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 Abstract—Temporal difference (TD) learning and its variants, 

such as multistage TD (MS-TD) learning and temporal coherence 
(TC) learning, have been successfully applied to 2048. These 

methods rely on the stochasticity of the environment of 2048 for 

exploration. In this paper, we propose to employ optimistic 

initialization (OI) to encourage exploration for 2048, and 

empirically show that the learning quality is significantly 

improved. This approach optimistically initializes the feature 

weights to very large values. Since weights tend to be reduced once 

the states are visited, agents tend to explore those states which are 
unvisited or visited few times. Our experiments show that both TD 

and TC learning with OI significantly improve the performance. 

As a result, the network size required to achieve the same 

performance is significantly reduced. With additional tunings 

such as expectimax search, multistage learning, and tile-

downgrading technique, our design achieves the state-of-the-art 

performance, namely an average score of 625 377 and a rate of 

72% reaching 32768-tiles. In addition, for sufficiently large tests, 
65536-tiles are reached at a rate of 0.02%. 

 
Index Terms—2048, 𝒏-tuple network, optimistic initialization, 

reinforcement learning, stochastic puzzle games, temporal 

difference (TD) learning.  

I. INTRODUCTION 

048 is a single-player stochastic puzzle game introduced by 

Cirulli [1] as a variant of Threes! and 1024. This intriguing 

and even addictive game has been popular worldwide since it is 

non-trivial to master despite the simple rules [2], and has also 

attracted researchers to develop game-playing programs [3]. 

Due to its simplicity and complexity [4], 2048 is considered to 

be an interesting and challenging platform for evaluating the 

effectiveness of machine learning methods [5], [6], [7]. 

In the past, many methods were proposed for 2048. Szubert 

and Jaśkowski [2] applied the temporal difference (TD) 

learning with 𝑛 -tuple networks to 2048. In their approach, 

2048-tiles were achieved at a rate of 97%. Yeh et al. [3] 

introduced the multistage TD (MS-TD) learning which 

improved the training by separating an entire episode into 

several stages. Their 3-stage TD method reached 32768-tiles 

with a rate of 31.75% and even achieved the first-ever 65536-

tile. Matsuzaki [8] presented a systematic analysis on 𝑛-tuples, 

identified some best configurations of 8×6-tuples and 

8×7-tuples. Jaśkowski [5] improved the performance with 

temporal coherence (TC) learning, which accelerated the 

convergence of the training by adaptively reducing the learning 
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rate. They reached state-of-the-art (SOTA) results as follows. 

The 32768-tiles reaching rate was even improved up to 70%, by 

using a 16-stage TC method with one second per move. 

Although various methods have been continually proposed 

and improved, these TD methods for 2048, however, were still 

based on the greedy policy [9] to deterministically choose 

actions with maximum estimations, and thus relied on the 

stochastic environment to provide enough randomness for 

exploration. In addition, it is observed that TD learning tends 

not to reach large tiles when training is saturated in terms of the 

average score, namely when the average score increases to 

nearly the highest [3], [10]. This reflects a potential problem of 

exploration deficiency. On the other hand, recent works [3], [8], 

[11] tended to employ larger 𝑛 -tuple networks for higher 

performance. Hence, as the networks become larger, the issue 

of exploration deficiency becomes non-negligible. Moreover, 

in addition to the size of the network, the learning rate is another 

factor related to exploration deficiency. TC learning effectively 

improved the performance but converged rather fast [5], [12], 

possibly resulting in less exploration. Researchers [2], [5] 

noticed the exploration issue and tried some exploration 

mechanisms such as 𝜖-greedy and softmax, but neither worked 

for 2048 according to their reports. Thus, it was simply assumed 

that the stochastic environment provided enough randomness, 

and left the efficient exploration for 2048 as an open question. 

In this paper, we propose to use optimistic initialization (OI) 

to improve the TD methods for 2048. The approach is to 

optimistically initialize feature weights to large values in order 

to encourage exploration [9], [13]. Namely, those feature 

weights rarely adjusted or visited tend to be high, and therefore 

the value adjustments are often negative, i.e., these weights tend 

to be reduced. Thus, agents tend to explore the less visited states 

next time. All feature weights eventually converge after 

sufficient visits. 

Our experiments show that both TD and TC learning with OI 

significantly improve the performance. With additional tunings 

such as expectimax search, multistage learning, and tile-

downgrading technique, our design outperforms the previous 

SOTA results [5] and achieves new SOTA performance, 

namely an average score of 625 377 and a rate of 72% reaching 

32768-tiles. Even more, our method requires only 20% of 

network weights compared with the previous SOTA method. In 

addition, for sufficiently large tests, 65536-tiles are reached at 
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a rate of 0.02%. 

The paper is organized as follows. Section II reviews the 

rules and the related techniques for 2048. Section III introduces 

the optimistic initialization and the optimistic methods for 

2048. Section IV conducts experiments and analyses of the 

optimistic methods. Section V discusses potentially related 

techniques with directions of possible future research. Section 

VI summarizes the results and makes concluding remarks. 

II. BACKGROUND 

In this section, the game of 2048 as well as its related 

methods and techniques are introduced. Section II-A introduces 

the rules. Section II-B, II-C, and II-D review the foundations 

and implementations of TD methods. Section II-E reviews the 

𝑛-tuple networks. Section II-F reviews the tree search. 

A. Rules of 2048 

2048 is a single-player stochastic slide-and-merge puzzle 

game with the objective of sliding the puzzle to merge small 

tiles into large tiles to create a 2048-tile. The game is played on 

a puzzle with 4×4 cells, starting with two randomly placed tiles. 

Cells on the puzzle are either empty cells or tiles numbered with 

powers of 2, such as 2-tiles, 4-tiles, 65536-tiles. 

Whenever the player slides the puzzle by choosing a 

direction from up, down, left, and right, all tiles will be moved 

in the chosen direction as far as possible, i.e., until they reach 

either the border or another tile [2]. Illustrations are shown in 

Fig. 1, such as sliding up from (a) to (b), and sliding left from 

(c) to (d). Upon sliding the puzzle, two adjacent tiles with the 

same value in the chosen direction, say both 𝑣-tiles, will be 

merged into a single 2𝑣-tile. The player receives 2𝑣 points as 

the reward of merging. 

After the player slides the puzzle and merges the tiles, the 

environment randomly adds a new tile on an empty cell as in 

Fig. 1 (c) from (b). The newly added tile is either a 2-tile or a 

4-tile, with probabilities of 0.9 or 0.1 respectively [2]. Then the 

player continues to slide the puzzle, repeating the above process 

until there is no possible direction to move. The player wins the 

game if a 2048-tile is created, but the game can continue until 

there is no available sliding direction. The final score of a game 

is the total cumulative rewards of merging tiles. 

B. Reinforcement Learning 

Reinforcement learning (RL) is a machine learning method 

that trains an agent how to respond to an environment with an 

objective of maximizing the total outcome [9]. The agent 

continuously interacts with the environment by performing the 

actions to the current state, and the environment responds by 

providing the corresponding rewards and the new states. 

