
TCIAIG-2020-0093.R2 1

 Abstract—Temporal difference (TD) learning and its variants,

such as multistage TD (MS-TD) learning and temporal coherence
(TC) learning, have been successfully applied to 2048. These

methods rely on the stochasticity of the environment of 2048 for

exploration. In this paper, we propose to employ optimistic

initialization (OI) to encourage exploration for 2048, and

empirically show that the learning quality is significantly

improved. This approach optimistically initializes the feature

weights to very large values. Since weights tend to be reduced once

the states are visited, agents tend to explore those states which are
unvisited or visited few times. Our experiments show that both TD

and TC learning with OI significantly improve the performance.

As a result, the network size required to achieve the same

performance is significantly reduced. With additional tunings

such as expectimax search, multistage learning, and tile-

downgrading technique, our design achieves the state-of-the-art

performance, namely an average score of 625 377 and a rate of

72% reaching 32768-tiles. In addition, for sufficiently large tests,
65536-tiles are reached at a rate of 0.02%.

Index Terms—2048, 𝒏-tuple network, optimistic initialization,

reinforcement learning, stochastic puzzle games, temporal

difference (TD) learning.

I. INTRODUCTION

048 is a single-player stochastic puzzle game introduced by

Cirulli [1] as a variant of Threes! and 1024. This intriguing

and even addictive game has been popular worldwide since it is

non-trivial to master despite the simple rules [2], and has also

attracted researchers to develop game-playing programs [3].

Due to its simplicity and complexity [4], 2048 is considered to

be an interesting and challenging platform for evaluating the

effectiveness of machine learning methods [5], [6], [7].

In the past, many methods were proposed for 2048. Szubert

and Jaśkowski [2] applied the temporal difference (TD)

learning with 𝑛 -tuple networks to 2048. In their approach,

2048-tiles were achieved at a rate of 97%. Yeh et al. [3]

introduced the multistage TD (MS-TD) learning which

improved the training by separating an entire episode into

several stages. Their 3-stage TD method reached 32768-tiles

with a rate of 31.75% and even achieved the first-ever 65536-

tile. Matsuzaki [8] presented a systematic analysis on 𝑛-tuples,

identified some best configurations of 8×6-tuples and

8×7-tuples. Jaśkowski [5] improved the performance with

temporal coherence (TC) learning, which accelerated the

convergence of the training by adaptively reducing the learning

Manuscript received October 9, 2020; revised April 23, 2021; revised July 5,

2021. Date of current version July 5, 2021. This research was supported in part by

the Ministry of Science and Technology (MOST) of the Republic of China

(Taiwan) under Grant 108-2634-F-009-011, 109-2634-F-009-019, and 110-2634-

F-009-022 through Pervasive Artificial Intelligence Research (PAIR) Labs, and

the computing resource was supported in part by National Center for High-

performance Computing (NCHC) of Taiwan. (Corresponding author: I-Chen

Wu.)

rate. They reached state-of-the-art (SOTA) results as follows.

The 32768-tiles reaching rate was even improved up to 70%, by

using a 16-stage TC method with one second per move.

Although various methods have been continually proposed

and improved, these TD methods for 2048, however, were still

based on the greedy policy [9] to deterministically choose

actions with maximum estimations, and thus relied on the

stochastic environment to provide enough randomness for

exploration. In addition, it is observed that TD learning tends

not to reach large tiles when training is saturated in terms of the

average score, namely when the average score increases to

nearly the highest [3], [10]. This reflects a potential problem of

exploration deficiency. On the other hand, recent works [3], [8],

[11] tended to employ larger 𝑛 -tuple networks for higher

performance. Hence, as the networks become larger, the issue

of exploration deficiency becomes non-negligible. Moreover,

in addition to the size of the network, the learning rate is another

factor related to exploration deficiency. TC learning effectively

improved the performance but converged rather fast [5], [12],

possibly resulting in less exploration. Researchers [2], [5]

noticed the exploration issue and tried some exploration

mechanisms such as 𝜖-greedy and softmax, but neither worked

for 2048 according to their reports. Thus, it was simply assumed

that the stochastic environment provided enough randomness,

and left the efficient exploration for 2048 as an open question.

In this paper, we propose to use optimistic initialization (OI)

to improve the TD methods for 2048. The approach is to

optimistically initialize feature weights to large values in order

to encourage exploration [9], [13]. Namely, those feature

weights rarely adjusted or visited tend to be high, and therefore

the value adjustments are often negative, i.e., these weights tend

to be reduced. Thus, agents tend to explore the less visited states

next time. All feature weights eventually converge after

sufficient visits.

Our experiments show that both TD and TC learning with OI

significantly improve the performance. With additional tunings

such as expectimax search, multistage learning, and tile-

downgrading technique, our design outperforms the previous

SOTA results [5] and achieves new SOTA performance,

namely an average score of 625 377 and a rate of 72% reaching

32768-tiles. Even more, our method requires only 20% of

network weights compared with the previous SOTA method. In

addition, for sufficiently large tests, 65536-tiles are reached at

Hung Guei is with the Department of Computer Science, National Yang Ming

Chiao Tung University, Hsinchu, Taiwan (e-mail: hguei@cs.nctu.edu.tw).

Lung-Pin Chen is with the Department of Computer Science, Tunghai

University, Taichung, Taiwan (e-mail: lbchen@thu.edu.tw).

I-Chen Wu is with the Research Center for IT Innovation, Academia Sinica,

Taipei, and the Department of Computer Science, National Yang Ming Chiao

Tung University, Hsinchu, Taiwan (e-mail: icwu@csie.nctu.edu.tw).

Optimistic Temporal Difference Learning for 2048
Hung Guei, Lung-Pin Chen, Member IEEE, and I-Chen Wu, Senior Member, IEEE

2

mailto:hguei​@cs.nctu.edu.tw
mailto:lbchen@thu.edu.tw
mailto:icwu@csie.nctu.edu.tw

TCIAIG-2020-0093.R2 2

a rate of 0.02%.

The paper is organized as follows. Section II reviews the

rules and the related techniques for 2048. Section III introduces

the optimistic initialization and the optimistic methods for

2048. Section IV conducts experiments and analyses of the

optimistic methods. Section V discusses potentially related

techniques with directions of possible future research. Section

VI summarizes the results and makes concluding remarks.

II. BACKGROUND

In this section, the game of 2048 as well as its related

methods and techniques are introduced. Section II-A introduces

the rules. Section II-B, II-C, and II-D review the foundations

and implementations of TD methods. Section II-E reviews the

𝑛-tuple networks. Section II-F reviews the tree search.

A. Rules of 2048

2048 is a single-player stochastic slide-and-merge puzzle

game with the objective of sliding the puzzle to merge small

tiles into large tiles to create a 2048-tile. The game is played on

a puzzle with 4×4 cells, starting with two randomly placed tiles.

Cells on the puzzle are either empty cells or tiles numbered with

powers of 2, such as 2-tiles, 4-tiles, 65536-tiles.

Whenever the player slides the puzzle by choosing a

direction from up, down, left, and right, all tiles will be moved

in the chosen direction as far as possible, i.e., until they reach

either the border or another tile [2]. Illustrations are shown in

Fig. 1, such as sliding up from (a) to (b), and sliding left from

(c) to (d). Upon sliding the puzzle, two adjacent tiles with the

same value in the chosen direction, say both 𝑣-tiles, will be

merged into a single 2𝑣-tile. The player receives 2𝑣 points as

the reward of merging.

After the player slides the puzzle and merges the tiles, the

environment randomly adds a new tile on an empty cell as in

Fig. 1 (c) from (b). The newly added tile is either a 2-tile or a

4-tile, with probabilities of 0.9 or 0.1 respectively [2]. Then the

player continues to slide the puzzle, repeating the above process

until there is no possible direction to move. The player wins the

game if a 2048-tile is created, but the game can continue until

there is no available sliding direction. The final score of a game

is the total cumulative rewards of merging tiles.

B. Reinforcement Learning

Reinforcement learning (RL) is a machine learning method

that trains an agent how to respond to an environment with an

objective of maximizing the total outcome [9]. The agent

continuously interacts with the environment by performing the

actions to the current state, and the environment responds by

providing the corresponding rewards and the new states.

Markov decision process (MDP) is a mathematical

framework for decision-making problems, which is commonly

used in reinforcement learning [9]. An MDP is constructed by

〈𝒮, 𝒜,𝒫,ℛ〉, where 𝒮 is the finite set of states; 𝒜 is the finite

set of actions of the state; 𝒫 ∶ 𝒮 ×𝒜 → 𝒮 is the state transition

function; and ℛ ∶ 𝒮 ×𝒜 → ℝ is the immediate reward

function. The MDP models problems of how an agent interacts

with the environment through a sequence of actions with

respect to states and rewards. An episode is a sequence of states

and actions starting from the beginning till the end.

