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ABSTRACT

Due to the partial observability and communication constraints in many multi-agent reinforcement
learning (MARL) tasks, centralized training with decentralized execution (CTDE) has become one of
the most widely used MARL paradigms. In CTDE, centralized information is dedicated to learning
the allocation of the team reward with a mixing network, while the learning of individual Q-values
is usually based on local observations. The insufficient utility of global observation will degrade
performance in challenging environments. To this end, this work proposes a novel Centralized
Teacher with Decentralized Student (CTDS) framework, which consists of a teacher model and a
student model. Specifically, the teacher model allocates the team reward by learning individual
Q-values conditioned on global observation, while the student model utilizes the partial observations
to approximate the Q-values estimated by the teacher model. In this way, CTDS balances the full
utilization of global observation during training and the feasibility of decentralized execution for
online inference. Our CTDS framework is generic which is ready to be applied upon existing CTDE
methods to boost their performance. We conduct experiments on a challenging set of StarCraft II
micromanagement tasks to test the effectiveness of our method and the results show that CTDS
outperforms the existing value-based MARL methods.

1 Introduction

Cooperative multi-agent reinforcement learning (MARL) has been demonstrating significant applicability in a variety
of domains, such as autonomous cars [1], sensor networks [2], robot swarms [3, 4]. To train an MARL system, a group
of agents coordinate with each other to learn action-values conditioned on state information, and jointly optimize a
single reward signal, i.e., the team reward, accumulated [5, 6].

A naive solution to MARL is to convert a cooperative multi-agent problem into a single-agent RL problem by taking
the joint state/action space of all the agents as the state/action space of one virtual agent [7, 8, 9], which is usually
viewed as the paradigm of centralized training with centralized execution (CTCE). Despite its effectiveness, cooperative
MARL with centralized execution encounters a major challenge of scalability, i.e., the joint state-action space grows
exponentially as the number of agents increases. Besides, in many real-world settings, due to observation and
communication constraints, it becomes impractical to make centralized execution [5, 10]. Another alternative approach
is the paradigm of decentralized training with decentralized execution (DTDE), which trains independent learners to
optimize for the team reward. However, it is difficult to design effective individual reward functions for different agents
when only the team reward is available. In addition, decentralized training neglects the coordination among agents,
which is essential for multi-agent systems. Compared to decentralized training, training the agents in a centralized
fashion allows the access to the global information and removes inter-agent communication constraints, which is
beneficial to capture the coordination pattern and allocate the team reward.

*These authors contributed equally to this work
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Figure 1: An overview of the Centralized Training and Centralized Execution (CTCE), Decentralized Training and
Decentralized Execution (DTDE) and Centralized Training and Decentralized Execution (CTDE) framework.

Considering the necessity of decentralized policies and the benefits of centralized training in MARL, the paradigm
of centralized training with decentralized execution (CTDE) [11, 12] has gained increasing attention in the last few
years. In this paradigm, the policy of each agent is trained with global context in a centralized way and executed
only based on local histories in a decentralized way. There are two non-trivial issues in CTDE: credit assignment and
partial observation. Credit assignment refers to allocating the team reward to each agent by leveraging the global state
information during the centralized training, while partial observation indicates the fact that each agent can only access a
proportion of the global state during inference.

To address the above two issues, many CTDE learning approaches [5, 13, 10, 14, 15, 16, 17] have been proposed
recently, among which value based MARL algorithms [5, 10, 15, 16, 17] have shown state-of-the-art performance
on challenging tasks, e.g., unit micromanagement in StarCraft II [18]. In existing value-based MARL algorithms,
to adapt to the constraint of agents’ partial observation during inference stage, they make the same state setting for
each agent during training. In this way, for each agent, its individual Q-value is conditioned only on individual local
observation and its action. To take the advantage of the global state and team reward, a mixing network is designed to
aggregate the individual Q-values of all agents so as to approximate the team reword following the Individual-Global-
Max (IGM) principle [15]. Following this paradigm, there are many algorithms with different designs on the mixing
network. For instance, Value DecompositionNetwork (VDN), the first attempt in this field, adopts the summation
operation [5]. Differently, QMIX [10] assigns the nonnegative weights to individual Q-values with a non-linear function
of the global state. Later, more and more algorithms employ the variants of attention mechanism as the aggregation
function [15, 16, 17].The algorithms discussed above all suffer an essential limitation, i.e., the individual Q-value
estimation of all agents fails to consider the global state, which makes them difficult to learn a tacit coordination. This
is due to the information gap between the training phase and inference phase. In other words, during training, the global
state is available to all agents. But in inference, only local and partial observation is accessible to each agent.

