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Channels
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Abstract—We consider a class of wireless powered devices
employing Hybrid Automatic Repeat reQuest (HARQ) to ensure
reliable end-to-end communications over a two-state time-varying
channel. A receiver, with no power source, relies on the energy
transferred by a Simultaneous Wireless Information and Power
Transfer (SWIPT) enabled transmitter to receive and decode
information. Under the two-state channel model, information is
received at two different rates while it is only possible to harvest
energy in one of the states. The receiver aims to decode its
messages with minimum expected number of re-transmissions.
Dynamic and continuous nature of the problem motivated us to
use a novel Markovian framework to bypass the complexities
plaguing the conventional approaches such as MDP. Using the
theory of absorbing Markov chains, we show that there exists
an optimal policy utilizing the incoming RF signal solely to
harvest energy or to accumulate mutual information. Hence,
we convert the original problem with continuous action and
state space into an equivalent one with discrete state and action
space. For independent and identically distributed channels,
we prove the optimality of a simple-to-implement harvest-first-
store-later type policy. However, for time-correlated channels,
we demonstrate that statistical knowledge of the channel may
significantly improve the performance over such policies.

I. INTRODUCTION

A. Background and Motivation

In traditional networks, wireless nodes are powered by

limited capacity batteries which should be regularly charged

or replaced. Energy harvesting has been recognized as a

promising solution to replenish batteries without using any

physical connections for charging. In simultaneous wireless

information and power transfer (SWIPT), the incoming RF

signal is used for both energy harvesting and decoding of

information bits. The inherent challenge of energy harvesting

(EH) is the stochastic nature of the EH process, which dictates

the amount and availability of harvested energy that is beyond

the control of system designers. However, SWIPT may provide

the network administrators a leverage on replenishing the

remote devices for proper network operations.
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In the seminal paper [1], the rates at which energy and reli-

able information can be transferred over a single point-to-point

noisy link were characterized. This result was later extended

to frequency-selective channels with additive white Gaussian

noise (AWGN) in [2]. In [3], the authors examined separated

and co-located information and energy receiver architectures

in a multiple-input multiple-output (MIMO) wireless broadcast

system. In separated architecture, both receivers have separate

antennas, whereas in co-located architecture a single antenna

is shared by both. In general, EH devices have small footprints

necessitating a co-located architecture. This arises a resource

allocation problem of sharing the RF signal among the two

receivers. The incoming RF signal is fed to Information

Decoding (ID) and Energy Harvesting (EH) circuitries by

applying either time-switching (TS) or power splitting (PS)

schemes. In TS, the RF signal is split over two different parts

of the time slot, one for EH and the other for ID, whereas in

PS the incoming RF signal is fed to both, proportional to a

given factor. In this work, we consider the class of PS policies.

In particular, we consider two types of PS policies: splitting

and no-splitting. A splitting policy divides the RF signal into

two parts with strictly non-zero power and feeds them to ID

and EH circuitries, whereas no-splitting policy feeds the RF

signal completely to either EH or ID.

In inherently error-prone wireless communications systems,

re-transmissions triggered by decoding errors have a major

impact on the energy consumption of wireless devices. Hybrid

automatic repeat request (HARQ) schemes are frequently used

in order to reduce the number of re-transmissions by employ-

ing various channel coding techniques [4]. Nevertheless, this

comes at the expense of extra processing time and energy

associated with the enhanced error-correction decoders. A

receiver employing HARQ encounters two major energy con-

suming operations: (1) sampling or Analog-to-Digital Conver-

sion (ADC), which includes all RF front-end processing, and

(2) decoding. The energy consumption attributed to sampling,

quantization and decoding plays a critical role in energy-

constrained networks which makes their study a non-trivial

problem. The authors in [5] investigated the performance

of HARQ over an RF-energy harvesting point-to-point link,

where the power transfer occurs over the downlink and the

information transfer over the uplink. The authors studied the

use of a TS policy when two HARQ mechanisms are used for

information transfer; Simple HARQ (SH) and HARQ with

Chase Combining (CC) [6]. Also, the authors in [7] studied

the performance of HARQ in RF energy harvesting receivers,

where heuristic TS policies are proposed to reduce the number

of re-transmissions.
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In this paper, we consider a point-to-point link where

an energy-abundant transmitter employs HARQ to deliver a

message reliably to an EH receiver. The receiver has no energy

source, so it relies on harvesting energy from the information-

bearing RF signal. The channel is time-varying where the

amount of energy harvested and information collected varies

depending on the quality of the channel. The receiver aims

to split the incoming RF signal between EH and ID so

that the expected number of re-transmissions is minimized.

Unlike prior works, e.g., [8], in our work, we do not assume

the availability of the channel state information (CSI) at the

receiver1.

B. Contributions

Our main contributions in this paper are summarized as

follows:

• We formulate the problem of minimizing the expected

number of re-transmissions using a Markov decision

process (MDP).

• Due to the excessive number of states and actions in

the MDP formulation, we use the special features of

the EH HARQ framework to recast the MDP as a

problem of minimizing the expected time to absorption

in an absorbing Markov chain, significantly reducing the

complexity associated with the MDP, when the wireless

channel exhibits independent and identically distributed

(i.i.d.), and time-correlated properties, respectively.

• For i.i.d. channels, we prove that there is an optimal

policy that does not split the incoming RF energy and

uses it solely either for ID or EH. As a result, we convert

the original problem whose states and actions take over

continuous values into discrete ones, enabling a tractable

solution.

• The numerical solution of the MDP identifies multiple

distinct policies that achieve the minimum expected num-

ber of re-transmissions, implying that the optimal policy

is not unique. Hence, we later completely characterize

a class of simple-to-implement optimal policies. Among

those, harvest-first-store-later is an optimal policy lend-

ing itself for simple implementation on low complexity

devices.

