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The Impact of Quantization on the Design of Solar
Power Systems for Cellular Base Stations

Ana Paula Couto da Silva, Daniela Renga, Michela Meo and Marco Ajmone Marsan

Abstract—In this paper we focus on the design of the power
system for off-grid cellular base stations powered by a photo-
voltaic (PV) solar panel and a battery. Several papers already
tackled this problem, with different approaches, modeling either
the day-to-day behavior, or the hourly dynamics. In addition,
the meteorological characteristics were modeled using a variable
number of levels. Different approaches produced different results,
hardly comparable. In this paper, we discuss the choice of
parameter quantization for time, weather, and energy storage,
with the objective of deriving guidelines for the development
of accurate and credible models that can support the power
system design. Our investigation shows that quantization has an
important impact on the mathematical model outputs. Hence,
quantization must be carefully taken into account, to achieve a
correct dimensioning of the power system.

Index Terms—Base stations, Renewable energy sources,
Markov processes.

I. INTRODUCTION

AFTER more than a decade of intense research in the
field of green (or energy-efficient) communications and

networking, we can draw some conclusions and observe a
number of effects. First of all, the attitude towards energy
issues of network operators in general, and of mobile network
operators (MNOs) in particular, has drastically changed. Now,
energy is viewed as an important portion of the network opera-
tional expenditures (OPEX), and parsimonious approaches are
considered extremely important [1]. Second, the design of the
new generations of network equipment (base stations - BSs - in
particular, in the case of mobile networks) has included among
the key performance indicators also energy consumption; this
has brought peak power consumption down from the usual 3.5
kW of a 2G macro BS to around 750 W for new LTE macro
BSs [2], and much less for micro BSs and small cell BSs.
Third, the vast body of research work in network management
algorithms [3], mostly proposing the consolidation of network
capacity in only few active elements in periods of low traffic,
the other elements being placed in sleep modes, has not yet
had a significant impact on the way networks are managed,
primarily because operators fear coverage holes, or glitches in
the network performance under unexpected traffic conditions,
or increased failure rates due to frequent switchoff/switchon.
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A very important consequence of the much improved energy
efficiency of new BS generations is that renewable energy
sources (RES) have become a viable option to power cellular
networks [4]. This is particularly relevant when we consider
the need to bring cellular network services to portions of the
world population that do not have access to a reliable power
grid.

Indeed, after a first wave of diffusion of cellular networks
in the western world, and a second wave in the far east,
the third wave of diffusion of cellular networks and services
(the next billion users) is expected to be in Africa, and in
West Africa countries in particular [5]. However, in very
populated countries of West Africa (like Nigeria, the 7th most
populated country of the world), only a limited percentage of
the population has access to the power grid (55% in Nigeria),
with frequent and long power cuts. In this context, powering
the BSs that are necessary to establish a cellular telecommu-
nication service is a problem. The solution most frequently
adopted by operators relies on Diesel power generators, which
are however extremely costly, because of the price of fuel,
the need to transport fuel and to schedule frequent preventive
maintenance in remote locations, and because of fuel thefts.
Under these circumstances, considering also the climate of
the West Africa region, and the increased power efficiency of
equipment, the use of RES, and of solar power in particular,
has become an extremely attractive option, which is adopted
in a growing number of cases [6].

The solar solution for powering BSs is not only interesting
in regions where the power grid is not available or not reliable.
It can be economically effective also in rural areas, where the
cost of bringing a power cable to the BS may be higher than
that of a solar panel. Even in urban environments, bringing a
power connection to a BS may require digging across a street
or a park, with the associated bureaucracy burden.

Furthermore, the ICT sector accounts for around 2% of the
global carbon emissions [7]. In particular, telecom operator
networks consume 254 TWh per year, making up 77% of
the total worldwide electricity consumption in communication
networks, with an annual growth rate higher than 10% [8]. The
contribution of mobile networks alone to the global carbon
footprint was already 0.2% back in 2012 (comparable with
the worldwide carbon emissions of airplanes), and their impact
on carbon emissions is bound to further increase in the next
years [7]. Hence, the use of renewable energy sources to power
BSs can also help in greatly reducing the carbon footprint of
cellular networks, with obvious benefits for the environment.

For these reasons, several papers have already been looking
at the possibility of powering BSs with solar energy, consid-
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Fig. 1. BS powered by a PV panel and equipped with an energy storage
system. The energy flows are represented by the bold blue arrows, whereas
the dashed red arrows refer to the energy management.

ering a setup where the BS is paired with a photovoltaic (PV)
solar panel, and a battery for energy storage, so that the BS
can operate also when the PV panel is not producing energy
[9], [10], [11], [12], [13]. More precisely, the system that is
normally studied, and that we also consider in this paper,
is as shown in Figure 1. It comprises a BS, which is the
power consumer, a PV panel, which is the power producer,
a battery, or a set of batteries, which form the energy storage
unit, and an energy manager. The energy manager sends the
power produced by the PV to the BS, and any excess power
to the battery. At the same time, if the power produced by the
PV panel is less than required by the BS, the energy manager
extracts power from the battery, as long as energy is available.
Of course, it may happen that some of the power produced by
the PV panel is lost, because the battery is full. It can also
happen that the BS must be turned off, because the PV panel
is not producing enough power, and the battery is empty. Both
of these events are undesirable. The former because it leads to
energy waste, the latter because it leads to service interruption.
A careful design of the system must minimize the impact of
these events.

The system of Figure 1 is simplified with respect to what
exists in many BS sites. Indeed, very frequently the PV panel
output is transformed from DC to AC by an inverter. Some
of the AC power is used to run the hardware cooling system,
and the site lights. The rest of the AC power is converted to
DC again to power the BS equipment. Some of the newest
BS equipment run with little or no cooling, and can accept
direct DC input. This can save the double conversion DC-
AC-DC with the associated losses. In addition, a number of
solar-powered BS sites also include an auxiliary power source,
which often is a Diesel generator.