To bridge the above gap, in this work, we propose a novel framework, named Centralized Teacher with Decentralized
Student (CTDS), with a teach model and a student model. Specifically, the teach model estimate the individual Q-value
estimation of agents based on the global state, while the student model regress each agent’s Q-value with only local
and partial observation. With global state, the teacher model is likely to learn a more tacit coordination among agents,
which is transfered to the student model with a knowledge distillation strategy. After the training, the student model is
ready to be used for online inference with only local observation. It is notable that our CTDS framework is generic and
is ready to be applied upon various existing CTDE methods to boost their performance.

We evaluate our CTDS on a grid world environment Combat and a range of unit micromanagement tasks built in
StarCraft II. Our experiments show that CTDS significantly outperforms the recent representative CTDE methods, in
terms of both performance and learning speed. Moreover, we also investigate the performance of CTDS under the
scenario with different sight ranges, which further illustrates the robustness of our method.

2 Related Work

According to the relationship between agents, there are cooperative [19] and competitive [20] multi-agent systems.
Due to its wide application in practice, cooperative multi-agent reinforcement learning has gained substantial research
interests [21]. In a cooperative multi-agent system, a team of agents coordinate with each other and obtain an
overall team reward. In view of the coordination among agents, early efforts focus on centralized learning and
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execution [22, 23, 7, 24], in which agents can communicate with each other to access full observation of the environment.
However, in many real-world scenarios, the partial observability and/or communication constraints among agents
necessitate the decentralized execution.

Considering the necessity of decentralized execution, a paradigm of centralized training with decentralized execution
(CTDE) has been widely adopted recently. To the best of our knowledge, value decomposition network (VDN) [5, 25]
is the first attempt to allow for centralized value-function learning with decentralized execution. This work assumes
that each agent contributes equally to the team reward, thus decomposes a central action-value function into a sum
of individual Q-values conditioned only on local observations. While achieving decentralization, VDN obtains a
sub-optimal solution by simple summation integration and ignores the available global state information during training.

To distinguish the importance of different agents, QATTEN [16] utilizes a multi-head attention structure to weight
the individual Q-values based on the global state and the individual features, and then linearly integrates these values
into the central action value. Unlike VDN and QATTEN that take linear monotonic value functions, QMIX [10, 26]
relaxes this assumption, and employs a mixing network by leveraging state information to decide the transformation
weights, which allows non-linearity operations to decompose the central Q-value. Later on, QTRAN [15] releases the
monotonicity restriction in QMIX[27] and proposes a factorization method to express function space induced by IGM
consistency. The computational intractability, however, renders the poor performance of QTRAN in complex tasks.
QPLEX [17] decomposes the central Q-value into the sum of individual value functions and a non-positive advantage
function, which is 0 only when all of the agents choose the optimal actions. By introducing the duplex dueling structure,
QPLEX achieves the complete function class that satisfies the IGM principle.

As far as we know, all the existing CTDE methods only utilize local observations instead of the global observation for
learning individual Q-values during training in order to achieve decentralized execution. Intuitively, in a cooperative
multi-agent system, it is beneficial when knowing more about other agents. Inspired by the benefit of the global
observation, we adopt the concept of knowledge distillation [28, 29].