The game of 2048 can be well modeled as an MDP, in which

the player is considered as an agent who takes actions to the

states and receives rewards from the environment. For example,

the puzzles illustrated in Fig. 1 (a), (b), (c), (d) can be expressed

as 𝑠𝑡, 𝑠𝑡
′, 𝑠𝑡+1, 𝑠𝑡+1

′ respectively, in an episode from 𝑠0 to 𝑠𝑇, as

follows.

𝑠0⋯ ⇢ 𝑠𝑡
 𝑎𝑡
→
 𝑟𝑡

𝑠𝑡
′⇢ 𝑠𝑡+1

 𝑎𝑡+1
→
 𝑟𝑡+1

𝑠𝑡+1
′ ⇢ ⋯𝑠𝑇 (1)

The episode starts with an initial state 𝑠0 ∈ 𝒮. At steps 𝑡, the

agent performs actions 𝑎𝑡 ∈ 𝒜(𝑠𝑡) on states 𝑠𝑡 ∈ 𝒮 to

transform 𝑠𝑡 into afterstates 𝑠𝑡
′ = 𝜓(𝑠𝑡 , 𝑎𝑡) , where 𝜓 is a

transition function from states to afterstates, i.e., slides the

puzzle. The environment responds rewards 𝑟𝑡 = ℛ(𝑠𝑡 , 𝑎𝑡), and

then changes 𝑠𝑡
′ to next states 𝑠𝑡+1 ∼ 𝒫(𝑠𝑡

′, 𝑠𝑡+1), i.e., adds a

new tile. This process repeats until a terminal state 𝑠𝑇 ∈ 𝒮 that

𝒜(𝑠𝑇) = ∅ is reached, where 𝑇 refers to the end of the episode.

The objective of the problem of MDPs is to find a policy 𝜋

that decides which action to take for any given state, and

maximizes the cumulative rewards [9]. The state value function

is defined as 𝑉(𝑠𝑡) = 𝔼[𝑟𝑡 + 𝑟𝑡+1 +⋯]. Therefore, the policy

𝜋 ∶ 𝒮 → 𝒜 can be derived from the function as

𝜋(𝑠𝑡) = argmax𝑎𝑡(𝑟𝑡 +∑ 𝒫(𝑠𝑡
′, 𝑠𝑡+1)𝑉(𝑠𝑡+1)∀𝑠𝑡+1), (2)

where 𝑎𝑡 ∈ 𝒜(𝑠𝑡) and 𝑠𝑡
′ = 𝜓(𝑠𝑡, 𝑎𝑡)

C. Temporal Difference Learning

Temporal difference (TD) learning is a kind of reinforcement

learning method that adjusts the state estimations based in part

on other learned estimations [9]. This method has been widely

applied to many game-playing programs [14]–[21], and was

first applied to 2048 by Szubert and Jaśkowski [2], resulting in

the first-ever TD-based program that can reach 2048-tiles.

TD(0) is the simplest form of TD learning that adjusts the

estimation with only one subsequent reward and estimation [9].

After the agent performs an action and receives a reward 𝑟𝑡, the

environment will provide the next state 𝑠𝑡+1 whose value is

𝑉(𝑠𝑡+1). Thus, 𝑟𝑡 + 𝑉(𝑠𝑡+1), known as the TD target, is an

estimation of 𝑉(𝑠𝑡) . Therefore, the estimation error for 𝑠𝑡 ,

called the TD error, is calculated as

Fig. 1. A segment of a gameplay episode of 2048. The player first slides the

puzzle up in (a), merging some tiles and receiving 76 points to (b). After the

environment generates a new tile from (b) to (c), the player continues to play

by sliding the puzzle left from (c) to (d) with receiving 16 points.

(a) (b)

(c) (d)

TCIAIG-2020-0093.R2 3

𝛿𝑡 = 𝑟𝑡 + 𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡). (3)

Note that in [9] 𝑉(𝑠𝑡+1) is weighted by a discount factor that is

disregarded for simplicity. Then, the estimation of 𝑠𝑡, 𝑉(𝑠𝑡), is

adjusted with the TD error and the learning rate parameter 𝛼 as

𝑉(𝑠𝑡) ← 𝑉(𝑠𝑡) + 𝛼𝛿𝑡 . (4)

TD(0) adjusts the estimation at the current step based on the

current reward and the next estimation. Its general form, 𝑛-step

TD, adjusts the estimation based on 𝑛 subsequent rewards and

a more distant estimation [9]. Furthermore, 𝑛-step TD can be

generalized to TD(𝜆), which adjusts the current estimation

based on all subsequent estimations [9], [22]. However, 𝑛-step

TD and TD(𝜆) are not used in this paper for simplicity.

The above learning framework is to evaluate the state values,

i.e., 𝑉(𝑠𝑡). However, from the perspective of taking actions, it

is more efficient for 2048 to evaluate the afterstate values, i.e.,

𝑉(𝑠𝑡
′), instead, called the afterstate learning framework [2], [5].

With afterstate values, the policy function can be more efficient

than that in (2), as described as follows.

𝜋(𝑠𝑡) = argmax𝑎𝑡(𝑟𝑡 + 𝑉(𝑠𝑡
′)). (5)

Similarly, the TD error is then calculated as

𝛿𝑡 = 𝑟𝑡+1+ 𝑉(𝑠𝑡+1
′) − 𝑉(𝑠𝑡

′). (6)

Depending on the order of adjusting afterstate values within

an episode, forward update and backward update are both

common implementations [23], [24], in which the performance

of using the latter can be slightly better. In addition, Q-learning

can also be employed to 2048. However, for 2048 programs

with 𝑛 -tuple networks, a Q-learning implementation is

complicated, and its performance is significantly worse than TD

learning [2], so it has not been widely used.

D. Advanced TD Methods

Multistage temporal difference (MS-TD) learning proposed

by Yeh et al. [3] is a kind of hierarchical TD learning [25] that

divides the entire episode into multiple stages, in which each

stage has an independent value function, used in [3], [5], [10],

[26]. MS-TD learning improves the performance at the cost of

additional storage for stages. The work [3] applied this method

with 3-stage to 2048 and obtained the first-ever 65536-tile.

Temporal coherence (TC) learning proposed for 2048 by

Jaśkowski [5] is a TD variant with adaptive learning rates [12].

Instead of adjusting the learning rate 𝛼 directly, this method

introduces new parameters 𝛽𝑖 for the 𝑖th feature weight, denoted

by 𝜃𝑖, to modulate the adjustments as

𝜃𝑖 ← 𝜃𝑖 + 𝛼𝛽𝑖𝛿𝑡 . (7)

𝛽𝑖 represents the coherence of 𝜃𝑖, and is calculated from two

parameters 𝐸𝑖 and 𝐴𝑖 for each weight, as

𝛽𝑖 = {
|𝐸𝑖| 𝐴𝑖⁄ , if 𝐴𝑖 ≠ 0

1, otherwise.
 (8)

Both 𝐸𝑖 and 𝐴𝑖 are initialized with 0 and adjusted by

𝐸𝑖 ← 𝐸𝑖 + 𝛿𝑡 and 𝐴𝑖 ← 𝐴𝑖 + |𝛿𝑡|. (9)

Therefore, the amount of adjustment is automatically reduced

by coherence 𝛽𝑖. TC learning is an effective learning rate decay

method with an overhead of triple required memory. This

technique can be integrated with MS-TD, e.g., a 16-stage TC

method was able to achieve 609 104 points and a 70% chance

of reaching 32768-tiles on average [5].

E. 𝑁-tuple Networks

A straightforward method to estimate state values 𝑉(𝑠) is to

use a tabular implementation for the whole state space.

However, the state space requires 18(4×4) for 2048, too large to

be implemented. Therefore, a function approximator is applied

in practice. 𝑁-tuple network is a function approximator that has

been successfully applied to applications such as Connect4

[20], Othello [21], pattern recognition [27], as well as 2048 [2],

[3], [5], [8].

For 𝑛-tuple networks for 2048, an 𝑛-tuple 𝜙 is a sequence of

distinct features, each representing a tuple of 𝑛 designated cells

on the puzzle. For example, let 𝜙R1 be a 4-tuple that denotes

features from the first row. For a puzzle 𝑠, say the one in Fig. 1

(a), a feature 𝜙R1(𝑠) refers to (32, 2, 0, 0). Similarly, for 𝑠 ′, say

the one in Fig. 1 (b), a feature 𝜙R1(𝑠
′) refers to (64, 4, 16, 2).