• For a time-correlated channel, we once again show that

there is an optimal policy that does not split the incoming

RF energy. We develop a low complexity algorithm

to determine the EH/ID decision for each state of the

receiver. Note that unlike the i.i.d. case, a simple policy

such as harvest-first-store-later is no longer optimal for

correlated channels as demonstrated in our numerical

analysis.

• We provide extensive numerical simulations to verify the

analytical results established in the paper.

C. Related Work

Early works on wireless energy transfer [10] considered

a point-to-point single antenna communication system and

1Due to the time and energy cost, the acquisition of CSI in EH networks
is challenging. Some interesting ideas along this line, such as limited CSI
feedback, have been discussed in [9].

studied its rate-energy trade-off. Single antenna systems

are extended to single-input-multiple-output (SIMO) in [11],

multiple-input-single-output (MISO) in [12] and multiple-

input-multiple-output (MIMO) system in [13].

Note that EH devices harvest energy only in minuscule

amounts (orders of µWs), so the energy consumption of the

receiver circuitry to perform simple sampling and decoding

can no longer be neglected. The authors in [14] addressed

the energy consumption of sampling and decoding operations

over a point-to-point link where the receiver harvests energy

at a constant rate. In [15], a decision-theoretic approach is

developed to optimally manage the transmit energy of an

EH transmitter transmitting to an EH receiver, where both

the transmitter and the receiver harvests energy independently

from a Bernoulli energy source. The receiver uses selective

sampling (SS) and informs the transmitter about the SS

information and its delayed battery state by feedback. Based

on this feedback, the transmitter adjusts its transmission policy

to minimize the packet error probability.

Meanwhile, in [16], the performance of different HARQ

schemes for an EH receiver harvesting energy from a de-

terministic energy source with a constant energy rate was

studied. In [17], the impact of the battery’s internal resistance

at the receiver was analyzed for an EH receiver with imperfect

battery, with the aim of maximizing the amount of information

decoded by the EH receiver. While ignoring the sampling

energy cost at the receiver, [18] investigates the performance of

TS policies to maximize the amount of information decoded at

the receiver operating over a binary symmetric channel (BSC),

by optimizing the fraction of time used for harvesting energy

and for extracting information. For an EH transmitter and

an EH receiver pair both harvesting ambient environmental

energy with possible spatial correlation, [19] addresses the

problem of outage minimization over a fading wireless channel

with ACK-based re-transmission scheme by optimizing the

power allocation at the transmitter. In [20], for a pair of EH

transmitter-receiver employing ARQ and HARQ with binary

EH process, packet drop probability over fading channels

is minimized by optimally allocating power over different

rounds of re-transmissions. In [21], an adaptive feedback

mechanism for an EH receiver is proposed by taking into

account the energy cost of sampling and decoding is proposed.

The receiver is allowed to transmit a delayed feedback with

the aim of efficiently utilizing the harvested energy in order

to minimize the packet drop probability in the long run. In

[22], the outage probability for an EH receiver powered by

RF transmissions is minimized by implementing HARQ. In

particular, the transmitter optimally allocates two different

power levels in charging and information transmission periods

so that the probability of the event that information is not

correctly received by the receiver due to either unsuccessful

message decoding or lack of minimum energy at the receiver

is minimized. Although [22] is the most similar study to our

work, it assumes that the channel stays constant during re-

transmissions and it is known by the receiver. Differently, we

assume that the wireless channel, with and without memory,

varies over different instances of re-transmissions which calls

for an online framework rather than an offline framework as



in [22]. The problem of throughput optimization for an EH

receiver operating in a multi-access network was studied in

[23] where the receiver takes samples from the incoming RF

signal to calculate the probability of a collision event and

based on that decides to either utilize the incoming RF energy

to replenish its battery or to extract information bits.

In [24], an EH transmitter intelligently adapts its channel

sensing strategy with respect to a belief parameter it has

about the channel condition to maximize its long term dis-

counted throughput over a time correlated channel. In [25],

maximization of long term weighted sum throughput, in an

uplink scenario, for two RF EH transmitters is studied. The

AP has the complete knowledge of the state of the network,

i.e., battery levels, uplink and downlink CSI, and it calculates

the optimal EH period, and the uplink durations of each

transmitter at the beginning of each time slot. The finite

horizon uplink throughput maximization for an EH transmitter

with imperfect CSI and random EH process is studied in [26],

and the optimal power allocation problem at each time slot is

formulated using dynamic programming (DP). [27] studies the

rate-energy (R-E) region of separated and co-located SWIPT

architectures where R-E region characterizes all the achievable

rate and harvested energy pairs under a given transmit power

constraint. A strategy achieving the optimal R-E region is

developed for the case of separated architecture. For the case

of co-located architecture, two policies namely power splitting

and time switching is investigated in terms of their achievable

R-E region. In [28], for a network with a transmitter, a

relay and a destination node, two relaying protocols namely

power splitting based relaying (PSR) and time switching based

relaying (TSR)protocols are proposed. Analytical expressions

for outage probability of delay limited transmission mode

and ergodic capacity of delay tolerant transmission mode are

derived. In contrast to [27], [28], we show that there exists

an optimal policy that does not split the incoming RF energy

when HARQ mechanism is employed.

Differently from the available literature, we study the reli-

ability of transmission by an HARQ mechanism in a SWIPT

scenario, over time varying channels with unknown CSI and

by considering an accurate model of energy consumption of

the EH receiver. We develop a novel Markovian framework

for the analysis which facilitates characterizing the optimal

decision at any given time. A major contribution of this work

is that we prove that there exists an optimal no-splitting

policy that minimizes the number of re-transmissions. This

finding enables a tractable optimal solution by reducing a

two dimensional uncountable state MC into a countable state

MC. In particular, for i.i.d. channels, we show that policies

such as harvest-first-store-later are optimal enabling simple-to-

implement optimal policies suitable for low power EH devices.