Knowledge distillation is firstly proposed for network compression [30], which distills the knowledge (i.e., the output
distribution) from a teacher model that is typically large into a smaller student model so that the student model can
achieve similar performance as the teacher model. Gradually, the concept of knowledge distillation has been generalized
into a framework consisting of a teacher model and a student model, where the student aims to imitate the teacher
under its guidance. In other words, knowledge distillation suggests training by matching the student’s predictions to
the teacher’s predictions [31, 32]. Due to the advantage of fast optimization, network minimization and comparable
performance [33, 32], the technique of knowledge distillation has been widely applied in various ways [31, 34, 35].
In [36], knowledge distillation is firstly leveraged to reinforcement learning to distill the policies to a dramatically
smaller and efficient network. The experiments show that the distilled agents outperform their teachers in most games,
which indicates the effectiveness of knowledge distillation in reinforcement learning tasks.

By leveraging knowledge distillation to MARL, we aims to take full advantage of full observation during training with
a teacher module. To allow decentralized execution, we design the student module, which approximates individual
Q-values based on local observations, to distill the Q-values estimated by the teacher module. In this way, a tacit
coordination can be learned among the agents at the student side.

3 Preliminaries

3.1 Decentralized Partially Observable MDP

A cooperative multi-agent problem under the partial observability can be modeled as DEC-POMDP [12, 37], which
is defined as a tuple M =< N ,S,A, P,Ω, O, r, γ >, where N ≡ {g1, g2, · · · , gn} is a finite set of agents and S
describes a set of the global state s of the environment. At each time step, every agent gi ∈N receives an individual
partial observation oi ∈ Ω according to the observation probability function Oi(oi|s). Each agent gi has an action-
observation history τi ∈ τ ≡ (Ω ×A)∗ and its individual policy πi(ai|τi). According to πi, each agent gi chooses
an action ai ∈ A, which forms a joint action a ≡ [ai]

n
i=1. After the action execution of all agents, it results in a team

reward r(s,a) and a transition to the next global state s′ ∼ P (·|s,a) by the environment. γ ∈ [0, 1) is a discount
factor. The formal objective is to find a joint policy π =< π1, · · · , πn > that maximizes a joint state value function
V π(s) = E[

∑∞
t=0 γ

trt|s0 = s,π]. In addition, the joint action-value function Qπ(s,a) = r(s,a) + γEs′ [V π(s′)]
often appears in algorithm expressions to replace the joint state value function V π(s).
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Figure 2: An overview of the CTDE framework and CTDS framework. CTDS consists of the teacher module (on the
left) and the student module (on the right).

3.2 Deep Multi-Agent Q-Learning of CTDE Paradigm

CTDE is a popular paradigm of cooperative multi-agent reinforcement learning [5, 10, 15, 16, 17, 12]. In CTDE, each
agent can access the global information during the centralized training, while each agent takes actions only based on
local action-observation histories during the decentralized execution. Multi-agent Q-learning algorithms represent the
individual action-value function of the agent gi with a neural network parameterized by θi, denoted as Qi(τi, ai|θi).
Define θ = [θi]

N
i=1 as the parameters of all individual action-value functions. These algorithms combine the individual

action-value Qi(τi, ai|θi) with a mixing network f to fit the joint action-value Qtot, i.e.,

Qtot = f(Q1, Q2, · · · , Qn, s|φ), (1)

where φ is the parameters of mixing network f . An important concept of CTDE framework is that the mixing network
should satisfy the requirement that the optimal joint action induced from the optimal centralized action-value function
is equivalent to the collection of individual optimal actions of agents, which is called Individual-Global-Max (IGM),
such that the following holds:

arg max
a

Qtot(τ ,a) =

 arg maxa1 Q1(τ1, a1)
...

arg maxan Qn(τn, an)

 . (2)

Given the value decomposition, multi-agent Q-learning algorithms use a replay memory D to store the transition tuple
(τ ,a, r, τ ′), where r is the team reward for taking action a at joint action-observation history τ with a transition to τ ′.
Based on the above discussion, parameters θ and φ are learnt by minimizing the following expected TD error:

L(θ, φ) = E(τ ,a,r,τ ′)∈D[(r + γV (τ ′|θ−, φ−)−Qtot(τ ,a|θ, φ))2], (3)

where V (τ ′|θ−, φ−) = maxa′ Qtot(τ
′,a′|θ−, φ−) is the one-step expected future return of the TD target. θ− and

φ− are the parameters of the target network, which will be periodically updated with θ and φ.