An 𝑛-tuple network is an implementation for a set of weights

of 𝑛-tuple features. In order to access these feature weights, let

𝜙 be an 𝑛-tuple associated with a lookup table LUT in which

the feature weight of 𝜙(𝑠) is stored at a distinct LUT[𝜙(𝑠)]. An

illustration of the implementation for 𝜙R1 is as follows. The

lookup table LUTR1 for 𝜙R1 needs to contain 𝑐4 distinct feature

weights, since 𝜙R1 consists of 4 cells, each with 𝑐 distinct cell

values. Intrinsically, 𝑐 is 18, i.e., from empty cell to 131072-

tile, but is usually set to 16 or 17 for efficiency, since 65536-tile

and 131072-tile are rarely obtained.

In this paper, we define an 𝑚×𝑛 -tuple network to be 𝑚

different 𝑛-tuples 𝜙1 , … , 𝜙𝑚 with their corresponding lookup

tables LUT1, … , LUT𝑚 . Given a state 𝑠 , the state value

estimation 𝑉(𝑠), is calculated by summing all of the 𝑚 feature

weights LUT𝑖[𝜙𝑖(𝑠)] of state 𝑠 as

𝑉(𝑠) = ∑ LUT𝑖[𝜙𝑖(𝑠)]
𝑚
𝑖=1 . (10)

When adjusting a state estimation 𝑉(𝑠) by a TD error 𝛿, the

adjustment is equally distributed to 𝑚 feature weights of state

𝑠. Equation (11) shows how 𝛿 is distributed to a feature weight

LUT𝑖[𝜙𝑖(𝑠)] in terms of TD(0) with learning rate 𝛼:

LUT𝑖[𝜙𝑖(𝑠)] ← LUT𝑖[𝜙𝑖(𝑠)]+ (𝛼 𝑚⁄)𝛿. (11)

Note that only the 𝑚 feature weights corresponding to state 𝑠
need to be adjusted, with the same adjustment (𝛼 𝑚⁄)𝛿.

For 2048, symmetric sampling is a widely used technique that

shares feature weights of tuples eight times by rotating and

mirroring [2], [3], [5], [8]. A symmetrically sampled 𝑚×𝑛-tuple

network involves 8𝑚 𝑛 -tuples actually, which improves the

overall performance without additional lookup tables. For

example, let 𝜙R1′ be a 4-tuple produced by rotating 𝜙R1

counterclockwise, then, its feature 𝜙R1′(𝑠) is (16, 8, 32, 32).

Both 𝜙R1 and 𝜙R1′ share the same lookup table LUTR1 . Note

that an 𝑚×𝑛-tuple network refers to a symmetrically sampled

𝑚×𝑛-tuple network in the rest of this paper for simplicity.

Designing an effective 𝑚×𝑛-tuple network is not trivial, and

TCIAIG-2020-0093.R2 4

has been investigated as a research topic for 2048 [2], [3], [8],

[11]. Fig. 2 (a), (b), (d), and (e) illustrate the 4×6-tuple network

proposed by Yeh et al. [3], [10]; all 5 6-tuples illustrate the

5×6-tuple network used by Jaśkowski [5]. Fig. 3 illustrates a

full set of 6-tuples proposed by Matsuzaki [8], where the best

𝑘×6-tuple network consists of the first 𝑘 listed 6-tuples, e.g.,

the 8×6-tuple network contains all from Fig. 3 (a) to (h).

F. Expectimax Search

Expectimax search is a technique for stochastic games whose

game tree is composed of max nodes and chance nodes [28]–

[30], corresponding to states and afterstates respectively.

Namely, a max node of state 𝑠𝑡 searches all its afterstates 𝑠𝑡
′ to

find the best action; and a chance node of afterstate 𝑠𝑡
′ is

evaluated based on either the expected value of next states, or

the TD value 𝑉(𝑠𝑡
′) when the ply limit is reached. For 2048 with

afterstate learning framework, a 𝑝-ply fixed-depth search tree

has at most 𝑝 layers of chance nodes.

To avoid redundant search, the search is usually integrated

with a transposition table, which caches the previously seen

states and associated values. A transposition table for 2048 is

implemented using hashing techniques such as Zobrist hashing

[31], [32] and MurmurHash [33], [34].

III. OPTIMISTIC METHODS

In this section, optimistic methods for 2048 are introduced.

Section III-A reviews the potential problems of insufficient

exploration in previous works. Sections III-B and III-C present

TD learning with optimistic initialization for 2048. Finally,

Section III-D describes how to determine initial values and use

them in 𝑛-tuple networks.

A. Insufficient Exploration

In reinforcement learning, the exploration-exploitation

dilemma and has been intensively studied by researchers for

decades [9], [13], [35]. Many methods, including UCB,

𝜖 -greedy, softmax, as well as optimistic initialization, are

proposed to balance between exploration and exploitation [36]

for better learning performance.

Most previous RL related works for 2048 [2], [3], [5], [6],

[8], [10], [11], [23], [26] are based on simple TD method or

some of its variant. Among these works, the agents simply

follow the greedy policy with respect to the estimations, i.e.,

always select an action with maximum value during training.

Past works [2], [5] have already noticed this issue, and have

tried some explicit exploration techniques such as ϵ-greedy and

softmax. However, they did not succeed to have these

techniques work for 2048. As a result, these TD methods

involve no explicit exploration to choose actions and fully rely

on the stochasticity of the environment for exploration.

For example, MS-TD learning is proposed to cope with the

issue that TD learning tends not to reach large tiles [3], [10].

MS-TD learning improves performance by employing

additional networks, while the issue of potential exploration

deficiency of each stage remains not addressed. Another

effective technique is TC learning, which reduces weight

adjustments to automatically accelerate network convergence

[5]. This approach is not for improving exploration, but for

improving exploitation with fast convergence. However, fast

convergence exacerbates the exploration issue, especially when

applying a large 𝑛-tuple network.

B. Optimistic Initialization

Optimistic initialization (OI) is an approach that employs

optimistic initial estimations to encourage exploration [9], [13].

This approach has been widely applied to RL applications, and

is considered to have good convergence in practice [9]. Instead

of setting the estimations to zero or random, the technique

optimistically initializes them to a large value to encourage the

agent to explore. Due to the large value, the estimations tend to

be reduced once the corresponding states are visited, therefore

leading an agent to select unexplored or rarely explored actions

the next time when it revisits the same state. This process

repeats until all the actions are sufficiently explored, even if the

greedy policy is always applied during the training.

The estimations will eventually converge and may even

converge to a near-optimal policy when the initial value is set

sufficiently large [35], [37], namely, the upper bound of the

value function. Thus, the learning algorithm needs to explore

unvisited or rarely visited states and reduce the corresponding

estimations before exploiting the best one [38]. Therefore, OI

may significantly increase the training time in exchange for

encouraging exploration.

C. Optimistic TD Methods

Past research summarized that non-greedy behaviors, e.g.,

𝜖-greedy, significantly inhibit the learning performance [2], [5].

In this paper, we propose to use OI as an exploration mechanism

for 2048. The proposed OI methods perform exploration while

conserving the greedy behavior, therefore mitigating the

previous inhibition phenomenon. In addition, since the explicit

exploration technique is independent of some existing learning

methods such as multistage and TC learning, OI can be easily

applied together with these methods.

In this paper, the first objective is to improve the existing TD

and TC methods for 2048 by using OI, which forms the

optimistic TD (OTD) and the optimistic TC (OTC) learning,

 (a) (b) (c) (d) (e)

Fig. 2. The 4×6-tuple network proposed by Yeh et al. [3]: (a), (b), (d), and (e);

and the 5×6-tuple network used by Jaśkowski [5]: (a)–(e).

 (a) (b) (c) (d)

 (e) (f) (g) (h)

Fig. 3. The 8×6-tuple network proposed by Matsuzaki [8]: (a)–(h).

TCIAIG-2020-0093.R2 5

respectively. Second, we propose a two-phase optimistic

method, called OTD+TC learning, a hybrid learning paradigm

that combines the advantages of both methods. OTD+TC

learning first performs TD learning with a fixed learning rate to

further encourage exploration for a while, and then, in the

second phase, continues with TC fine-tuning for exploitation.

When compared to TD or TC, OTD+TC learning includes

two new hyperparameters, 𝑉𝑖𝑛𝑖𝑡 and 𝑃𝑇𝐶 : 𝑉𝑖𝑛𝑖𝑡 is the initial

value of the function approximator; and 𝑃𝑇𝐶 is the proportion of

TC fine-tuning phase to the total phases. If 𝑉𝑖𝑛𝑖𝑡 is set to 0,

OTD+TC becomes non-optimistic. If 𝑃𝑇𝐶 is set to 0% (or

100%), OTD+TC becomes pure OTD (or OTC).

D. Initial Values for OI

Based on the proof of the optimistic Q-learning in [37], the

initial value 𝑉𝑖𝑛𝑖𝑡 should be set to the theoretical maximum to

ensure that the network converges to a near-optimal policy.