Markov decision process (MDP) is a mathematical 

framework for decision-making problems, which is commonly 

used in reinforcement learning [9]. An MDP is constructed by 

〈𝒮, 𝒜,𝒫,ℛ〉, where 𝒮 is the finite set of states; 𝒜 is the finite 

set of actions of the state; 𝒫 ∶  𝒮 ×𝒜 → 𝒮 is the state transition 

function; and ℛ ∶  𝒮 ×𝒜 → ℝ  is the immediate reward 

function. The MDP models problems of how an agent interacts 

with the environment through a sequence of actions with 

respect to states and rewards. An episode is a sequence of states 

and actions starting from the beginning till the end.  

The game of 2048 can be well modeled as an MDP, in which 

the player is considered as an agent who takes actions to the 

states and receives rewards from the environment. For example, 

the puzzles illustrated in Fig. 1 (a), (b), (c), (d) can be expressed 

as 𝑠𝑡, 𝑠𝑡
′, 𝑠𝑡+1, 𝑠𝑡+1

′  respectively, in an episode from 𝑠0 to 𝑠𝑇, as 

follows.  
  

𝑠0⋯ ⇢ 𝑠𝑡
    𝑎𝑡    
→   
    𝑟𝑡    

𝑠𝑡
′⇢ 𝑠𝑡+1

    𝑎𝑡+1    
→     
    𝑟𝑡+1    

𝑠𝑡+1
′ ⇢ ⋯𝑠𝑇 (1) 

  

The episode starts with an initial state 𝑠0 ∈ 𝒮. At steps 𝑡, the 

agent performs actions 𝑎𝑡 ∈ 𝒜(𝑠𝑡)  on states 𝑠𝑡 ∈ 𝒮  to 

transform 𝑠𝑡  into afterstates 𝑠𝑡
′ = 𝜓(𝑠𝑡 , 𝑎𝑡) , where 𝜓  is a 

transition function from states to afterstates, i.e., slides the 

puzzle. The environment responds rewards 𝑟𝑡 = ℛ(𝑠𝑡 , 𝑎𝑡), and 

then changes 𝑠𝑡
′ to next states 𝑠𝑡+1 ∼ 𝒫(𝑠𝑡

′, 𝑠𝑡+1), i.e., adds a 

new tile. This process repeats until a terminal state 𝑠𝑇 ∈ 𝒮 that 

𝒜(𝑠𝑇) = ∅ is reached, where 𝑇 refers to the end of the episode.  

The objective of the problem of MDPs is to find a policy 𝜋 

that decides which action to take for any given state, and 

maximizes the cumulative rewards [9]. The state value function 

is defined as 𝑉(𝑠𝑡) = 𝔼[𝑟𝑡 + 𝑟𝑡+1 +⋯]. Therefore, the policy 

𝜋 ∶  𝒮 → 𝒜 can be derived from the function as  
  

𝜋(𝑠𝑡) = argmax𝑎𝑡(𝑟𝑡 +∑ 𝒫(𝑠𝑡
′, 𝑠𝑡+1)𝑉(𝑠𝑡+1)∀𝑠𝑡+1 ), (2) 

  

where 𝑎𝑡 ∈ 𝒜(𝑠𝑡) and 𝑠𝑡
′ = 𝜓(𝑠𝑡, 𝑎𝑡) 

C. Temporal Difference Learning 

Temporal difference (TD) learning is a kind of reinforcement 

learning method that adjusts the state estimations based in part 

on other learned estimations [9]. This method has been widely 

applied to many game-playing programs [14]–[21], and was 

first applied to 2048 by Szubert and Jaśkowski [2], resulting in 

the first-ever TD-based program that can reach 2048-tiles. 

TD(0) is the simplest form of TD learning that adjusts the 

estimation with only one subsequent reward and estimation [9]. 

After the agent performs an action and receives a reward 𝑟𝑡, the 

environment will provide the next state 𝑠𝑡+1  whose value is 

𝑉(𝑠𝑡+1). Thus, 𝑟𝑡 + 𝑉(𝑠𝑡+1), known as the TD target, is an 

estimation of 𝑉(𝑠𝑡) . Therefore, the estimation error for 𝑠𝑡 , 

called the TD error, is calculated as 
  

 

 
Fig. 1.  A segment of a gameplay episode of 2048. The player first slides the 

puzzle up in (a), merging some tiles and receiving 76 points to (b). After the 

environment generates a new tile from (b) to (c), the player continues to play 

by sliding the puzzle left from (c) to (d) with receiving 16 points. 
 
 

(a) (b) 

(c) (d) 
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𝛿𝑡 = 𝑟𝑡 + 𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡). (3) 
  

Note that in [9] 𝑉(𝑠𝑡+1) is weighted by a discount factor that is 

disregarded for simplicity. Then, the estimation of 𝑠𝑡, 𝑉(𝑠𝑡), is 

adjusted with the TD error and the learning rate parameter 𝛼 as  
  

𝑉(𝑠𝑡) ← 𝑉(𝑠𝑡) + 𝛼𝛿𝑡 . (4) 
  

TD(0) adjusts the estimation at the current step based on the 

current reward and the next estimation. Its general form, 𝑛-step 

TD, adjusts the estimation based on 𝑛 subsequent rewards and 

a more distant estimation [9]. Furthermore, 𝑛-step TD can be 

generalized to TD(𝜆 ), which adjusts the current estimation 

based on all subsequent estimations [9], [22]. However, 𝑛-step 

TD and TD(𝜆) are not used in this paper for simplicity.  

The above learning framework is to evaluate the state values, 

i.e., 𝑉(𝑠𝑡). However, from the perspective of taking actions, it 

is more efficient for 2048 to evaluate the afterstate values, i.e., 

𝑉(𝑠𝑡
′), instead, called the afterstate learning framework [2], [5]. 

With afterstate values, the policy function can be more efficient 

than that in (2), as described as follows.  
  

𝜋(𝑠𝑡) = argmax𝑎𝑡(𝑟𝑡 + 𝑉(𝑠𝑡
′)). (5) 

  

Similarly, the TD error is then calculated as 
  

𝛿𝑡 = 𝑟𝑡+1+ 𝑉(𝑠𝑡+1
′ ) − 𝑉(𝑠𝑡

′). (6) 
  

Depending on the order of adjusting afterstate values within 

an episode, forward update and backward update are both 

common implementations [23], [24], in which the performance 

of using the latter can be slightly better. In addition, Q-learning 

can also be employed to 2048. However, for 2048 programs 

with 𝑛 -tuple networks, a Q-learning implementation is 

complicated, and its performance is significantly worse than TD 

learning [2], so it has not been widely used. 

D. Advanced TD Methods 

Multistage temporal difference (MS-TD) learning proposed 

by Yeh et al.  [3] is a kind of hierarchical TD learning [25] that 

divides the entire episode into multiple stages, in which each 

stage has an independent value function, used in [3], [5], [10], 

[26]. MS-TD learning improves the performance at the cost of 

additional storage for stages. The work [3] applied this method 

with 3-stage to 2048 and obtained the first-ever 65536-tile. 

Temporal coherence (TC) learning proposed for 2048 by 

Jaśkowski [5] is a TD variant with adaptive learning rates [12]. 

