
IEEE TRANSACTIONS ON GAMES 1

Danesh: Interactive Tools For Understanding
Procedural Content Generators

Michael Cook, Jeremy Gow, Gillian Smith and Simon Colton

Abstract—In order to advance the field of procedural content
generation, and transfer knowledge from academic research to
everyday use, we need to develop tools that make generative
systems easier to understand and control. In this paper we
introduce Danesh, a plugin to the Unity game development
environment, which helps provide a suite of tools that provide au-
tomation or analysis of different aspects of procedural generators.
We describe here the features of Danesh, including automatic
analysis of generated content, the visualisation of generative
spaces, automatic parameter discovery, and interface smoothing.
We also provide reflections on our development of the tool so far.

Index Terms—procedural generation, computational creativity,
generative software analysis

I. INTRODUCTION

PROCEDURAL generation is the application of generative
algorithms to the production of content for games. Pro-

cedural generators are an important part of the landscape of
modern game development, not only the reserve of program-
mers but also used by artists [1], musicians [2], writers [3],
and people in many other roles. Despite being in common
use among game developers, attitudes towards procedural
generation are often negative, with many games now explicitly
marketing themselves as including ‘hand-crafted’ content. In
his 2015 GDC talk Grant Duncan, Art Director on No Man’s
Sky, which extensively used procedural generation, said that he
felt skeptical towards the idea initially and many of his peers
told him procedural generation would “take control away from
artists” and produce “endless, boring” content [4].

Grant also cites the confusion and lack of understanding
among gaming audiences, too: “after announcing No Man’s
Sky, if you read the comments [on online articles] it turns
out that nobody seems to know what procedural generation
actually means”. Duncan goes on to explain that procedural
generation is “a big box of maths”. The description of pro-
cedural generation as ‘maths’ was common throughout the
development of the game, both in the PR and the subsequent
press coverage [5].

This ironic detachment highlights a major problem with
procedural generation in the modern games industry: although
prevalent, powerful and popular, procedural generation is not
well understood and this contributes to negative preconcep-
tions. We believe that this feeling of a lack of control, and the
perception that procedural generators are a dark art of ‘maths’,
is caused in part from the way that procedural generators are
commonly presented. Generative algorithms are often shown

M. Cook, J. Gow and S. Colton are with Queen Mary University of London
G. Smith is with the Worcester Polytechnic Institute

Fig. 1: A screenshot of Danesh’s main user interface, showing
parameter controls (left) and an example output (right).

as black boxes, with mysterious input parameters that behave
inconsistently, and outputs that vary wildly and have unknown
distributions. In addition to this, a common language for
discussing and thinking about procedural generators has been
slow to develop. This is due to the field being heavily frag-
mented – music generators are not spoken about in the same
context as level generators, for example. It is also exacerbated
by a lack of code reuse between projects or developers.

To attempt to tackle some of these problems, we have
developed a tool called Danesh. Danesh is an open-source
plugin for Unity, one of the most popular game development
tools, that allows procedural generators to be viewed, edited
and analysed in a single unified interface. It requires minimal
setup to work with a generator, and can work with any kind of
content (as long as the user can perform some simple setup).
Danesh offers simple features like editing inputs and viewing
outputs; as well as more complex operations like viewing
the distribution of a generator’s outputs, or automatically
searching the parameter space for configurations that produce
a specific outcome. Danesh has been presented at the 2017
Game Developers Conference, the largest industry event in
the world, as well as used as a teaching tool in classrooms.

In this paper we outline the current features of Danesh, from
simple tasks such as loading and viewing generators through
to more complex analytical techniques. In doing so we also
introduce for the first time automatic parameter discovery, a
new technique for searching a code library to automatically
suggest possible inputs to a generative system. In addition to
this system description, we also reflect on our experience of
building a tool aimed at game developers. We conclude by
looking at the future paths for Danesh’s development.

IEEE TRANSACTIONS ON GAMES 2

Fig. 2: A screenshot of The Sentient Sketchbook’s interface.
Alternative outputs are on the right, metrics and analysis are
in the central area.

II. RELATED WORK

A. Assistive Interfaces for Generative Systems

Several tools exist which attempt to provide assistance in
designing a procedural generator. Tanagra [6] is example of
early research in assistive tools for generator design. Tanagra
allows the user to design part of a platformer level, expressing
constraints on the remainder of the design which the tool then
attempts to fill in. The user can go on to respond to this or
see other output from the system.

The Sentient Sketchbook [7] is a tool for designing 2D
spaces for a variety of game contexts, such as real-time
strategy game levels, or world maps for a role-playing game or
story. The Sentient Sketchbook has an innovative user interface
which allowed the user to move between detail levels, thus
allowing for high-level constraint expression at a low resolu-
tion, before moving in to examine possible generated content
at higher detail. The Sentient Sketchbook also recalculates and
surfaces metric scores while the tool is being used, allowing
the user to appreciate differences between potential levels that
may not be immediately obvious, as well as constrain along
these metrics. Figure 2 shows a screenshot of the interface.

The above systems are examples of specific generative
systems, rather than a general-purpose tool for analysing
systems. However, their designs offer useful indicators of how
interaction with generative systems can be done. Primarily,
these systems work by alternating phases of users adding
constraints and then the system responding. This is a similar
rhythm which we aim for with Danesh, except it takes place at
a meta-level, alternating phases of adjusting a space of content,
and then visualising the results of the changes.

B. Generative Software Analysis

Expressive Range Analysis (ERA) is a way of analysing
the behaviour of a generative system by sampling its output
and visualizing the distribution of various properties of the
sample [8]. Smith et al. used this system to analyze the space
of artifacts created by the Launchpad [9] generator, and how
it varies based on varying input parameters to the generator.
We explain this technique more in depth later in the paper, as

it is a central part of Danesh’s capabilities. ERAs are often
visualised as a 2D histogram, however other visualisations
have been used including using clustering, single-property
frequency charts, and studies of change over time.