However, the theoretical maximum for 2048 is an extremely

large number that is nearly impossible to obtain. Using such a

large 𝑉𝑖𝑛𝑖𝑡 wastes too much time, it is non-trivial to choose 𝑉𝑖𝑛𝑖𝑡
such that training result and training time are balanced.

In this paper, the initial value 𝑉𝑖𝑛𝑖𝑡 is chosen as illustrated as

follows. Consider using an 𝑚×𝑛 -tuple network for training

with non-optimistic TD learning, and set 𝑉𝑖𝑛𝑖𝑡 an estimated

average score. To initialize the network feature weights, we

evenly distribute the value 𝑉𝑖𝑛𝑖𝑡 over these feature weights as

LUT[𝑖] ← 𝑉𝑖𝑛𝑖𝑡/𝑚 for all 𝑖. (12)

IV. EXPERIMENTS

In this section, experiments are presented to analyze the

effectiveness of optimistic TD learning for 2048. Common

training settings are described as follows. For convergence,

each 𝑛-tuple network was trained with 100M episodes by using

the afterstate learning framework. The learning performance

was evaluated every 1M training episodes, and each

performance evaluation consists of 100k testing episodes. For

statistics, each method was trained with five runs, each with one

individual trained network with a different initial random seed.

The experiments were performed on workstations with Intel

Xeon E5 processors. To speed up the training process, 20

threads lock-free optimistic parallelism was applied as in [5].

Specific settings will be described in each experiment below.

The results are presented in tables and figures in which each

value represents the average of five trained networks. For all

tables (e.g., Table I), a value indicates the average result after

100M training episodes and is accomplished with the 95%

confidence interval. For all figures (e.g., Fig. 4), a point at time

𝑡 indicates the average result after 𝑡M training episodes.

The experiments are organized as follows. Section IV-A

analyzes the effectiveness of initial values on OTD and OTC

learning. Section IV-B analyzes OTD+TC learning with

different fine-tuning proportions on networks of different sizes.

Section IV-C further improves the performance by fine-tuning

with other techniques for OTD+TC learning.

A. OTD and OTC Learning

In order to demonstrate the effectiveness of OI and obtain an

appropriate initial value, we analyze how OTD and OTC

learning perform with various initial values. Two different

𝑛-tuple networks, Yeh’s 4×6-tuple (Fig. 2) and Matsuzaki’s

8×6-tuple (Fig. 3), were used. Based on their average scores

with non-optimistic TD learning, we test the initial value 𝑉𝑖𝑛𝑖𝑡
to 0, 40k, 80k, 160k, 320k, 640k, respectively. For OTD

learning, the learning rate 𝛼 was initially set to 0.1 and was

reduced to 0.01 and 0.001 after completing 50% and 75% of

training; for OTC learning, a larger initial learning rate is

required, so 𝛼 was set to 1.0 without manual decay as in [5].

The results are organized as follows. OTD and OTC learning

for the 4×6-tuple will be discussed first, and then followed by

OTD and OTC learning for the 8×6-tuple.

TABLE I

PERFORMANCE OF OTD METHODS IN THE 4×6-TUPLE NETWORK

𝑉𝑖𝑛𝑖𝑡 Average Score 8192 [%] 16384 [%] 32768 [%]

0 251 920 ± 11 217 92.87 ± 0.90% 65.23 ± 2.86% 0.00 ± 0.00%

40k 254 784 ± 13 034 93.20 ± 1.08% 65.89 ± 3.60% 0.00 ± 0.00%

80k 253 393 ± 11 732 92.52 ± 1.13% 65.25 ± 3.35% 0.00 ± 0.00%

160k 244 875 ± 10 590 91.40 ± 1.41% 62.29 ± 3.27% 0.00 ± 0.00%

320k 239 075 ± 14 781 89.68 ± 2.11% 59.73 ± 5.00% 0.00 ± 0.00%

640k 228 032 ± 1056 87.64 ± 0.44% 55.63 ± 0.48% 0.00 ± 0.00%

TABLE II

PERFORMANCE OF OTC METHODS IN THE 4×6-TUPLE NETWORK

𝑉𝑖𝑛𝑖𝑡 Average Score 8192 [%] 16384 [%] 32768 [%]

0 265 481 ± 3318 93.36 ± 1.07% 68.33 ± 0.52% 0.00 ± 0.00%

40k 263 284 ± 2445 93.68 ± 0.32% 66.72 ± 1.79% 0.00 ± 0.00%

80k 265 703 ± 2471 93.60 ± 0.26% 67.93 ± 1.49% 0.00 ± 0.00%

160k 264 058 ± 1412 93.24 ± 0.28% 67.47 ± 0.35% 0.00 ± 0.00%

320k 280 281 ± 5267 93.11 ± 0.53% 67.83 ± 1.50% 5.30 ± 0.58%

640k 252 254 ± 6836 89.18 ± 1.48% 60.22 ± 1.98% 3.25 ± 0.38%

Fig. 4. Average scores of OTC methods in the 4×6-tuple network.

Fig. 5. Maximum scores of OTC methods in the 4×6-tuple network.

TCIAIG-2020-0093.R2 6

For the 4×6-tuple network, OTD learning did not obviously

improve the learning quality, as shown in Table I. On the other

hand, OTC learning significantly improved the performance,

especially for the reaching rate of 32768-tiles. As the results

summarized in Table II and Fig. 4, OTC with 320k

outperformed non-optimistic TC (𝑉𝑖𝑛𝑖𝑡 = 0), and even achieved

a rate of 5.30% reaching 32768-tiles, which is the first-ever

reaching rate with such a 1-stage network. As shown in Fig. 5,

many methods reached maximum scores around 385 000. This

implicitly indicates to achieve states with 16384-tile, 8192-tile,

4096-tile, and 2048-tile. Note that a method can continue to

obtain much more scores if a 32768-tile is reached. Only OTC

with 320k and 640k provided enough exploration to achieve

32760-tiles. Interestingly, as shown in Fig. 4, OTC with 640k

reached 32768-tiles earlier than OTC with 320k, but eventually

ended at a worse average score. In general, a large 𝑉𝑖𝑛𝑖𝑡 needs

more time to converge. Our conjecture is that 640k is too large

to converge. Thus, we prefer 320k for obtaining higher average

scores.

For the 8×6-tuple network, in contrast to the 4×6-tuple, OTD

learning significantly improves the performance. As shown in

Table III and Fig. 6, networks initialized with appropriate

values (80k ≤ 𝑉𝑖𝑛𝑖𝑡 < 640k) achieved higher scores, and even

reached 32768-tiles well, especially for 𝑉𝑖𝑛𝑖𝑡 = 160k and 320k.

As shown in Fig. 7, networks trained with low exploration (𝑉𝑖𝑛𝑖𝑡
< 80k) still stuck at the barrier of 32768-tiles; and networks

trained with 640k still did not converge. On the other hand, the

results of OTC learning are summarized in Table IV. OTC

learning also performed well, but its performance was slightly

worse than OTD for the 8×6-tuple network. Interestingly, for

𝑉𝑖𝑛𝑖𝑡 = 80k on the 8×6-tuple network, OTD achieved

32768-tiles, while OTC did not. Since such a phenomenon did

not occur on the 4×6-tuple, it can be derived from this

observation that exploration may be restricted by TC method

since the weight adjustments drop too fast, therefore, a pure TD

method plays an important role for larger networks.

B. OTD+TC Learning

This experiment analyzes OTD+TC learning. In order to

analyze the correlation between OI and network size in detail,

five experimental network sizes were chosen, and were divided

into two classes: the smaller networks, including Yeh’s

4×6-tuple and 5×6-tuple (Fig. 2); and the larger networks,

including Matsuzaki’s 6×6-tuple, 7×6-tuple, and 8×6-tuple

(Fig. 3). Since 320k performed well in most cases as described

above, 𝑉𝑖𝑛𝑖𝑡 is set to 320k in the rest of the experiments.

First, we would like to analyze the effectiveness of OTD+TC

learning. The average scores and the 32768-tile reaching rates

of OTD, OTC, and OTD+TC with 𝑃𝑇𝐶 = 10% in the five

networks are summarized in Table V. OTD+TC outperforms

OTD in all cases, and slightly outperforms OTC in most cases

of using larger networks. In the cases of using smaller networks,

OTC outperforms OTD+TC; while OTD+TC hardly obtained

32768-tiles. In brief, OTC learning performed well regardless

of the network size, and OTD+TC learning outperforms OTC

learning in most larger networks.

Second, it is interesting to investigate how the fine-tuning

proportions 𝑃𝑇𝐶 affects the performance. Table VI summarizes

the results of more 𝑃𝑇𝐶 of 10%, 20%, 30%, 50%, 70%, and 90%

Fig. 6. Average scores of OTD methods in the 8×6-tuple network.