The dimensioning of the BS solar power system can be
tackled by exploiting probabilistic models which consider the
amount of energy produced by a solar panel, the amount of
energy consumed by the BS, and the capacity of the energy
storage. While the real problem is continuous both in time and
in the (random) amounts of energy produced and consumed,
the models that appeared so far in the technical literature
look at the quantized version of the problem, for mathematical

tractability. This means that a time slot is defined, to account
for energy production and consumption, and that the amount
of energy stored in the battery is also discretized. Even the
weather characteristics, in terms of the solar irradiance, which
obviously define the amount of produced energy, are normally
quantized, so as to simplify the probabilistic model.

This paper looks at the effect of these quantizations, and
provides answers to the following questions: i) how to quantize
the weather characteristics? ii) what is a reasonable time
slot duration? iii) how finely should the battery capacity be
quantized? These questions arise from the consideration that
in previous works, as we see in the next section, very different
approaches were used for quantization: time slots vary between
1 day and 1 hour, stored energy quanta vary between 100 Wh
and 20 kWh, solar irradiance levels vary from 3 to 10. Authors
never discuss the reasons for their choices.

Our key contribution is to provide a clear understanding of
the effects of quantization, and to allow the selection of the
best values for the model parameters. The general conclusions
that come out of our investigation are that it is reasonable to
classify the daily solar irradiance in a number of levels around
5, provided that the quantization of the weather characteristics
is carefully implemented, that the time slot granularity should
be around 60 minutes, and that characterizing the filling of
the battery capacity with a quantum corresponding to roughly
10% of the energy consumed in a time slot is sufficient.

The rest of this paper is organized as follows. In Section 2
we overview the previous research in this field. In Section 3 we
introduce the system model, and in Section 4 we discuss the
issue of quantization. Section 5 presents and discusses some
numerical results. Finally, Section 6 concludes the paper.

II. RELATED WORK

The increasing relevance of renewable energy sources in
powering mobile communication networks motivated several
research groups to investigate the topic, so that a number of
papers have already appeared in the technical literature. Some
works focus on exhaustive overviews of sustainable and green
mobile networks deployment worldwide [14], [15], [16], [17].
Other works, instead, aim at modeling the behavior of BS
power systems based on renewables, with the objective of
understanding the characteristics of these systems, so as to
provide guidelines for correct dimensioning [9], [10], [11],
[12], [13], [18], [19].

Most related with this paper are the works in [13], [18], [19],
where the authors relied on Markovian models for computing
the BS outage probability when cellular BSs are powered by
solar energy. [13] proposes a discrete-time Markov chain of
the battery charge at the BS. As stated by the authors, the
model can be used to quantify the relationship between system
parameters, such as PV panel size, battery size, harvested solar
energy and load profiles, on the BS outage probability. In
this model, time is discretized with time slots of 1 hour. As
regards weather conditions, each day is classified according to
3 categories, resulting in 3 different possible levels of daily
renewable energy production, and of harvested energy profiles.
The battery charge level is quantized into rather large blocks
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of 1 kWh. In [18], a Markov-chain-based energy storage
model is defined, to develop a power availability framework
for PV panel generation. The model may assist in planning
both large and small-scale grid-integrated PV generation, and
also quantify power availability. This work investigates the
application of the model in a scenario where the load is
represented by 300 households, with an average daily energy
usage of about 17.6 kWh per household. The time granularity
adopted in this study is 1 hour, whereas the energy storage is
quantized into steps of 20 kWh (note that the average hourly
energy consumption is about 220 kWh, so that the battery
charge quantization is about 1/10 of the energy consumption
in a time slot). No classification of the daily level of renewable
energy production based on historical data is considered.

Leonardi et al [19] consider two Markov chain models in
their analysis: the first one based on solar irradiation data in
two consecutive days, and the second based on solar irradiation
data in triples of consecutive days, with the objective of
exposing the influence of correlations in weather conditions.
Different numbers of quantization levels (5, 8 and 10) are
considered for the daily irradiance. A fixed number of quan-
tization levels is assumed for the energy storage, equal to
100, hence the discretization step sizes vary depending on the
considered battery capacity (10 kWh, 25 kWh, 50 kWh). Both
solar energy generation and energy consumption are accounted
on a daily basis. Moreover, only the impact of different battery
size on the system performance is analyzed. The main result
is that both models produce almost equivalent results, so that
the impact of weather correlation is small.

Although our model is similar to the one based on solar
irradiation data in two consecutive days proposed in [19],
to the best of our knowledge, this is the first work that
carefully investigates the impact of quantization of i) weather
characteristics, ii) time slot duration, and iii) battery capacity,
on the key performance measures of power systems based
on renewable energy for cellular network BSs. Our results
show that the discretization steps play a significant role in
understanding the behavior of such power systems, hence in
correctly dimensioning them.

III. THE SYSTEM MODEL

A probabilistic model of the system must account for
the energy production process, for the energy consumption
process, and for the evolution of the battery charge with
time. In particular, the model must account for the periods
of the day in which energy production is significant (how
high depends on the weather conditions), and for the periods
of no production, for example at night. The model must also
consider that the BS power consumption varies during the day
according to the volume of services offered to end users.

In this section, we first present the probabilistic model of the
system behavior. Next, we introduce the energy consumption
model used in our analysis in Section III-B. Transitions
probabilities are defined in Section III-C. Finally, the key
performance indicators for the BS solar power system are
described in Section III-D.

A. Model Formulation

We define a discrete time Markov chain (DTMC) model
over time slots of duration ∆T [h]. The DTMC state is defined
by three variables:

s = (W,T, S)

where W indicates the weather state; T represents the time of
the day, and S corresponds to the current charge of the battery.

The time granularity ∆T drives the dynamics of the DTMC
model. The daily evolution of the system spans a number of
time slots equal to NT = 24/∆T . Hence, the DTMC moves
from a state with T = i, i ∈ {0, 1, · · ·NT − 1} to a state with
T = (i+ 1 mod NT ).