Core to the ERA approach to evaluating generators is the
definition of appropriate metrics. Canossa and Smith [10]
propose several potential metrics for 2D platforming games
that move beyond linearity and leniency, as proposed in the
original ERA paper, and include aesthetic and experience-
based metrics. However, these metrics have not been oper-
ationalized in existing generative systems. In [11] the authors
evaluate commonly-employed metrics for analysing platformer
level generators. Writing good and insightful metrics is a
crucial step in analysing a procedural generator, but both
the process and the metrics remain relatively underexplored.
The authors conclude that metrics alone are not sufficient for
understanding a procedural generator, but also suggests that
they are useful in providing insight.

In [12] Summerville proposes new ways of analysing proce-
dural generators that can visualise higher dimensions of data or
provide different kinds of insight to expressive range analysis.
Corner plots are suggested as a visualisation technique, able to
contrast multiple two-dimensional plots simultaneously, over-
coming a limitation of expressive range which makes it hard to
consider more than two dimensions at once. Summerville also
proposes methods for assessing other aspects of a generative
system, such as how often elements from a training set reoccur
in the output (particularly applicable to the emerging subarea
of PCGML [13]).

C. Explainable AI

Danesh is a tool for making sense of complex systems, and
thus has much in common with research into explainable AI
(XAI). In [14] the authors put forward a proposal for XAI
for game designers (XAID) which suggests different ways
of thinking about and building tools for co-creation in game
design, and the challenges inherent in doing so. The proposed
three axes of XAID – explainability, initiative and domain
overlap – are all relevant to the design of Danesh.

XAID is especially relevant in the face of a rising inter-
est in machine learning, which presents many challenges in
education and training. In [15] the authors present tools for
visualising different kinds of information about the state of
a machine learning system, in the context of a game design
task. We share similar goals in the creation of Danesh, in
that our intention is to create a rich tool that can layer in
additional information as the user wishes, to help improve
their understanding of a dynamic system.

III. SYSTEM OVERVIEW

Danesh is a plugin for the Unity game development envi-
ronment, written in C#. Unity is one of the most popular tools
in the world for developing games – 50% of mobile games
are developed with Unity, according to their own statistics1. In
addition to being popular among commercial game developers,

1https://unity3d.com/public-relations

IEEE TRANSACTIONS ON GAMES 3

Unity is free to use which also makes it a common choice
for students, hobbyists, digital artists and many more groups
besides. This makes it an excellent platform to target in order
to support a wide variety of generative software developers.

Our guiding philosophy in designing Danesh was to build
a tool that could be customised easily to work with any
generator. This meant developing the tool to be agnostic to
the type of content being generated. As a result, Danesh has
been designed with ‘context gaps’ – minimal spaces where
understanding about the domain can be supplied by the user.
Currently this places a non-trivial burden on the user, as
they must write code to visualise generated content, measure
interesting properties, and identify important regions of the
code. We discuss how we have begun to overcome these
limitations later in the paper, through a mix of intelligent
systems that attempt to automate some of these processes.
Overall, we believe that Danesh’s domain-agnostic design is
its greatest strength, and a good approach to building a tool
designed to work with many types of generator.

A. Loading And Viewing Generators

In order to load a generator into Danesh, the user tags parts
of their code with annotations. Annotations label parts of a
codebase, allowing the labelled fields, methods or types to be
discovered through C# metaprogramming. This allows Danesh
to automatically configure itself without major refactoring or
restructing of the game’s codebase, instead simply asking
the user to mark methods or fields that are relevant to the
procedural generation.

In order to minimally run Danesh, the user must mark
one method with the Generator annotation. When Danesh
runs, it scans the codebase for a Generator annotation,
and stores a reference to that method as the generator. If
multiple generators are marked, Danesh allows the user to
switch between generators while using the tool (the interface
updates accordingly to show data and controls relevant to
the current generator). In line with our agnostic approach,
Danesh does not know what type of object is returned by the
generator method. Instead, as we describe in this section, the
user is asked to provide small code snippets to provide context-
sensitive code to Danesh. An example of this is visualisation.
Danesh can be run without visualisers, but if the user wishes
to see the output of a generator (which is recommended for
content with a visual component) they can provide a visualiser
method which takes content output by the generator as a
parameter, and returns a texture which displays some kind
of rendering of the content. As with the generator method,
this is written in the codebase and tagged using an annotation
(if the user does not wish to write a visualiser, they can use
an alternate method which displays the output of an in-game
camera). With these two methods, Danesh allows the user to
open the main Danesh window, generate content, and display
it on the screen. We currently do not support audio outputs,
but this is a point of future work.

With this information configured, the user can now load
Danesh and use the Generate tab, which lets them press buttons
to generate and view content (using the discovered annotated

[Generator]
public Tile[,] GenerateMap(){
//...

[Tunable(MinValue: 4, MaxValue: 8)]
public int mapWidth;

[Metric]
public static float Density(object _map){
//...

[Visualiser]
public Texture2D RenderMap(object _map){
//...

Fig. 3: An annotated generator, parameter, metric and visu-
aliser.

methods). This can be done in bulk or single-shot generation
runs. Figure 1 shows the main Danesh interface with the
Generate tab on the right-hand side.

B. Viewing and Editing Parameters

After viewing content, the next most fundamental feature
is editing inputs to the system. The user can annotate fields
in the codebase with the Tunable annotation to indicate
that a field is of interest as a parameter to the system. The
Tunable annotation also allows the user to provide a name
for the parameter, and a maximum and minimum value (if of
a numeric type). Although some parameters do not necessarily
have maximum or minimum values, some Danesh functions
require a capped range of values, and we also require limits in
order to display the parameter in the interface. We recommend
the user enters a range they believe will be interesting to
explore or, failing that, a range of values that is reasonable
for the parameter to take (for example, not exceeding the
maximum value seen for that parameter in the past).

