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Abstract—This paper investigates a secure wireless-powered
device-to-device (D2D) communication network in the presence
of multiple eavesdroppers, where a hybrid base station (BS)
in a cellular network not only provides power wirelessly for
the D2D transmitter to guarantee power efficiency for the D2D
network, but also serves as a cooperative jammer (CJ) to interfere
with the eavesdroppers. The cellular and D2D networks can
belong to different service providers, which means that the D2D
transmitter would need to pay for the energy service released
by the hybrid BS to guarantee secure D2D communication. In
order to exploit the hierarchical interaction between the BS and
the D2D transmitter, we first formulate a Stackelberg game based
energy trading scheme, where the quadratic energy cost model is
considered. Then, a non-energy trading based Stackelberg game
is investigated to study the reversed roles of the BS and the
D2D users. For comparison, we also formulate and resolve the
social welfare optimization problem. We derive the closed-form
Stackelberg equilibriums of the formulated games and the optimal
solutions for the social welfare optimization problem. Simulation
results are provided to validate our proposed schemes to highlight
the importance of energy trading interaction between cellular and
D2D networks.

Index Terms—Wireless powered communication networks
(WPCNs), physical-layer secrecy, device-to-device (D2D), coop-
erative jammer (CJ), Stackelberg game.

I. INTRODUCTION

Device-to-device (D2D) communications, which was stan-

dardized by the 3GPP release 12 [2], [3], has been re-

cently receiving increasing research interests as one of the

driving technologies for 5G networks. The key feature of

D2D communication is that two communicating devices in

close proximity reuse better links to communicate directly

rather than through a base station (BS) in cellular networks

[4]. The D2D communication based mobile proximity offers

new mobile service opportunities and the potential to reduce

traffic load on the network. The advantages of the D2D

communications are multi-fold: relieving the burden of the

BS, enhancing spectral efficiency, shortening time delay, and

reducing power consumption to keep up with the “greener”

trend. D2D communication is also supposed to serve well in

the urgent scenarios for providing public safety and disaster
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relief services [5]–[7]. Recent information-theoretical results

have indicated that the combination of caching on the users’

devices and D2D communication leads to throughput scala-

bility for very dense networks, see e.g., [8] and references

therein. Hence, D2D caching networks have been considered

as one of promising paradigms in [8], [9], where it is advocated

that “helper” nodes are densely disseminated in a coverage

area to serve the users’ demands using their own large cached

information. However, the works in [8] and [9] have implicitly

assumed infinite power supply for helper nodes. Unfortunately,

the infinite-power-supply assumption is not always practical

for D2D transceivers.

To tackle the aforementioned problem, energy harvesting

D2D networks have been considered as a promising solu-

tion to provide energy for the D2D transceivers [10]. Since

energy can be harvested from ambient radio frequency (RF)

signals with reasonable efficiency over small distances, RF

energy harvesting can be adopted for D2D communications.

Therefore, wireless energy transfer (WET) techniques have

attracted increasing research interests to prolong the bat-

tery lifetime of energy-constrained wireless networks [11],

[12]. In particular, research efforts have been focusing on

the establishment of wireless-powered communication net-

works (WPCNs), in which wireless transceivers are wirelessly

charged by the power transmitters [13], [14]. Unlike traditional

battery-powered networks, WPCN can effectively reduce the

operational cost by avoiding the need to replace or recharge

batteries. Also, the energy released by the WPCN is adjustable

in providing a stable energy supply to satisfy different physical

conditions and service requirements [14]. In WPCNs, a well-

known protocol, named “harvest-then-transmit”, was proposed

in [15], where wireless users first harvest energy from RF sig-

nals broadcast by a hybrid access-point (AP) in the downlink

(DL), and then use the harvested energy to send information

to the AP in the uplink (UL). State-of-the-art cooperative

protocols for WPCNs can be found in [16]–[18]. The authors

of [19] and [20] proposed a dedicated WET network where

multiple power beacons (PBs) are deployed near a wireless

information transfer (WIT) network to provide energy services

to the wireless terminals, i.e., D2D transceivers, of the WIT

network.

On the other development, physical layer security, which

differs from the conventional cryptographic methods devel-

oped in the network layer, has recently attracted significant

research efforts, see e.g., [21]–[24]. Physical layer security has

been initially defined in wiretap channel based on information-

theoretical aspects [21], [22]. In physical layer security, a

better channel of a legitimate user, compared with that of an

http://arxiv.org/abs/1803.06291v1


eavesdropper, is exploited to guarantee secure transmissions

for the legitimate user, i.e., to guarantee a positive secrecy

rate which is defined as the mutual information difference

between the legitimate user and the eavesdropper. To improve

the secrecy rate, multi-antenna wiretap channels have been

investigated to take the advantage of having the additional

degrees of freedom (DoF) and diversity gains [23], [24]. Most

of existing techniques aim to introduce more interference to

degrade the channels of eavesdroppers, i.e., artificial noise

(AN) [25]–[27] and cooperative jammer (CJ) [28]. In [29],

a semidefinite programming (SDP) approach was adopted

for multiple-input single-output (MISO) secure channels to

guarantee reliable communications by solving either power

minimization subject to secrecy constraint or secrecy rate max-

imization subject to power constraint. An AN-assisted transmit

optimization has been presented in [25], where the spatially

selective AN embedded with secure transmit beamformer was

designed to obtain the optimal power allocation. In [28], a

scheme that utilizes a CJ signal sent by an external node is

considered. The CJ signal is used to introduce interference to

the eavesdroppers in order to achieve the required achievable

secrecy rate for a multiple-input multiple-output (MIMO)

secrecy channel. In [28], [30], [31], several designs were

proposed with an assumption that a legitimate transmitter pays

a price to a private CJ for its jamming services to guarantee the

secure communications. A Stackelberg game was employed to

obtain the optimal power allocation in [28], [31]. In addition,

outage probability is a key indicator to show secrecy perfor-

mance when only statistical channel state information (CSI) is

available. In [27], [32], [33], outage secrecy rate optimizations

were formulated based on the uncertainty model of statistical

channels, where Bernstein-type inequality [34] is adopted to

solve the formulated problems.

