player attention on
procedurally generated vs. hand crafted Sokoban levels with an auditory
stroop test,” in Proc. Conf. Found. Digit. Games, 2015.

[19] B. Kartal, N. Sohre, and S. J. Guy, “Data-driven Sokoban puzzle generation
with Monte Carlo tree search,” in Proc. 12th Artif. Intell. Interactive Digit.
Entertainment Conf., 2016, pp. 58–64.

[20] N. Sturtevant, “An argument for large-scale breadth-first search for game
design and content generation via a case study of fling,” in Proc. AI Game
Des. Process, 2013, pp. 28–33.

[21] G. W. Flake and E. B. Baum, “Rush hour is PSPACE-complete, or why
you should generously tip parking lot attendants,” Theor. Comput. Sci.,
vol. 270, no. 1, pp. 895–911, 2002.

[22] S. Collette, J.-F. Raskin, and F. Servais, “On the symbolic computation
of the hardest configurations of the rush hour game,” in Proc. Int. Conf.
Comput. Games, 2006, pp. 220–233.

[23] F. Servais, “Finding hard initial configurations of rush hour with binary
decision diagrams,” M.Sc. thesis, Département d’informatique, Université
libre de Bruxelles, Brussels, Belgium, 2005.

https://www.gamasutra.com/view/news/27719/Interview_Markus_Notch_Persson_Talks_Making_Minecraft
https://www.newscientist.com/article/2104873-when-infinity-gets-boring-what-went-wrong-with-no-mans-sky/
https://github.com/increpare/PuzzleScript

40 IEEE TRANSACTIONS ON GAMES, VOL. 12, NO. 1, MARCH 2020

[24] J. Juul, “Swap adjacent gems to make sets of three: A history of matching
tile games,” Artifact, vol. 1, no. 4, pp. 205–216, 2007.

[25] “Procedural generation of puzzle game levels - gamedev.net - your
game development resource,” 2014. [Online]. Available: http://www.
gamedev.net/page/resources/_/technical/game-programming/procedural-
generation-of-puzzle-game-levels-r3862. Accessed on: Aug. 30, 2016.

[26] P. Song, C.-W. Fu, and D. Cohen-Or, “Recursive interlocking puzzles,”
ACM Trans. Graph., vol. 31, no. 6, 2012, Art. no. 128.

[27] D. Ashlock, “Automatic generation of game elements via evolution,” in
Proc. IEEE Conf. Comput. Intell. Games, 2010, pp. 289–296.

[28] N. R. Sturtevant and M. J. Ota, “Exhaustive and semi-exhaustive pro-
cedural content generation,” in Proc. 14th Artif. Intell. Interactive Digit.
Entertainment Conf., 2018, pp. 109–115.

[29] J. Buck and J. Carter, Mazes for Programmers: Code Your Own Twisty
Little Passages. Raleigh, NC, USA: Pragmatic Programmers, 2015.

[30] N. Shaker, A. Liapis, J. Togelius, R. Lopes, and R. Bidarra, “Construc-
tive generation methods for dungeons and levels,” in Procedural Content
Generation in Games. Berlin, Germany: Springer, 2016, pp. 31–55.

[31] R. van der Linden, R. Lopes, and R. Bidarra, “Procedural generation of
dungeons,” IEEE Trans. Comput. Intell. AI Games, vol. 6, no. 1, pp. 78–89,
Mar. 2014.

[32] M. J. Nelson and A. M. Smith, “ASP with applications to mazes and
levels,” in Procedural Content Generation in Games: A Textbook and an
Overview of Current Research, N. Shaker, J. Togelius, and M. J. Nelson,
Eds. Berlin, Germany: Springer, 2016, pp. 143–157.

[33] N. Brewer, “Computerized dungeons and randomly generated worlds:
From Rogue to Minecraft,” Proc. IEEE, vol. 105, no. 5, pp. 970–977,
May 2017.