However, for the case of correlated channels, we show that an

intelligent algorithm that utilizes the correlation information of

the channel states, can significantly outperform those simple-

to-implement policies.

II. SYSTEM MODEL AND PRELIMINARIES

A. Channel Model and Receiver Architecture

Consider a point-to-point time varying wireless link between

a transmitter-receiver pair. The wireless channel is modeled

according to a two-state block fading model where the states

are GOOD and BAD2. Let Gt ∈ {0, 1} be the state of

the channel at time slot t where BAD and GOOD states

are denoted by 0 and 1, respectively. The CSI is neither

available at the transmitter nor at the receiver due to the high

computational and energy costs of transmitting and receiving

a pilot signal necessary for measuring the CSI. We consider a

communication scheme where the transmitter is connected to

a power source with an unlimited energy supply. The receiver

is equipped with a separate rectifier circuit for EH and a

transceiver for ID, both connected to the same antenna.
Time is slotted and each slot has a length of N channel uses.

We assume that N is sufficiently large so that we can apply
information theoretic arguments. The instantaneous achievable
rate of the receiver is the maximum achievable mutual infor-
mation between the output symbols of the transmitter and input
symbols at the receiver. Let the achievable rate of the receiver
be R(t) at time t. As N → ∞, R(t) approaches the Shannon
rate, and it can be computed as:

R(t) = log2(1 + Pg(t)), (1)

where g(t) ∈ {g0, g1} is the channel power gain at time t and P
is the noise-normalized transmit power of the transmitter. We
assume that the transmitter power is fixed and known to the
receiver. Let R1 and R0 be the achievable rates corresponding
to the channel states GOOD and BAD, respectively:

R1 = log2(1 + Pg1), (2)

R0 = log2(1 + Pg0). (3)

The instantaneous channel states are not known a priori so we

employ an HARQ scheme with incremental redundancy (IR)

for providing reliability [29]. In the following, we give a brief

overview of HARQ-IR.

B. Brief Overview of HARQ

HARQ is a well known method to provide reliable point to

point communications [29]. There are several types of HARQ

implementations, e.g., simple HARQ, HARQ with Chase

Combining (CC), repetition time diversity and incremental

redundancy (IR). Note that in EH devices, CSI acquisition

is cost prohibitive due to the energy and temporal cost of

probing the channel. Hence, in this work, the transmitter is

blind to the instantaneous channel conditions and it cannot

adapt the code rates according to a particular channel gain.

Thus, in our system, we consider HARQ-IR due to its superior

throughput performance [30] compared to other alternatives as

well as its robustness against the absence of CSI [31]. Let us

denote a message of the transmitter by W ∈
{

1, 2, . . . , 2NC
}

,

where C denotes the rate of the information. Every incoming

transport layer message into the transmitter is encoded by

using a mother code of length MN channel uses. The encoded

2Note that the two-state channel process is an approximation of a more
general multi-state time varying channel, where each state of the channel
supports a maximum transmission rate. Here, we employ two-state channel
process due to its analytical tractability.



message, x, is divided into M blocks, each of length N channel

uses, with a variable redundancy and it is represented by

x = [x1, . . . , xM ]. Let us assume that x1 is transmitted at t1.

If x1 is successfully decoded, then the receiver sends a 1-

bit, error-free, zero-delay, Acknowledgement (ACK) message,

otherwise, the transmitter times out after waiting a certain

time period. In case of no ACK received, the transmitter

transmits x2 at time slot t2 and the receiver combines the

previous block x1 with x2. This procedure is repeated until

the receiver accumulates C bits of mutual information or

maximum blocks of information, M, is sent. We assume

that, M is chosen sufficiently large so that the probability of

decoding failure, due to exceeding the maximum number of re-

transmissions, is approximately equal to zero. With HARQ-IR

scheme, after r re-transmissions, the amount of accumulated

mutual information at the receiver is
∑r

k=1 R(tk). The receiver,

given that it has sufficient energy, can perform a successful

decoding attempt after r re-transmissions, if the amount of

accumulated mutual information exceeds the information rate

of the transmitted message, i.e.,
∑r

k=1 R(tk) ≥ C. We assume

that each message is encoded at rate R1 i.e., C = R1 so

that a transmission in a GOOD channel state carries all the

information needed for decoding3.

C. Energy Harvesting and Consumption Model

In the following, we assume that the receiver has a suf-

ficiently large battery and memory, so there is no energy

or information overflow. The receiver utilizes a PS policy,

where ρ(t) ∈ [0, 1] denotes the power splitting parameter at

the beginning of time slot t. Note that ρ(t) = 0 indicates

that the received signal is used solely for mutual information

accumulation, and ρ(t) = 1 indicates that the received signal is

used solely for harvesting energy. Any value of ρ(t) between

0 and 1 refers to the case where the received signal is used for

both harvesting energy and mutual information accumulation.

We incorporate a simplified energy harvesting model, which

facilitates the formulation of a tractable optimization problem.

In this model, the receiver harvests a maximum of e ≥ 1

energy units in the GOOD channel state and zero units during

the BAD channel state4. Typically, an EH device has two

stages in its energy harvesting circuitry [32]: a rectifier stage

that converts the incoming alternating current (AC) radio

signals into direct current (DC); and a DC-DC converter that

boosts the converted DC signal to a higher DC voltage value

to produce the voltage required to charge the battery. The

main limitation in an energy harvester is that every DC-DC

converter has a minimum input voltage threshold below which

it cannot operate. Hence, when the channel is in a BAD

state, the input voltage is below the threshold of the DC-DC

converter and no energy is harvested. Even though the receiver

cannot harvest any RF energy in a BAD channel state, it can

still accumulate mutual information since ID circuit operates

3Note that this assumption is practically reasonable, since a time slot is
typically defined as the duration of time necessary for transmission of a single
information packet.