As an emerging application of D2D communications, a new

cellular network architecture is proposed to integrate energy

harvesting technologies and social networking characteristics

into D2D communications for local data dissemination in [35].

In D2D caching and social networks, the need for secrecy

protection arises as on-demand broadcasting normally requires

a subscription, which means unsubscribed users will not be

able to access the content that they do not pay for. Thus,

security communications should be considered in the D2D

networks. To that end, physical layer security techniques have

been adopted in D2D communications, where secure commu-

nications can be guaranteed such that confidential information

is reliably transmitted between a dedicated D2D pair [36]–

[39]. In [36], [37], the authors proposed a novel cooperation

mechanism between the cellular and D2D networks, which

was formulated as a coalition game. In addition, a merge-

and-split-based coalition formation algorithm is proposed to

achieve efficient cooperation such that one can improve the

secrecy rate and social welfare. In [38], the optimal joint

power control solutions of both the cellular communication

links and D2D pairs have been derived in terms of secrecy

capacity. In [39], the D2D network plays a CJ role to interfere

with the eavesdroppers for the improvement of the security

in cellular networks. On the other hand, the power signal

in a dedicated WET for transferring wireless power, can be

employed to guarantee the secrecy communications in WIT

such that physical layer security techniques can be naturally

applied to the secure WPCNs [40]. The interaction between

WET and security services plays an important role to the

performance of the network, particularly when the WET sup-

plier and the WIT users belong to different service providers.

To the best of our knowledge, there has been no existing

work investigating this energy interaction in secure wireless-

powered D2D communications.

In this paper, we investigate a secure wireless-powered

CJ-aided D2D communication system, where a hybrid BS

plays two roles: WET and CJ-aided secure WIT. In addition,

the D2D secure communication is established by using the

harvested energy. The WET and CJ-aided secure WIT are

performed in two phases: i) the BS is considered as a power

source (PS) which transfers the power to the D2D transmitter

in the first phase, and ii) the D2D transmitter employs the

harvested energy to transmit the information signal while the

BS acts as a CJ to enhance the secrecy performance. Unlike

the existing work [19], where the WET and WIT networks are

assumed to belong to the same service provider, in this paper,

we consider a more general and complete case where these

two networks may or may not belong to the same operators.1

In this case, energy prices will be paid by the D2D transmitter

for the wireless charging services to guarantee the secure

transmission. We propose three different schemes to exploit

the energy interaction between the BS and the D2D transmitter

to achieve optimal power allocation for the cellular network

while guaranteeing security for D2D communications. In the

following, we highlight our contributions:

1) Energy trading based Stackelberg game: We first con-

sider the wireless charging model as an energy trading

process, which is defined as the hierarchical energy in-

teraction between the BS and the D2D transmitter. This

model facilitates the derivation of the optimal power

allocation policies for the D2D devices and the BS. In

particular, we take into account strategic behaviours of

the hybrid BS and the D2D transmitter and formulate

this energy trading process as a Stackelberg game. The

D2D transmitter plays the leader role2 that purchases

energy from the BS’s wireless power transfer service.

In this game, the leader optimizes the energy price

that it needs to pay and the amount of time allocated

for energy harvesting to maximize its utility function,

which is defined as the difference between the achievable

secrecy throughput, i.e., the equivalent revenue, and

its total payment to the BS. Meanwhile, the BS is

modelled as the follower that decides its optimal power

transfer policy based on the energy price offered by the

leader to maximize its own profit, which is defined as

the difference between the payment received from the

1In the case of different operators, we assume that the WET service is
provided by one service provider, e.g., an energy supplier, while the WIT
service is provided by another provider, e.g., a telecommunication supplier.
Both of service providers belong to different authorities.

2As a customer, it can dictate the market by deciding what energy price
that it is willing to pay and therefore it fits well with the role of the leader
in this trading game.



D2D transmitter and the energy production cost. The

Stackelberg equilibrium of the game is then achieved

via closed form solutions (for the BS’s transmit power

policy and the D2D transmitter’s energy price) or via

numerical search (for time allocation of the energy

harvesting).

2) Non-energy trading based Stackelberg game: Next, we

consider a non-energy trading based game-theoretical

scheme. The nature of non-trading strategy is that the

energy seller, i.e, the BS, decides the energy price and

the amount of time for energy transfer service. There is

no room for the customer, i.e., the D2D transmitter, to

negotiate the price. To reflect this, the BS now plays the

leader role, who dictates the situation, in the Stackelberg

game. The D2D transmitter is now modelled as the

follower who determines the level of power transfer

required from the BS. The closed form solutions are

achieved for the optimal energy price and transmit power

in this game.

3) Social welfare optimization scheme: Finally, we formu-

late and solve a corresponding social welfare optimiza-

tion scheme in order to evaluate the impact of the self-

interested behaviours of the hybrid BS that is present

in the energy trading based Stackelberg game. In this

scheme, the hybrid BS is considered to cooperate with

the D2D transmitter to maximize the social welfare

which is defined as the difference between the utility

function achieved from the achievable secrecy through-

put of the D2D transmitter and the BS’s energy cost

presented by a quadratic model. We derive the closed-

form solution for the BS transmit power allocation,

while the optimal energy transfer time allocation can

be achieved by numerical search.

The rest of of the paper is organized as follows. Section

II presents the secure wireless-powered D2D system model.

Section III proposes the game theoretical and social welfare

optimization schemes. Numerical results are provided to val-

idate the proposed schemes in Section IV. Finally, Section V

concludes the paper.

Notations: We use the upper case boldface letters for ma-

trices and lower case boldface letters for vectors. ‖ · ‖ denotes

the Euclidean norm of a vector. [x]+ represents max{x, 0}.