Once Danesh finds a field marked with the Tunable
annotation, it creates a slider on the interface that allows the
user to directly edit the value of the field. Figure 1 shows this
basic interface, with sliders on the left panel.

C. Metrics

Many of the more complex analytical features in Danesh
require insight into the properties of generated content. In
order to obtain this information while also being agnostic to
what content is being generated, we ask users to define metrics,
functions that take a piece of content as an input, and return
a floating-point value in the range [0, 1] as output.

Metrics typically are defined to measure a property of the
output that is interesting to the user, and often one which is
related to inputs in an unclear way. For example, if a parameter
for a level generator directly affected the chance of spawning
treasure, then a metric for measuring the amount of treasure
in a level might not be that interesting – the user can intuit
this fairly easily from the value of the treasure parameter.
However, a metric that measures treasure ’safety’ – proximity

IEEE TRANSACTIONS ON GAMES 4

to enemies, traps or distance from the exit – might vary based
on other factors in the generative system, and thus be more
interesting to measure and visualise.

Danesh supplies several example metrics as part of its de-
fault installation, designed to work on the example generators
that are also supplied with it. These metrics can be easily
repurposed for common content generation tasks too (such as
two-dimensional grids). Expert users may have little trouble
identifying features of their content they wish to analyse and
writing metrics to describe them. However, this process is
harder for novice users, especially users who may not know
how to program – we discuss this in future work.

Danesh cannot assess the quality or suitability of metrics
defined by the user. For example, if a metric takes a long
time to compute, the overall performance of Danesh will
suffer. Similarly, if the calculation of a metric is affected by
randomness or noise, this might reduce the reliability of any
samples. We discuss in future work how we intend to improve
and automate some aspects of the process of defining metrics.

D. Cellular Automata Example

In order to illustrate different aspects of Danesh, throughout
this paper we use a simple cellular automata-based generator
which creates two-dimensional images that can be used to
represent game levels, art or other content. Our implementation
is based on [16]. We configured our implementation for inte-
gration with Danesh, including annotating its key parameters.
These parameters are abbreviated throughout the remainder of
this paper as ISC (Initial Solid Chance - the percentage chance
that a cell is solid at the start of the simulation); BL (Birth
Limit - the neighbour count for dead cells to become live); DL
(Death Limit - the neighbour count for live cells to become
dead).

This is one of the sample generators provided with Danesh.
We also include a chunk-based 2D level generator in the
style of Spelunky, and several maze generation algorithms. For
this paper we use the cellular automata system as a running
example for consistency.

IV. AUTOMATED ANALYSIS IN DANESH

In [8] Smith and Whitehead propose expressive range
analysis (ERA) as a way to analyse and visually represent
the distribution of a generator’s output. In Danesh we provide
a way to automate this process, allowing users to examine
generators through the lens of the metrics they supplied, and
observe how the expressive range changes as they change the
value of parameters.

When asked to perform an ERA, Danesh samples the
generator in question many times – 500 by default – and
records values for all metrics currently defined by the user.
The user can then request an ERA histogram for any two
metrics, which is generated dynamically by Danesh from the
gathered data. An example ERA from Danesh is shown in 4,
with the metric selection visible at the bottom of the screen.

An expressive range analysis provides the user with an
understanding of how the generative system behaves under
the current set of parameters. Danesh can also perform a

Fig. 4: An expressive range analysis in Danesh.

randomised expressive range analysis, or RERA, which pro-
vides the user with a wider picture of how the generative
system behaves across its parameter space. It does this by
performing an ERA with a much higher sample size (ten
times larger by default) and for each sample it randomises the
parameter settings between maximum and minimum values.
The resulting histograms provide a sense of the distribution of
outputs across all parameterisations. This can reveal surprising
areas of the parameter space, as well as indicate areas of the
metric space that are unreachable. If an RERA shows that an
area of two-dimensional metric space has no data points in,
it means that across all random parameter settings there were
no outputs with these metric values. This can suggest that
regardless of any parameter tweaking, the generator cannot
produce outputs with these metric values, which can be useful
information for someone attempting to obtain a particular
output from the generator.

Both ERA and RERA visualisations in Danesh are interac-
tive. If the user hovers their cursor over any datapoint, they
are shown an output from the sample that had these metric
values. This is useful because it allows the user to make sense
of distributions. Rather than simply knowing an outlier exists,
the user can see the output in question and understand what
makes it an outlier. In an RERA the user can click on a point
in the visualisation to set the current generator to the set of
parameters that produced this output. This makes RERAs a
useful exploratory tool, as the user can hover over points with
metric values they are interested in, see what the outputs look
like, and click to configure their generator to produce this
without adjusting parameters manually. This is a good example
of how Danesh helps shift the emphasis in interaction from
being focused on inputs (editing parameters and code) to being
focused on outputs (thinking about desired metrics and output
styles).

IEEE TRANSACTIONS ON GAMES 5

V. AUTOMATED PARAMETERISATION

ERAs help the user visualise the current behaviour of their
generator, and RERAs help explore the range of possible
outputs from a system. These are both useful tools for thinking
about a procedural generator in different terms, and by mak-
ing RERAs interactive they become useful exploratory tools
for seeing different points in a generator’s parameter space.
An individual point in an RERA is often unrepresentative,
however – after clicking on a point in the RERA, the user
may discover the parameterisation that produced that sample
behaves unexpectedly, such as a very high variance in output,
or an unexpected value in some other metric.