4The maximum energy is harvested if the received signal is completely
directed to the energy harvester, i.e., ρ(t) = 1.

at a lower power sensitivity, e.g., −10 dBm for EH and −60

dBm for ID circuits [33].

The energy consumption of HARQ was recently investi-

gated in [34], and it was identified that the energy is consumed

at the start up of the receiver, during decoding, for operating

passband receiver elements (low-noise amplifiers, mixers, fil-

ters, frequency synthesizers, etc.), and for providing feedback

to the transmitter. In order to develop a tractable optimization

frame work, we consider the model in [34], and combine

the individual costs of energy into two parameters only: the

receiver consumes Ed ≥ 1 energy units for a decoding attempt

and 1-energy unit for each mutual information accumulation

event per time slot5, i.e., operating the passband receiver

elements.

III. THE MINIMUM EXPECTED NUMBER OF

RE-TRANSMISSIONS FOR I.I.D. CHANNELS

In this section, we calculate the minimum expected number

of re-transmissions needed for successful decoding for time

varying channels. We first consider an i.i.d. channel, and

in Section VI, we will investigate the system under a time

correlated channel model. Note that the receiver requires at

least Ed units of energy and R1 bits of information before it

can successfully decode the transmitted packet. Let the system

states be (b, m), where b is the total residual battery level and

m is the total accumulated mutual information normalized by

R0. For clarity of presentation, in the rest of the paper we

assume that R0 = 1. Our objective is to optimally determine a

scheduling policy ρ(t) so that the transmission is successfully

decoded with a minimum delay at the receiver. We formally

define ρ(t) next.

Definition. A scheduling policy π = (ρ(1), ρ(2), . . . , ) is a

sequence of decision rules as such the kth element of π

determines the power splitting ratio at kth time slot based

on the observed system state (b, m) at the beginning of this

time-slot for t ∈ {1, 2, . . .}. Similarly, a tail scheduling policy

πt = (ρ(t), ρ(t + 1), . . .) is a sequence of decision rules that

determines the power splitting ratios for the time slots from t

to ∞.

Let the probability that the channel is in GOOD state be

λ, i.e., P [Gt = 1] = λ. The problem can be mathematically

modeled as a two-state Markov chain (MC). Also, let the

states of the MC be (b, m). It should be noted that the

receiver is blind to the CSI before choosing the power splitting

ratio. However, after it decides to sample the incoming RF

signal for mutual information accumulation, the amount of the

information in the sampled portion of the RF signal is revealed

to the receiver. Because the scheduling policy is blind to the

CSI, its decision only depends on (b, m).

A. Markov Decision Process (MDP) Formulation

At any given time t, the next state of the system only
depends on the current state, (b, m), and the power split ratio
ρ(t). Hence, we can formulate the problem as an MDP. Let

5One energy unit is normalized to the energy cost of operating the RF
transceiver circuit during one time slot.



f π(t) ∈ {−1, 0} be an indicator function taking a value of 0 if
the message can be decoded at the end of slot t under policy π,
and a value of −1 otherwise. Then, the optimization problem
we aim to solve is given as,

max
π

∞
∑

t=0

f π(t). (4)

Let Vπ(b, 0) be the expected discounted reward with initial
state S0 = (b, 0) under policy π with discount factor β ∈ [0, 1).
The expected discounted reward has the following expression

Vπ(b, 0) = E
π

[

∞
∑

t=0

βtU(St, ρ(t))|S0 = (b, 0)

]

, (5)

where E
π is the expectation with respect to the policy π, t

is the time index, ρ(t) ∈ [0, 1] is the action chosen at time
t, and U(St, ρ(t)) is the instantaneous reward acquired when
the current state is St . In the rest of the paper, we use ρ(t)
and ρ(b,m) interchangeably by assuming that at time slot t,
the system is at state (b, m). The battery is recharged with
incoming RF signal depending on the value of the power split
ratio ρ(t). Meanwhile, one unit of energy is consumed in order
to accumulate non-zero bits of mutual information. Hence, the
evolution of the battery state is characterized as follows:

B(t) =

{

B(t − 1) + ρ(t)e − 1ρ(t),1, if Gt = 1

B(t − 1) − 1ρ(t),1, if Gt = 0
, (6)

where 1ρ(t),1 = 0, if ρ(t) = 1, and 1ρ(t),1 = 1, otherwise.
According to (2) and (3), the transmit power is equal to

P = 2R1−1
g1
=

2R0−1
g0

. At the power splitter, 1 − ρ(t) portion of

the received power is directed into the ID, so the achievable
mutual information accumulation is:

R(t) = log2(1 + g(t)P(1 − ρ(t))). (7)

Note that the maximum value of the mutual information is
attained by setting ρ = 0. Inserting the value of P in (7) for
GOOD and BAD channel states gives the mutual information
accumulation in these states respectively for a given power
splitting ratio ρ as

RH (ρ) = log2(ρ + (1 − ρ)2
R1), (8)

RL(ρ) = log2(ρ + (1 − ρ)2
R0 ). (9)

Thus, the accumulated mutual information, I(t), evolves as:

I(t) =

{

min(I(t − 1) + RH (ρ(t)), R1), if Gt = 1

min(I(t − 1) + RL(ρ(t)), R1), if Gt = 0
. (10)

Note that (10) follows from the operation of HARQ-IR which
is described in Section II-B where the received messages over
different time slots are combined in such a way that the mutual
information of the combined messages is the summation of the
individual mutual information of the messages. The instanta-
neous reward is zero if the message can be correctly decoded,
and it is minus one otherwise. Recall that the decoding
operation is successful if and only if the accumulated mutual
information is above a certain threshold, and the battery level
is sufficient to decode the message. Hence, the instantaneous
reward is given as follows:

U(St, ρ(t)) =

{

0, if Bt ≥ Ed, and I(t) ≥ R1,

−1, if otherwise.
. (11)

Define the value function V(b,m) as

V(b, m) = max
π

Vπ (b, m), ∀b ∈ [0,∞), ∀m ∈ [0, R1] . (12)

The value function V(b,m) satisfies the Bellman equation

V(b,m) = max
0≤ρ≤1

Vρ(b,m), (13)

where Vρ(b,m) is the expected reward achieved by taking
action ρ when the state is (b,m) and is given by

Vρ(b,m) = U((b, m), ρ) + βE
[

V(b́, ḿ)|S = (b, m)
]

, (14)

where (b́, ḿ) is the next visited state and the expectation is

over the distribution of the next state. The use of expected

discounted reward allows us to obtain a tractable solution, and

one can gain insights into the optimal policy when β is close

to 1. Value iteration algorithm (VIA) is a standard tool to

solve Bellman equations such as the one in (13). However,

this problem suffers from the curse of dimensionality [35].

Note that from (6) and (10), the problem is a two dimensional

uncountable state MDP with continuous actions at every state.

Also, letting β→ 1, to approximate the average reward, slows

down the algorithm to the point of infeasibility [30]. Hence,

in the following, we take advantage of the special structure

of our problem to derive an important characteristic of the

optimal policy. The flow of the paper is depicted in Figure 1.

Fig. 1: A brief overview of the paper.

B. Absorbing Markov Chain Formulation

Note that the MC describing the operation of our system is

an absorbing MC, where all states except those (b,m) where

b ≥ Ed, and m ≥ R1 are transient states. The absorbing states

are those where the receiver has both sufficient energy and

information accumulated to correctly decode. In an absorbing

chain, starting from a transient state, the chain makes a finite

number of visits to some transient states before its eventual

absorption into one of the absorbing states. Hence, the mean

time to absorption of the chain, starting from transient state

i initially, is the sum of the expected numbers of visits

made to transient states. In an absorbing MC, the expected

number of steps taken before being absorbed in an absorbing

state characterizes the mean time to absorption. Hence, the

mean time to absorption starting from a given transient state

(b, m) provides the number of re-transmissions until successful

decoding when the battery has b units of energy and the

memory contains m bits of information.

After establishing the ρ dependent state evolution of B(t)

and I(t), we can formally introduce the state transition prob-

abilities of the Markov chain as follows:



(a) ρ = 0. (b) ρ = 1. (c) 0 < ρ < 1.

Fig. 2: State transition probabilities of the Markov chain

associated with ρ.

ρ = 1⇒

{

P ((B, I), (B + l, I)) = λ

P ((B, I), (B, I)) = 1 − λ
, (15)

ρ = 0⇒

{

P ((B, I), (B − 1, R1)) = λ

P ((B, I), (B − 1, I + 1)) = 1 − λ
, (16)

0 < ρ < 1⇒

{

P
(

(B, I), (B − 1 + ρl, I + RH (ρ))
)

= λ

P
(

(B, I), (B − 1, I + RL(ρ))
)

= 1 − λ
,

(17)

where P(x, y) is the transition probability from state x into

state y, B ∈ [0,∞) and I ∈ [0, R1]. The state transition

probabilities of the Markov chain associated with ρ is depicted

in Figure 2.

In the following, we perform first-step analysis, by condi-

tioning on the first step the chain makes after moving away

from a given initial state to obtain the mean time to absorption.

Let kb,m be the expected number of transitions needed to hit

an absorbing state when the MC starts from state (b, m). The

analysis is performed by assuming that the MC is in steady-

state.

Let us first consider two trivial cases; when the battery has

less than one unit of energy, i.e., b < 1, in which case the

receiver has no option but harvest the incoming RF signal,

and when the amount of accumulated mutual information is

R1, in which case there is no point in further accumulating

mutual information since the receiver has sufficient mutual

information to decode the incoming packet. For these cases,

the mean time to absorption starting from an initial state (b, m)

is

kb,m = 1 + λkb+e,m + (1 − λ)kb,m

=

1

λ
+ kb+e,m, if b < 1 or m = R1.

(18)

Note that in (18), one slot is needed to harvest energy, and

depending on the channel state in that slot, the battery state

either transitions to b+ e or remains the same. The following

lemma plays an important role in establishing the structure of

the optimal policy.

Lemma 1. For any Ed − i · e ≤ b < Ed − (i − 1) · e such that

i = 1, . . . , Ed, given that m = R1, the mean time to absorption

is given by, kb,R1
=

i
λ

.

Proof. The proof is given in Appendix A. �

We will use Lemma 1 to show that the optimal policy
minimizing the mean time to absorption does not need to split
the incoming RF signal. In order to show this, let us define
two tail policies π

i
t = (ai, πt+1), i = split, no − split taking

different actions ai, in the current slot, but following the same

set of actions, πt+1 afterwards6. Let policy π
split
t = (ρ, πt+1)

be a tail policy that always splits the incoming RF energy, i.e.,
0 < ρ < 1, except when B(t) < 1 or I(t) = R1, when it only
harvests energy. Assume that the state of the system is (b, m)
at time slot t. Then, the mean time to absorption for tail policy

π
split
t is:

kπ
split

b,m
= 1 + λkb−1+ρe,m+RH (ρ) + (1 − λ)kb−1,m+RL (ρ), (19)

where kx,y is the mean time to absorption of policy πt+1

beginning at state (x, y). Note that with probability λ the

channel is in GOOD state, and thus, ρ · e units of energy

is harvested7. However, one unit of energy is spent by op-

erating the transceiver to accumulate RH (ρ) bits of mutual

information. Meanwhile, with probability 1− λ the channel is

in BAD state, and no energy is harvested, but the transceiver

still consumes one unit of energy to accumulate RL(ρ) bits of

mutual information.
Under tail policy π

no−split
t the RF signal is never split

at time slot t, but rather, it is completely used for mutual
information accumulation except when B(t) < 1 or I(t) = R1

when it harvests energy only. In a similar way as before, we

may calculate kπ
no−split

b,m
as follows:

kπ
no−split

b,m
= 1 + λkb−1,R1

+ (1 − λ)kb−1,m+R0
. (20)

Theorem 1. Policy π
no−split
t in (20) achieves an expected

number of re-transmission that is never worse than that of

policy π
split
t in (19), i.e., kπ

no−split

b,m
≤ kπ

split

b,m
for every b =

0, 1, . . . and m = 0, 1, . . . , R1.