II. SYSTEM MODEL

In this section, a secure wireless-powered D2D communi-

cation, shown in Fig. 1, is considered. The communication

scenario considered consists of a cellular hybrid BS, a D2D

pair,3 and multiple eavesdroppers. A secure D2D communica-

tion link is established between the D2D pair in the presence of

K multiple eavesdroppers. In addition, a multi-antenna hybrid

BS in the cellular network is employed to provide power for

the D2D transmitter to guarantee the secure communications,

and also to introduce jamming signals to interfere with the

3The D2D pair utilizes the same frequency of the cellular network in
underlay mode. We ignore the D2D interference to the cellular network by
assuming the D2D interference to be lower than the interference tolerance of
the cellular network.

eavesdroppers. We assume that the D2D transmitter has no

embedded power supply available and needs to be powered

from the RF signals transmitted by the hybrid BS, which serves

as a stable and reliable energy provider. We assume that the

BS is powered constantly by a national grid or a micro grid.

Moreover, the “harvest-then-transmit” protocol is considered

during a time period T , shown in Fig. 1, which is divided into

two parts: (a) Wireless energy transfer (WET), i.e., in the time

period of θT (0 < θ < 1), the BS provides power for the

D2D transmitter by transmitting the RF signals; (b) Wireless

information transfer and cooperative jamming (WITCJ), i.e.,

in the (1 − θ)T time period, the D2D transmitter employs

the harvested energy to send information signals to the D2D

receiver, and meanwhile, the BS transmits jamming signal to

interfere with the eavesdroppers to enhance the secrecy rate.

Without any loss of generality, we assume that T = 1 in this

paper. It is assumed that the D2D pair and all eavesdroppers

are equipped with a single antenna, while the hybrid BS is

equipped with NT transmit antennas. Let hs and he,k denote

the channel coefficients between the D2D transmitter and the

D2D receiver as well as the k-th eavesdropper, respectively.

Furthermore, let h ∈ C1×NT , gs ∈ C1×NT and ge,k ∈ C1×NT

be the channel coefficients between the BS and the D2D

transmitter, the D2D receiver, as well as the k-th eavesdropper,

respectively. During the WET phase, the BS employs the

Fig. 1: System model.

energy beamforming w along with the direction of h, which

can be written as w = h

‖h‖ . Thus, the harvested energy at the

D2D transmitter is given by

Es = ξθPBS‖h‖2, (1)

where ξ ∈ (0, 1) denotes the energy harvesting efficiency of

the D2D transmitter, and PBS is the transmit power at the

BS. Thus, the maximum transmit power available for the D2D

transmitter during the (1− θ)T time period can be written as

pmax
s =

Es

1− θ
=

ξθPBS‖h‖2
1− θ

. (2)

During the WITCJ phase, while the secure communication

is established between the D2D pair, the jamming signal is

introduced by the BS to interfere the eavesdroppers. In order to

confuse any potential eavesdroppers except the D2D receiver,

the jamming signal is generated in the null space of the



channel coefficients between the BS and the D2D user gs, i.e.,

gsz = 0, where z = Tv is the jamming beamforming vector,

T ∈ CNT×(NT−1) is the orthogonal basis of the null space of

gs, and v is a (NT − 1) jamming signal vector with entries

being independent and identically distributed (i.i.d) CN (0, 1)
variables. In this paper, we assume that the jamming power

(also equals to PBS) is uniformly distributed among the NT−1
dimensions. Based on the above analysis and assumption, the

instantaneous channel capacity at the D2D receiver and the

k-th eavesdropper can be, respectively, written as

Cs = log

(

1 +
ps|hs|2
σ2
s

)

, (3)

and

Ce,k = log

(

1 +
ps|he,k|2

PBS

NT−1‖ge,kT‖2 + σ2
e

)

, (4)

where ps is the transmit power at the D2D transmitter,

σ2
s = σ2

I + σ2
n, σ2

I is the interference power from cellular

network,4 and σ2
n and σ2

e are the noise variances of additive

white Gaussian noise (AWGN) at the D2D receiver and the k-

th eavesdropper, respectively. Without loss of generality, the

worst case scenario is considered in this paper, where it is

assumed that σ2
e = 0. Thus, the secrecy capacity can be written

as

C = [Cs −max
k

Ce,k]
+. (5)

In addition, the secrecy rate R in this paper is defined as

the difference between communication rate of main channel

Rs (Rs ≤ Cs) and the maximum eavesdropping rate, i.e.,

maxk∈[1,K]Re,k, which is given by

Re = max
k∈[1,K]

Re,k = log(1 + ρe), (6)

where ρe ≥ 0 denotes the associated signal-to-noise ratio

(SNR) threshold for the eavesdroppers.5 Thus, the secrecy rate

for the D2D network can be expressed as

R = Rs −Re = Rs − log(1 + ρe). (7)

It is noted that Rs should satisfy Rs ≤ Cs to guarantee reliable

transmissions, which implies that Rs is upper-bounded by Cs.

In order to maximize R, we consider Rs = Cs, and thus

R = Cs − log(1 + ρe). (8)

Due to the randomness of the eavesdroppers’ channels, it is

difficult to estimate the accuracy CSI of the eavesdroppers.

In this case, we assume that the D2D transmitter only knows

statistical CSI of the eavesdroppers. Under this assumption, the

secrecy outage probability is considered as a secrecy metric,

which is defined as follows:

pout = Pr{Cs −max
k

Ce,k < R}. (9)

4It is assumed that the interference from cellular network is an ergodic
process, i.e., the statistical average can be estimated by averaging over time,
and D2D user can estimate the interference power σ2

I
. For the detailed

discussion on interference modeling, interested reader are referred to [41].
5The associated SNR threshold ρe is an optimization variable which is

introduced to control the information leakage levels at the eavesdroppers.
The D2D transmitter optimizes this variable to maximize its utility function.

We assume that he,k is i.i.d. complex Gaussian variable with

variance γ2
e , and the entries of ge,kT are i.i.d. complex

Gaussian variables with variance δ2e . Thus, the secrecy outage

probability (9) can be derived as

pout = Pr{Cs −max
k

{Ce,k} < R}
= Pr{max

k
{Ce,k} > log(1 + ρe)}

= 1− Pr

{

max
k

{

ps(NT − 1)|he,k|2
PBS‖ge,kT‖2

}

≤ ρe

}

= 1−
[

Pr

(

ps(NT − 1)|he,k|2
PBS‖ge,kT‖2 ≤ ρe

)]K

= 1−
{

1−
[

1+ρe

(

PBSγ
2
e

psδ2e(NT −1)

)]1−NT
}K

. (10)

From (10), we can observe that pout decreases and asymptot-

ically reaches zero when NT → ∞.