Fig. 7. Maximum scores of OTD methods in the 8×6-tuple network.

TABLE III

PERFORMANCE OF OTD METHODS IN THE 8×6-TUPLE NETWORK

𝑉𝑖𝑛𝑖𝑡 Average Score 8192 [%] 16384 [%] 32768 [%]

0 309 208 ± 5788 97.24 ± 0.58% 85.13 ± 0.78% 0.00 ± 0.00%

40k 306 438 ± 2400 97.27 ± 0.11% 84.11 ± 0.44% 0.00 ± 0.00%

80k 365 364 ± 4856 97.16 ± 0.17% 85.59 ± 0.67% 21.23 ± 1.04%

160k 369 172 ± 3341 97.18 ± 0.30% 85.70 ± 0.63% 22.47 ± 1.31%

320k 361 471 ± 5473 96.77 ± 0.28% 84.41 ± 0.96% 21.75 ± 0.74%

640k 339 492 ± 6747 95.79 ± 0.28% 81.80 ± 1.07% 18.11 ± 2.12%

TABLE IV

PERFORMANCE OF OTC METHODS IN THE 8×6-TUPLE NETWORK

𝑉𝑖𝑛𝑖𝑡 Average Score 8192 [%] 16384 [%] 32768 [%]

0 310 259 ± 4056 96.54 ± 0.13% 84.81 ± 0.43% 0.00 ± 0.00%

40k 310 347 ± 6201 96.72 ± 0.71% 83.59 ± 1.38% 0.00 ± 0.00%

80k 311 214 ± 2205 97.07 ± 0.22% 83.45 ± 0.23% 0.00 ± 0.00%

160k 361 298 ± 4833 96.34 ± 0.20% 84.12 ± 0.52% 22.26 ± 2.12%

320k 360 228 ± 18 829 95.73 ± 0.39% 82.28 ± 2.25% 22.74 ± 2.38%

640k 325 357 ± 33 416 92.76 ± 2.55% 75.88 ± 6.10% 17.71 ± 4.89%

TABLE V

DIFFERENCE BETWEEN OTD, OTC, AND OTD+TC METHODS IN N-TUPLE

NETWORKS OF DIFFERENT SIZES

Network OTD OTD+TC OTC

4×6-tuple
239 075 ± 14 781

(0.00 ± 0.00%)

261 433 ± 3143

(0.02 ± 0.02%)

280 281 ± 5267

(5.30 ± 0.58%)

5×6-tuple
272 904 ± 7788

(0.01 ± 0.01%)

279 653 ± 8707

(0.47 ± 1.08%)

313 948 ± 2433

(11.48 ± 0.97%)

6×6-tuple
314 324 ± 8883

(8.33 ± 5.58%)

337 951 ± 4655

(14.39 ± 0.96%)

324 714 ± 17 688

(12.88 ± 5.88%)

7×6-tuple
352 986 ± 3553

(18.43 ± 0.69%)

360 286 ± 2332

(19.18 ± 0.70%)

335 042 ± 23 023

(16.56 ± 6.61%)

8×6-tuple
361 471 ± 5473

(21.75 ± 0.74%)

370 907 ± 1630

(22.18 ± 0.53%)

360 228 ± 18 829

(22.74 ± 2.38%)

Networks initialized with 𝑉𝑖𝑛𝑖𝑡 = 320k; OTD+TC used 𝑃𝑇𝐶 = 10%.

TCIAIG-2020-0093.R2 7

for the 8×6-tuple network. Fig. 8 and Fig. 9 illustrates the

learning curves of 10%, 50%, 70%, 90%, with also OTD and

OTC as baselines. Based on the results, it is observed that high

proportions (e.g., 70% and 90%) limit the ability to explore, and

lead to worse results. Therefore, OTD+TC learning should be

performed with low fine-tuning proportions such as 10% or

20% to provide sufficient exploration, as well as prevent

potential overfitting issue in practice.

C. Further Improvements

In order to further improve the performance, we demonstrate

how to apply optimistic methods together with other established

techniques, such as expectimax search, multistage learning, and

tile-downgrading.

1) Expectimax Search

As also described in [2], [5], expectimax search can be used

to further improve the performance. We applied expectimax

search to two cases, the 4×6-tuple network with OTC and the

8×6-tuple with OTD+TC, since both performed generally well

as shown above. The performance of three different depths, 1-

ply, 3-ply, and 5-ply, were evaluated for the tests of 1M, 10k,

and 100 episodes, respectively. Each evaluation is also repeated

five times by using the five trained networks. Transposition

tables were used to speed up the search.

Table VII lists the performance of the 4×6-tuple and the

8×6-tuple network with 1-ply, 3-ply, and 5-ply expectimax

search. Benefited from OI, both average scores and 32768-tile

reaching rates achieved SOTA with respect to the same 1-stage

networks and search depths, to the best of our knowledge.

However, the performance was saturated around 5-ply.

2) Multistage Learning

We further evaluate optimistic TD learning together with

multistage paradigm [3], named multistage OTD+TC (MS-

OTD+TC) learning. As in Section IV-C1, we also use the two

cases, the 4×6-tuple network with OTC and the 8×6-tuple

network with OTD+TC. For both, the first stages started with

initial states, and the second stages started with states with

16384-tile. Note that the first stages are directly copied from

trained networks, and the second stages also received 100M

training episodes. All stages were trained using their

appropriate optimistic methods and hyperparameters, 𝑉𝑖𝑛𝑖𝑡 and

𝑃𝑇𝐶, as mentioned in previous experiment.

Table VIII presents the performance of the 2-stage 4×6-tuple

and 8×6-tuple network with 1-ply, 3-ply, and 5-ply expectimax

search. For comparison, the non-optimistic 2-stage networks

are also provided as baselines. In the second stage, average

scores were improved by around 10 ± 5%. For further

improvement, we attempted to add the third stage to the 2-stage

8×6-tuple network by starting with 16384-tile + 8192-tile.

However, such a 3-stage 8×6-tuple network only improved the

TABLE VI

PERFORMANCE OF OTD+TC METHODS IN THE 8×6-TUPLE NETWORK

𝑃𝑇𝐶 Average Score 8192 [%] 16384 [%] 32768 [%]

10% 370 907 ± 1630 97.26 ± 0.16% 85.43 ± 0.34% 22.18 ± 0.53%

20% 371 198 ± 8301 97.19 ± 0.53% 85.55 ± 1.21% 22.78 ± 1.39%

30% 366 868 ± 7767 97.07 ± 0.45% 84.82 ± 1.28% 22.28 ± 1.38%

50% 355 806 ± 13 994 96.32 ± 0.73% 83.64 ± 1.97% 20.61 ± 2.24%

70% 344 570 ± 20 316 95.99 ± 1.06% 82.04 ± 3.58% 17.78 ± 2.83%

90% 298 673 ± 18 995 95.25 ± 1.64% 80.05 ± 4.60% 0.86 ± 2.00%

Networks were trained with initial value 𝑉𝑖𝑛𝑖𝑡 = 320k.

TABLE VII

PERFORMANCE OF OPTIMISTIC TD METHODS TOGETHER WITH

EXPECTIMAX SEARCH IN THE 4×6-TUPLE AND THE 8×6-TUPLE NETWORKS

Network Search Average Score 8192 [%] 16384 [%] 32768 [%]

4×6-tuple

1-ply 280 123 ± 4920 93.00 ± 0.61% 67.79 ± 1.39% 5.32 ± 0.43%

3-ply 417 712 ± 2988 99.66 ± 0.10% 94.95 ± 0.60% 37.18 ± 1.62%

5-ply 445 085 ± 8843 99.80 ± 0.89% 96.60 ± 5.02% 51.20 ± 3.58%

8×6-tuple

1-ply 370 194 ± 4366 97.23 ± 0.18% 85.30 ± 0.46% 22.18 ± 0.92%

3-ply 475 126 ± 6407 99.73 ± 0.08% 96.88 ± 0.78% 50.73 ± 1.56%

5-ply 500 098 ± 8590 100.00 ± 0.00% 98.20 ± 3.85% 57.80 ± 2.97%

The 4×6-tuple and the 8×6-tuple were trained with OTC and OTD+TC, respectively.