Instead of adjusting the learning rate 𝛼  directly, this method 

introduces new parameters 𝛽𝑖 for the 𝑖th feature weight, denoted 

by 𝜃𝑖, to modulate the adjustments as 
  

𝜃𝑖 ← 𝜃𝑖 + 𝛼𝛽𝑖𝛿𝑡 . (7) 
  

𝛽𝑖 represents the coherence of 𝜃𝑖, and is calculated from two 

parameters 𝐸𝑖 and 𝐴𝑖 for each weight, as 
  

𝛽𝑖 = {
|𝐸𝑖| 𝐴𝑖⁄ , if 𝐴𝑖 ≠ 0

1, otherwise.
 (8) 

  

Both 𝐸𝑖 and 𝐴𝑖 are initialized with 0 and adjusted by 
  

𝐸𝑖 ← 𝐸𝑖 + 𝛿𝑡  and 𝐴𝑖 ← 𝐴𝑖 + |𝛿𝑡|. (9) 
  

Therefore, the amount of adjustment is automatically reduced 

by coherence 𝛽𝑖. TC learning is an effective learning rate decay 

method with an overhead of triple required memory. This 

technique can be integrated with MS-TD, e.g., a 16-stage TC 

method was able to achieve 609 104 points and a 70% chance 

of reaching 32768-tiles on average [5]. 

E. 𝑁-tuple Networks 

A straightforward method to estimate state values 𝑉(𝑠) is to 

use a tabular implementation for the whole state space. 

However, the state space requires 18(4×4) for 2048, too large to 

be implemented. Therefore, a function approximator is applied 

in practice. 𝑁-tuple network is a function approximator that has 

been successfully applied to applications such as Connect4 

[20], Othello [21], pattern recognition [27], as well as 2048 [2], 

[3], [5], [8].  

For 𝑛-tuple networks for 2048, an 𝑛-tuple 𝜙 is a sequence of 

distinct features, each representing a tuple of 𝑛 designated cells 

on the puzzle. For example, let 𝜙R1 be a 4-tuple that denotes 

features from the first row. For a puzzle 𝑠, say the one in Fig. 1 

(a), a feature 𝜙R1(𝑠) refers to (32, 2, 0, 0). Similarly, for 𝑠 ′, say 

the one in Fig. 1 (b), a feature 𝜙R1(𝑠
′) refers to (64, 4, 16, 2). 

An 𝑛-tuple network is an implementation for a set of weights 

of 𝑛-tuple features. In order to access these feature weights, let 

𝜙 be an 𝑛-tuple associated with a lookup table LUT in which 

the feature weight of 𝜙(𝑠) is stored at a distinct LUT[𝜙(𝑠)]. An 

illustration of the implementation for 𝜙R1 is as follows. The 

lookup table LUTR1 for 𝜙R1 needs to contain 𝑐4 distinct feature 

weights, since 𝜙R1 consists of 4 cells, each with 𝑐 distinct cell 

values. Intrinsically, 𝑐 is 18, i.e., from empty cell to 131072-

tile, but is usually set to 16 or 17 for efficiency, since 65536-tile 

and 131072-tile are rarely obtained.  

In this paper, we define an 𝑚×𝑛 -tuple network to be 𝑚 

different 𝑛-tuples 𝜙1 , … , 𝜙𝑚 with their corresponding lookup 

tables LUT1, … , LUT𝑚 . Given a state 𝑠 , the state value 

estimation 𝑉(𝑠), is calculated by summing all of the 𝑚 feature 

weights LUT𝑖[𝜙𝑖(𝑠)] of state 𝑠 as  
  

𝑉(𝑠) = ∑ LUT𝑖[𝜙𝑖(𝑠)]
𝑚
𝑖=1 . (10) 

  

When adjusting a state estimation 𝑉(𝑠) by a TD error 𝛿, the 

adjustment is equally distributed to 𝑚 feature weights of state 

𝑠. Equation (11) shows how 𝛿 is distributed to a feature weight 

LUT𝑖[𝜙𝑖(𝑠)] in terms of TD(0) with learning rate 𝛼: 
  

LUT𝑖[𝜙𝑖(𝑠)] ← LUT𝑖[𝜙𝑖(𝑠)]+ (𝛼 𝑚⁄ )𝛿. (11) 
  

Note that only the 𝑚 feature weights corresponding to state 𝑠 
need to be adjusted, with the same adjustment (𝛼 𝑚⁄ )𝛿. 

For 2048, symmetric sampling is a widely used technique that 

shares feature weights of tuples eight times by rotating and 

mirroring [2], [3], [5], [8]. A symmetrically sampled 𝑚×𝑛-tuple 

network involves 8𝑚  𝑛 -tuples actually, which improves the 

overall performance without additional lookup tables. For 

example, let 𝜙R1′  be a 4-tuple produced by rotating 𝜙R1 

counterclockwise, then, its feature 𝜙R1′(𝑠) is (16, 8, 32, 32). 

Both 𝜙R1 and 𝜙R1′  share the same lookup table LUTR1 . Note 

that an 𝑚×𝑛-tuple network refers to a symmetrically sampled 

𝑚×𝑛-tuple network in the rest of this paper for simplicity. 

Designing an effective 𝑚×𝑛-tuple network is not trivial, and 
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has been investigated as a research topic for 2048 [2], [3], [8], 

[11]. Fig. 2 (a), (b), (d), and (e) illustrate the 4×6-tuple network 

proposed by Yeh et al. [3], [10]; all 5 6-tuples illustrate the 

5×6-tuple network used by Jaśkowski [5]. Fig. 3 illustrates a 

full set of 6-tuples proposed by Matsuzaki [8], where the best 

𝑘×6-tuple network consists of the first 𝑘 listed 6-tuples, e.g., 

the 8×6-tuple network contains all from Fig. 3 (a) to (h).  

F. Expectimax Search 

Expectimax search is a technique for stochastic games whose 

game tree is composed of max nodes and chance nodes [28]–

[30], corresponding to states and afterstates respectively. 

Namely, a max node of state 𝑠𝑡 searches all its afterstates 𝑠𝑡
′ to 

find the best action; and a chance node of afterstate 𝑠𝑡
′  is 

evaluated based on either the expected value of next states, or 

the TD value 𝑉(𝑠𝑡
′) when the ply limit is reached. For 2048 with 

afterstate learning framework, a 𝑝-ply fixed-depth search tree 

has at most 𝑝 layers of chance nodes. 

To avoid redundant search, the search is usually integrated 

with a transposition table, which caches the previously seen 

states and associated values. A transposition table for 2048 is 

implemented using hashing techniques such as Zobrist hashing 

[31], [32] and MurmurHash [33], [34]. 

III. OPTIMISTIC METHODS 

In this section, optimistic methods for 2048 are introduced. 

Section III-A reviews the potential problems of insufficient 

exploration in previous works. Sections III-B and III-C present 

TD learning with optimistic initialization for 2048. Finally, 

Section III-D describes how to determine initial values and use 

them in 𝑛-tuple networks. 

A. Insufficient Exploration 

In reinforcement learning, the exploration-exploitation 

dilemma and has been intensively studied by researchers for 

decades [9], [13], [35]. Many methods, including UCB, 

𝜖 -greedy, softmax, as well as optimistic initialization, are 

proposed to balance between exploration and exploitation [36] 

for better learning performance. 