The value of the weather variable W , together with the
PV panel size, and energy loss parameters, determines the
amount of energy produced by the PV panel in a time slot.
W defines if a day is sunny (high production) or cloudy (low
production). Then, the production in a given time slot depends
on both W and the time of the day represented by the time
slot: for example, whatever the value of W is, time slots that
correspond to night hours have zero production, while time
slots that correspond to midday have large production levels,
whose actual value depends on W , i.e., on whether the day
is sunny or cloudy. Since W defines the weather in a day, its
value changes only at the beginning of a new day, that is with
the transition of the variable T from the value NT − 1 to the
value 0.

The definition of possible values for W is based on long-
term (20 years) historical data about the daily solar irradiance.
The daily solar irradiance is quantized over a number of levels
equal to NW , so that we can define NW types of daily weather,
Wi, with i ∈ {1, NW }. From the same data we compute the
probability that after a day of type Wi a day of type Wj

follows, with i, j ∈ {1, NW }. Given a daily solar irradiance
level Wi, the irradiance over time slots is derived from fine-
grained short-term (2 years) solar irradiance historical data,
that reflect the varibility of irradiance in different moments
of the day, with low irradiance occurring after dawn and
before sunset, and peaks occurring around midday. From the
historical data (long- and short-term), for each type of day, and
for each time slot, we compute the average energy production.
The data about solar irradiance are taken from the SoDa
service1.

Finally, the state variable S represents the battery charge
level. Let CB , measured in kWh, represent the battery capacity.
By choosing a quantization step Qs, the set of values for S is
{0, 1, · · · , NS}, with NS = CB/Qs.

At every DTMC state transition, we compute the energy
level in the battery at the beginning of the next slot as the
sum of the energy already in the battery at the beginning of
the current slot, plus the energy produced during the time slot
(that depends on W and T ), minus the energy consumed in
the same time slot (that depends on T ). The value of S is the

1http://www.soda-pro.com/. Two different data sets are used: the first one
provides solar irradiance data at 15 minutes intervals for a period of 2 years,
with a spatial resolution of about 5 km; the second one provides daily solar
irradiance data for a period of 20 years, with a spatial resolution of about 20
km

http://www.soda-pro.com/
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TABLE I
PARAMETERS OF THE POWER CONSUMPTION MODEL FOR A LTE MACRO

BS [21].

Macro BS Type NTX Pmax[W ] P0[W ] ∆p

With RRU 6 20 84 2.8

energy in the battery at the beginning of the time slot, while
the energies produced and consumed refer to the whole time
slot (they are the integrals of the respective powers during the
time slot).

B. Energy Consumption Model

The European project EARTH developed a model [20] to
estimate the power consumption of a macro BS, which has
become the standard in the field. The power needed to operate
a macro BS can be expressed as:

Pin = NTX . (P0 + ∆p . Pout), 0 < Pout < Pmax (1)

where NTX is the number of BS transceivers, Pmax represents
the maximum radio frequency output power at full load for one
transceiver, P0 corresponds to the fixed power consumption for
one transceiver when the radio frequency output power is null,
and ∆p is the slope of the load-dependent power consumption.
Typical values of the parameters are listed in Table I for a LTE
macro BS with Remote Radio Unit (RRU).
Pout is derived as:

Pout = ρ . Pmax, 0 ≤ ρ ≤ 1 (2)

where ρ denotes the instantaneous normalized BS load.
In order to characterize the parameter ρ, and its variability

during the day, we consider the traffic profiles corresponding
to real traces provided by one of the Italian mobile network
operators [21]. The daily traffic profiles for a cell in a business
area (BA) and a cell in a residential area (RA), during week-
day (wd) and week-end (we), measured in a network in
operation are provided in Figure 2. Traffic values are obtained
by averaging and normalizing the measurements collected at
15-minute intervals during a week. Normalization is such that,
for both BA and RA, the maximum 15-minute average load
is set equal to the maximum load that can be carried by
the BS (i.e., ρ = 1). This is quite a pessimistic assumption
in terms of power consumption, since significant levels of
overprovisioning exist in the network, especially when a new
high-capacity technology is introduced (as is now happening
with 4G), but guarantees that the performance targets are met
for any BS load. For both the business and residential profiles,
traffic fluctuates significantly during a day, and periods of low
activity are long. Figure 3 shows the corresponding energy
consumption, computed with the EARTH model above for a
macro cell with RRU. In the BA cell, the typical week-day
traffic load is very low at night, then traffic starts increasing
around 8am. Load peaks occur in the central hours of the day,
decreasing again after 5pm. In the week-end, traffic remains
low for the whole day. We observe, however, that, even during
low traffic load periods, around 500 W are consumed by the
macro BS due to cooling, signalling, baseband processing, etc
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Fig. 2. Week-day (wd) and week-end (we) traffic loads in a business (BA)
and residential (RA) area.
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Fig. 3. Week-day (wd) and week-end (we) energy consumption for an LTE
macro BS with RRU in a business (BA) and residential (RA) area, based on
the EARTH model [20].

[22]. In the case of the RA cell, a more gradual increase in the
traffic load is observed from morning to night, and differences
between week-day and week-end are marginal. Similar to the
BA profile, power consumption never goes below half a kW.

C. Transition Probabilities

The DTMC model deployed to investigate the renewable
powered mobile system operation is depicted in Figure 4,
where only some of the state transitions are shown. Each state
si = (Wi, Ti, Si) is characterized by different values of day-
type Wi, time of the day Ti and battery charge level Si. Only a
sample of all the possible transitons between different states is
highlighted in the figure. In particular, the transitions starting
from states (Wi, 0, Si) and (Wi, NT−1, Si) are represented.
These states correspond to the first and last timeslots of a
day of each type Wi, respectively, with any possible value of
battery charge level. The cardinality of the state space of the
DTMC model is the product of the number of time slots during
a day NT , times the number of solar irradiance levels NW ,
times the number of levels considered for the battery charge
NS + 1.