TABLE VIII

PERFORMANCE OF MULTISTAGE OPTIMISTIC TD METHODS TOGETHER WITH

EXPECTIMAX SEARCH IN THE 4×6-TUPLE AND THE 8×6-TUPLE NETWORKS

Network Search Average Score 8192 [%] 16384 [%] 32768 [%]

2-stage

4×6-tuple
(𝑉𝑖𝑛𝑖𝑡=0)

1-ply 291 428 ± 5229 93.30 ± 1.21% 68.58 ± 1.05% 7.72 ± 1.80%

3-ply 463 784 ± 12 569 99.72 ± 0.15% 96.16 ± 0.36% 46.97 ± 1.28%

5-ply 478 831 ± 13 174 100.00 ± 0.00% 98.40 ± 1.10% 53.80 ± 3.29%

2-stage

4×6-tuple
(𝑉𝑖𝑛𝑖𝑡=320k)

1-ply 290 549 ± 4105 93.03 ± 0.62% 67.88 ± 1.36% 8.42 ± 0.44%

3-ply 474 167 ± 7087 99.70 ± 0.15% 95.41 ± 0.98% 46.02 ± 2.53%

5-ply 485 588 ± 30 802 100.00 ± 0.00% 97.00 ± 4.00% 53.00 ± 9.70%

2-stage

8×6-tuple
(𝑉𝑖𝑛𝑖𝑡=0)

1-ply 386 078 ± 17 104 97.37 ± 0.23% 85.25 ± 1.23% 26.67 ± 1.64%

3-ply 506 486 ± 50 356 99.66 ± 0.11% 96.89 ± 0.32% 55.50 ± 3.07%

5-ply 516 761 ± 67 952 100.00 ± 0.00% 97.40 ± 3.35% 56.80 ± 8.53%

2-stage

8×6-tuple
(𝑉𝑖𝑛𝑖𝑡=320k)

1-ply 404 288 ± 2583 97.25 ± 0.11% 85.37 ± 0.39% 30.17 ± 0.48%

3-ply 538 582 ± 5692 99.70 ± 0.12% 96.83 ± 0.32% 57.58 ± 0.81%

5-ply 581 896 ± 14 765 99.80 ± 0.89% 98.60 ± 2.68% 66.40 ± 6.42%

3-stage

8×6-tuple
(𝑉𝑖𝑛𝑖𝑡=320k)

1-ply 412 492 ± 3666 97.23 ± 0.13% 85.34 ± 0.35% 33.55 ± 0.91%

3-ply 545 231 ± 6479 99.66 ± 0.12% 96.90 ± 0.44% 60.48 ± 0.19%

5-ply 588 426 ± 30 723 99.80 ± 0.89% 98.20 ± 2.19% 72.80 ± 8.17%

The 4×6-tuple and the 8×6-tuple were trained with OTC and OTD+TC, respectively.

Fig. 8. Average scores of OTD+TC methods in the 8×6-tuple network.

Fig. 9. Maximum scores of OTD+TC methods in the 8×6-tuple network.

TCIAIG-2020-0093.R2 8

average scores by less than 2%, as presented in Table VIII. Our

conjecture is that the hyperparameters 𝑉𝑖𝑛𝑖𝑡 and 𝑃𝑇𝐶 for the

8×6-tuple, tuned for the first stage, did not fit the third stage.

3) Tile-Downgrading

Tile-downgrading expectimax search is a technique that

searches states by translating them into downgraded states. Let

us illustrate it by an example as in Fig. 10, where (a) is an

original state and (b) is its downgraded state. In the original

state (a), 256-tile is the largest missing tile not exceeding the

largest tile, i.e., 32768-tile. This technique is to halve all tile

values larger than 256. Thus, the downgraded state is derived

as (b). Then, we estimate the value of the downgraded state,

instead of the original state. Since states with large tiles have

relatively less chance to be trained, their state estimations are

relatively less accurate. For the downgraded states, their tile

values are relatively smaller, implying higher chances to be

trained and higher accuracy.

The tile-downgrading can only be applied to the root state of

a search tree when the following two conditions hold in the root:

there exists a missing tile like 256-tile as above; and there exists

32768-tiles or larger tiles, which is so chosen since it performed

best in most of our experiments. Let a root state 𝑠 satisfy the

two conditions. The tile-downgrading expectimax search is to

translate 𝑠 into a downgraded state 𝑠̃ and then use the

expectimax search to choose the best action 𝑎̃ to play. Note that

no more tile-downgrading is required inside the search. Since

this technique preserves the puzzle structure while halving

some tile values, the action 𝑎̃ of 𝑠̃ can be directly applied to the

original state 𝑠.
The tile-downgrading expectimax search was evaluated on

the 2-stage 8×6-tuple network trained with 𝑉𝑖𝑛𝑖𝑡 = 320k. From

Table X, the tile-downgrading method improved the average

score to 625 377, and the 32768-tile reaching rate to 72% with

6-ply search. Interestingly, this technique also significantly

improved the chance of creating 65536-tiles to roughly 0.02%

with 3-ply search, which is the highest 65536-tile reaching rate.

Note that 65536-tiles were not reached for 5-ply and 6-ply

searches since insufficient episodes (100 only) were evaluated

for 5-ply and 6-ply.

D. Comparison to SOTA

In order to compare with the previous SOTA [5], [39], we

used the same network, namely the 5×6-tuple network (Fig. 2)

with 2-stage OTC with downgrading, and additionally we used

a larger network, the 8×6-tuple network (Fig. 3) with 2-stage

OTD+TC with downgrading. We tested 1-ply, 3-ply, and 5-ply

search for these networks, and the results of the best 𝑛-tuple

network of each method are shown in Table X. From Table X,

both our methods outperformed the 16-stage 5×6-tuple network

with TC in [5] in terms of fixed-depth search.

Furthermore, for the 2-stage 8×6-tuple network, we tested an

additional 6-ply search with 100 episodes. The average search

speed was about 2.5 moves/s by using a single thread of an Intel

Core i9-7960X. The 2-stage OTD+TC 8×6-tuple network with

6-ply tile-downgrading expectimax search achieved an average

score of 625 377, and a rate of 72% to reach 32768-tiles, which

is also superior to those with the 1000ms search in [5]. Table

IX shows the improvements of each technique from the non-

optimistic method (V0) to the best design (V5) in the upper six

lines, and ablation studies (X1 to X4) in the lower four lines. To

our knowledge, the results are SOTA in terms of average score

and the reaching rates of large tiles. Although we used three

 (a) (b)
Fig. 10. States before and after tile-downgrading. The original state (a) is

translated to its downgraded state (b), where the highlighted tiles indicate that

the values have been halved by tile-downgrading.

TABLE X

COMPARISON BETWEEN SOTA OPTIMISTIC METHODS AND THE PREVIOUS SOTA METHOD

Authors Methods Weights Search Average Score 8192 [%] 16384 [%] 32768 [%] # Games

Jaśkowski [5]
MS-TC

16-stage 5×6-tuple network
1342.2M

1-ply 324 710 ± 11 043 90% 68% 19% 1000

3-ply 511 759 ± 12 021 99% 92% 50% 1000

5-ply 545 833 ± 21 500 100% 97% 54% 300

1000ms 609 104 ± 38 433 98% 97% 70% 100

This work

MS-OTC

2-stage 5×6-tuple network

with tile-downgrading

167.8M

1-ply 331 073 ± 6699 94.22 ± 0.12% 74.41 ± 0.44% 15.38 ± 0.62% 1 000 000

3-ply 526 178 ± 21 752 99.69 ± 0.18% 95.89 ± 0.77% 51.07 ± 3.87% 10 000

5-ply 574 245 ± 25 727 99.80 ± 0.89% 97.00 ± 2.00% 60.60 ± 5.02% 100

MS-OTD+TC

2-stage 8×6-tuple network

with tile-downgrading

268.4M

1-ply 412 785 ± 2208 97.24 ± 0.12% 85.39 ± 0.35% 30.16 ± 0.38% 1 000 000

3-ply 563 316 ± 5650 99.63 ± 0.19% 96.88 ± 0.12% 57.90 ± 1.63% 10 000

5-ply 608 679 ± 42 177 99.80 ± 0.89% 97.80 ± 1.67% 67.40 ± 12.21% 100

6-ply 625 377 ± 40 936 99.80 ± 0.89% 98.80 ± 0.89% 72.00 ± 12.00% 100

TABLE IX

IMPROVEMENT OF INDIVIDUAL TECHNIQUES TO THE BEST RESULT

Method Average Score 32768 [%]

V0 = 1-stage 8×6-tuple TD (𝑉𝑖𝑛𝑖𝑡=0) 309 208 ± 5788 0.00 ± 0.00%

V1 = V0 + OI (𝑉𝑖𝑛𝑖𝑡=320k) 361 471 ± 5473 21.75 ± 0.74%

V2 = V1 + TC fine-tuning (𝑃𝑇𝐶=10%) 370 194 ± 4366 22.18 ± 0.92%

V3 = V2 + multistage (2-stage) 404 288 ± 2583 30.17 ± 0.48%

V4 = V3 + expectimax search (6-ply) 586 583 ± 17 043 65.40 ± 2.28%

V5 = V4 + tile-downgrading 625 377 ± 40 936 72.00 ± 12.00%

X1 = V5 – OI 592 390 ± 39 073 63.60 ± 10.35%

X2 = V5 – TC fine-tuning 574 779 ± 22 280 59.80 ± 7.40%

X3 = V5 – multistage 574 150 ± 29 315 59.80 ± 10.14%

X4 = V5 – expectimax search 412 785 ± 2208 30.16 ± 0.38%

V0–V5 present the incremental improvements to the best design (V5).