Based on the energy transfer time allocation θ and secrecy

rate R, the secrecy throughput is defined as the average

number of confidential messages received at the D2D receiver

per unit time, and can be given as

Ts=(1−θ)R=(1−θ)

[

log

(

1+
ps|hs|2
σ2
s

)

−log(1+ρe)

]

. (11)

III. GAME THEORETICAL BASED SECURE WIRELESS

POWERED D2D COMMUNICATIONS

In practice, both WET and WITCJ processes can belong

to different service providers and act strategically. Thus, the

D2D transmitter has to pay a price as incentive to the BS

for WET service to facilitate its secure communications. In

order to efficiently exploit the WET interaction between the

BS and the D2D transmitter, we model both WET and WITCJ

processes as a Stackelberg game, where two different schemes

are considered as energy trading and non-energy trading.

When the two WET and WITCJ processes belong to the same

service provider, we consider the third scheme called social

wellfare optimization.

A. Energy Trading based Stackelberg Game

In this subsection, we consider an energy trading framework

for the secure wireless-powered D2D CJ-aided network using

Stackelberg game. Particularly, the strategic interactions be-

tween the D2D network and the cellular network are taken into

consideration. In the formulated game, the D2D transmitter

plays a leader role who purchases the energy service from the

hybrid BS in cellular network by offering a price to guarantee

WET and secure WITCJ processes during time period T . The

D2D transmitter optimizes its energy price as well as energy

transfer time allocation to maximize its utility function. On the

other hand, the hybrid BS is modelled as the follower of this

game, which decides their optimal transmit powers based on

the energy price paid by the D2D transmitter to maximize its

own utility function. Letting λ denote the energy price released

by the D2D transmitter, mathematically, the payment to be

paid by the D2D transmitter to the BS can be expressed as

E(θ, λ, PBS) = λθPBS‖h‖2. (12)



Then, the utility function of the D2D transmitter can be defined

as the difference between the benefits of the achievable secrecy

throughput and its payment to the BS, which is given by

UL(θ, λ, PBS) = µTs − E, (13)

where µ > 0 is the gain per unit throughput for the D2D

transmitter. Thus, the optimization problem the D2D network

utility (leader-level game) is formulated as:

Leader Level

max
ps,λ,ρe,θ

UL(θ, λ, PBS), s.t. ρe ≥ 0, λ ≥ 0, pout ≤ ε,

0 ≤ ps ≤ pmax
s , 0 < θ < 1. (14)

Note that the optimal value of θ can be neither 0 nor 1 as

both values result in zero secrecy throughput. Moreover, the

hybrid BS in the cellular network is modeled as the follower

who maximizes its own profit, which can be expressed as

UBS(θ, λ, PBS) = θ(λPBS‖h‖2 −F(PBS)), (15)

where F(PBS) is used to model the cost of the BS per unit

time for wirelessly charging. In this paper, we consider the

following quadratic model6 for the cost function of the PBs.

F(x) = Ax2 +Bx (16)

where A > 0 and B > 0 are constants.

Thus, the optimization problem for the hybrid BS or the

follower-level game is given by

Follower Level

max
PBS

UBS = λθPBS‖h‖2 − θ(AP 2
BS +BPBS),

s.t. PBS ≥ 0. (17)

The Stackelberg game for the considered WPCN-aided secure

D2D network has been formulated by combining problems

(14) and (17).7 The D2D transmitter (the leader) aims to solve

the problem (14), whereas the BS (the follower) aims to solve

the problem (17). For this game, the subsequent part is to find

the Stackelberg equilibrium, which can be formally defined as:

Definition 1: Let (θopt, λopt) denote the solutions to the prob-

lem (14), while P
opt

BS represents the solution to the problem

(17), then, the tuple (θopt, λopt, P
opt
BS) is the Stackelberg equi-

librium of the formulated game provided that the following

conditions are satisfied

UL(θ
opt, λopt, P

opt

BS) ≥ UL(θ, λ, P
opt

BS), (18)

UBS(θ
opt, λopt, P

opt

BS) ≥ UBS(θ
opt, λopt, PBS), (19)

for 0 < θ < 1, λ ≥ 0, and PBS ≥ 0.

Exploiting the Stackelberg equilibrium definition in Defi-

nition 1, we will derive the Stackelberg equilibrium of the

formulated game by analyzing the optimal strategies for the

D2D transmitter and the hybrid BS to maximize their own

6Note that the quadratic function shown in (16) has been applied in the
energy market to model the energy cost [42].

7Generally, the BS provides two services for the D2D pair: energy service
and CJ service. In our formulated game, the BS can release these two services
by one combined price. After receiving payment for the energy service, the
interference service will be included in the package offered by the BS. So the
interference service is used as incentive to attract energy buyers.

utility functions. It can be seen from (17) that for a given

energy price λ and the energy transfer time allocation θ, the

utility function of the BS is a quadratic function with respect

to PBS and the constraint is affine, which indicate that (17) is

a convex problem. Thus, the following lemma is required to

obtain its optimal solution:

Lemma 1: For given λ and θ, the optimal solution to (17)

can be achieved as

P
opt

BS =

[

λ‖h‖2 −B

2A

]+

. (20)

Proof: It can be verified that the problem (17) is convex

in terms of PBS . Thus, we take into account the first derivative

to the objective function in (17) equals to zero as

∂UBS

∂PBS

= λθ‖h‖2 − 2θAPBS − θB = 0,

⇒ PBS =
λ‖h‖2 −B

2A
. (21)

Combining with the condition PBS > 0, we have completed

the proof of Lemma 1.