4 Method

In this section, we first explain the motivation of our proposed framework and introduce the main components in detail.
Besides, we give a theoretical analysis about why our method works.
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4.1 The CTDS Framework

In this subsection, we present a new framework called Centralized Teacher with Decentralized Student (CTDS), which
leverages the idea of knowledge distillation to balance the advantage of global observation and the requirement of
decentralized execution.

Recall that in a cooperative multi-agent system, a group of agents coordinate with each other to take joint actions based
on the global state information and will obtain a team reward correspondingly. To achieve decentralize execution,
existing CTDE framework requires the individual Q-values in the lower layer only conditioned on the local action-
observation histories, and incorporates the state information into mixing network to integrate the individual Q-values
into the overall Q-value function. Obviously, if an agent could have full observation of other agents, it would be more
likely to learn a better policy under the cooperative scenario. Considering the benefit of centralized observations during
training, our CTDS decouples the centralized training and decentralized execution with the combination of the teacher
module and the student module, as illustrated in Figure 2. The teacher module is dedicated to allocating the team reward
through centralized training, while the student module utilizes the partial observations to approximate the individual
Q-value estimated by the teacher model. In the following, we will give a detailed description about the design of the
teacher module and student module, and the knowledge distillation mechanism between them, respectively.

4.1.1 Teacher Module

The teacher module consists of two parts: one is the Q-network for estimating individual action-value function for each
agent; another is the mixing network for integrating the individual Q-values to be the centralized Q-value. Note that the
teacher module only participates in the centralized training.

The teacher module allows that each agent has an infinite sight range to receive the observation of all the agents. For
each agent gi, the Q-network takes the centralized observation ôti, last action at−1i and last hidden state ĥt−1i as inputs,
fits the perfect individual action-value Q̂i(τ̂i, ·) through the multi-layer perceptron (MLP) and gated recurrent unit
(GRU) modules, and outputs the optimal action-value Q̂i(τ̂i, ati). Given the perfect individual action-value Q̂i(τ̂i, ati),
the mixing network f combines these individual Q-values into the joint action-value function Q̂tot by utilizing the
global state information. The parameters of the teacher module are updated by the TD loss defined in equation 3
iteratively.

4.1.2 Student Module

To achieve decentralized execution, the agent gi in the student module only has access to partial observation oti, different
from the full observation ôti in the teacher module. Compared with the teacher module, the student module only
contains the Q-network, which has the same network architecture as the one in the teacher module but the parameters of
Q-networks are not shared. Similarly, the Q-network takes the partial observation oti, last action at−1i and last hidden
state ht−1i as inputs, and generates the individual action-value Qi(τi, ·) through the MLP and GRU modules. It can be
seen that the student module does not involve any global information and has a relatively simple network structure.

4.1.3 Knowledge Distillation Mechanism

As introduced above, the teacher module learns to allocate the team reward reasonably by taking full advantage of
the global information while the student module focuses on learning a reasonable individual local Q-value to realize
decentralized execution. To bridge the teacher module and the student module, we employ the knowledge distillation
mechanism, i.e., distilling the perfect action-value Q̂i estimated by the teacher model to guide the student module to
approximate the local Q-value. Specifically, we adopt a mean-squared-error loss (MSE) to minimize the difference
between the Q-values estimated by these two modules. The advantage of MSE is that it constrains the complete set of
action-value in the student model [36]. Formally, the MSE loss is calculated as follows:

LMSE = Σni=1Σa∈A(Q̂i(τ̂i, a)−Qi(τi, a))2. (4)

4.1.4 Training and Execution

In the training phase, the teacher module generates the corresponding actions of each agent based on the centralized
observations to interact with the environment. Formally, the interactive actions are the results of the ε-greedy from the
Q̂i, which means choosing random actions with probability ε, otherwise choosing actions with the maximal Q̂i. The
parameters of the teacher module and the student module are updated at the same time through iterative interactions. The
teacher module is optimized under the constraint of TD loss while the student module learns the parameters with MSE

5
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loss. The execution phase only relies on the decentralized student module which utilizes the local action-observation
records. To be concrete, each agent chooses a greedy action ati at each timestamp with respect to the individual Q-value
Qi estimated by the student module. Therefore, the CTDS framework still meets centralized training and decentralized
execution. For better understanding, we provide detailed procedure of our framework below.