Proof. The proof is given in Appendix B. �

Theorem 1 proves that a no-splitting policy can achieve

the minimum number of re-transmissions. Hence, in the latter

part of the paper, we focus on characterizing the optimal

no-splitting policy by determining the scheduling decision

between EH or ID for each state of the MC. Therefore, the

state space of the discrete MC associated with the optimal

no-splitting policy is b = 0, 1, . . . ,∞, and m = 0, 1, . . . , R1
8.

Remark. Theorem 1 plays an important role in simplifying

the original problem by reducing the two dimensional un-

countable state MDP with continuous action space into a

two dimensional countable state MDP with binary decision

space. This significantly reduces the complexity of numerical

methods such as VIA. However, as we shall see in Section IV,

the absorbing MC framework helps prove the optimality of a

class of simple-to-implement algorithms that is more suitable

for resource-deficient EH devices.

6Note that (ai, πt+1) defines a tail policy obtained by concatenating action
ai in the current slot with tail policy πt+1.

7We assume that the energy harvesting circuit is generating energy linearly
proportional to the energy of the incoming RF signal.

8Note that in the original problem the states of the MC are [0,∞)×[0, R1].



Since the class of policies that we are interested in does not
observe the channel, but make a decision based only on (b, m),
the time of the decision is irrelevant. Hence, given (b, m), time
t and t + 1 are stochastically identical. Therefore, in the rest
of the paper we will omit the time index and optimize the
scheduling decisions for any given state (b, m). Define π

∗ as
the optimal policy minimizing the mean time to absorption
beginning at any given state (b, m). Let kπ

∗

b,m
be the minimum

mean time to absorption obtained by policy π
∗9. Define the tail

policy π
i(b,m) = (i, π∗(b́, ḿ)), i = 0, 1 such that it chooses ρ =

i at state (b, m) but follows policy π
∗ after transitioning into

the new state (b́, ḿ). Let kπ
i

b,m
be the mean time to absorption

of policy π
i(b,m), i = 0, 1. We can characterize kπ

0

b,m
and kπ

1

b,m
as follows:

kπ
0

b,m
= 1 + λkπ

∗

b−1,R1
+ (1 − λ)kπ

∗

b−1,m+1
, (21)

kπ
1

b,m
= 1 + λkπ

∗

b+e,m
+ (1 − λ)kπ

1

b,m

=

1

λ
+ kπ

∗

b+e,m
. (22)

Note that by evaluating and then comparing the values of kπ
0

b,m

and kπ
1

b,m
, at all possible states (b, m) for b = 0, 1, . . . ,∞, and

m = 0, 1, . . . , R1, one can obtain the optimal policy π
∗ and its

associated kπ
∗

b,m
.

Theorem 2. For states (b, m) = (Ed + j, R1 − j) for j =
1, 2, . . . , R1, the minimum mean time to absorption, kπ

∗

b,m
is

given by

kπ
∗

Ed+j,R1−j
= kπ

0

Ed+j,R1−j
=

j
∑

i=1

(1 − λ)i−1. (23)

Furthermore, kπ
∗

b,R1−j
= kπ

0

Ed+j,R1−j
for b = Ed + j + 1, Ed + j +

2, . . ..

Proof. The proof is given in Appendix C. �

Theorem 2 states that if the receiver has R1 − n bits of

mutual information accumulated and more than Ed + n units

of energy in its battery, then it should use the incoming RF

signal for mutual information accumulation only. For any

given state (b, m), we exploit Lemma 1 and Theorem 2 to

develop Algorithm 1 for calculating the minimum mean time

to absorption, kπ
∗

b,m
, and the optimal scheduling decision at

every state.

The idea of Algorithm 1 is to use Lemma 1 and Theo-

rem 2 as boundary conditions and to recursively calculate

the mean time to absorption kπ
0

b,m
and kπ

1

b,m
starting from

(b, m) = (Ed, R1 − 1). Note that kπ
0

Ed,R1−1
and kπ

1

Ed,R1−1

depend on the values of kπ
∗

Ed−1,R1
and kπ

∗

Ed+1,R1−1
, which are

obtained in the initialization step, and the optimal scheduling

decision at state (Ed, R1 − 1) is given by arg mini∈0,1 kπ
i

b,m
.

The procedure in Algorithm 1 continues by decrementing the

value of b by 1 at each iteration, until b = 0 at which time

the value of m is decremented by 1, b is initialized to Ed + n

and the procedure is repeated. The aforementioned order of

spanning the states of the MC ensures that at each iteration

the mean time to absorption can be calculated from the values

9Note that the mean time to absorption calculated in Lemma 1 is the

smallest possible value, i.e., kπ
∗

b,R1
= kb,R1

for b = 0, 1, . . . , Ed − 1.

determined in the previous iterations. We have shown in

Appendix D, that Algorithm 1 minimizes the expected number

of re-transmissions starting from any state (b, m).

Algorithm 1 Calculating the minimum mean time to absorp-

tion for an i.i.d. channel

1: Initialize kπ
∗

b,R1
for b = 0, . . . , Ed − 1 using Lemma 1.