[34] A. M. Smith, E. Butler, and Z. Popovic, “Quantifying over play: Con-
straining undesirable solutions in puzzle design,” in Proc. 8th Int. Conf.
Found. Digit. Games, 2013, pp. 221–228.

[35] D. Williams-King, J. Denzinger, J. Aycock, and B. Stephenson, “The gold
standard: Automatically generating puzzle game levels,” in Proc. 8th Artif.
Intell. Interactive Digit Entertainment Conf., 2012, pp. 191–196.

[36] J. Dormans, “Adventures in level design: Generating missions and spaces
for action adventure games,” in Proc. Workshop Procedural Content Gener.
Games, 2010, Art. no. 1.

[37] E. Butler, A. M. Smith, Y.-E. Liu, and Z. Popovic, “A mixed-initiative
tool for designing level progressions in games,” in Proc. 26th Annu. ACM
Symp. User Interface Softw. Technol., 2013, pp. 377–386.

[38] C. Fernández-Vara and A. Thomson, “Procedural generation of narrative
puzzles in adventure games: The puzzle-dice system,” in Proc. 3rd Work-
shop Procedural Content Gener. Games, 2012, pp. 12–17.

[39] M. Treanor et al., “Playable experiences at AIIDE 2017,” in Proc. 13th
AAAI Conf. Artif. Intell. Interactive Digit. Entertainment, Snowbird, UT,
USA, Oct., 2017.

[40] I. Dart and M. J. Nelson, “Smart terrain causality chains for adventure-
game puzzle generation,” in Proc. IEEE Conf. Comput. Intell. Games,
2012, pp. 328–334.

[41] J. Doran and I. Parberry, “A prototype quest generator based on a structural
analysis of quests from four MMORPGs,” in Proc. 2nd Int. Workshop
Procedural Content Gener. Games, 2011, Art. no. 1.

[42] A. Isaksen, D. Wallace, A. Finkelstein, and A. Nealen, “Simulating strat-
egy and dexterity for puzzle games,” in Proc. IEEE Conf. Comput. Intell.
Games, 2017, pp. 142–149.

[43] M. Shaker, M. H. Sarhan, O. Al Naameh, N. Shaker, and J. Togelius,
“Automatic generation and analysis of physics-based puzzle games,” in
Proc. IEEE Conf. Comput. Intell. Games, 2013, pp. 1–8.

[44] N. Shaker, M. Shaker, and J. Togelius, “Evolving playable content for cut
the rope through a simulation-based approach,” in Proc. 9th AAAI Conf.
Artif. Intell. Interactive Digit. Entertainment, 2013, pp. 72–78.

[45] M. Shaker, N. Shaker, J. Togelius, and M. Abou-Zleikha, “A progressive
approach to content generation,” in Proc. Eur. Conf. Appl. Evol. Comput.,
2015, pp. 381–393.

[46] L. Ferreira and C. Toledo, “A search-based approach for generating an-
gry birds levels,” in Proc. IEEE Conf. Comput. Intell. Games., 2014,
pp. 1–8.

[47] M. Stephenson and J. Renz, “Procedural generation of levels for angry
birds style physics games,” in Proc. AAAI Conf. Artif. Intell. Interactive
Digit. Entertainment, 2016, pp. 225–231.

[48] L. Carroll, The Game of Logic, vol. 1. Alexandria, Egypt: Library Alexan-
dria, 1886.

[49] T. Mantere and J. Koljonen, “Solving, rating and generating Sudoku puz-
zles with GA,” in Proc. IEEE Congr. Evol. Comput., 2007, pp. 1382–1389.

[50] T. Boothby, L. Svec, and T. Zhang, “Generating Sudoku puzzles as an
inverse problem,” Math. Contest Model., vol. 24, 2008.

[51] Y.-H. Xue, B.-B. Jiang, Y. Li, G.-F. Yan, and H.-F. Sun, “Sudoku puzzles
generating: From easy to evil,” Math. Pract. Theory, vol. 21, pp. 1–7, 2009.