4.2 Theoretical Analysis

In this subsection, we theoretically derive why the student module performs better than the execution module of CTDE
with the equivalent input information.

As mentioned above, the teacher module learns from the centralized history trajectory τ̂i, which contains the decentral-
ized information τi (accessible to the student module) and the complement information τ∗i = τ̂ ti \ τ ti (we assume that τi
and τ∗i are independent). In order to explain the relationship between input trajectories and output individual Q-values
more clearly, we simplify the student module and teacher module into the following formulation:

(Teacher network) fT : (τi, τ
∗
i )→ Q̂i,

(Student network) fS : τi → Qi.
(5)

The student module of CTDS and the execution module of CTDE both employ decentralized information merely. Due
to the limitation of partial trajectory, i.e., the lack of τ∗i , the execution module of CTDE tends to make non-optimal
actions for the current state. The centralized trajectory releases the restriction above, however, it’s usually unavailable
during execution.

CTDS takes both sides into consideration. For a certain decentralized trajectory τi, the teacher module can give a
centralized Q-value fT (τi, τ

∗
i ) with any possible implicit knowledge τ∗i . If the expectation of teacher module’s output

on implicit information Eτ∗i fT (τi, τ
∗
i ) is achieved, it can be used to instruct student module fS to reduce environment

uncertainty caused by the partial trajectory. Nevertheless, approximating Eτ∗i fT (τi, τ
∗
i ) directly needs a large number

of centralized trajectory samples, which is computationally expensive.

The following theorem proves that CTDS framework successfully employs Eτ∗i fT (τi, τ
∗
i ) to train student module.

The comprehensiveness and stability provided by the instruction from the teacher module is the principal cause of the
student module’s performance promotion.

Theorem 1. For any decentralized trajectory τi, the student module of CTDS fS(τi) is instructed to approximate the
expectation of a centralized Q-value function on implicit information Eτ∗i fT (τi, τ

∗
i ).

Proof: With a fixed teacher network, the optimization target of student network is

arg min
θS

∑
i
Eτi,τ∗i [fS(τi)− fT (τi, τ

∗
i )]2, (6)

where θS is the parameters of the student module. It can be proven that:

∂

∂θS
Eτ∗i [fS(τi)− fT (τi, τ

∗
i )]2

=
∂

∂θS

∫
[fS(τi)− fT (τi, τ

∗
i )]2p(τ∗i )dτ∗i

=

∫
2(fS(τi)− fT (τi, τ

∗
i ))p(τ∗i )

∂fS(τi)

∂θS
dτ∗i

= 2
∂fS(τi)

∂θS
[fS(τi)−

∫
fT (τi, τ

∗
i ))p(τ∗i )dτ∗i ]

=
∂

∂θS
[fS(τi)−

∫
fT (τi, τ

∗
i ))p(τ∗i )dτ∗i ]2

=
∂

∂θS
[fS(τi)− Eτ∗i fT (τi, τ

∗
i )]2

(7)

Therefore,

arg min
θS

∑
i
Eτi,τ∗i [fS(τi)− fT (τi, τ

∗
i )]2 = arg min

θS

∑
i
Eτi [fS(τi)− Eτ∗i fT (τi, τ

∗
i )]2. (8)
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(a) Combat (b) SMAC (c) with sight range limit (d) without sight range limit

Figure 3: (a)&(b) Visualisation of the two experimental environments. (c)&(d) An illustration about the agents with
partial and global observation in SMAC.