Most previous RL related works for 2048 [2], [3], [5], [6], 

[8], [10], [11], [23], [26] are based on simple TD method or 

some of its variant. Among these works, the agents simply 

follow the greedy policy with respect to the estimations, i.e., 

always select an action with maximum value during training. 

Past works [2], [5] have already noticed this issue, and have 

tried some explicit exploration techniques such as ϵ-greedy and 

softmax. However, they did not succeed to have these 

techniques work for 2048. As a result, these TD methods 

involve no explicit exploration to choose actions and fully rely 

on the stochasticity of the environment for exploration.  

For example, MS-TD learning is proposed to cope with the 

issue that TD learning tends not to reach large tiles [3], [10]. 

MS-TD learning improves performance by employing 

additional networks, while the issue of potential exploration 

deficiency of each stage remains not addressed. Another 

effective technique is TC learning, which reduces weight 

adjustments to automatically accelerate network convergence 

[5]. This approach is not for improving exploration, but for 

improving exploitation with fast convergence. However, fast 

convergence exacerbates the exploration issue, especially when 

applying a large 𝑛-tuple network.  

B. Optimistic Initialization 

Optimistic initialization (OI) is an approach that employs 

optimistic initial estimations to encourage exploration [9], [13]. 

This approach has been widely applied to RL applications, and 

is considered to have good convergence in practice [9].  Instead 

of setting the estimations to zero or random, the technique 

optimistically initializes them to a large value to encourage the 

agent to explore. Due to the large value, the estimations tend to 

be reduced once the corresponding states are visited, therefore 

leading an agent to select unexplored or rarely explored actions 

the next time when it revisits the same state. This process 

repeats until all the actions are sufficiently explored, even if the 

greedy policy is always applied during the training.  

The estimations will eventually converge and may even 

converge to a near-optimal policy when the initial value is set 

sufficiently large [35], [37], namely, the upper bound of the 

value function. Thus, the learning algorithm needs to explore 

unvisited or rarely visited states and reduce the corresponding 

estimations before exploiting the best one [38]. Therefore, OI 

may significantly increase the training time in exchange for 

encouraging exploration. 

C. Optimistic TD Methods 

Past research summarized that non-greedy behaviors, e.g., 

𝜖-greedy, significantly inhibit the learning performance [2], [5]. 

In this paper, we propose to use OI as an exploration mechanism 

for 2048. The proposed OI methods perform exploration while 

conserving the greedy behavior, therefore mitigating the 

previous inhibition phenomenon. In addition, since the explicit 

exploration technique is independent of some existing learning 

methods such as multistage and TC learning, OI can be easily 

applied together with these methods. 

In this paper, the first objective is to improve the existing TD 

and TC methods for 2048 by using OI, which forms the 

optimistic TD (OTD) and the optimistic TC (OTC) learning, 

 

 
  (a) (b) (c) (d) (e) 

Fig. 2.  The 4×6-tuple network proposed by Yeh et al. [3]: (a), (b), (d), and (e); 

and the 5×6-tuple network used by Jaśkowski [5]: (a)–(e).  
 

 
 (a) (b) (c) (d) 

 
 (e) (f) (g) (h) 

Fig. 3.  The 8×6-tuple network proposed by Matsuzaki [8]: (a)–(h).  
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respectively. Second, we propose a two-phase optimistic 

method, called OTD+TC learning, a hybrid learning paradigm 

that combines the advantages of both methods. OTD+TC 

learning first performs TD learning with a fixed learning rate to 

further encourage exploration for a while, and then, in the 

second phase, continues with TC fine-tuning for exploitation. 

When compared to TD or TC, OTD+TC learning includes 

two new hyperparameters, 𝑉𝑖𝑛𝑖𝑡  and 𝑃𝑇𝐶 : 𝑉𝑖𝑛𝑖𝑡  is the initial 

value of the function approximator; and 𝑃𝑇𝐶 is the proportion of 

TC fine-tuning phase to the total phases. If 𝑉𝑖𝑛𝑖𝑡 is set to 0, 

OTD+TC becomes non-optimistic. If 𝑃𝑇𝐶  is set to 0% (or 

100%), OTD+TC becomes pure OTD (or OTC). 

D. Initial Values for OI 

Based on the proof of the optimistic Q-learning in [37], the 

initial value 𝑉𝑖𝑛𝑖𝑡 should be set to the theoretical maximum to 

ensure that the network converges to a near-optimal policy. 

However, the theoretical maximum for 2048 is an extremely 

large number that is nearly impossible to obtain. Using such a 

large 𝑉𝑖𝑛𝑖𝑡 wastes too much time, it is non-trivial to choose 𝑉𝑖𝑛𝑖𝑡 
such that training result and training time are balanced.  

In this paper, the initial value 𝑉𝑖𝑛𝑖𝑡 is chosen as illustrated as 

follows. Consider using an 𝑚×𝑛 -tuple network for training 

with non-optimistic TD learning, and set 𝑉𝑖𝑛𝑖𝑡  an estimated 

average score. To initialize the network feature weights, we 

evenly distribute the value 𝑉𝑖𝑛𝑖𝑡 over these feature weights as 
  

LUT[𝑖] ← 𝑉𝑖𝑛𝑖𝑡/𝑚 for all 𝑖. (12) 
  

IV. EXPERIMENTS 

In this section, experiments are presented to analyze the 

effectiveness of optimistic TD learning for 2048. Common 

training settings are described as follows. For convergence, 

each 𝑛-tuple network was trained with 100M episodes by using 

the afterstate learning framework. The learning performance 

was evaluated every 1M training episodes, and each 

performance evaluation consists of 100k testing episodes. For 

statistics, each method was trained with five runs, each with one 

individual trained network with a different initial random seed. 

The experiments were performed on workstations with Intel 

Xeon E5 processors. To speed up the training process, 20 

threads lock-free optimistic parallelism was applied as in [5]. 

Specific settings will be described in each experiment below. 

The results are presented in tables and figures in which each 

value represents the average of five trained networks. For all 

tables (e.g., Table I), a value indicates the average result after 

100M training episodes and is accomplished with the 95% 

confidence interval. For all figures (e.g., Fig. 4), a point at time 

𝑡 indicates the average result after 𝑡M training episodes.  

The experiments are organized as follows. Section IV-A 

analyzes the effectiveness of initial values on OTD and OTC 

learning. Section IV-B analyzes OTD+TC learning with 

different fine-tuning proportions on networks of different sizes. 

Section IV-C further improves the performance by fine-tuning 

with other techniques for OTD+TC learning. 

A. OTD and OTC Learning 

In order to demonstrate the effectiveness of OI and obtain an 

appropriate initial value, we analyze how OTD and OTC 

learning perform with various initial values. Two different 

𝑛-tuple networks, Yeh’s 4×6-tuple (Fig. 2) and Matsuzaki’s 

8×6-tuple (Fig. 3), were used. Based on their average scores 

with non-optimistic TD learning, we test the initial value 𝑉𝑖𝑛𝑖𝑡 
to 0, 40k, 80k, 160k, 320k, 640k, respectively. For OTD 

learning, the learning rate 𝛼  was initially set to 0.1 and was 

reduced to 0.01 and 0.001 after completing 50% and 75% of 

training; for OTC learning, a larger initial learning rate is 

required, so 𝛼 was set to 1.0 without manual decay as in [5]. 