Some users have specific goals in mind for their generator,
and can express these goals clearly in terms of the metric
values they intend the output to have. These desired values,
interpreted as the average generator output, are equivalent
to the centroid of the expressive range analysis this desired
generator configuration would have, since the centroid of an
ERA describes the average metric value of a large sample of
generative outputs. In this example, the user is trying to find
a set of parameters that results in a generator whose ERA has
a centroid closest to a desired set of metric values.

This is a difficult problem to solve manually. ERAs can
show how a parameterisation is located in 2D metric space,
but they cannot help the user know what changes to make to
improve the result, because the impact of parameter alteration
is often nonlinear. Exploring through an RERA is also possi-
ble, by clicking on points that are near to the desired point in
metric space. However, this has two limitations: RERAs can
only be shown in two dimensions in Danesh, and the user may
have goals set in three or more metrics; and a sample in an
RERA is not representative of that parameterisation, and thus
is equally likely to be an outlier as it is to be near the centre.

To help overcome this, we have developed an automatic
parameterisation process, in which Danesh searches the pa-
rameter space in order to find a set of parameters whose
ERA centroid is as close as possible to a set of metric values
provided by the user. This process uses a hybrid of random
search and hill climbing: Danesh spends 5 seconds randomly
searching parameter settings, keeping the best results, and
then uses hill climbing seeded with the best output found
through random search. This process can be run for longer to
find better parameterisations. The process primarily scores a
parameterisation by the difference between its centroid and the
target metric scores, which means it does not take into account
the variance of a generator. This means that this process can
generate parameterisations with a very large distribution of
outputs, or with almost no variance whatsoever. Incorporating
a target variance into this process remains a point of future
work – although simple in principle, communicating this to
the user is a challenge. We describe this work on automated
parameterisation in greater depth, with additional experimen-
tation and comparisons with other search strategies, in [17].

VI. PARAMETER BEHAVIOUR ANALYSIS

The parameters that Danesh presents to a user are derived
from fields in the generator’s codebase, annotated as we de-
scribed earlier in this paper. Their existence is largely dictated

by the design and structure of the generative algorithm and
the rest of the game’s code, as well as being influenced by the
specific programming style of the person who implemented the
generator. This means that there is often not a clear connection
between a parameter’s value and the generated content, and
this connection can be even harder to intuit if the user of the
generator did not write the code.

To help mitigate these issues, we have developed new an-
alytical techniques that aim to provide a better understanding
of how a particular parameter behaves, and what the effect
of changing it is likely to have on the generator’s output.
Our aim is twofold: to provide more complex, deep analytical
techniques for the expert users who can make sense of them;
and to augment the understanding of novice users with subtle
additional information that does not require complex analysis.
We have developed two new analytical techniques: smoothness
analysis and codependence analysis. Each is useful on its own
as a way of investigating a generator’s behaviour, but they have
also enabled us to develop new kinds of interface features for
Danesh.

A. Smoothness

Smoothness analysis visualises how the value of a particular
metric function, m, changes as the value of a parameter, p,
varies between its minimum and maximum value. Figure 5
shows an example smoothness analysis for one of the example
generators supplied with Danesh which generates cave-like
maps using cellular automata. This example shows how the
metric Density changes as the value of the parameter ISC
changes. For each value of ISC (sampled at regular intervals
of 10% of the maximum value) we sample the generator 250
times and calculate the average metric value for the sample, as
well as the standard deviation. We then plot this information
on a graph, as shown in Figure 5.

As can be seen in this example, changing the value of
the parameter by the same interval can have very different
impacts on the chosen metric. Moving from 0.2 to 0.3, a shift
of 0.1, has a much smaller impact on the average density
than moving from 0.3 to 0.4. Similarly, changing the value of
the parameter past 0.5 has no effect on the metric at all. We
argue that by default, in the absence of any other information
about the system, a user would expect a parameter to exhibit
perfectly linear smoothness – that is, a straight-line graph with
gradient 1 passing through (0,0). Smoothness analyses show
how parameters deviate from this expectation, and specifically
which parts of their range this deviation occurs in and to what
degree.

B. Applications of Smoothness

Smoothness is another useful tool for generative systems
developers, allowing the user to focus on the relationship
between features of the inputs and outputs of a system.
However, in addition to being useful in isolation, smoothness
can be used by tools such as Danesh to automatically adjust
and augment their interfaces. We use smoothness analysis to
perform parameter smoothing, a process by which a param-
eter’s original input slider is replaced with a more natural

IEEE TRANSACTIONS ON GAMES 6

Fig. 5: A smoothness analysis, comparing the metric Density
against the parameter ISC for a cellular automata-based gen-
erator.

façade. Normally, a slider on Danesh’s interface represents
a linear range from the minimum and maximum value a
parameter can take. The slider represents a value, v, in the
range [0, 1] which sets the value of the parameter p to the
following value:

p = pmin + (pmax − pmin)× v

Where pmin and pmax represent the minimum and max-
imum values p can take, respectively. Parameter smoothing
replaces this slider with a smoothed slider relative to a single
metric, m. First, the system performs a smoothness analysis
of p against m. Let mmin and mmax be the minimum
and maximum value recorded for the metric m during the
smoothness analysis. Instead of the smoothed slider value, vs,
interpolating between the range of values p can take, it instead
interpolates between the possible metric values. That is, we
calculate the target metric value, mtgt, as follows:

mtgt = mmin + (mmax −mmin)× vs
We then record the corresponding parameter value for mtgt

in the smoothness analysis (i.e. we find the ptgt such that (ptgt,
mtgt) lies on the smoothness graph). We set the parameter p
to this value. This has the effect of setting the parameter value
based on the expectation of linear smoothness: moving 10%
along the slider always results in moving 10% along the range
of metric outputs, the user is simply unaware of the actual
impact on the parameter being edited. Figure 6 and 7 show
outputs from the cellular automata cave generator mentioned
earlier. In Figure 6, the outputs are from the unsmoothed
parameter slider, setting the parameter to one-quarter intervals.
Note how the caves are very fragmented at 50% slider value,
and completely solid by 75 %. In Figure 7 we see the same
slider values but for a smoothed slider. The 50% point on
the slider now represents a 50% point between maximum and
minimum density, and at 75% there is still a lot of open space.
The useful range of parameter values has been extended to take
up more of the slider’s range.