Here, we first consider the optimal solutions to the SNR

threshold ρe and the D2D transmit power ps by the following

problem for the given λ, θ and PBS ,

max
ps,ρe

1+ ps|hs|
2

σ2
s

1+ρe
s.t. 0≤ps≤pmax

s , ρe≥0, pout≤ε. (22)

In order to obtain the optimal solutions to (22), the following

theorem is introduced:

Theorem 1: For given θ and PBS , the optimal transmit

power at the D2D transmitter p
opt
s and the eavesdroppers’

SNR threshold ρ
opt
e are expressed in terms of the closed-form

solution, respectively, as

popt
s =

θξPBS‖h‖2
1− θ

, (23)

and

ρopt
e =

θξ‖h‖2(NT − 1){[1− (1− ε)
1

K ]
1

1−NT − 1}δ2e
(1 − θ)γ2

e

. (24)

Proof: First, we fix ps to obtain the solution to ρe from

(10), which is the function with respect to ps, as follows:

ρe(ps) =
(NT − 1){[1− (1− ε)

1

K ]
1

1−NT − 1}δ2e
PBSγ2

e

ps. (25)

It is noted from (22) that |hs|2 >

(NT−1){[1−(1−ε)
1

K ]
1

1−NT −1}δ2
e

PBSγ2
e

for positive achievable

secrecy rate. The objective function in (22) is monotonically

increasing with respect to ps. Thus, the optimal p
opt
s for any

given energy transfer time allocation θ can be expressed as

popt
s =

θξPBS‖h‖2
1− θ

. (26)

Replacing (25) with (26), we have the optimal solution ρ
opt
e in

(24).

Next, we solve the problem (14) by substituting PBS with

P
opt
BS given in (20). Based on Lemma 1 and Theorem 1, we



rewrite the optimization problem (14) with p
opt
s , P

opt
BS and ρ

opt
e

as follows:

max
λ,θ

UL(θ, λ) = µ(1− θ) log

(1 +
θξP

opt

BS
‖h‖2|hs|

2

(1−θ)σ2
s

1 + ρ
opt
e

)

− λθP
opt
BS‖h‖2

= µ(1 − θ)

[

log

(

1 +
θξ|hs|2

(1− θ)σ2
s

λ‖h‖2 −B

2A
‖h‖2

)

− log(1 + ρopt
e )

]

− λθ

(

λ‖h‖2 −B

2A

)

‖h‖2,

= µ(1−θ)

[

log

(

1+
ξ|hs|2

(1− θ)σ2
s

(

λθ‖h‖4
2A

− θB‖h‖2
2A

))

− log(1 + ρopt
e )

]

− λ2θ‖h‖4
2A

+
λθB‖h‖2

2A
,

s.t. λ ≥ 0, 0 ≤ θ ≤ 1. (27)

From (27), it is hard to find the optimal expressions for θ

and λ at the same time due to the complexity of its objective

function. In order to tackle this issue, we optimally solve (27)

in two steps. We first find the optimal closed-form solution to

λ for a given θ. Then, the optimal value for θ can be obtained

via one-dimension line search. Now we rewrite (27) for a given

θ as

max
λ

UL(λ) = a

[

log(1 + d(λC − 2D))− log(1 + ρopt
e )

]

− λ2C + 2λD,

s.t. λ ≥ 0, (28)

where

C =
θ‖h‖4
2A

, D =
θB‖h‖2

4A
, a = µ(1− θ), d =

ξ|hs|2
(1− θ)σ2

s

.

We solve problem (28) by introducing the following theorem:

Theorem 2: The optimal solution to problem (28) can be

derived as

λopt =
−(1− 3dD) +

√

(1− dD)2 + 2ad2C

2dC
. (29)

Proof: It is easily verified that the objective function in

(28) is a concave function, thus, in order to find the optimal

solution to λ, we consider its first-order derivatives that equals

to zero,

∂UL

∂λ
=

adC

1 + d(λC −D)− dD
− 2λC + 2D = 0. (30)

After some mathematical simplifications, we have

2d(λC −D)2 + 2(1− dD)(λC −D)− adC = 0. (31)

Let x = λC −D, we get

2dx2 + 2(1− dD)x − adC = 0. (32)

The optimal solution to x is easily achieved by solving the

above equation. Thus, the associated optimal solutions to λ

can be derived as






λ1 =
−(1−3dD)+

√
(1−dD)2+2ad2C

2dC ,

λ2 =
−(1−3dD)−

√
(1−dD)2+2ad2C

2dC .
(33)

Now, let us verify the validity of both solutions shown in (33).

The objective function (28) includes the logarithm term, which

should be non-negative. Thus, we check the validity of these

solutions by substituting λ1 and λ2 into the logarithm term of

(28), respectively. We first check λ1 as follows:

1 + d

(−(1− 3dD) +
√

(1 − dD)2 + 2ad2C

2d
− 2D

)

= 1 + d

(−(1− dD) +
√

(1− dD)2 + 2ad2C

2d

)

> 1 + d

(−(1− dD) + |1− dD|
2d

)

≥ 1. (34)

Similarly, we check λ2 as

1 + d

(−(1− 3dD)−
√

(1 − dD)2 + 2ad2C

2d
− 2D

)

= 1 + d

(−(1− dD)−
√

(1− dD)2 + 2ad2C

2d

)

< 1 + d

(−(1− dD)− |1− dD|
2d

)

≤ 1. (35)

Thus, λ1 is a valid stationary point. Due to the concavity

of the objective function in (28), its second-order derivatives

with respective to λ is less than zero, which indicates that its

maximum value is the stationary point λ1. Also, it is easily

verified that λ1 > 0, which satisfied the constraint (28). Thus,

the optimal solution to the problem (28), denoted by λopt is

the stationary point λ1, which completes the proof.

We have already achieved the optimal energy price λopt of

the D2D transmitter for a given energy transfer time allocation

θ. Substituting λopt given in (29) into the problem (27), we

have the following problem regarding θ:

max
θ

UL(θ, λ
opt) = µ(1 − θ)

[

log

(

1 + t1
θ

1− θ

)

− log

(

1 + t2
θ

1− θ

)]

− θt3,

s.t. 0 < θ < 1, (36)

where

t1 =
ξ|hs|2(λopt‖h‖4 −B‖h‖2)

2Aσ2
s

,

t2 =
ξ‖h‖2(NT − 1){[1− (1− ε)

1

K ]
1

1−NT − 1}δ2e
γ2
e

,

t3 =
λ2‖h‖4
2A

− λB‖h‖2
2A

.