The results are organized as follows. OTD and OTC learning 

for the 4×6-tuple will be discussed first, and then followed by 

OTD and OTC learning for the 8×6-tuple.  

 

TABLE I 

PERFORMANCE OF OTD METHODS IN THE 4×6-TUPLE NETWORK 

𝑉𝑖𝑛𝑖𝑡  Average Score 8192 [%] 16384 [%] 32768 [%] 

0 251 920 ± 11 217 92.87 ± 0.90% 65.23 ± 2.86% 0.00 ± 0.00% 

40k 254 784 ± 13 034 93.20 ± 1.08% 65.89 ± 3.60% 0.00 ± 0.00% 

80k 253 393 ± 11 732 92.52 ± 1.13% 65.25 ± 3.35% 0.00 ± 0.00% 

160k 244 875 ± 10 590 91.40 ± 1.41% 62.29 ± 3.27% 0.00 ± 0.00% 

320k 239 075 ± 14 781 89.68 ± 2.11% 59.73 ± 5.00% 0.00 ± 0.00% 

640k 228 032 ± 1056 87.64 ± 0.44% 55.63 ± 0.48% 0.00 ± 0.00% 
 

TABLE II 

PERFORMANCE OF OTC METHODS IN THE 4×6-TUPLE NETWORK  

𝑉𝑖𝑛𝑖𝑡  Average Score 8192 [%] 16384 [%] 32768 [%] 

0 265 481 ± 3318 93.36 ± 1.07% 68.33 ± 0.52% 0.00 ± 0.00% 

40k 263 284 ± 2445 93.68 ± 0.32% 66.72 ± 1.79% 0.00 ± 0.00% 

80k 265 703 ± 2471 93.60 ± 0.26% 67.93 ± 1.49% 0.00 ± 0.00% 

160k 264 058 ± 1412 93.24 ± 0.28% 67.47 ± 0.35% 0.00 ± 0.00% 

320k 280 281 ± 5267 93.11 ± 0.53% 67.83 ± 1.50% 5.30 ± 0.58% 

640k 252 254 ± 6836 89.18 ± 1.48% 60.22 ± 1.98% 3.25 ± 0.38% 
 
 
 

 

 
Fig. 4.  Average scores of OTC methods in the 4×6-tuple network.  
 

 

Fig. 5.  Maximum scores of OTC methods in the 4×6-tuple network.  
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For the 4×6-tuple network, OTD learning did not obviously 

improve the learning quality, as shown in Table I. On the other 

hand, OTC learning significantly improved the performance, 

especially for the reaching rate of 32768-tiles. As the results 

summarized in Table II and Fig. 4, OTC with 320k 

outperformed non-optimistic TC (𝑉𝑖𝑛𝑖𝑡 = 0), and even achieved 

a rate of 5.30% reaching 32768-tiles, which is the first-ever 

reaching rate with such a 1-stage network. As shown in Fig. 5, 

many methods reached maximum scores around 385 000. This 

implicitly indicates to achieve states with 16384-tile, 8192-tile, 

4096-tile, and 2048-tile. Note that a method can continue to 

obtain much more scores if a 32768-tile is reached. Only OTC 

with 320k and 640k provided enough exploration to achieve 

32760-tiles. Interestingly, as shown in Fig. 4, OTC with 640k 

reached 32768-tiles earlier than OTC with 320k, but eventually 

ended at a worse average score. In general, a large 𝑉𝑖𝑛𝑖𝑡 needs 

more time to converge. Our conjecture is that 640k is too large 

to converge. Thus, we prefer 320k for obtaining higher average 

scores. 

For the 8×6-tuple network, in contrast to the 4×6-tuple, OTD 

learning significantly improves the performance. As shown in 

Table III and Fig. 6, networks initialized with appropriate 

values (80k ≤ 𝑉𝑖𝑛𝑖𝑡 < 640k) achieved higher scores, and even 

reached 32768-tiles well, especially for 𝑉𝑖𝑛𝑖𝑡 = 160k and 320k. 

As shown in Fig. 7, networks trained with low exploration (𝑉𝑖𝑛𝑖𝑡 
< 80k) still stuck at the barrier of 32768-tiles; and networks 

trained with 640k still did not converge. On the other hand, the 

results of OTC learning are summarized in Table IV. OTC 

learning also performed well, but its performance was slightly 

worse than OTD for the 8×6-tuple network. Interestingly, for 

𝑉𝑖𝑛𝑖𝑡  = 80k on the 8×6-tuple network, OTD achieved 

32768-tiles, while OTC did not. Since such a phenomenon did 

not occur on the 4×6-tuple, it can be derived from this 

observation that exploration may be restricted by TC method 

since the weight adjustments drop too fast, therefore, a pure TD 

method plays an important role for larger networks. 

B. OTD+TC Learning 

This experiment analyzes OTD+TC learning. In order to 

analyze the correlation between OI and network size in detail, 

five experimental network sizes were chosen, and were divided 

into two classes: the smaller networks, including Yeh’s 

4×6-tuple and 5×6-tuple (Fig. 2); and the larger networks, 

including Matsuzaki’s 6×6-tuple, 7×6-tuple, and 8×6-tuple 

(Fig. 3). Since 320k performed well in most cases as described 

above, 𝑉𝑖𝑛𝑖𝑡  is set to 320k in the rest of the experiments. 

First, we would like to analyze the effectiveness of OTD+TC 

learning. The average scores and the 32768-tile reaching rates 

of OTD, OTC, and OTD+TC with 𝑃𝑇𝐶  = 10% in the five 

networks are summarized in Table V. OTD+TC outperforms 

OTD in all cases, and slightly outperforms OTC in most cases 

of using larger networks. In the cases of using smaller networks, 

OTC outperforms OTD+TC; while OTD+TC hardly obtained 

32768-tiles. In brief, OTC learning performed well regardless 

of the network size, and OTD+TC learning outperforms OTC 

learning in most larger networks.  

Second, it is interesting to investigate how the fine-tuning 

proportions 𝑃𝑇𝐶 affects the performance. Table VI summarizes 

the results of more 𝑃𝑇𝐶 of 10%, 20%, 30%, 50%, 70%, and 90% 

 

 
Fig. 6.  Average scores of OTD methods in the 8×6-tuple network. 
 

 

Fig. 7.  Maximum scores of OTD methods in the 8×6-tuple network. 
 