Scenario
VDN[5] QMIX[10] QPLEX[17]

Baseline Teacher Student Baseline Teacher Student Baseline Teacher Student

5m_vs_6m 6.9 ± 0.2 73.8 ± 0.9 55.0 ± 0.5 21.2 ± 0.4 66.9 ± 0.5 48.1 ± 1.0 23.8 ± 1.4 62.5 ± 0.9 56.2 ± 3.7

9m_vs_11m 0.6 ± 0.0 9.4 ± 0.6 12.5 ± 1.1 6.9 ± 0.1 9.4 ± 0.2 11.2 ± 0.1 3.1 ± 0.1 0.6 ± 0.0 0.6 ± 0.0

27m_vs_30m 0.0 ± 0.0 6.2 ± 0.1 1.9 ± 0.0 8.8 ± 1.0 58.8 ± 2.4 42.5 ± 1.5 0.0 ± 0.0 60.9 ± 5.8 49.2 ± 8.9

MMM2 0.0 ± 0.0 15.6 ± 1.2 2.5 ± 0.1 20.6 ± 1.2 80.6 ± 1.7 28.1 ± 1.7 0.0 ± 0.0 26.6 ± 0.8 1.6 ± 0.1

2c_vs_64zg 44.4 ± 4.7 70.6 ± 3.6 57.5 ± 2.6 69.4 ± 2.6 82.5 ± 0.4 80.6± 0.7 81.9 ± 0.6 93.1 ± 0.1 87.5 ± 0.4

Average 10.4 35.1 25.9 25.4 59.6 42.1 21.8 48.7 39.0

Table 1: The performance of the test win rate percentage (including mean and standard deviation) of different base
models under different scenarios of StarCraft II. “Baseline” represents the original base model; “Teacher” and “Student”
represent the teacher and student module of CTDS, respectively. The one with higher win rate of “Student” and
“Baseline” is highlighted with bold.

5 Experiments

In this section, we conduct comprehensive experiments to demonstrate the effectiveness of our method. All of the
following experiments are to prove that our approach is robust enough to work on a variety of tasks. Our codes are
available in https://github.com/cathyhxh/CTDS.

5.1 Settings

In this paper, we test our method on two environments: Combat (a grid world environment introduced by [38]) and
StarCraft II micromanagement (SMAC) [18].

In the experiment implementation, the different between partial observation and perfect observation depends on the
sight range setting. Partial observation restricts the agents from receiving information about allied or enemy units that
are out of range, i.e., the features of enemies and allies are all unknown when the corresponding unit beyond the sight
range. For example, the sight range of each agent is set to 2, which means each agent is allowed to only access its
own features and other units’ features within the distance of 2. For the teacher module, perfect observation ôi is not
limited by the sight range, that is to say, each agent can access the full observation of all the agents. Figure3 shows the
examples of the agent with partial and global observations in the SMAC, respectively. In SMAC, we set partial sight
range as 2 and perfect sight range as infinity. In Combat, partial sight range is 2 and perfect sight range is 4.

The algorithms we use are based on the Pymarl algorithm library [18]. To reduce randomness, all the reported
results are averaged over 5 runs with different seeds. Training and evaluation schedules such as the testing episode
number and training hyper-parameters are kept the same as default hyper-parameters in Pymarl. Following the base
models [5, 10, 17], we share the parameters of the agent networks across all agents in the teacher/student module to
speed up the learning. Note that the parameters of the teacher module and student module are not shared. All the
parameters in the neural networks are adjusted by a RMSprop optimizer with a learning rate of 0.0005, the same as that
used by the baselines. For all the compared methods, each task is trained for 2 Million steps separately in SMAC and
500k steps in Combat.
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Figure 4: Test win rates of the base models (i.e., VDN, QMIX and QPLEX) and the corresponding ones with CTDS
algorithm on five different maps of StarCraft II. “Baseline” represents the performance of the original base model;
“Teacher” and “Student” represent the performance of teacher and student module of CTDS, respectively. “Baseline”
and “Student” achieve decentralized execution. The solid/dashed line shows the median win rate and the shadow area
represents the max-min win rate in 5 different random seeds.

5.2 Performance Evaluation and Discussion

Our CTDS framework can be applied upon various existing models that follow the CTDE paradigm. To show the
effectiveness of our CTDS framework, we conduct the experiments upon three representative models with different
mixing network settings: VDN [5], QMIX [10] and QPLEX [17].