However, since the type of day can change only when a new
day starts, given the type of day and the daily traffic profile, the
transition from a state si to a state sj , with si = (Wi, Ti, Si),
and sj = (Wj , Tj , Sj), with Ti ∈ {0, 1, · · ·NT−2}, is possible
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Fig. 4. Markovian model representing the renewable powered mobile system
operation.

only with Wj = Wi (the type of day cannot change during
the same day), Tj = Ti + 1 (the time slot increases along the
same day), and Sj−Si equal to the (fixed) difference between
the energy produced and consumed during the time slot.

On the contrary, the transition from a state si to a state sj ,
with Ti = NT − 1 is possible with any value of Wj (the type
of day can change at the beginning of a new day), Tj = 0
(the first time slot of the new day), and Sj − Si equal to the
energy consumed during the time slot (no solar irradiation is
present around midnight at the considered latitudes).

As it can be observed from Figure 4, this means that for all
states si with Ti = NT − 1 the number of possible outgoing
transitions is equal to the number of day-types NW , while for
all other states only one outgoing transition is possible. As a
result, the DTMC transition probability matrix is quite sparse.

D. Performance Measures

From the steady-state solution of our DTMC model, we
evaluate a few key performance indicators for the BS power
system. Let π(s) = π(W,T, S) be the steady-state probability
of state s = (W,T, S), with W ∈ {0, · · · , NW − 1}, T ∈
{0, · · · , NT − 1}, S ∈ {0, · · · , NS}.

We define:

1) E[S], the average battery level:

E[S] =
∑
∀W

∑
∀T

∑
∀S

S π(W,T, S);

2) Pe, the empty battery probability:

Pe =
∑
∀W

∑
∀T

π(W,T, 0);

3) Pf , the full battery probability:

Pf =
∑
∀W

∑
∀T

π(W,T,NS).

Fig. 6. Day-type average values of daily renewable energy (RE) production
of a 1 kW peak PV panel, for 5 day-types (NW =5) with equal-probability
discretization, in Turin and Paris, along with the corresponding discretization
levels of daily RE.

IV. MODEL PARAMETRIZATION

We now discuss the main model design choices, as regards
the effect of the discretization of the energy production and
consumption models (Section IV-A), discretization of time
(Section IV-B), and of energy storage (Section IV-C). Then,
we present some lessons learned from our analyses (Section
IV-D).

A. Energy Production Model

As previously mentioned, the parameters of the energy
production stochastic model are derived from traces available
in the Solar Radiation Data (SoDa) website. In particular,
we used the SoDa 20-year trace collected from January 1st
1985 to December 31st 2004 in the cities of Turin, Italy,
Paris, France, and Maiduguri, Nigeria. This data is provided
by NASA (USA) and MINES Paris Tech/Armines (France),
considering global radiation in the horizontal plane. In the
cases of Turin and Paris, for each year we only looked at the
3 winter months (December, January, February, i.e., 90 or 91
days per year). These are the periods which result most critical
for the solar power system design, because of shorter daylight
periods and lower irradiance levels at the latitudes of Turin
and Paris, in the winter season of the northern hemisphere.
As shown in [19], if the solar power system in Turin is
dimensioned based on the summer period, its performance in
winter becomes unacceptable. We will instead consider the 3
most rainy months (July, August and September) when looking
at the Maiduguri location in Section V.

Starting from the individual values of the daily energy
production of a 1 kW peak solar panel (i.e., a solar panel
large enough to produce an output power of 1 kW in standard
conditions, including a solar irradiance of 1 kW/m2 – about
5 m2 with the current normal solar cells), we first created a
histogram by applying an equal-range discretization. That is,
we first divided the total production range (i.e., the difference
between the maximum and minimum productions observed
over the 20-year period) into NW ranges of equal size. Then,
we computed the frequency (probability) of each interval, and
defined NW energy production levels as the middle values of
each interval. Figure 5 reports the histograms, and the daily
energy production ranges, in the two cases NW = 5 and
NW = 10. The blue bars in the histograms refer to Turin,
while the red ones refer to Paris. Probabilities are reported
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(a) NW =5 (b) NW =10

Fig. 5. Day-type probability distribution for 5 and 10 day-types (NW =5 and NW =10) with equal-range discretization, in Turin and Paris, with corresponding
daily produced renewable energy (RE) discretization levels, assuming a 1 kW peak PV panel.
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Fig. 7. Hourly energy production of a 1 kW peak PV panel, per each day-type in Turin and Paris, for NW =5 with equal-probability discretization.

on the left vertical scale. The blue markers are associated
with the right vertical scale, and report the extremes of the
daily energy production ranges for Turin. The red markers
refer instead to Paris. We see, for example, that in the case
NW = 10, the production range number 5, in the case of Turin
has extremes 1.3 kWh and 1.6 kWh, and probability 0.25. The
same production range 5 in the case of Paris has extremes 1.2
kWh and 1.4 kWh, and probability 0.075.

It is also possible to create a histogram by applying an
equal-probability discretization. That is, to divide the total
production range into NW ranges of different sizes, so that
the frequency of each interval is the same, and to define
NW energy production levels as the middle values of each
interval. Figure 6 reports the energy production levels obtained
with this procedure, for NW = 5, in the cases of Turin and
Paris. With this discretization procedure, the resulting average
hourly production for each day-type, with NW =5, for Turin
is reported in Figure 7(a), and for Paris in 7(b). These curves
are generated by using both the long- and short-term solar
irradiance datasets, as explained before. We also evaluate the
statistical frequency of consecutive day-types. For each daily
production level Wi (i.e., for each day-type Wi), we count the
number of dataset instances where the following day is of type
Wj , and dividing this number by the total number of day pairs
we compute the statistical frequency with which day-type Wj

follows day-type Wi. The statistical frequency is then mapped
into the transition probabilities of the Markov chain. For what
concerns the DTMC model design, the most critical decision
with respect to energy production is the discretization of the

meteorological data, i.e., the selection of the number NW of
energy production levels (also called day-types).