From (36), it can be seen that UL is a concave function with

respect to θ when t1 > t2 holds to guarantee the positive

achievable secrecy rate. Thus, (36) is a convex problem. In

order to obtain the optimal solution to θ, we consider the

following equation by taking the first-order derivative of UL

with respect to θ as

µ log

(

(t1 − 1)θ + 1

(t2 − 1)θ + 1

)

= µ(1− θ)

[

t1 − 1

(t1 − 1)θ + 1
− t2 − 1

(t2 − 1)θ + 1

]

− t3. (37)



We set the left-hand-side (LHS) and right-hand-side (RHS) of

(37) as f(θ) and g(θ), respectively. It is easily shown that f(θ)
is monotonically increasing function with θ, whereas g(θ) is

monotonically decreasing function with θ. Thus, the optimal

solution of θ can be achieved by iteratively updating θ from the

initial value 0 to the value such that f(θ) = g(θ), which is of

lower complexity than one-dimensional (1D) line search. With

f(0) = 0, f(1) = µ log
(

t1
t2

)

> 0, g(0) = µ(t1− t2)− t3 > 0,

and g(1) = −t3 < 0, this optimal solution θopt > 0, located at

the intersection, is feasible, and also satisfies the constraint in

(36). Thus, we denote the optimal solution to (36) as follows:

θopt = arg max
θ∈(0,1)

UL(θ, λ
opt). (38)

With this we complete the derivation of the Stackelberg game’s

equilibrium (P opt
BS , λ

opt, θopt), which are presented in (20), (29),

and (38), respectively.

B. Non-Energy Trading based Stackelberg Game

In Section III-A, we formulate the energy trading between

the hybrid BS and the D2D transmitter. As a comparison, in

this subsection, we propose non-energy trading based Stack-

elberg game formulation to exploit the interaction between

the BS and the D2D transmitter with a fixed energy transfer

time allocation θ. In this game, the hybrid BS is modelled

as the leader who determines the energy price to maximize its

utility which is defined as the difference between the total D2D

transmitter payment and the quadratic energy cost shown in

(16). Thus, the leader level of this Stackelberg game is written

as8

Leader Level

max
λ

UBS = λθPBS‖h‖2 − θ(AP 2
BS +BPBS),

s.t. λ ≥ 0. (39)

In addition, the D2D transmitter plays the follower’s role

to guarantee the secure communication by using the power

released by the BS, in which it aims to maximize the difference

between the benefit of the achievable secrecy throughput and

its payment to the BS for wireless power transfer. Thus, the

follower level of this Stackelberg game is given by

Follower Level

max
PBS ,ps,ρe

UL(θ, PBS , ps, ρe),

s.t. ρe ≥ 0, pout ≤ ε, 0 ≤ ps ≤ pmax
s , (40)

where

UL(θ, PBS , ps, ρe) = µTs − E

= µ(1− θ)

[

log

(

1 +
ps|hs|2
σ2
s

)

− log(1 + ρe)

]

− λθPBS‖h‖2. (41)

8This leader level game is similar to the follower level of the energy trading
based Stackelberg game (17). The only difference between these two games
is that this leader game is to decide the energy price λ to maximize its utility,
whereas the follower game (17) determines the optimal transmit power PBS

to maximize its utility.

We first employ the same method to obtain the optimal

solutions p
opt
s , ρ

opt
e and θopt shown in Section III-A. Then, we

focus on the optimal solution of the BS transmit power by

solving problem (40). It can be verified that the utility function

in (41) is a concave function with respect to PBS . Now, we

set its first-order derivative equal to zero,

∂UL

∂PBS

=
µ(1− θ) ξθ‖h‖

2|hs|
2

(1−θ)σ2
s

1 + ξθ‖h‖2|hs|2

(1−θ)σ2
s

PBS

− λθ‖h‖2 = 0. (42)

After some mathematical derivations, the optimal power allo-

cation of the BS with respect to λ is given by

PBS(λ) =

[

µ(1− θ)

λθ‖h‖2 − (1− θ)σ2
s

ξθ‖h‖2|hs|2
]+

. (43)

Substituting (43) into (39) leads to the following:

UBS = λθ

(

µ(1− θ)

λθ‖h‖2 − (1 − θ)σ2
s

ξθ‖h‖2|hs|2
)

‖h‖2

− θA

(

µ(1− θ)

λθ‖h‖2 − (1 − θ)σ2
s

ξθ‖h‖2|hs|2
)2

− θB

(

µ(1 − θ)

λθ‖h‖2 − (1− θ)σ2
s

ξθ‖h‖2|hs|2
)

. (44)

The utility function (44) is a concave function with respect to

λ. Taking the first-order derivative to (44) equal to zero, we

get

∂UBS

∂λ
=−θY ‖h‖2−2θA

(

X

λ
−Y

)(

−X

λ2

)

−θB

(

−X

λ2

)

=0,

⇒ λ3 +
2AXY −BX

Y ‖h‖2 λ− 2AX2

Y ‖h‖2 = 0, (45)

where

X =
µ(1− θ)

θ‖h‖2 , Y =
(1− θ)σ2

s

ξθ‖h‖2|hs|2
(46)

It is observed that (45) is a cubic equation, which can be solved

in terms of closed-form solution of x by using Cardano’s

formula [43],

λopt = ej∠λ1 3

√

|λ1|+ ej∠λ2 3

√

|λ2| −
a

3
, (47)

where ∠ denotes the phase angle of a complex random

variable, and

λ1 = − q

2
+
√
∆, λ2 = − q

2
−
√
∆,

∆ =
p3

27
+

q2

4
, p = −a2

3
+ b, q =

2a3

27
− ab

3
+ c,

a = 0, b =
2AXY −BX

Y ‖h‖2 , c = − 2AX2

Y ‖h‖2 .

Thus, the optimal power allocation of the BS can be achieved

by substituting (47) in (43) as

P
opt
BS =

[

µ(1− θ)

λoptθ‖h‖2 − (1− θ)σ2
s

ξθ‖h‖2|hs|2
]+

. (48)

Noted that for a fixed θ, both UBS and UL can be shown to

be the concave functions in terms of λ and PBS , respectively.