 

 

TABLE III 

PERFORMANCE OF OTD METHODS IN THE 8×6-TUPLE NETWORK 

𝑉𝑖𝑛𝑖𝑡  Average Score 8192 [%] 16384 [%] 32768 [%] 

0 309 208 ± 5788 97.24 ± 0.58% 85.13 ± 0.78% 0.00 ± 0.00% 

40k 306 438 ± 2400 97.27 ± 0.11% 84.11 ± 0.44% 0.00 ± 0.00% 

80k 365 364 ± 4856 97.16 ± 0.17% 85.59 ± 0.67% 21.23 ± 1.04% 

160k 369 172 ± 3341 97.18 ± 0.30% 85.70 ± 0.63% 22.47 ± 1.31% 

320k 361 471 ± 5473 96.77 ± 0.28% 84.41 ± 0.96% 21.75 ± 0.74% 

640k 339 492 ± 6747 95.79 ± 0.28% 81.80 ± 1.07% 18.11 ± 2.12% 
 

TABLE IV 

PERFORMANCE OF OTC METHODS IN THE 8×6-TUPLE NETWORK  

𝑉𝑖𝑛𝑖𝑡  Average Score 8192 [%] 16384 [%] 32768 [%] 

0 310 259 ± 4056 96.54 ± 0.13% 84.81 ± 0.43% 0.00 ± 0.00% 

40k 310 347 ± 6201 96.72 ± 0.71% 83.59 ± 1.38% 0.00 ± 0.00% 

80k 311 214 ± 2205 97.07 ± 0.22% 83.45 ± 0.23% 0.00 ± 0.00% 

160k 361 298 ± 4833 96.34 ± 0.20% 84.12 ± 0.52% 22.26 ± 2.12% 

320k 360 228 ± 18 829 95.73 ± 0.39% 82.28 ± 2.25% 22.74 ± 2.38% 

640k 325 357 ± 33 416 92.76 ± 2.55% 75.88 ± 6.10% 17.71 ± 4.89% 
 

TABLE V 

DIFFERENCE BETWEEN OTD, OTC, AND OTD+TC METHODS IN N-TUPLE 

NETWORKS OF DIFFERENT SIZES 

Network OTD OTD+TC OTC 

4×6-tuple 
239 075 ± 14 781 

(0.00 ± 0.00%) 

261 433 ± 3143 

(0.02 ± 0.02%) 

280 281 ± 5267 

(5.30 ± 0.58%) 

5×6-tuple 
272 904 ± 7788 

(0.01 ± 0.01%) 

279 653 ± 8707 

(0.47 ± 1.08%) 

313 948 ± 2433 

(11.48 ± 0.97%) 

6×6-tuple 
314 324 ± 8883 

(8.33 ± 5.58%) 

337 951 ± 4655 

(14.39 ± 0.96%) 

324 714 ± 17 688 

(12.88 ± 5.88%) 

7×6-tuple 
352 986 ± 3553 

(18.43 ± 0.69%) 

360 286 ± 2332 

(19.18 ± 0.70%) 

335 042 ± 23 023 

(16.56 ± 6.61%) 

8×6-tuple 
361 471 ± 5473 

(21.75 ± 0.74%) 

370 907 ± 1630 

(22.18 ± 0.53%) 

360 228 ± 18 829 

(22.74 ± 2.38%) 

Networks initialized with 𝑉𝑖𝑛𝑖𝑡 = 320k; OTD+TC used 𝑃𝑇𝐶 = 10%. 
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for the 8×6-tuple network. Fig. 8 and Fig. 9 illustrates the 

learning curves of 10%, 50%, 70%, 90%, with also OTD and 

OTC as baselines. Based on the results, it is observed that high 

proportions (e.g., 70% and 90%) limit the ability to explore, and 

lead to worse results. Therefore, OTD+TC learning should be 

performed with low fine-tuning proportions such as 10% or 

20% to provide sufficient exploration, as well as prevent 

potential overfitting issue in practice.   

C. Further Improvements 

In order to further improve the performance, we demonstrate 

how to apply optimistic methods together with other established 

techniques, such as expectimax search, multistage learning, and 

tile-downgrading.  

1) Expectimax Search 

As also described in  [2], [5], expectimax search can be used 

to further improve the performance. We applied expectimax 

search to two cases, the 4×6-tuple network with OTC and the 

8×6-tuple with OTD+TC, since both performed generally well 

as shown above. The performance of three different depths, 1-

ply, 3-ply, and 5-ply, were evaluated for the tests of 1M, 10k, 

and 100 episodes, respectively. Each evaluation is also repeated 

five times by using the five trained networks. Transposition 

tables were used to speed up the search.  

Table VII lists the performance of the 4×6-tuple and the 

8×6-tuple network with 1-ply, 3-ply, and 5-ply expectimax 

search. Benefited from OI, both average scores and 32768-tile 

reaching rates achieved SOTA with respect to the same 1-stage 

networks and search depths, to the best of our knowledge. 

However, the performance was saturated around 5-ply.  

2) Multistage Learning 

We further evaluate optimistic TD learning together with 

multistage paradigm [3], named multistage OTD+TC (MS-

OTD+TC) learning. As in Section IV-C1, we also use the two 

cases, the 4×6-tuple network with OTC and the 8×6-tuple 

network with OTD+TC. For both, the first stages started with 

initial states, and the second stages started with states with 

16384-tile. Note that the first stages are directly copied from 

trained networks, and the second stages also received 100M 

training episodes. All stages were trained using their 

appropriate optimistic methods and hyperparameters, 𝑉𝑖𝑛𝑖𝑡 and 

𝑃𝑇𝐶, as mentioned in previous experiment.  

Table VIII presents the performance of the 2-stage 4×6-tuple 

and 8×6-tuple network with 1-ply, 3-ply, and 5-ply expectimax 

search. For comparison, the non-optimistic 2-stage networks 

are also provided as baselines. In the second stage, average 

scores were improved by around 10 ± 5%. For further 

improvement, we attempted to add the third stage to the 2-stage 

8×6-tuple network by starting with 16384-tile + 8192-tile. 

However, such a 3-stage 8×6-tuple network only improved the 

 

TABLE VI 

PERFORMANCE OF OTD+TC METHODS IN THE 8×6-TUPLE NETWORK  

𝑃𝑇𝐶  Average Score 8192 [%] 16384 [%] 32768 [%] 

10% 370 907 ± 1630 97.26 ± 0.16% 85.43 ± 0.34% 22.18 ± 0.53% 

20% 371 198 ± 8301 97.19 ± 0.53% 85.55 ± 1.21% 22.78 ± 1.39% 

30% 366 868 ± 7767 97.07 ± 0.45% 84.82 ± 1.28% 22.28 ± 1.38% 

50% 355 806 ± 13 994 96.32 ± 0.73% 83.64 ± 1.97% 20.61 ± 2.24% 

70% 344 570 ± 20 316 95.99 ± 1.06% 82.04 ± 3.58% 17.78 ± 2.83% 

90% 298 673 ± 18 995 95.25 ± 1.64% 80.05 ± 4.60% 0.86 ± 2.00% 

Networks were trained with initial value 𝑉𝑖𝑛𝑖𝑡 = 320k. 
 

TABLE VII 

PERFORMANCE OF OPTIMISTIC TD METHODS TOGETHER WITH  

EXPECTIMAX SEARCH IN THE 4×6-TUPLE AND THE 8×6-TUPLE NETWORKS 

Network Search Average Score 8192 [%] 16384 [%] 32768 [%] 

4×6-tuple 

1-ply 280 123 ± 4920 93.00 ± 0.61% 67.79 ± 1.39% 5.32 ± 0.43% 

3-ply 417 712 ± 2988 99.66 ± 0.10% 94.95 ± 0.60% 37.18 ± 1.62% 

5-ply 445 085 ± 8843 99.80 ± 0.89% 96.60 ± 5.02% 51.20 ± 3.58% 

8×6-tuple 

1-ply 370 194 ± 4366 97.23 ± 0.18% 85.30 ± 0.46% 22.18 ± 0.92% 

3-ply 475 126 ± 6407 99.73 ± 0.08% 96.88 ± 0.78% 50.73 ± 1.56% 

5-ply 500 098 ± 8590 100.00 ± 0.00% 98.20 ± 3.85% 57.80 ± 2.97% 

The 4×6-tuple and the 8×6-tuple were trained with OTC and OTD+TC, respectively. 
 