2: Initialize kπ
∗

Ed+j,R1−j
for j = 1, . . . , R1 using Theorem 2.

3: n← 0

4: for m = R1 − 1 : 0 do

5: for b = Ed + n : 0 do

6: Calculate kπ
0

b,m
, kπ

1

b,m
from (21) and (22), respec-

tively.

7: kπ
∗

b,m
= min

(

kπ
0

b,m
, kπ

1

b,m

)

.

8: ρ∗(b,m) = arg mini kπ
i

b,m
for i = 0, 1

9: n← n + 1

IV. OPTIMAL CLASS OF POLICIES FOR I.I.D. CHANNELS

In the previous section, we have given a procedure to obtain

the optimal scheduling decision of a no-splitting policy, once

we established that there exists a no-splitting policy achieving

the minimum number of re-transmissions. In this section, we

formally determine the optimal class of scheduling policies

minimizing the number of re-transmissions until successful

decoding. In the following, we obtain our analytical results for

e = 1 and R0 = 1. However, our analysis holds in general for

different values of e and R0, as demonstrated by the numerical

results presented in Section VI. Note that once the battery

has sufficient charge to decode the packet, i.e., b = Ed +

1, Ed+2, . . ., it is better to use the incoming RF signal only for

information accumulation. For the remaining states, i.e., b =

1, 2, . . . , Ed, and m = 0, 1, . . . R1 − 1, any scheduling decision,

either ρ = 0 or ρ = 1, is optimal. These two facts are proven

formally in Appendix E and F respectively. This result, in

essence, proves that there is no unique optimal policy. Instead,

there exists a family of optimal policies achieving the same

minimum mean time to absorption. We summarize our findings

so far in the following theorem by formally characterizing the

family of optimal policies.

Theorem 3. Optimal policy, π∗, satisfies the following prop-

erties.

1) If b = 0 or m = R1, it chooses ρ = 1.

2) If b = Ed + 1, Ed + 2, . . ., it chooses ρ = 0.

3) If b = 1, 2, . . . , Ed and m = 0, 1, . . . R1−1, chooses either

ρ = 0 or ρ = 1.

Proof. The proof is given in Appendix G. �

Simple examples of such optimal policies that belong to the

optimal family of policies characterized in Theorem 3, are:

• Battery First (BF): the receiver harvests energy until it

acquires Ed units of energy and then starts accumulating

the mutual information.

• Information First (IF): the receiver always accumulates

mutual information unless b = 0 or m = R1.



• Coin Toss (CT): the receiver harvests energy when b = 0

or m = R1, while it accumulates mutual information when

b = Ed + 1, Ed + 2, . . .. Otherwise, it tosses a fair coin

to choose between harvesting energy or accumulating

mutual information.

V. EXPECTED NUMBER OF RE-TRANSMISSIONS FOR A

CORRELATED CHANNEL

In many wireless systems, the wireless channel cannot be

modeled as an i.i.d. channel. In this section, we investigate

optimal scheduling policies under a time-correlated channel

model. Our analysis for a correlated channel follows a similar

approach to our analysis for i.i.d. channels. However, due to

correlation between the subsequent channel states, the receiver

can improve its decision by incorporating its knowledge of

the current state. Let the transition probabilities of the channel

states be P [Gt = 1|Gt−1 = 1] = λ1 and P [Gt = 1|Gt−1 = 0] =

λ0. Note that due to time correlation, the previous state of

the channel provides information about the current channel

state to the receiver. Hence, although once again we model the

system as a MC, this time the state space of MC is extended

where the states are (b, m, G) with G being the previous

state of the channel10. The resulting MC is still an absorbing

MC, and the mean time to absorption is equivalent to the

minimum expected number of re-transmissions until successful

decoding. Define π
∗ as the optimal policy minimizing the

mean time to absorption at any given state (b, m, G). Let

kπ
∗

b,m,G
be the mean time to absorption obtained by policy π

∗

at state (b, m, G).

Lemma 2. For any Ed − i · e ≤ b < Ed − (i − 1) · e such that
i = 1, . . . , Ed, and given that m = R1, the minimum mean time
to absorption is given by

kπ
∗

b,R1,1
= i

1 + λ0 − λ1

λ0
, i = 1, . . . , Ed, (24)

kπ
∗

b,R1,0
=

1

λ0
+ (i − 1)

1 + λ0 − λ1

λ0
, i = 1, . . . , Ed . (25)

Proof. The proof is similar to that of Lemma 1. The detailed

proof is given in [36]. �

Similar to Theorem 1, by exploiting Lemma 2, we can prove
that the optimal policy should either choose energy harvesting
or information accumulation at any given state (b, m, G).
Therefore, MC associated with the optimal strategy has dis-
crete states in which b = 0, 1, . . . ,∞, m = 0, 1, . . . , R1 and
G = 0, 1. Define the tail policy π

i(b,m,G) = (i, π∗(b́, ḿ, Ǵ)),
i = 0, 1 that chooses ρ = i at state (b, m, G) but follows policy

π
∗ after transitioning into the new state (b́, ḿ, Ǵ). Let kπ

i

b,m,G

be the mean time to absorption of policy π
i(b,m,G), i = 0, 1.

We can calculate kπ
0

b,m,G
and kπ

1

b,m,G
as follows:

kπ
0

b,m,0
= 1 + λ0kπ

∗

b−1,R1,1
+ (1 − λ0)k

π
∗

b−1,m+1,0
, (26)

kπ
0

b,m,1
= 1 + λ1kπ

∗

b−1,R1,1
+ (1 − λ1)k

π
∗

b−1,m+1,0
, (27)

kπ
1

b,m,0
= 1 + λ0kπ

∗

b+1,m,1
+ (1 − λ0)k

π
1

b,m,0
=

1

λ0
+ kπ

∗

b+1,m,1
, (28)

kπ
1

b,m,1
= 1 + λ1kπ

∗

b+1,m,1
+ (1 − λ1)k

π
∗

b,m,0
. (29)

10Note that the receiver becomes aware of the channel state after it decides
to sample the incoming RF signal.