Currently, parameter smoothing can only be applied to
parameters whose smoothness is monotonically increasing

(a) 25% of range (b) 50% of range (c) 75% of range

Fig. 6: Results from three intervals across the range of an
unsmoothed parameter slider e.g. 25% represents a parameter
value 25% between minimum and maximum value.

(a) 25% of range (b) 50% of range (c) 75% of range

Fig. 7: Results from three intervals across the range of the
smoothed version of the slider shown in Figure 6.

or decreasing. In [18] we suggest that parameter smoothing
may be possible on non-monotonically smooth parameters
by partitioning the smoothness curve into segments, each of
which are either monotonically increasing or decreasing, and
smoothing each segment individually. We intend to pursue this
in the next major version of Danesh.

C. Codependence

Codependence is an extended form of smoothness analysis
that visualises the relationship between two parameters, p1
and p2, with respect to a metric, m. Smoothness analysis
attempts to resolve confusion arising out of unexpected be-
haviour when changing a parameter; whereas codependence
analysis attempts to solve another problem, in which a change
to one parameter causes a change in behaviour in another
parameter. To perform a codependency analysis, we perform
successive smoothness analyses of p1 with respect to m. For
each smoothness analysis, we vary the value of p2 between its
minimum and maximum values at regular intervals, similar to
how we vary the value of p1 in a regular smoothness analysis.
The result is a series of smoothness graphs which can be
plotted together as a 3D surface, as shown in Figure 8.

If two parameters are independent of one another, we expect
the codependence surface to exhibit symmetry along the axis
of p2. However, if the parameters are codependent on one
another, we will see a lack of symmetry. In Figure 8 we see
that the shape of the surface changes along both axes. This
means that as we change the value of BL, the smoothness of
DL changes, and vice versa. This is not necessarily an effect
that can be avoided. In this example, the two parameters are
intrinsically linked as part of the algorithm. Codependence
analysis allows us to see exactly how this link manifests,
however, and can also help us understand the nature of the

IEEE TRANSACTIONS ON GAMES 7

Fig. 8: A codependence analysis, comparing the metric Density
against the parameters BL and DL for a cellular automata-
based generator.

Fig. 9: Parameter sliders, highlighted with colours indicating
the effect of the change just made by the user.

linking. This can help generative systems designers understand
unusual relationships in their systems. For example, Figure 8
has diagonal symmetry, implying here that the Density metric
is related to the sum of the two parameters.

D. Applications of Codependence

In addition to being a useful form of analysis on its own,
codependence can also help us augment the tools we design,
similar to automatic parameter smoothing described earlier
in this section. In Danesh, we have prototyped automatic
codependence highlighting for parameters to warn the user
of the anticipated impact of changes they make. Figure 9
shows an example of automatic codependence highlighting in
Danesh’s interface.

As the user makes a change to a parameter, we measure
the difference between the smoothness of each parameter
before and after the change (i.e. we sample two slices from
the codependency analysis using the old and new parameter
values). We then recolour the name of each parameter based on
the distance between the two slices - redder colours indicating
a larger distance, and thus a larger expected shift in behaviour.
This gives users a way of anticipating how the behaviour of
their system changes as they interact with it, without exposing
them to the complexity of the raw analysis.

For more information on smoothness and codependency
analysis, with additional examples and discussion, see [18].

VII. AUTOMATED PARAMETER DISCOVERY

Earlier we described the initial setup of Danesh, which
normally involves annotating fields in the game’s codebase

so that they are recognised as parameters. These parameters
are then used by Danesh’s users, as well as being important
for some of Danesh’s more complex features like automatic
parameterisation.

From a user perspective, having to manually identify param-
eters poses a few potential problems. Recall that one of the
aims of this tool is to provide a powerful and intuitive way to
interact with procedural generators for non-programmers, or
for less experienced users who are working with code written
by a third party (e.g. open-source code found online, or a tool
written by a team member). In this instance, the user may find
it hard or impossible to know what fields need annotating.
At the same time, even experienced users who are working
with their own code may not be aware of all of the fields that
impact the generator’s output, and might benefit from a deeper
analysis of the generator.

To solve these problem, Danesh can perform an automated
parameter discovery process to identify fields which could
be used as parameters, and then integrate them into the tool
without needing manual annotation. This not only lowers the
barrier to entry for new users, but it can also provide surprising
discoveries and help foster a deeper understanding of the
system for expert users.

1) Parameter Assessment: Danesh performs parameter dis-
covery by searching through the entire codebase using C#’s
metaprogramming features to look for any accessible field (in
its current implementation it also ignores visibility modifiers,
such as private). We currently only consider fields which
have a numeric type (e.g. float, int) or a boolean type.
When a field is discovered through this search, Danesh per-
forms tests to assess whether it has an impact on the generator.

Before performing any assessment, we record a baseline for
the current behaviour of the generator. We perform a similar
process to that of an expressive range analysis: we sample
the generator 100 times, and for each Metric function m we
calculate the average value, m, and standard deviation, mφ, for
each defined Metric function. We also record the time taken
to calculate this sample, which we use later.

We then attempt to discover plausible upper and lower limits
for the parameter, by slowly growing limits out from a default
starting point. An interval value, δ, is initially defined based on
the field’s type: 1 for integer types, 0.1 for floating point types.
We then create two new variables, vu and vl, representing the
upper and lower bound of the field respectively, and initialise
them to the original parameter value.