TABLE VIII 

PERFORMANCE OF MULTISTAGE OPTIMISTIC TD METHODS TOGETHER WITH 

EXPECTIMAX SEARCH IN THE 4×6-TUPLE AND THE 8×6-TUPLE NETWORKS 

Network Search Average Score 8192 [%] 16384 [%] 32768 [%] 

2-stage 

4×6-tuple 
(𝑉𝑖𝑛𝑖𝑡=0) 

1-ply 291 428 ± 5229 93.30 ± 1.21% 68.58 ± 1.05% 7.72 ± 1.80% 

3-ply 463 784 ± 12 569 99.72 ± 0.15% 96.16 ± 0.36% 46.97 ± 1.28% 

5-ply 478 831 ± 13 174 100.00 ± 0.00% 98.40 ± 1.10% 53.80 ± 3.29% 

2-stage 

4×6-tuple 
(𝑉𝑖𝑛𝑖𝑡=320k) 

1-ply 290 549 ± 4105 93.03 ± 0.62% 67.88 ± 1.36% 8.42 ± 0.44% 

3-ply 474 167 ± 7087 99.70 ± 0.15% 95.41 ± 0.98% 46.02 ± 2.53% 

5-ply 485 588 ± 30 802 100.00 ± 0.00% 97.00 ± 4.00% 53.00 ± 9.70% 

2-stage 

8×6-tuple 
(𝑉𝑖𝑛𝑖𝑡=0) 

1-ply 386 078 ± 17 104 97.37 ± 0.23% 85.25 ± 1.23% 26.67 ± 1.64% 

3-ply 506 486 ± 50 356 99.66 ± 0.11% 96.89 ± 0.32% 55.50 ± 3.07% 

5-ply 516 761 ± 67 952 100.00 ± 0.00% 97.40 ± 3.35% 56.80 ± 8.53% 

2-stage 

8×6-tuple 
(𝑉𝑖𝑛𝑖𝑡=320k) 

1-ply 404 288 ± 2583 97.25 ± 0.11% 85.37 ± 0.39% 30.17 ± 0.48% 

3-ply 538 582 ± 5692 99.70 ± 0.12% 96.83 ± 0.32% 57.58 ± 0.81% 

5-ply 581 896 ± 14 765 99.80 ± 0.89% 98.60 ± 2.68% 66.40 ± 6.42% 

3-stage 

8×6-tuple 
(𝑉𝑖𝑛𝑖𝑡=320k) 

1-ply 412 492 ± 3666 97.23 ± 0.13% 85.34 ± 0.35% 33.55 ± 0.91% 

3-ply 545 231 ± 6479 99.66 ± 0.12% 96.90 ± 0.44% 60.48 ± 0.19% 

5-ply 588 426 ± 30 723 99.80 ± 0.89% 98.20 ± 2.19% 72.80 ± 8.17% 

The 4×6-tuple and the 8×6-tuple were trained with OTC and OTD+TC, respectively. 
 
 
 

 

 
Fig. 8.  Average scores of OTD+TC methods in the 8×6-tuple network. 
 

 

Fig. 9.  Maximum scores of OTD+TC methods in the 8×6-tuple network. 
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average scores by less than 2%, as presented in Table VIII. Our 

conjecture is that the hyperparameters 𝑉𝑖𝑛𝑖𝑡  and 𝑃𝑇𝐶  for the 

8×6-tuple, tuned for the first stage, did not fit the third stage.  

3) Tile-Downgrading 

Tile-downgrading expectimax search is a technique that 

searches states by translating them into downgraded states. Let 

us illustrate it by an example as in Fig. 10, where (a) is an 

original state and (b) is its downgraded state. In the original 

state (a), 256-tile is the largest missing tile not exceeding the 

largest tile, i.e., 32768-tile. This technique is to halve all tile 

values larger than 256. Thus, the downgraded state is derived 

as (b). Then, we estimate the value of the downgraded state, 

instead of the original state. Since states with large tiles have 

relatively less chance to be trained, their state estimations are 

relatively less accurate. For the downgraded states, their tile 

values are relatively smaller, implying higher chances to be 

trained and higher accuracy.  

The tile-downgrading can only be applied to the root state of 

a search tree when the following two conditions hold in the root: 

there exists a missing tile like 256-tile as above; and there exists 

32768-tiles or larger tiles, which is so chosen since it performed 

best in most of our experiments. Let a root state 𝑠 satisfy the 

two conditions. The tile-downgrading expectimax search is to 

translate 𝑠  into a downgraded state 𝑠̃  and then use the 

expectimax search to choose the best action 𝑎̃ to play. Note that 

no more tile-downgrading is required inside the search. Since 

this technique preserves the puzzle structure while halving 

some tile values, the action 𝑎̃ of 𝑠̃ can be directly applied to the 

original state 𝑠.  
The tile-downgrading expectimax search was evaluated on 

the 2-stage 8×6-tuple network trained with 𝑉𝑖𝑛𝑖𝑡 = 320k. From 

Table X, the tile-downgrading method improved the average 

score to 625 377, and the 32768-tile reaching rate to 72% with 

6-ply search. Interestingly, this technique also significantly 

improved the chance of creating 65536-tiles to roughly 0.02% 

with 3-ply search, which is the highest 65536-tile reaching rate. 

Note that 65536-tiles were not reached for 5-ply and 6-ply 

searches since insufficient episodes (100 only) were evaluated 

for 5-ply and 6-ply.  

D. Comparison to SOTA 

In order to compare with the previous SOTA [5], [39], we 

used the same network, namely the 5×6-tuple network (Fig. 2) 

with 2-stage OTC with downgrading, and additionally we used 

a larger network, the 8×6-tuple network (Fig. 3) with 2-stage 

OTD+TC with downgrading. We tested 1-ply, 3-ply, and 5-ply 

search for these networks, and the results of the best 𝑛-tuple 

network of each method are shown in Table X. From Table X, 

both our methods outperformed the 16-stage 5×6-tuple network 

with TC in [5] in terms of fixed-depth search.  

Furthermore, for the 2-stage 8×6-tuple network, we tested an 

additional 6-ply search with 100 episodes. The average search 

speed was about 2.5 moves/s by using a single thread of an Intel 

Core i9-7960X. The 2-stage OTD+TC 8×6-tuple network with 

6-ply tile-downgrading expectimax search achieved an average 

score of 625 377, and a rate of 72% to reach 32768-tiles, which 

is also superior to those with the 1000ms search in [5]. Table 

IX shows the improvements of each technique from the non-

optimistic method (V0) to the best design (V5) in the upper six 

lines, and ablation studies (X1 to X4) in the lower four lines. To 

our knowledge, the results are SOTA in terms of average score 

and the reaching rates of large tiles. Although we used three 

 

   
 (a) (b)  
Fig. 10.  States before and after tile-downgrading. The original state (a) is 

translated to its downgraded state (b), where the highlighted tiles indicate that 

the values have been halved by tile-downgrading. 
 