Figure 8 depicts the three main performance indicators of
the macro BS power system for Turin, namely the average
battery charge, and the empty and full battery probabilities,
versus values of NW , chosen in the set {3, 5, 7, 10}. The
quantization of the energy production in this case uses equal-
ranges over the Turin data, the battery capacity is 25 kWh,
and three different PV panel sizes are used: 20, 30 and 40 kW
peak. The time slot is 1 h, and the battery charge quantum is
100 Wh. The results show that the number of day-types has a
marginal impact on the performance indicators: the average
battery charge varies within less than ±5 %, while empty
and full probabilities, whose absolute values are quite small,
exhibit acceptable variations. Hence, while a higher number of
possible day-types could be considered preferable, because it
provides a more accurate distinction among production levels,
the impact on results is limited.

Moreover, it must be considered that the choice of NW

should also take into account the fact that with NW energy
production levels, we need to estimate NW ·NW probabilities
that after a day of type Wi a day of type Wj follows. A
small value of NW is thus desirable to guarantee not only a
smaller size of the DTMC state space, but also a more reliable
estimation of the transition probabilities from the available
data. Considering the 3 winter months in 20 years, we have
1,805 days; from which we need to estimate N2

W probabilities.
With NW = 10 this means about 18 samples to estimate one
probability, in case of uniformly distributed probabilities, but
actually much less for infrequent cases (such as the sequence
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Fig. 8. Average battery charge, empty (Pe) and full (Pf ) battery probabilities versus number of day-types NW , for different PV panel sizes, for Turin, with
equal-range discretization and time slot ∆T = 1h, for CB = 25 kWh, QS = 100 Wh, with residential weekday traffic profile, adpoting the Earth model.
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Fig. 9. Average battery charge, empty (Pe) and full (Pf ) battery probabilities versus number of day-types, for different PV panel sizes, for Paris, with
equal-range discretization and time slot ∆T = 1h, for CB = 25 kWh, QS = 100 Wh, with residential weekday traffic profile, adpoting the Earth model.
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Fig. 10. Average battery charge, empty (Pe) and full (Pf ) battery probabilities versus number of day-types, for different PV panel sizes, for Paris, with
equal-probability discretization and time slot ∆T = 1h, for CB = 25 kWh, QS = 100 Wh, with residential weekday traffic profile, adpoting the Earth
model.

formed by a very cloudy day followed by a most sunny day).
From the results in Figure 8 we can thus conclude that good
choices for NW could be 5 or 7.

Results for the city of Paris in the same conditions as above
are shown in Figure. 9. Paris weather is quite different from the
one in Torino, with much quicker variations that are reflected
in a somewhat higher variability in the results for different
values of NW . An explanation for this behavior can be found
by looking at the histograms of the daily energy productions
in Turin and Paris, shown in Figure 5, for NW =5 and NW =10.
The daily energy production histogram in Paris has a triangular
shape, so that some energy levels are much more likely to
occur than others, meaning that the estimation of transition
probabilities for these less likely levels is not accurate. In
cases like this one, it can be convenient to adopt an equal-
probability (rather than equal-range) discretization. Note that

this is not the case for Turin, whose histogram exhibits rather
a bell shape.

The results with this kind of discretization are reported
in Figure 10 for the case of Paris, and, as expected, are
more stable. The results for the case of Turin are reported
in Figure 11, and they show similar stability.

In conclusion, the results of our analysis suggest that,
depending on the shape of the day-type histogram, we can
choose an equal-range or an equal-probability discretization.
When the histogram is bell-shaped either discretization is
acceptable. Instead, when the histogram shows a triangular
shape, an equal-probability discretization should be preferred.
As for the choice of the number of levels NW , a trade-off
between accuracy in representing the production levels and
reliability in the transition probability estimation should be
decided.
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Fig. 11. Average battery charge, empty (Pe) and full (Pf ) battery probabilities versus number of day-types, for different PV panel sizes, for Turin, with
equal-probability discretization and time slot ∆T = 1h, for CB = 25 kWh, QS = 100 Wh, with residential weekday traffic profile, adpoting the Earth
model.
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Fig. 12. Average battery charge, empty (Pe) and full (Pf ) battery probabilities versus PV panel size, for different time slots, for Turin, with 5 day-types,
with equal-range discretization, for CB = 25 kWh, QS = 100 Wh, with residential weekday traffic profile, adpoting the Earth model.
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Fig. 13. Average hourly battery charge for a macro BS in Turin versus time, with NW = 5 and equal-range discretization, time slot ∆T = 1h, PV panel
sizes 20, 30, and 40 kW peak, CB = 25 kWh, and QS = 100 Wh, for both the residential and business weekday traffic profiles, adpoting the Earth model.

B. Time Granularity

Here, we investigate the impact of the choice of the time
granularity, i.e., of the value of the parameter ∆T , which
represents the time slot in the DTMC model. We consider
5 options: (i) Daily model, MD in short, in which ∆T =24 h
and NT = 1; (ii) Periods of day model, MP in short, in

which ∆T =6 h and NT = 4; (iii) Hourly model, MH , with
∆T =1 h and NT = 24; (iv) 30-minute model, M30, with
∆T =0.5 h and NT = 48; and (v) 15-minute model, M15,
with ∆T =0.25 h and NT = 96. We discuss the effect of time
granularity on the data for Turin. Same conclusions hold for
the case of Paris.
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Fig. 14. Average battery charge versus PV panel size, under different discretization values of the energy storage (with capacity CB = 25 kWh) and for
increasing time granularity (M15, M30, MH ), for Turin with NW = 5 and equal-range discretization, for residential weekday traffic profile, and adpoting
the Earth model.
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Fig. 15. Average battery charge, empty (Pe) and full (Pf ) battery probabilities versus PV panel sizes, for different time slots, for Turin with NW = 5 and
equal-range discretization, for CB = 25 kWh, with residential weekday traffic profile, adpoting the Earth model.