We then repeat the following process: add δ to vu and set
the field’s value to the new value; calculate a new set of sample
outputs and calculate m and mφ for the generator’s new
configuration; record these values; increase the value of δ. We
repeat this process for a fixed number of iterations (currently
100 iterations by default) or until one of three early stopping
conditions are met. The first is any catchable exception is
thrown, this suggests the parameter has been set outside of
expected bounds. The second is that the time taken to generate
a sample exceeds ten times the original generation baseline,
this suggests it has exceeded the reasonable range intended for
the system. Finally, if the change in m between this value for
vu and the previous value is less than the standard deviation

IEEE TRANSACTIONS ON GAMES 8

for this sample, for all metrics, we consider it to have not
meaningfully changed, and terminate. That is, if:

|mnew −m| ≤ mφ

This process is repeated for vl as well, subtracting the δ
each iteration rather than adding it. Each iteration, the value
of δ is increased by 10 × (i + 1) where i is the current
number of passed iterations. Once both the upper and lower
bound searches have terminated, this gives us a maximum
range to set the parameters within. However, in the event of
early termination due to crashes or time penalties, the last
values for the bounds may not be valid (i.e. they may result in
crashes or excessive execution times). Therefore we perform
another round of search to find a good bounds value in the
range between the last and penultimate values for each bound.
Let vb be the bound value being finalised, and vp be the
penultimate value of the bound, that is the bound in the last-
but-one iteration. We repeatedly set vb =

vb+vp
2 and then retest

the new value of vb. If it causes a crash or exceeds the time
limit, we repeat the process until it passes both tests.

This provides us with a good estimation of the absolute
limits for the parameter, that both do not negatively affect the
procedural generator, while also ensuring they have a meaning-
ful impact on the procedural generator. We then present the
user with a final confirmation prompt. This allows the user
to rename the parameter (by default, we suggest the field’s
name) and they can also edit the upper and lower bounds if
they disagree with the discovered values. Once they confirm,
the parameter appears in the parameter list, as seen in fig. 1.

2) Preliminary Experimentation: In our tests, automatic
parameter discovery has managed to rediscover all of the
manually annotated parameters in our example generators.
It made several other suggestions which were not manually
tagged but made sense to modify (such as the dimensions
of the map for a maze generator), and in one case found
a parameter that surprised us. The surprising parameter was
attached to a world map generator based on the Diamond-
Square algorithm; Danesh suggested controlling a parameter
which governs the rate at which the algorithm executes and
terminates. We had not considered using this to customise
the generator, but by changing it to lower or higher values
it simulates a ‘camera zoom’ effect on the map, effectively
changing the resolution of the underlying random noise. This
shows how even in simple example generators this technique
can find unusual control affordances.

In terms of bounds estimation, Danesh is able to find safe
boundary values for parameters with a good confidence – in
our experiments on three generators with over a dozen expert-
configured parameter bounds, none of Danesh’s bounds esti-
mates resulted in crashes, slow processing or other undesirable
outputs. There are two weaknesses to the process which stand
out immediately, however. The first is that Danesh cannot
identify common-sense boundaries for parameters, such as
those with an implicit constraint of being greater than zero. In
many cases setting these parameters to a negative value does
not actually cause a crash, but is something that could never
actually happen in practice, and thus Danesh’s suggestions are

less useful. The second is that because we do not know how
many parameter candidates Danesh might find, we have tuned
the search to not spend too long on each bounds estimation,
which can result in Danesh not refining the bounds as much
in the second phase.

Despite these limitations, this feature works well for its
intended purpose, which is to provide the user with a set of
safe initial values while they investigate the affordances of a
newly-discovered parameter. An expert user will likely be able
to quickly set better values, while a less experienced user is
guaranteed that this range of values, although possibly esoteric,
will not crash the system and will provide varied output.

One limitation of the search process is that it is unaware of
side effects in the codebase. When Danesh tests a field to see
if it can be used as a parameter, it records the original value
and sets it back to this value after testing. However, during
the testing process it can potentially run the generator in a
configuration that the user did not expect, which can cause
values elsewhere within the generator to be updated. Consider
a simple example where there is a boolean which, if set to
true, causes some user data to be reset when the generator is
run. While this boolean can be set back to its original value,
the side effect of resetting the user data cannot be anticipated
or easily detected.

While most of these changes would be reset when Unity
is closed, they persist while Danesh is running and so will
affect future interactions with the tool until the program is shut
down and relaunched. These changes may be hard to detect,
especially for users unfamiliar with the codebase, and often
affect fields which are not surfaced by Unity’s user interface
which makes them hard to reset without a full relaunch of the
software. One of the reasons for this arises from how Unity
handles default values for objects. If an object exists in a game
scene in Unity, public fields in its scripts will be visible in the
tool and can have their default values changed. This overrides
any default values set in code. However, Danesh’s parameter
discover process can change the values of non-public fields.
Despite not being displayed in Unity’s interface, these changes
nevertheless exhibit the same kind of overriding behaviour,
which we believe is Unity detecting a change in the value and
persisting it even though the field is not displayed or editable
in the interface.

As a result, this feature has remained labelled as experimen-
tal. While we believe the fundamental technique is useful and
effective, it is not entirely reliable or safe to use in the current
environment. In the future we are considering a version of
Danesh that is disconnected from Unity, which would make it
easier to control which changes persist, as well as making it
easier to detect side effects during execution. We also plan to
test this feature on larger generators as part of more established
codebases, with many more parameters to test and evaluate.