 
 
 

 

TABLE X 

COMPARISON BETWEEN SOTA OPTIMISTIC METHODS AND THE PREVIOUS SOTA METHOD 

Authors Methods Weights Search Average Score 8192 [%] 16384 [%] 32768 [%] # Games 

Jaśkowski [5] 
MS-TC 

16-stage 5×6-tuple network 
1342.2M 

1-ply 324 710 ± 11 043 90% 68% 19% 1000 

3-ply 511 759 ± 12 021 99% 92% 50% 1000 

5-ply 545 833 ± 21 500 100% 97% 54% 300 

1000ms 609 104 ± 38 433 98% 97% 70% 100 

This work 

MS-OTC 

2-stage 5×6-tuple network  

with tile-downgrading 

167.8M 

1-ply 331 073 ± 6699 94.22 ± 0.12% 74.41 ± 0.44% 15.38 ± 0.62% 1 000 000 

3-ply 526 178 ± 21 752 99.69 ± 0.18% 95.89 ± 0.77% 51.07 ± 3.87% 10 000 

5-ply 574 245 ± 25 727 99.80 ± 0.89% 97.00 ± 2.00% 60.60 ± 5.02% 100 

MS-OTD+TC 

2-stage 8×6-tuple network  

with tile-downgrading 

268.4M 

1-ply 412 785 ± 2208 97.24 ± 0.12% 85.39 ± 0.35% 30.16 ± 0.38% 1 000 000 

3-ply 563 316 ± 5650 99.63 ± 0.19% 96.88 ± 0.12% 57.90 ± 1.63% 10 000 

5-ply 608 679 ± 42 177 99.80 ± 0.89% 97.80 ± 1.67% 67.40 ± 12.21% 100 

6-ply 625 377 ± 40 936 99.80 ± 0.89% 98.80 ± 0.89% 72.00 ± 12.00% 100 
 
 

 

TABLE IX 

IMPROVEMENT OF INDIVIDUAL TECHNIQUES TO THE BEST RESULT 

Method Average Score 32768 [%] 

V0 = 1-stage 8×6-tuple TD (𝑉𝑖𝑛𝑖𝑡=0) 309 208 ± 5788 0.00 ± 0.00% 

V1 = V0 + OI (𝑉𝑖𝑛𝑖𝑡=320k) 361 471 ± 5473 21.75 ± 0.74% 

V2 = V1 + TC fine-tuning (𝑃𝑇𝐶=10%) 370 194 ± 4366 22.18 ± 0.92% 

V3 = V2 + multistage (2-stage) 404 288 ± 2583 30.17 ± 0.48% 

V4 = V3 + expectimax search (6-ply) 586 583 ± 17 043 65.40 ± 2.28% 

V5 = V4 + tile-downgrading 625 377 ± 40 936 72.00 ± 12.00% 

X1 = V5 – OI 592 390 ± 39 073 63.60 ± 10.35% 

X2 = V5 – TC fine-tuning 574 779 ± 22 280 59.80 ± 7.40% 

X3 = V5 – multistage 574 150 ± 29 315 59.80 ± 10.14% 

X4 = V5 – expectimax search 412 785 ± 2208 30.16 ± 0.38% 

V0–V5 present the incremental improvements to the best design (V5). 

X1–X4 present the ablation studies of the best design. 
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more 6-tuples, we only required 2-stage when compared to their 

work with 16-stage. Since each extra stage requires one more 

set of tuples, we use far less memory in total, namely 16 (2×8) 

6-tuples, versus 80 (16×5) 6-tuples in [5]. 

However, compared with non-optimistic methods, our OI 

methods require more computing resources to explore large 

state spaces. The previous SOTA result [5] was trained with 

4 × 1010 actions, which corresponds to approximately 40M 

episodes or less. In contrast, our SOTA result was trained with 

200M episodes. Nevertheless, such an amount of training is still 

affordable. It took us 66 hours to complete when using a C++ 

implementation [40] on an Intel E5-2698 v4 processor. 

V. DISCUSSION 

In this section, we discuss some other techniques related to 

2048, including weight promotion [5], [26], redundant 

encoding [5], and carousel shaping [5].  

Weight promotion can be used to speed up the multistage 

training by allowing the weights of 𝑛 -tuple networks to be 

copied to the corresponding weights in the next stage upon its 

first access. This method is similar to OI in the sense that many 

weights are initialized higher than zeros. However, when 

compared to OI, their method only copies weights with small 

tiles, and those weights with large tiles, say 16384-tile in the 

next stage, are still initialized to zeros. In OI, these weights are 

large numbers leading to more exploration. 

Redundant encoding improves the 𝑛 -tuple network by 

adding some sub-tuples. OI may be applicable to this technique 

with an initialization scheme different from that in (12). 

Carousel shaping ensures each stage receives the same training 

amount. Since this paper focuses on the impact of OI, further 

research on incorporating these methods into OI is left open. 

VI. CONCLUSION 

For the issue of exploration on 2048, we propose optimistic 

TD learning to improve the performance. Our approach 

significantly improves the learning quality of 𝑛-tuple networks. 

The significance of this paper is summarized as follows.  

First, we improve the common TD methods with OI by using 

a hyperparameter 𝑉𝑖𝑛𝑖𝑡 to initialize the network weights, and 

demonstrate that OTD and OTC learning with 𝑉𝑖𝑛𝑖𝑡  = 320k 

significantly improve the performance, especially the chance of 

obtaining 32768-tiles, as shown in Section IV-A. Second, we 

propose OTD+TC learning, a hybrid learning paradigm that 

combines the advantages of both TD and TC for encouraging 

exploration and exploitation, respectively. A hyperparameter 

𝑃𝑇𝐶 is used to control the proportion of TC fine-tuning phase. 

We observe that OTD+TC with 𝑉𝑖𝑛𝑖𝑡 = 320k and 𝑃𝑇𝐶  = 10% 

outperforms both OTD and OTC learning for larger networks, 

as described in Section IV-B. Third, we show that we do not 

need as many stages as in [5], thereby significantly reducing the 

required network weights, since OI effectively improves the 

learning quality as shown in Section IV-C2.  

Furthermore, we use tile-downgrading to improve the search 

quality as shown in Section IV-C3, and the results in Section 

IV-D shown to outperform those in the previous SOTA [5] in 

terms of average score and 32768-tile reaching rate. Namely, 

the design with a 2-stage 8×6-tuple network trained by 

OTD+TC with 𝑉𝑖𝑛𝑖𝑡  = 320k and 𝑃𝑇𝐶  = 10% achieved an 

average score of 625 377 and a rate of 72% reaching 32768-tiles 

through 6-ply tile-downgrading expectimax search. In addition, 

for sufficiently large tests, 65536-tiles are reached at a rate of 

0.02%.  

We conclude that for 2048 and similar games, learning with 

explicit exploration is useful even if the environment seems to 

be stochastic enough. This paper demonstrates that the 

optimistic method is promising for stochastic games.  
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