[52] M. Gebser, “gen_sudoku.gringo,” Source Code, Mar. 2010. Accessed:
Oct. 13, 2017. [Online]. Available: https://asparagus.cs.uni-potsdam.
de/encoding/show/id/12739

[53] B. Fatemi, S. M. Kazemi, and N. Mehrasa, “Rating and generating Sudoku
puzzles based on constraint satisfaction problems,” World Acad. Sci., Eng.
Technol., Int. J. Comput., Elect., Autom., Control, Inf. Eng., vol. 8, no. 10,
pp. 1811–1816, 2014.

[54] D. Oranchak, “Evolutionary algorithm for generation of entertaining
Shinro logic puzzles,” in Proc. Eur. Conf. Appl. Evol. Comput., 2010,
pp. 181–190.

[55] B. Pintér, G. Voros, Z. Szabó, and A. Lorincz, “Automated word puzzle
generation via topic dictionaries,” in Proc. Int. Conf. Mach. Learn. —
Sparsity Dictionaries Projections Mach. Learn. Signal Process. Workshop,
Edinburgh, Scotland, Jun. 30, 2012.

[56] S. Colton, “Automated theory formation in pure mathematics,” Ph.D. dis-
sertation, Dept. Artif. Intell., The University of Edinburgh, Edinburgh,
U.K., 2001.

[57] L. Rigutini, M. Diligenti, M. Maggini, and M. Gori, “A fully automatic
crossword generator,” in Proc. 7th Int. Conf. Mach. Learn. Appl., 2008,
pp. 362–367.

[58] J. R. R. Tolkien, The Hobbit, or There and Back Again. London, U.K.: G.
Allen, 1937.

[59] P. Galván, V. Francisco, R. Hervás, and G. Méndez, “Riddle generation
using word associations,” in Proc. Int. Conf. Lang. Resources Eval., 2016,
pp. 2407–2412.

[60] I. Guerrero, B. Verhoeven, F. Barbieri, P. Martins, and R. Pérez y Pérez,
“TheRiddlerBot: A next step on the ladder towards computational creativ-
ity,” in Proc. 6th Int. Conf. Comput. Creativity, 2015, pp. 315–322.

[61] Y. Dong and T. Barnes, “Evaluation of a template-based puzzle generator
for an educational programming game,” in Proc. 12th Int. Conf. Found.
Digit. Games, 2017, Art. no. 40.

[62] J. Valls-Vargas, J. Zhu, and S. Ontañón, “Graph grammar-based control-
lable generation of puzzles for a learning game about parallel program-
ming,” in Proc. 12th Int. Conf. Found. Digit. Games, 2017, Art. no. 7.

Barbara De Kegel received the B.Sc. degree in com-
puter science from University College Dublin (UCD),
Dublin, Ireland, in 2015, and the M.Sc. degree in com-
puter science, specialized in interactive entertainment
technology, from Trinity College Dublin, Dublin, Ire-
land, in 2016. She is currently working toward the
Ph.D. degree in computational cancer biology at Sys-
tems Biology Ireland, UCD.

She was a Software Engineer with Havok/
Microsoft, Dublin, Ireland, from 2016 to 2018.

Mads Haahr (S’01–M’03) received the B.Sc. and
M.Sc. degrees in computer science and English from
the University of Copenhagen, Copenhagen, Den-
mark, in 1996 and 1999, respectively, and the Ph.D.
degree in computer science from Trinity College
Dublin, Dublin, Ireland, in 2004.

He is currently a Faculty and serves as the
Course Director for the M.Sc. in Interactive Dig-
ital Media with Trinity College Dublin. He has
authored/coauthored more than 80 peer-reviewed
publications and founded the award-winning game

studio Haunted Planet Studios in 2010. He is also known for creating the Inter-
net’s premier true random number service RANDOM.ORG in 1998.

http://www.gamedev.net/page/resources/_/technical/game-programming/procedural-generation-of-puzzle-game-levels-r3862
https://asparagus.cs.uni-potsdam.de/encoding/show/id/12739

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