VIII. LESSONS LEARNED

A. Platform Development

A crucial decision made early in Danesh’s development was
whether the software should be developed a standalone tool,
or as part of an existing platform (and if so, which one). An

IEEE TRANSACTIONS ON GAMES 9

important aim of ours was to support people across a wide
spectrum of abilities, and therefore embedding the tool in an
existing platform that was already well-known to students and
hobbyists made sense. We chose Unity over its competitors
(in particular, Unreal has grown in popularity over the last
few years) partly because it has a reputation for being used
by people new to game development, as well as for adjacent
domains like digital art projects, while Unreal and CryEngine
are seen as tools more exclusively targeting professional use.

There are several drawbacks to embedding the tool in an
existing platform. Despite its popularity, Unity is not used by
every game developer, and thus there are many people unable
to use Danesh in its current form. Developing the tool as a
standalone application would have made it more universal.
There are also stigmas associated with Unity (both from a
technical performance standpoint, and a consumer perception
of engine quality), although this is not a huge concern for us
as we are mostly targeting existing Unity users.

Using an existing platform had many advantages. Unity’s
built-in user interface API is relatively simple to use, and
allowed us to quickly prototype and iterate on Danesh’s
interface. Although the interface is not particularly nice to
look at, it is functional and smoothly integrates with Unity’s
existing toolset. Developing a plugin for Unity also allowed
us to distribute the plugin on Unity’s Asset Store, which
extended our reach far beyond simply advertising an open-
source project. For an academic project, however, there are
downsides to the asset store: while we initially received
favourable reviews for the tool, a new version of Unity was
released which caused Danesh to be incompatible. Despite
the compatible versions being clearly marked on the Asset
Store page, we nevertheless received complaints and negative
reviews for not updating the plugin fast enough. Without a
dedicated developer, it’s hard to guarantee support for a tool
like this, but this is an expectation many Asset Store users had
of anything listed online.

B. Generality and Usability

One of Danesh’s most important design tenets is that it is
agnostic to the type of content being generated, meaning it can
be adapted to work with generators working in any kind of
domain, as well as generative systems outside of videogames.
This was important to us because of the breadth of application
areas for generative software, and the biased focus on certain
types of content in procedural generation research. In order
for this generality to be possible, Danesh requires the user
to define parts of the system which require specific domain
knowledge. Chief among these are the visualisation code that
defines how a piece of content is displayed on the screen, and
the metrics that measure features of a piece of content, which
Danesh uses in almost all of its analytical processes.

This design choice provided Danesh with a huge amount of
flexibility and power, not only in terms of supporting any kind
of generative software, but also the flexibility to mix and match
this code, switching between visualisers for a generator, or
applying the same metrics to two different versions of a level
generator. This generality comes at the expense of usability,

however, because a novice user may not know how to write
a visualiser, or may not know what kind of features they are
most interested in as metrics. This was a significant drawback
for Danesh that limited its usefulness to non-programmers. In
particular, we viewed metric definition as part of the initial
setup and configuration process of using Danesh but for many
users, both expert and novice, this is actually an important part
of the process of understanding the procedural generator and
the designer’s goals. In the future we wish to do more work
developing this aspect of the tool, and making this part of the
process better guided.

IX. FUTURE DIRECTIONS FOR GENERATIVE ANALYSIS

A. Composite Procedural Content Generation
If a user is unhappy with the way their generator produces

content, the most common course of action taken is to adjust
the values of the parameters to change the distribution of
the generated content. This is a time-consuming task, and
one which Danesh was designed to alleviate, by developing
better visualisation and feedback for editing, as well as by
introducing automated techniques for searching the parameter
space.

This approach to designing procedural content generators
has drawbacks. It assumes the existence of a single parame-
terisation that satisfies all of the designer’s criteria, which may
not exist, particularly if it involves offering a large distribution
of content types with conflicting features (for example, a cave
generator that sometimes generates winding mazes, and other
times generates large arenas). Even with automatic search, it
may not be possible to satisfy designer goals.

It is also a very limited way of thinking about content
generation. Commonly in games, a content generation task is
solved by implementing a single procedural content generator
and always sampling from it. Games occasionally break from
this pattern - No Man’s Sky, for instance, provides different
template corpora to its generator based on the planet type,
so a very hostile creature will draw body components from a
different set of 3D models than a docile creature. This provides
higher-level variety – content is sampled not just from a single
distribution, but many distributions defined by the selected
corpus of source material.

We propose a generalisation of this approach, which we call
Composite Procedural Content Generation (CPCG), whereby
a procedural generator is modelled not as a single algorithm
but as a weighted sampling of many different generative
algorithms producing the same kind of content, which may
be parameterisations of the same generator, or different al-
gorithms altogether. Note this is different from orchestrating
generators producing different kinds of content [19]. Instead,
our aim is synthesise a new generative space as a union of
several existing generative subspaces.

A simple CPCG system would sample from several different
parameterisations of the same generator, with different prob-
abilities assigned to each paramaterisation. Danesh would be
able to show the ERA both of individual parameterisations,
as well as an ERA of the whole CPCG system, allowing the
user to inspect individual generative systems as well as the
distribution of the higher-level meta-generator.

IEEE TRANSACTIONS ON GAMES 10

B. Interactive Tool Configuration
A recurring piece of feedback for Danesh is the difficulty of

initially configuring the system. We have made many improve-
ments in this area, such as automatic parameter discovery and
automated metric searches. The definition of metrics, however,
is a particularly important part of using the tool, and the quality
of metrics depends on the user. Even in expert use cases, users
may not know what they are looking for, and the metrics they
write are limited by the properties of their content they are
currently considering.

We believe that an important aspect of future generative
assistance tools is in being able to help the user explore their
own needs and interested as part of using and configuring the
tool. This could mean, for example, being able to interactively
define metrics by identifying positive and negative examples
of a particular property and using machine learning approaches
to try and infer possible models for metrics from this. The use
of curious agents to explore the possibility space and identify
styles, clusters or interesting features will also help users come
to terms with the vast spaces and combinatorial complexity of
the generators they are working with.