Thus, we have completed the derivations of the Stackelberg

equilibrium (λopt, P
opt
BS) for the formulated Stackelberg game

which are shown in (47) and (48), respectively.



C. Social Welfare Optimization

In the previous subsection, we solve the Stackelberg equi-

librium of the proposed game with energy trading. In order

to show the energy price loss of the D2D transmitter due to

the self-interested behaviors of the hybrid BS in the proposed

game-theoretical scheme, we investigate a social welfare opti-

mization scheme in this subsection. Specifically, we consider

that the cooperation between the D2D transmitter and the BS

aims to maximize the social welfare, which is defined as the

difference between the benefits obtained from the achievable

secrecy throughput at the D2D transmitter and the cost of

the BS. In this scenario, the energy transfer price will not be

considered. The social welfare optimization is done by jointly

optimizing the energy transfer time allocation and the transmit

power of the BS. Mathematically, the social welfare utility

function can be formulated as

Social Welfare

USW (θ, PBS , ps, ρe) = µTs − θ(AP 2
BS +BPBS)

= µ(1− θ)

[

log

(

1 +
ps|hs|2
σ2
s

)

− log(1 + ρe)

]

− θ(AP 2
BS +BPBS). (49)

Thus, the social welfare maximization problem9 is given by

max
θ,PBS,ps,ρe

USW (θ, PBS , ps, ρe),

s.t. pout≤ε, ρe≥0, 0≤ps≤pmax
s , 0<θ<1. (50)

The problem (50) is not convex in terms of utility function.

To solve this problem, we consider the following steps:

1) We first obtain the optimal solutions i.e., p
opt
s and ρ

opt
e

via Theorem 1 shown in Section III-A.

2) Then, the optimal solution P
opt
BS is achieved by solving

the problem (50) for given ps and ρe.

3) Finally, the optimal energy time allocation θopt can be

achieved via the numerical search shown in Section

III-A.

In this subsection, we focus on the second step to obtain the

optimal power allocation of the BS. First, we fix ps and ρs
from Section III-A, then the utility function of social welfare

can be rewritten as

USW (θ, PBS) = µ(1− θ)

[

log

(

1 +
θξPBS‖h‖2|hs|2

(1 − θ)σ2
s

)

− log(1+ρopt
e )

]

−θ(AP 2
BS+BPBS). (51)

The above utility function is concave with respect to PBS

since its second-order derivatives is less than zeros. Then, take

the first-order derivative of the objective function to (50) with

respect to PBS for a given θ, and equal to zero as follows,

∂USW

∂PBS

=
ad

1 + dPBS

− 2θAPBS − θB = 0, (52)

9This social welfare scheme is considered as an alternative scenario where
the D2D transmitter and the BS are deployed and operated by the same service
provider.

where a = µ(1 − θ), and d = θξ‖h‖2|hs|
2

(1−θ)σ2
s

. After some

mathematical manipulations, (52) can be simplified as follows:

2θAdP 2
BS + (2θA+ dBθ)PBS + (Bθ − ad) = 0. (53)

The optimal power allocation for the hybrid BS can be

expressed as

P
opt

BS=

[

−(2θA+dBθ)+
√

(2θA+dBθ)2−8θAd(Bθ−ad)

4θAd

]+

.

(54)

IV. NUMERICAL RESULTS

In this section, we provide simulation results to validate

the theoretical results for our proposed Stackelberg games.

In order to evaluate the performance of these schemes, we

consider a secure wireless-powered D2D communication sys-

tem shown in Fig. 1, which consists of a hybrid BS equipped

with five transmit antennas (NT = 5), a D2D pair, and two

eavesdroppers (K = 2). The maximum allowable secrecy

outage probability is ε = 0.1, and the energy harvesting

efficiency ξ = 0.8.

First, we validate the concavity of the energy trading based

utility function of the D2D transmitter shown in (36) with

respect to the energy transfer time allocation θ. Fig. 2 shows

the utility function versus the energy time allocation θ for

both energy trading and social welfare schemes. Additionally,

a numerical search is considered to obtain the optimal energy

transfer time allocation θopt. It is observed that their utility

functions are concave in term of θ with an optimal energy

price λopt. Moreover, the social welfare optimization scheme

achieves a higher utility value because two parties work

together for the social welfare purpose. This reflects the fact

that the hybrid BS is altruism for wireless energy transfer

in the social welfare scheme, whereas it is egoism (or self-

interested) in the energy trading based game, which has a

direct impact on the D2D transmitter. The same behaviours

can also be observed in Fig. 3 where the secrecy throughputs

for both energy trading and social welfare schemes are shown

versus the energy time allocation θ.

Next, the energy transfer price paid by the D2D transmitter

to the hybrid BS is evaluated for both the energy trading and

non-energy trading schemes in Fig. 4. From this result, we can

observe that the energy transfer price of both energy trading

and non-energy trading schemes is a decreasing function of

θ. This is because of the fact that in this energy interaction

with a given time resource of T , if more time is spent on

energy harvesting, i.e., larger θ, then less time is spent on

information transfer, i.e., smaller (1− θ). Given that the same

energy service is purchased by the D2D network, the larger

θ value would then lead to the lower price to be paid by the

D2D transmitter. In addition, it can also be observed that non-

energy trading scheme needs to pay a higher price than the

energy trading scheme, which highlights the advantage of the

energy trading scheme where the customer can negotiate and

decide the optimal trading price.

We also evaluate the transmit power performance, i.e., the

BS’s and the D2D transmit power, for the three schemes. Fig.
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Fig. 3: Secrecy throughput versus θ.

5 plots the BS/D2D transmit power, i.e., PBS or ps, versus θ.

It shows that the BS’s transmit power, i.e., PBS , for these three

schemes decreases as θ increases, whereas the D2D’s transmit

power, i.e., ps, increases with θ. This implies that the BS

requires a lower level of power to support the wireless charging

for the D2D transmitter when the WET time allocation θ

increases, while the D2D transmitter would have more power

available to support the secure D2D communication as the

WIT time allocation (1 − θ) decreases. It is noted that the

D2D transmitter can initially employ the increasing available

power to improve the secrecy rate, i.e. increase its utility UL.