Figure 12 presents results for a macro BS located in Turin,
loaded with the residential traffic profile, and powered by a PV
panel of variable size, with energy storage capacity CB = 25
kWh, modeled with granularity 100 Wh. We can highlight
several interesting observations from this first set of results:

1) The daily model, MD, tends to overestimate the average
battery charge and the probability of full battery, when
compared against the other considered time granularity
models. This is due to the fact that, with this time
granularity, the DTMC model globally accounts for all
energy produced and consumed in one day, overlooking
the short term phenomena, such as, for example, the fact
that the battery may become full in some periods during
the day, so that the produced energy is lost, even if in
other periods of the same day the battery is not full. This
phenomenon can be understood by looking at the curves
in Figure 13, which show the average battery charge for
the case of a macro BS in Turin, with NW = 5, PV panel
sizes equal to 20, 30, and 40 kW peak, battery capacity
equal to 25 kWh, and stored energy granularity equal
to 100 Wh, for both the residential and business traffic
profiles. The time granularity of the curves is 1 h, and
this allows us to see that the daily dynamic of the battery
charge is significant. For example, in the top middle plot
we see that, in a day of type 5, the battery is full from
11 am to 6 pm. In this period, no energy produced by
the PV panel which is not immediately consumed by
the macro BS can be stored. For the rest of the day the
battery is not full, and the excess energy production can
be stored. However, if we look at the whole day, we see

that most of the excess energy production can be stored.
This causes the overestimation of the average battery
charge, because the highest energy production occurs in
the periods when the battery is full.

2) The periods of day model, MP , with respect to the
daily model, tends to better capture the fluctuations
between periods of battery charge and discharge during
the day, but exhibits a behavior similar to the daily model
when the PV panel size grows large, because of the
same phenomena mentioned above. Under this model,
the empty battery probability results to be significantly
overestimated with respect to the other models. This
is due to the fact that, besides two 6-hour periods
in which the renewable energy production is either
null (during night) or very high (in the middle of the
day), the other two periods exhibit energy generation
profiles that include hours of low production along with
hours of higher generation. In these periods, a model
with a finer time granularity (e.g. 1 hour) is such that
hours with higher production reduce the probability of
empty battery (which is measured at the end of the
time interval), whereas under the MP model the total
production over these 6-hour time slots is not enough to
balance energy consumption, resulting in a null battery
charge at the end of the period.

3) The hourly, 30-minute, and 15-minute models generate
similar values for the analysed performance measures
in the considered cases. This is an indication of the fact
that going below the time granularity of 1 h does not
lead to significant variations in results.
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C. Stored Energy Granularity

The last parameter that must be considered from the point
of view of granularity is the energy storage. This means
that we must define what is the quantum of energy to be
considered within the battery. Since the quantization impacts
the accounting of the amounts of consumed (and produced)
energy during one time slot, and these amounts depend on the
slot duration, we look at pairs of values (∆T , Qs). Considering
that the macro BS consumes between about 800 W (at peak
traffic) and about 500 W (when no traffic is present), and
that the PV panel production must be of the same order of
magnitude (with somewhat higher peak, to compensate for
periods of low or no production), with a time granularity of 1
h we look at stored energy granularity values equal to 100 Wh,
50 Wh, as well as 25 Wh. Assuming a peak hourly production
from the PV panel around 2 kWh, this mean that the stored
energy quantum is about 1/20, 1/40, 1/80 of the peak hourly
energy production, about 1/8, 1/16, 1/32 of the maximum
hourly energy consumption, and about 1/5, 1/10, 1/20 of the
minimum hourly energy consumption. Results in Figure 14
show that for the hourly model the three quantization values
produce very similar results of the average battery charge.
When we go to a 30 minute time granularity, keeping the
same stored energy quantum values means using 1/4, 1/8, 1/16
of the hourly energy consumption. With a 15 minute time
granularity, keeping the same stored energy quantum values
means using values that are 1/2, 1/4, 1/8 of the hourly energy
consumption. Then, Figure 14 shows that values of the stored
energy quantum of the order of 1/10 of the maximum hourly
energy consumption can be a reasonable choice.

Figure 15 confirms this indication, since the values of
average battery charge, of full and empty battery probability
computed for ∆T = 1 h, 30 and 15 minutes, Qs = 100, 50
and 25 Wh do not show significant differences, except for the
case of very large PV panel, where the finer granularities allow
a more accurate evaluation of the amount of energy that can
be accepted in the battery.

D. Takeaways

From our analysis we can draw the following conclusions.
First of all, quantization has important effects on the model
outputs. Developing models with a daily time granularity is
not sufficient. A careful assessment of the system performance
requires a time granularity that allows capturing the energy
production and consumption variations during the day. If the
model cannot carefully account for the fact that the energy
that is produced when the battery is fully charged is lost and
cannot be used, the predictions turn out to be optimistic. Our
experiments indicate that a time granularity of 1 h can be a
reasonable choice.

The impact of the day-type quantization is also relevant,
specially if the histogram of the weather conditions produced
with the equal-range approach turns out to have a triangular
shape. In this case, an equal-probability quantization seems
advisable. When an equal-probability quantization is used, 5 or
7 levels should be sufficient to capture the system performance
with acceptable accuracy.

Finally, our results indicate that a quantization in the energy
storage of the order of 1/10 of the maximum energy consump-
tion per time slot is acceptable.

V. EVALUATION OF THE BS POWER SYSTEM
PERFORMANCE

In this section we evaluate, through numerical results de-
rived from the model presented in Section III, the system
performance, and we provide insight into its behavior. Our
main goal in performing these experiments is three-fold: i)
measure how different traffic profiles impact the amount of
consumed/stored energy, so as to understand what can be the
potential for the use of RES in different portions of the Radio
Access Network (RAN), ii) discuss the impact, on the use of
RES, of new generations of BSs, that are more parsimonious
and more load proportional in energy consumption [2] with
respect to current BSs [20], and iii) present the results that can
be obtained in regions with irradiance patterns very different
from what we considered so far (Turin and Paris); for this we
look at the city of Maiduguri in Nigeria.

A. Impact of traffic profiles

First, we analyse how the user traffic pattern impacts the
dimensioning of the solar power system of the BS, in order
to understand what can be the potential for the use of RES in
different portions of the RAN.