Even for tools that are more specialised than Danesh,
perhaps focusing on a specific generative use-case such as
Ropossum, this kind of research is increasingly important.
As we described in the introduction when quoting Grant
Duncan, users are keen for more control and understanding
of generative systems. Tools like this must be able to teach
their users as they work, because each generative system is in
itself a new learning experience, with its own unique foibles
and eccentricities. As we stated earlier in this paper, one of
our goals with Danesh was to shift the user’s focus from
input parameters to thinking about outputs and the function of
the generator within a game or system. This can be achieved
through better visualisation and analysis, but also needs better
ways for the user to express intent and interest, too.

X. CONCLUSION

In this paper we describe the development of Danesh, a
tool for analysing procedural generators that plugs into the
popular Unity game development environment. We showed
how Danesh was designed to be as general as possible,
allowing it to be connected to a game’s codebase directy,
with customised visualisations, and user-written evaluatory
metrics. We described how we use this foundation to provide
rich analytical capabiltiies, including automated expressive
range analysis, interactive generative space search, interaction
smoothing and parameter discovery. These features show off a
range of techniques for working with generative systems, from
fully-automated to fully user-driven. All of these approaches
yield interesting results and lend themselves towards different
kinds of aims when using the software.

We also used this paper as an opportunity to reflect on the
development of the project for the first time. We discussed the
tradeoffs made in trying to build a tool that was as general
as possible while still being useful, and how our decision to
integrate with Unity worked.

Generative systems require a new and unusual way of
thinking about data, content and processes in order to get the

most out of them. Yet we lack good ways to communicate
and teach these ideas and modes of thinking, which means
that ideas like procedural generation often gain a reputation
for being obtuse, hard to learn and resistant to control. Many
things can be done to overcome these issues, but chief among
them is to build tools that help people access and explore
these ideas in a structured way, and without relying purely on
reading program code.

ACKNOWLEDGMENT

The first author was supported by the Royal Academy
of Engineering under the Research Fellowship scheme. Our
thanks to Jonatan Van Hove for his support of Danesh, and to
the reviewers for their insightful comments.

REFERENCES

[1] Interactive Data Visualisation, “Speedtree,” http://www.speedtree.com.
[2] P. Weir, “The sound of no man’s sky,” https://tinyurl.com/nmssound.
[3] Inkle, “Ink (language),” https://www.inklestudios.com/ink/.
[4] G. Duncan, “No man’s sky: How I learned to love procedural art,”

https://tinyurl.com/nmsartgdc.
[5] D. Saas, “No man’s sky evokes wonder through math,”

https://tinyurl.com/nmspress.
[6] G. Smith, J. Whitehead, and M. Mateas, “Tanagra: A mixed-initiative

level design tool,” in Proceedings of the Fifth International Conference
on the Foundations of Digital Games, 2010.

[7] A. Liapis, G. N. Yannakakis, and J. Togelius, “Sentient sketchbook:
Computer-aided game level authoring,” in Proceedings of the 8th Con-
ference on the Foundations of Digital Games, 2013.

[8] G. Smith and J. Whitehead, “Analyzing the expressive range of a level
generator,” in Proceedings of the FDG Workshop on Procedural Content
Generation in Games, 2010.

[9] G. Smith, J. Whitehead, M. Mateas, M. Treanor, J. March, and M. Cha,
“Launchpad: A rhythm-based level generator for 2-d platformers,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 3,
no. 1, 2011.

[10] A. Canossa and G. Smith, “Towards a procedural evaluation technique:
Metrics for level design,” in Proceedings of the 10th International
Conference on the Foundations of Digital Games, 2015.

[11] J. R. H. Mariño, W. M. P. Reis, and L. H. S. Lelis, “An empirical eval-
uation of evaluation metrics of procedurally generated mario levels,” in
Proceedings of the Eleventh AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, AIIDE, 2015.

[12] A. Summerville, “Expanding expressive range: Evaluation methodolo-
gies for procedural content generation,” in Proceedings of the Fourteenth
AAAI Conference on Artificial Intelligence and Interactive Digital En-
tertainment, AIIDE, 2018.

[13] A. Summerville, S. Snodgrass, M. Guzdial, C. Holmgrd, A. K. Hoover,
A. Isaksen, A. Nealen, and J. Togelius, “Procedural content generation
via machine learning (pcgml),” IEEE Transactions on Games, vol. 10,
no. 3, Sep. 2018.

[14] J. Zhu, A. Liapis, S. Risi, R. Bidarra, and G. M. Youngblood, “Explain-
able ai for designers: A human-centered perspective on mixed-initiative
co-creation,” in Proceedings of the IEEE Conference on Computational
Intelligence and Games, 2018.

[15] J. Xie, C. M. Myers, and J. Zhu, “Interactive visualizer to facilitate
game designers in understanding machine learning,” in Proceedings of
the CHI Conference on Human Factors in Computing Systems, 2019.

[16] M. Cook, “Generate random cave levels using cellular automata,”
https://tinyurl.com/cook-caves, 2013.

[17] M. Cook, J. Gow, and S. Colton, “Towards the automatic optimisation of
procedural content generators,” in Proceedings of the IEEE Conference
on Computational Intelligence in Games, 2016.

[18] M. Cook, J. Gow, G. Smith, and S. Colton, “General analytical tech-
niques for parameter-based procedural content generators,” in Proceed-
ings of the First IEEE Conference on Games, 2019.

[19] A. Liapis, G. N. Yannakakis, M. J. Nelson, M. Preuss, and R. Bidarra,
“Orchestrating game generation,” IEEE Transactions on Games, vol. 11,
no. 1, pp. 48–68, 2019.