First we conduct the experiment in grid world environment Combat. The Figure 5 reveals the test win rate curves of
CTDS and baselines under the settings of the mixing neural network of QMIX and QPLEX after 500k steps of training.
As demonstrated in Figure 5, the CTDE paradigm improves convergence speed at the beginning of trainning and reaches
the converging win rate with much lower variance.

The following are the experiment results in StarCraft II. Table 1 shows the final performance in terms of the test win
rate percentage criteria of different base models under different scenarios. Here “Baseline” means the performance
of the original base model which achieves decentralized execution; “Teacher” means the performance of the teacher
module which relies on the perfect observation thus violates decentralized execution; “Student” means the performance
of the student module, which distills the knowledge from the teacher and allows decentralized execution.
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Figure 5: Test win rates of the base models (QMIX and QPLEX) and the corresponding ones with CTDS algorithm
in Combat. “Baseline” represents the performance of the original base model; “Teacher” and “Student”represent the
performance of teacher and student module of CTDS, respectively. “Baseline” and “Student” achieve decentralized
execution. The solid/dashed line shows the median win rate and the shadow area represents the max-min win rate in 5
different random seeds.

It can be seen that the teacher always achieves a higher win percentage than the student, which is consistent with our
assumption that the full observation brings benefits. Under the settings of the mixing neural network of VDN, QMIX
and QPLEX, after 2 million steps of training, the performance gap between CTDS and the baseline exceeds the average
win rate of 15.5%, 16.7% and 17.2%, respectively. Figure 4 demonstrates the learning curve of the base model, the
teacher module and the student module on different scenarios. The above results indicate that CTDS framework can
boost the performance of the original algorithms to a considerable margin in most scenarios.

5.3 Sight Range Analysis

Under the setting of partial observability, agents can only receive the information within the restricted sight
range. All the results reported in Section 5.2 are under the scenario that the sight range is 2. In
this section, we further analyze the generalization of our method with regard to different sight ranges.
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Figure 6: The performance of the test win rate percentage (includ-
ing mean and standard deviation) of the different sight range. The
experiment takes QMIX as the base model on the 2c_vs_64zg task
after 1 million steps of training. “Baseline” represents the perfor-
mance of the original base model which achieves decentralized
execution; “Teacher” and “Student” represent the performance of
teacher and student module of CTDS, respectively.

We adjust the sight range from 1 to 8 in the environ-
ment, and investigate the performance of the base
model, the teacher module and the student module
under each setting, respectively. Due to the page
limit, we only represent the results of methods tak-
ing QMIX as the base model on the 2c_vs_64zg
task of StarCraft II after 1 million steps of training.
As illustrated in Figure 6, we can see that the perfor-
mance of the original QMIX significantly increases
with the increasing sight range, which indicates
that more information about the other agents brings
about a higher win percentage. Besides, the mar-
gin gain of the win percentage with one more sight
range shows a decreasing trend, which is consistent
with our common sense. Different from the base
model which relies heavily on the sight range, the
performance of our CTDS framework is relatively
stable under different sight range that increases at
a lower margin as the sight range enlarges. In other
words, the performance gap between CTDS and
the baseline increases with the decrease of sight
range from 8 to 1. Our CTDS framework thereby
has remarkable advantages in the case of the very
limited observations. Overall, the generalization
of our framework with the varying of sight range
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indicates the efficacy of the knowledge distillation
mechanism.

6 Conclusion

In this paper, we propose a novel cooperative multi-agent reinforcement learning framework, named CTDS, which
adopts the teacher module to allocate the team reward during centralized training and employs the student module
to allow the agents to take actions only conditioned on local observations for decentralized execution. To realize
decentralized execution, the student module aims to learn the individual Q-values based on only local observations by
distilling the knowledge learned by the teacher module. In this way, CTDS makes full use of the global observation
to facilitate the learning process while achieving decentralized execution. Empirical results demonstrate that CTDS
outperforms the recent state-of-the-art baselines both in terms of absolute performance and learning speed, which
indicates the efficacy of our method and illustrates the benefits of utilizing centralized observations. In the future, we
will further improve the representations of the full range observations during training to achieve better performance and
pay attention to improving efficiency as well.
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