1) Turin: Figure 13 shows the hourly average energy stor-
age level for Turin. In night hours, the BS activity drains the
energy stored in the battery during the peak production hours.
At the end of the day, the balance can be positive (for good
weather days, e.g., type 5), or negative (for bad weather days,
e.g, type 1). We see that the differences between the curves
for the residential and business traffic profiles are marginal. In
addition, as expected, increasing PV panel sizes lead to larger
amounts of stored energy in the battery. However, doubling the
PV panel size (from 20 to 40 kW peak) has a large effect only
for bad weather days, whose curve shows much higher energy
values in the battery. For good weather days, the impact is
minimal.

The main effect of the traffic profile is in the rate at which
energy is drained from the battery during the evening (9:00
pm to midnight) and night (midnight to 5:00 am): the load
from residential users is heavier on these time periods than
that from business users, so that the battery level goes down
faster for the residential traffic load.

To better visualize the differences between the two types
of traffic profiles, Figure 16 shows the maximum values for
the empty and full battery probabilities, respectively, versus
the PV panel size. Each of these probabilities corresponds to
the maximum value observed over all day hours, and over all
day-types. We can see that the business area traffic is easier
to handle, since it yields lower empty battery probability, and
higher full battery probability for the same size of the PV
panel. This is largely due to the higher correlation between
the energy consumption induced by the business traffic profile
and the energy generation of the PV panel. The fact that in a
business area most of the traffic is generated during working
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Fig. 16. Maximum hourly empty (Pe) and full (Pf ) battery probabilities versus PV panel size, for Turin, with 5 day-types and equal-range discretization,
time slot ∆T = 1h, for CB = 25 kWh, QS = 100 Wh, with residential and business weekday traffic profiles, adpoting the Earth model.
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Fig. 17. Average hourly battery charge for a macro BS in Paris versus time, with NW = 5 and equal-probability discretization, time slot ∆T = 1h, PV
panel sizes 20, 30, and 40 kW peak, CB = 25 kWh, and QS = 100 Wh, for both the residential and business weekday traffic profiles, adpoting the Earth
model.

3

hours allows the PV panel power to be immediately used to
run the BS.

2) Paris: Figure 17 shows the hourly average energy stor-
age level for Paris. The behavior of the curves is qualitatively
similar to Turin, but the quantitative differences between
different PV panel sizes are now much more pronounced.

To further visually compare the effect of different traffic
profiles, in Figure 18 we plot the hourly average storage level
for PV panel size equal to 30 kW peak, in residential and
business areas, in Turin and Paris. Here we just show curves
for days of types 1 and 5, and the average over all days. Once
more, we see that differences are small, and this means that
the solar option to power BSs is equally viable in business
and residential areas.

B. Impact of new generation base stations

The next aspect that we investigate is related to the tech-
nological evolution of BS technology, in particular as regards
energy consumption. We evaluate the reduction of PV panel
size that can be achieved with the BS technology transitioning
from the one that led to the power model that we used so far
and that we call EARTH model [20], to the one presented in
[2], that we call the 2020 model. The latter type of BS exhibits
an energy consumption pattern which is much lower, and also
more proportional to the traffic load.

We derived results for the 2 x 2 macro BS model described
in [2], which leads to a power saving of 47.7% at full load,
when compared against [20]2.

2From [2], a BS with full load needs 702.6 W at full load and 114.5 W
at zero load. From [20], instead, a BS with full load needs 1.344 kW at full
load and 130 W at zero load.
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Fig. 18. Average hourly battery charge for a macro BS in Turin (equal-range discretization) and Paris (equal-probability discretization) versus time, with
NW = 5 and time slot ∆T = 1h, PV panel size 30 kW peak, CB = 25 kWh, and QS = 100 Wh, for both the residential and business weekday traffic
profiles, adpoting the Earth model.
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Fig. 19. Average battery charge level, empty (Pe) and full (Pf ) battery probabilities versus PV panel size, for 2020 and Earth models (2020M and EarthM,
respectively), in residential and business areas in the city of Turin. NW = 5 and equal-range discretization, ∆T = 1h, CB = 25 kWh, and QS = 100 Wh.

 5

 10

 15

 20

 25

 30

 20  25  30  35  40

A
v
e

ra
g

e
 b

a
tt

e
ry

 c
h

a
rg

e
 [

k
W

h
]

PV size [kWp]

2020M, Res

2020M, Bus

EarthM, Res

EarthM, Bus

(a) Storage level

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 20  25  30  35  40

E
m

p
ty

 b
a

tt
e

ry
 p

ro
b

a
b

ili
ty

, 
P

e

PV size [kWp]

2020M, Res

2020M, Bus

EarthM, Res

EarthM, Bus

(b) Pe

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 20  25  30  35  40

F
u

ll 
b

a
tt

e
ry

 p
ro

b
a

b
ili

ty
, 

P
f

PV size [kWp]

2020M, Res

2020M, Bus

EarthM, Res

EarthM, Bus

(c) Pf

Fig. 20. Average battery charge level, empty (Pe) and full (Pf ) battery probabilities versus PV panel size, for 2020 and Earth models (2020M and
EarthM, respectively), in residential and business areas in the city of Paris. NW = 5 and equal-probability discretization, ∆T = 1h, CB = 25 kWh, and
QS = 100 Wh.

Figure 19 presents results for residential and business traffic
profiles in Turin, while Figure 20 refers to Paris. By looking
at the curves we see that the 2020 model yields better perfor-
mance than the EARTH model, with half the panel size (20
kW peak instead of 40). For instance, the empty probability
for a 20kWp panel size and 2020 model is 1/4 of the value
of the EARTH model in Turin (19.b) and almost zero in Paris
(20.b). Moreover, the battery remains full almost twice the
time with the 2020 model, for all panel sizes. This means that
the new generations of BSs are making the use of solar power
less expensive, so that we can expect an increased diffusion
of solar BSs in the coming years. The parallel technological

improvements in solar panels will further reinforce this trend.