X1–X4 present the ablation studies of the best design.

TCIAIG-2020-0093.R2 9

more 6-tuples, we only required 2-stage when compared to their

work with 16-stage. Since each extra stage requires one more

set of tuples, we use far less memory in total, namely 16 (2×8)

6-tuples, versus 80 (16×5) 6-tuples in [5].

However, compared with non-optimistic methods, our OI

methods require more computing resources to explore large

state spaces. The previous SOTA result [5] was trained with

4 × 1010 actions, which corresponds to approximately 40M

episodes or less. In contrast, our SOTA result was trained with

200M episodes. Nevertheless, such an amount of training is still

affordable. It took us 66 hours to complete when using a C++

implementation [40] on an Intel E5-2698 v4 processor.

V. DISCUSSION

In this section, we discuss some other techniques related to

2048, including weight promotion [5], [26], redundant

encoding [5], and carousel shaping [5].

Weight promotion can be used to speed up the multistage

training by allowing the weights of 𝑛 -tuple networks to be

copied to the corresponding weights in the next stage upon its

first access. This method is similar to OI in the sense that many

weights are initialized higher than zeros. However, when

compared to OI, their method only copies weights with small

tiles, and those weights with large tiles, say 16384-tile in the

next stage, are still initialized to zeros. In OI, these weights are

large numbers leading to more exploration.

Redundant encoding improves the 𝑛 -tuple network by

adding some sub-tuples. OI may be applicable to this technique

with an initialization scheme different from that in (12).

Carousel shaping ensures each stage receives the same training

amount. Since this paper focuses on the impact of OI, further

research on incorporating these methods into OI is left open.

VI. CONCLUSION

For the issue of exploration on 2048, we propose optimistic

TD learning to improve the performance. Our approach

significantly improves the learning quality of 𝑛-tuple networks.

The significance of this paper is summarized as follows.

First, we improve the common TD methods with OI by using

a hyperparameter 𝑉𝑖𝑛𝑖𝑡 to initialize the network weights, and

demonstrate that OTD and OTC learning with 𝑉𝑖𝑛𝑖𝑡 = 320k

significantly improve the performance, especially the chance of

obtaining 32768-tiles, as shown in Section IV-A. Second, we

propose OTD+TC learning, a hybrid learning paradigm that

combines the advantages of both TD and TC for encouraging

exploration and exploitation, respectively. A hyperparameter

𝑃𝑇𝐶 is used to control the proportion of TC fine-tuning phase.

We observe that OTD+TC with 𝑉𝑖𝑛𝑖𝑡 = 320k and 𝑃𝑇𝐶 = 10%

outperforms both OTD and OTC learning for larger networks,

as described in Section IV-B. Third, we show that we do not

need as many stages as in [5], thereby significantly reducing the

required network weights, since OI effectively improves the

learning quality as shown in Section IV-C2.

Furthermore, we use tile-downgrading to improve the search

quality as shown in Section IV-C3, and the results in Section

IV-D shown to outperform those in the previous SOTA [5] in

terms of average score and 32768-tile reaching rate. Namely,

the design with a 2-stage 8×6-tuple network trained by

OTD+TC with 𝑉𝑖𝑛𝑖𝑡 = 320k and 𝑃𝑇𝐶 = 10% achieved an

average score of 625 377 and a rate of 72% reaching 32768-tiles

through 6-ply tile-downgrading expectimax search. In addition,

for sufficiently large tests, 65536-tiles are reached at a rate of

0.02%.

We conclude that for 2048 and similar games, learning with

explicit exploration is useful even if the environment seems to

be stochastic enough. This paper demonstrates that the

optimistic method is promising for stochastic games.

REFERENCES

[1] G. Cirulli. “2048, success and me.” May 9, 2014. Accessed: June 16,

2020. [Online]. Available: https://web.archive.org/web/20140517/http://

gabrielecirulli.com/articles/2048-success-and-me

[2] M. Szubert and W. Jaśkowski, “Temporal difference learning of N-tuple

networks for the game 2048,” in Proc. 2014 IEEE Conf. Comput. Intell.

Games, Dortmund, Germany, 2014, pp. 1–8. DOI: 10.1109/CIG.2014.

6932907. [Online]. Available: http://www.cs.put.poznan.pl/mszubert/

pub/szubert2014cig.pdf

[3] K.-H. Yeh, I-C. Wu, C.-H. Hsueh, C.-C. Chang, C.-C. Liang, and H.

Chiang, “Multistage temporal difference learning for 2048-like games,”

IEEE Trans. Comput. Intell. AI Games, vol. 9, no. 4, pp. 369–380, Dec.

2017. DOI: 10.1109/TCIAIG.2016.2593710. [Online]. Available: arXiv:

1606.07374.

[4] R. Mehta, “2048 is (PSPACE) hard, but sometimes easy,” Electron. Colloq.

Comput. Complex., Tech. Rep. TR14-116, Sep. 6, 2014. [Online]. Available:

https://eccc.weizmann.ac.il/report/2014/116/download

[5] W. Jaśkowski, “Mastering 2048 with delayed temporal coherence

learning, multistage weight promotion, redundant encoding and carousel

shaping,” IEEE Trans. Games, vol. 10, no. 1, pp. 3–14, Mar. 2018. DOI:

10.1109/TCIAIG.2017.2651887. [Online]. Available: arXiv:1604.05085.

[6] H. Guei, T.-H. Wei, and I-C. Wu, “2048-like games for teaching

reinforcement learning,” ICGA J., vol. 42, no. 1, pp. 14–37, May 28,

2020. DOI: 10.3233/ICG-200144.

[7] W. Konen, “General Board Game Playing for Education and Research

in Generic AI Game Learning,” in Pr2019 IEEE Conf. Games (CoG),

London, UK, 2019, pp. 1–8. DOI: 10.1109/CIG.2019.8848070.

[8] K. Matsuzaki, “Systematic selection of N-tuple networks with

consideration of interinfluence for game 2048,” in Proc. 21st Int. Conf.

Technol. Appl. Artif. Intell., Hsinchu, Taiwan, 2016, pp. 186–193. DOI:

10.1109/TAAI.2016.7880154.

[9] R. S. Sutton and A. G. Barto, Reinforcement Learning: An

Introduction, 1st ed., Cambridge, MA, USA: MIT Press, 1998. [Online].

Available: http://incompleteideas.net/book/first/ebook/the-book.html

[10] I-C. Wu, K.-H. Yeh, C.-C. Liang, C.-C. Chang, and H. Chiang,

“Multi-stage temporal difference learning for 2048,” in Proc. 19th Int.

Conf. Technol. Appl. Artif. Intell., Taipei, Taiwan, 2014, pp. 366–378.

DOI: 10.1007/978-3-319-13987-6_34.

[11] K. Oka and K. Matsuzaki, “Systematic selection of N-tuple networks for

2048,” in Proc. 9th Int. Conf. Comput. Games, Leiden, The Netherlands,

2016, pp. 81–92.

[12] D. F. Beal and M. C. Smith, “Temporal coherence and prediction decay

in TD learning,” in Proc. 16th Int. Joint Conf. Artif. Intell., vol. 1., San

Mateo, CA, USA, 1999, pp. 564–569. [Online]. Available: http://ijcai.org/

Proceedings/99-1/Papers/081.pdf

[13] M. C. Machado, S. Srinivasan, and M. Bowling, “Domain-independent

optimistic initialization for reinforcement learning,” in Workshop of

Learn. General Compet. Video Games at the 29th AAAI Conf. Artif.

Intell., Pittsburgh, PA, USA, 2015. [Online]. Available: https://aaai.org/

ocs/index.php/WS/AAAIW15/paper/view/10103/10218

[14] G. Tesauro, “TD-Gammon, a self-teaching backgammon program,

achieves master-level play,” Neural Comput., vol. 6, no. 2, pp. 215–219,

Mar. 1994. DOI: 10.1162/neco.1994.6.2.215.

[15] J. Schaeffer, M. Hlynka, and V. Jussila, “Temporal difference learning

applied to a high-performance game-playing program,” in Proc. 17th

Int. Joint Conf. Artif. Intell., Seattle, WA, USA, 2001, pp. 529–534.

TCIAIG-2020-0093.R2 10

[16] J. Baxter, A. Tridgell, and L. Weaver, “Learning to play chess using

temporal differences,” Mach. Learn., vol. 40, no. 3, pp. 243–263, Sep.