However, if the D2D’s transmit power keeps increasing further

as θ rises beyond the optimal value, c.f. θopt in Fig. 2, the

secrecy worsens because the information now becomes more

vulnerable to the eavesdropper at high power. This reflects the

concave behavior of the utility functions as discussed earlier.

Fig. 6 shows the utility function versus EH efficiency ξ,

where the utility functions increase with ξ. Fig. 6(a) shows

that the social welfare optimization scheme outperforms the
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Fig. 4: Energy transfer price versus θ.
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energy trading scheme in terms of utility function. In addition,

our proposed scheme, i.e., θopt, has a higher utility than the

fixed θ based scheme. In Fig. 6(b), we compare both energy

trading and social welfare schemes against the non-energy

trading scheme with θ = 0.5. As seen in Fig. 6(b), both energy

trading and social welfare optimization schemes outperform

the non-energy trading scheme in terms of D2D user’ utility

function as the EH efficiency ξ increases. This is because of

the fact that the D2D users cannot negotiate the price nor

can they dictate the energy market when the leader BS decide

every things in the first place, which can happen in a monopoly

situation when there is only one energy seller.

Fig. 7 shows the hybrid BS transmit power PBS versus

the EH efficiency ξ for the proposed schemes. It is clear

from this figure that both energy trading and social welfare

schemes increases with ξ in terms of the BS transmit power

(PBS) and asymptotically stable in the high EH efficiency

regime, whereas the non-energy trading scheme first increases
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Fig. 7: PBS vs ξ.

with ξ and then decreases after ξ ≈ 0.2 in terms of the BS

transmit power. In addition, the BS transmits more power

in non-energy trading scheme than energy trading scheme

in the low EH efficiency regime. However, this trend is

reversed as ξ increases in the high EH efficiency regime.

This is because of the fact that the non-energy trading scheme

needs more power to support the D2D transmitter to facilitate

its secure communications in the low EH efficiency regime.

Moreover, Fig. 7(a) and Fig. 7(b) also show that the larger µ,

the more power the BS releases to support the D2D secure

transmissions.

Fig. 8 shows the energy transfer price paid by the D2D

transmitter with different ξ. It can be observed from this figure

that the energy trading scheme pays less energy price than the

non-energy trading scheme, which indicates that the energy

trading interaction between the BS and the D2D transmitter

can play a cost-efficiency role. In addition, for the energy

trading scheme, the larger θ is required, the less energy price

the D2D transmitter pays.

Fig. 9 illustrates the secrecy throughput performance versus

the energy harvesting efficiency ξ. It is clear from this figure
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Fig. 8: Energy transfer price versus ξ.

that the secrecy throughput increases with ξ, which implies

that the secrecy transmission between the D2D pair is guaran-

teed by improving the energy harvesting efficiency. In addition,

both social welfare and energy trading schemes outperform

the non energy trading scheme in terms of secrecy throughput,

which highlight the advantage of the energy trading interaction

between the WET and the D2D network.
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Fig. 9: Secrecy throughput versus ξ.

In Fig. 10, we evaluate the utility function with different

jamming signal variances δ2e . It is shown that the utility

function for all the proposed schemes decreases monotonically

as δ2e increases. In addition, the social welfare scheme outper-

forms the energy trading scheme. Moreover, we compare both

optimal schemes with the fixed θ scheme. The results indicate

that the optimal schemes have higher utility functions than

the schemes with θ = 0.5. It can be observed that both the

energy trading and social welfare schemes outperforms the

non-energy trading scheme in terms of utility function when

θ = 0.5. This result confirms that the social welfare scheme



gives a better performance because all parties work together in

a social corporate responsibility manner. Interestingly, similar

behaviours of the proposed schemes can also be seen from Fig.

11 where we evaluate the secrecy performance with different

jamming signal variances δ2e .
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Then, we evaluate the WET time allocation with the EH

efficiency ξ in Fig. 12. It can be observed that the optimal

WET time allocation monotonically decreases with ξ. This

is due to a fact that the WET phase requires less time to

transfer power as the EH efficiency ξ increases. It is clear that

social welfare scheme outperforms the energy trading scheme

in terms of the optimal WET time allocation. Furthermore, the

larger µ is, the smaller the WET time is required.

Finally, the utility function versus the number of the eaves-

dropper K is evaluated in Fig. 13. From this result, it is

observed that the utility function decreases as K increases. In

addition, we compare the three proposed schemes where the
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Fig. 12: Optimal energy time allocation θopt versus ξ.

social welfare scheme outperforms the energy trading scheme.

The non-energy trading scheme demonstrates the worst utility

among these three schemes, which implies that the non-energy

trading scheme does not provide any advantage for the D2D

users when they act as a passive customer in an environment

where the leader BS can decide the energy price in a monopoly

manner, particularly when the number of eavesdroppers are

large.
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V. CONCLUSION

This paper investigated a secure wireless-powered CJ-aided

D2D communication system, where a hybrid BS in a cellular

network provides power wirelessly for the D2D transmitter

and at the same time plays a CJs role to interfere with the

eavesdroppers to support the secure D2D communications.

We have formulated different scenarios and solved different

problems of energy interactions using the Stackeberg game.



We found that a higher utility level is achieved if social welfare

responsibility is taken into account. This is understandable, as

all parties work together to maximize a common target. At

the same time, the energy buyer, i.e., the D2D user, would

have to pay a higher price for energy purchase if the seller,

i.e., the BS, has a monopoly authority to dictate and lead the

market, as shown in the non-energy trading scenario. However,

in an environment where there are potential competitors for

energy selling, the D2D customer can become the leader

who would negotiate for a much better energy price, as

reflected in the energy trading case of our proposed game.

In addition, numerical results were provided to validate our

proposed schemes and showed that both energy trading and

social welfare schemes provide a better energy cost efficiency.

Overall, the results highlighted the importance of the energy

trading interactions between the cellular and D2D networks.
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