C. Impact of solar irradiance patterns
Finally, we look at the influence of geographic characteris-

tics, which can have a big impact on solar irradiance patterns.
Considering that, as we stated at the beginning of this paper,
renewable energy sources can be particularly useful in areas
where the power grid does not exist or is extremely unreliable,
we look at the city of Maiduguri in Nigeria. Maiduguri is
the capital of the Borno State in north-east Nigeria, and its
population is around 1 million people. The city had severe
energy problems over the last years, and is thus a very
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TABLE II
FULL AND EMPTY BATTERY PROBABILITY, MAIDUGURI, RESIDENTIAL

PROFILE, CB = 25 KWH.

PV Size [kWp] Pf Pe

10 0.23 5.9e-02
20 0.36 5.6e-02
30 0.40 5.2e-02
40 0.40 5.0e-02

interesting candidate for the use of solar panels to power
cellular communication equipment. The sub-saharan location
of Maiduguri, at a latitude of about 12◦ north, guarantees a
very high solar irradiance, somewhat diminished in the most
rainy months, i.e., July, August and September. Considering,
as usual, the least favorable period of the year for the analysis
of the BS power system performance, we look at the solar
irradiance in those three months. Even so, comparing the daily
solar irradiance in Maiduguri to those of Turin and Paris,
after a classification into 5 day-types, we see that in the least
favorable day-type the maximum solar irradiance in Maiduguri
is about four times higher than in both Turin and Paris, while
the advantage of Maiduguri reduces to a factor 2 for the most
favorable day-type.

Figure 21 shows the hourly battery charge for the case of
residential area traffic, with battery capacity 25 kWh, and with
PV sizes of 10, 20, 30, and 40 kW peak, respectively, in
plots a), b), c) and d). We can note that the PV panel size
significantly impacts only the curves for day-type 1 (the one
with least irradiance). Otherwise, the curves are much more
packed than in the cases of Turin and Paris, the only difference
being in the speed at which the battery charge rises at the
beginning of the day. The full and empty battery probabilities
are reported in Table II for different PV panel sizes. In this
case we see that outage probability differences are very small,
in spite of large PV panel size variations. This result tells
us that the system bottlencek is more in the battery capacity
rather than in the energy production capacity.

For this reason, Figure 22 shows the hourly average battery
charge with PV size 10 kW peak, and with battery capacity
equal to 25, 35, and 50 kWh, respectively, in plots a), b),
and c). We can note that the average battery charge grows
significantly for all day-types for increasing battery capacity,
thanks to the excess energy production in days of high solar
irradiance which is not wasted with batteries of adequate size.
The empty battery probability remains close to 5% for all
battery capacities, mainly due to longer sequences of rainy
days.

The observation of the Maiduguri results, and their com-
parison against those of Paris and Turin, tell us that optimal
BS power solutions based on PV panels and batteries can be
extremely different from one geographical location to another.
In Maiduguri a small PV panel is sufficient, but a larger battery
is necessary to obtain very small outage probabilities. Turin
and Paris require much larger PV panels, but can live with
smaller batteries, since the outage probability is more driven
by the PV panel size than by the battery capacity. In order to be
able to observe these effects, carefully engineered stochastic

models are necessary, and this is the issue we address in this
paper.

VI. CONCLUSIONS

This paper focused on the analysis of the effects of quan-
tization in the analytical models that are used to dimension
the power system of solar-powered off-grid base stations.
Quantization was investigated for the three main model pa-
rameters: time, weather (in terms of solar irradiance), and
energy storage. That is, we discussed the size of the time
slot according to which the discrete-time model evolves, the
number of levels that are used to describe solar irradiance,
and the quantum of energy that is considered when looking
at the system batteries. Our study unveiled the critical role
of quantization for a correct power system dimensioning. Our
main findings can be summarized by saying that a credible
and accurate model requires: i) a time granularity that allows
capturing the energy production and consumption fluctuations
during the day, and our experiments indicate that a time slot
equal to 1 h can be a reasonable choice; ii) the discretization of
the weather conditions according to 5 or 7 levels of average
daily solar irradiance; iii) a storage energy quantum of the
order of 1/5 of the minimum energy consumption per time
slot.

In addition, we presented numerical results showing the
impact of different traffic profiles on the amount of con-
sumed/stored energy. The differences between the curves for
residential and business traffic profiles are marginal for both
cases of Turin and Paris. Moreover, we discussed the impact
on the use of renewable energy sources of the technological
evolution of base stations, with new product generations that
are more parsimonious and more load proportional in energy
consumption. Our analysis showed that it is possible to achieve
a better performance, with half the solar panel size, with the
coming generations of base station technology. Finally, we
considered the case of Maiduguri in Nigeria, where solar
irradiation is much higher than for both Paris and Turin,
showing that in this case small solar panels are sufficient,
but larger batteries are necessary in order to reduce outage
probabilities to around 5% during the rainy season.

Our work helps understanding how the correct design of
solar power systems for off-grid base stations should be
approached. In addition, it shows that the solar option is
becoming extremely attractive to power new generations of
base stations. If the promised improvements in solar cell
technologies will materialize soon, bringing efficiency from
the current 20 % to about 50 %, in the coming years, the
solar option will become the default solution to power base
stations in many geographical areas.
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Fig. 21. Average hourly battery charge for a macro BS in Maiduguri versus time, with NW = 5 and equal-probability discretization, time slot ∆T = 1h,
PV panel sizes 10, 20, 30, and 40 kW peak, CB= 25 kWh, and QS= 100Wh (50Wh in case of PV panel size 10 kW peak), for the residential weekday
traffic profiles, adpoting the EARTH model.
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Fig. 22. Average hourly battery charge for a macro BS in Maiduguri versus time, with NW = 5 and equal-probability discretization, time slot ∆T = 1h,
PV panel size 10 kW peak, battery capacities 25, 35, 50 kWh, and QS = 100 Wh, for the residential traffic profiles.
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