2000. DOI: 10.1023/A:1007634325138.

[17] D. F. Beal and M. C. Smith, “First results from using temporal difference

learning in Shogi,” in Proc. 1st Int. Conf. Comput. Games, Tsukuba,

Japan, 1998, pp. 113–125. DOI: 10.1007/3-540-48957-6_7.

[18] D. Silver, “Reinforcement learning and simulation-based search in

computer Go,” Ph.D. dissertation, Dept. Comput. Sci., Univ. Alberta,

Edmonton, AB, Canada, 2009.

[19] I-C. Wu, H.-T. Tsai, H.-H. Lin, Y.-S. Lin, C.-M. Chang, and P.-H. Lin,

“Temporal difference learning for Connect6,” in Proc. 13th Int. Conf.

Adv. Comput. Games, Tilburg, The Netherlands, 2011, pp. 121–133. DOI:

10.1007/978-3-642-31866-5_11.

[20] M. Thill, P. Koch, and W. Konen, “Reinforcement learning with n-tuples

on the game Connect-4,” in Proc. 12th Int. Conf. Parallel Problem

Solving Nature, Taormina, Italy, 2012, pp. 184–194. DOI: 10.1007/978-

3-642-32937-1_19.

[21] S. M. Lucas, “Learning to play Othello with n-tuple systems,” Australian

J. Intell. Inf. Process., vol. 9, no. 4, pp. 1–20, Feb. 2008. [Online].

Available: http://ajiips.com.au/papers/V9.4/V9N4.1%20-%20Learning

%20to%20Play%20Othello%20with%20N-tuple%20Systems.pdf

[22] R. S. Sutton, “Learning to predict by the methods of temporal

differences,” Mach. Learn., vol. 3, no. 1, pp. 9–44, Aug. 1988. DOI:

10.1023/A:1022633531479.

[23] K. Matsuzaki, “Developing a 2048 player with backward temporal

coherence learning and restart,” in Proc. 15th Int. Conf. Adv. Comput.

Games, Leiden, The Netherlands, 2017, pp. 176–187.

[24] H. Guei, T.-H. Wei, and I-C. Wu, “Using 2048-like games as a

pedagogical tool for reinforcement learning,” presented at the 10th Int.

Conf. Comput. Games, New Taipei, Taiwan, July 7 – July 9, 2018, in ICGA

J., vol. 40, no. 3, pp. 281–293, Mar. 5, 2019. DOI: 10.3233/ICG-180062.

[25] A. G. Barto and S. Mahadevan, “Recent advances in hierarchical

reinforcement learning,” Discrete Event Dyn. Syst., vol. 13, no. 1–2, pp.

41–77, Oct. 2003. DOI: 10.1023/A:1025696116075. [Online]. Available:

https://people.cs.umass.edu/~mahadeva/papers/hrl.pdf

[26] K. Matsuzaki, “Evaluation of multi-staging and weight promotion for

game 2048,” Kochi Univ. Technol., Kami, Japan, Tech. Rep. KUTBTR2017,

Oct. 27, 2017. [Online]. Available: http://hdl.handle.net/10173/1564

[27] W. W. Bledsoe and I. Browning, “Pattern recognition and reading by

machine,” in Proc. East. Joint Comput. Conf., Boston, Massachusetts, 1959,

pp. 225–232. DOI: 10.1145/1460299.1460326. [Online]. Available: https://

dl.acm.org/doi/pdf/10.1145/1460299.1460326

[28] B. W. Ballard, “The *-minimax search procedure for trees containing

chance nodes,” Artif. Intell., vol. 21, no. 3, pp. 327–350, Sep. 1983. DOI:

10.1016/S0004-3702(83)80015-0.

[29] E. Melkó and B. Nagy, “Optimal strategy in games with chance nodes,”

Acta Cybern., vol. 18, no. 2, pp. 171–192, Jan. 2007. DOI: 10.1016/

S0004-3702(83)80015-0.

[30] N. Pezzotti. “An artificial intelligence for the 2048 game.” Mar. 26, 2014.

Accessed: June 16, 2020. [Online]. Available: https://diaryofatinker.

blogspot.com/2014/03/an-artificial-intelligence-for-2048-game.html

[31] A. L. Zobrist, “A new hashing method with application for game playing,”

ICGA J., vol. 13, no. 2, pp. 69–73, June 1990. DOI: 10.3233/ICG-1990-13203.

[32] K.-H. Yeh. “2048 AI.” Accessed: June 16, 2020. [Online]. Available:

https://github.com/tnmichael309/2048AI

[33] A. Appleby. “MurmurHash3 64-bit finalizer.” Aug. 1, 2016. Accessed:

June 16, 2020. [Online]. Available: https://github.com/kcwu/2048-c

[34] K.-C. Wu. “2048-c.” Accessed: June 16, 2020. [Online]. Available:

https://github.com/kcwu/2048-c

[35] I. Szita and A. Lőrincz, “The many faces of optimism: a unifying

approach,” in Proc. 25th Int. Conf. Mach. Learn., Helsinki, Finland,

2008, pp. 1048–1055. DOI: 10.1145/1390156.1390288. [Online].

Available: https://dl.acm.org/doi/pdf/10.1145/1390156.1390288

[36] V. Kuleshov and D. Precup, “Algorithms for multi-armed bandit

problems,” 2014, arXiv:1402.6028.

[37] E. Even-Dar and Y. Mansour, “Convergence of optimistic and incremental

Q-learning,” in Proc. 14th Int. Conf. Neural Inf. Process. Syst., Vancouver,

BC, Canada, 2001, pp. 1499–1506. [Online]. Available: http://papers.nips.

cc/paper/1944-convergence-of-optimistic-and-incremental-q-learning.pdf

[38] N. K. Jong, T. Hester, and P. Stone, “The utility of temporal abstraction

in reinforcement learning,” in Proc. 7th Int. Joint Conf. Auton. Agents

Multiagent Syst., Estoril, Portugal, 2008, pp. 299–306. [Online].

Available: https://dl.acm.org/doi/pdf/10.5555/1402383.1402429

[39] W. Jaśkowski and A. Szczepański. “2048 AI.” Accessed: June 16, 2020.

[Online]. Available: https://github.com/aszczepanski/2048

[40] H. Guei. “moporgic/TDL2048+.” Accessed: April 8, 2021. [Online].

Available: https://github.com/moporgic/TDL2048

Hung Guei is currently a Ph.D. candidate
in the Department of Computer Science at

National Yang Ming Chiao Tung

University. His research interests include

artificial intelligence, machine learning,
computer games, and grid computing.

Lung-Pin Chen (M’15) received the M.S.

degree from the National Chung-Cheng

University, Chiayi, Taiwan, in 1993, and

the Ph.D. degree from the National Yang
Ming Chiao Tung University, Hsinchu,

Taiwan, in 1999, all in computer science.

He is an Associate Professor at the

Department of Computer Science and
Information Engineering, Tunghai University, Taichung,

Taiwan. His research interests include distributed algorithm,

cloud computing, computational intelligence, and machine

learning.

I-Chen Wu (M’05-SM’15) is currently the

executive officer of Artificial Intelligence

Computing Center at Academia Sinica, a
research fellow of Research Center for IT

Innovation at Academia Sinica, and also a

professor of the Department of CS at

National Yang Ming Chiao Tung
University. He received his B.S. in Electronic Engineering from

National Taiwan University (NTU), M.S. in Computer Science

from NTU, and Ph.D. in Computer Science from Carnegie-

Mellon University, in 1982, 1984 and 1993, respectively. He
serves the editor-in-chief of ICGA Journal and an associate

editor in the IEEE Transactions on Games. He currently serves

as the vice president of the International Computer Games

Association, and the president of the Taiwanese Computer
Games Association; and served as the president of the

Taiwanese Association for Artificial Intelligence in 2015-2017.

His research interests include computer games and deep

reinforcement learning, and his research achievements include
several state-of-the-art game playing programs, such as CGI for

Go and Chimo for Chinese chess, winning over 30 gold medals

in international tournaments, like Computer Olympiad. He

wrote over 150 technical papers, and served as chairs and
committee in over 30 academic conferences and organizations,

including the conference chair of IEEE CIG conference 2015.

	I. Introduction
	II. Background
	A. Rules of 2048
	B. Reinforcement Learning
	C. Temporal Difference Learning
	D. Advanced TD Methods
	E. 𝑁-tuple Networks
	F. Expectimax Search

	III. Optimistic Methods
	A. Insufficient Exploration
	B. Optimistic Initialization
	C. Optimistic TD Methods
	D. Initial Values for OI

	IV. Experiments
	A. OTD and OTC Learning
	B. OTD+TC Learning
	C. Further Improvements
	1) Expectimax Search
	2) Multistage Learning
	3) Tile-Downgrading

	D. Comparison to SOTA

	V. Discussion
	VI. Conclusion
	References