Similar to the outline of the Theorem 2, in the following, we

consider states (b, m, G) = (Ed+ j, R1− j,G) for j = 1, . . . , R1

and derive the optimal strategy for those states.

Lemma 3. The optimal strategy in states (Ed + j, R1 − j,G)

for j = 1, . . . , R1 and G = 0, 1 is to accumulate mutual

information (ρ∗(Ed + j, R1 − j,G) = 0) and also kπ
∗

b,R1−j,G
=

kπ
0

Ed+j,R1−j,G
for b = Ed + j + 1, Ed + j + 2, . . ..

Proof. The proof is similar to that of Theorem 2. The detailed

proof is given in [36]. �

Now that we know the optimal policy for states (Ed+ j, R1−
j,G), we can calculate the minimum mean time to absorption
for those states as follows:

kπ
∗

Ed+j,R1−j,0
= kπ

0

Ed+j,R1−j,0
=

j
∑

i=1

(1 − λ0)
i−1, j = 1, . . . , R1,

(30)

kπ
∗

Ed+j,R1−j,1
= kπ

0

Ed+j,R1−j,1
= 1 + (1 − λ1)

j−1
∑

i=1

(1 − λ0)
i−1,

j = 2, . . . , R1, (31)

kπ
∗

Ed+j,R1−j,1
= 1, j = 1. (32)

Algorithm 2 calculates the kπ
∗

b,m,G
and the corresponding ρ∗

for any b, m, and G. Proving the optimality of Algorithm 2

is similar to the outline of the optimality proof of Algorithm

1 and hence it is omitted here. Note that the knowledge of

the previous channel state, G, enables the receiver to be able

to fully utilize the information yielded by the correlation.

However, it also results in four coupled equations, (26)-(29),

over numerous states which makes the analysis extremely

hard. For this reason, we omit the full characterization of

the structure of the optimal policy. Nevertheless, note that

Algorithm 2 provides a recursive method to determine the

optimal scheduling decisions for each state (b,m,G). In fact,

we use these optimal decisions in the numerical experiments

discussed in Section VI to calculate the minimum number of

re-transmissions.

Algorithm 2 Calculating the minimum mean time to absorp-

tion for correlated channel

1: Initialize kπ
∗

b,R1,G
for b = 0, . . . , Ed−1 using (24) and (25).

2: Initialize kπ
∗

Ed+j,R1−j,G
for j = 1, . . . , R1 using (30), (31)

and (32).

3: n← 0

4: for m = R1 − 1 : 0 do

5: for b = Ed + n : 0 do

6: Calculate kπ
0

b,m,G
for G = 0, 1 using (26) and (27),

respectively.

7: Calculate kπ
1

b,m,G
for G = 0, 1 using (28) and (29),

respectively.

8: kπ
∗

b,m,G
= min

(

kπ
0

b,m,G
, kπ

1

b,m,G

)

.

9: ρ∗(b,m,G) = arg mini kπ
i

b,m,G
for i = 0, 1

10: n← n + 1



VI. NUMERICAL RESULTS

In this section, we provide numerical evidence to support

the analytical results established in the paper. VIA is a standard

tool for solving the bellman equations in (14). However,

VIA iterates for numerous passes over each state, which

is increasing in β, before converging to a steady solution,

whereas Algorithm 1 and 2 needs a single iteration. Moreover,

VIA achieves exactly the same performance as Algorithm 1

and 2. Thus, we omit the results obtained by VIA.

We will divide our attention to validate the optimal policy

for i.i.d. and correlated channel models. Although the frame-

work discussed is sufficiently general to determine the number

of re-transmissions starting from any residual battery level, in

this section for the clarity of presentation, we consider that the

initial battery level is zero. We use a simple ARQ mechanism

as a baseline for understanding the performance merits of the

HARQ mechanism. In the following, we formally define the

simple ARQ scheme for i.i.d. and correlated channels.

A. Simple ARQ

In simple ARQ, the packet is transmitted successfully

whenever the channel is in a GOOD state and the receiver

has sufficient energy to decode the packet. Otherwise, the re-

ceiver drops the packet and awaits re-transmissions. When the

receiver employs simple ARQ, before any decoding attempt,

it has to make sure that its battery has at least Ed + 1 units

of energy. Otherwise, after consuming 1 unit of energy for

sampling, it will not have sufficient energy to decode the data

packet and it will drop the packet. It is easy to prove that

the optimal simple ARQ policy minimizing the mean time

to absorption first harvests Ed + 1 units of energy and then

attempts decoding. If the decoding attempt is not successful,

it harvests energy until its battery state reaches Ed + 1 units

again before attempting to decode.

B. i.i.d. Channel States

In this section, we evaluate the minimum mean time to

absorption obtained from Algorithm 1, and compare it to that

of the following three simple policies. The studied policies

are as follows: i) Battery First (BF), ii) Information First (IF),

and iii) Coin Toss (CT). Also, we compare the performance

of the receiver equipped with HARQ mechanism with the

case of a receiver equipped with simple ARQ mechanism.

We determine the mean number of re-transmissions by Monte

Carlo simulations, and compare them with that of analytical

calculation described in Algorithm 1. Note that Monte Carlo

simulations provide only sample mean time which is a random

variable. The mean of this random variable is equal to the

mean time to absorption and its variance decreases with the

number of samples and becomes zero only if the number

of iterations go to infinity. Hence, we expect to see small

differences between the results obtained by the Monte Carlo

simulations and analytical results, which is the reason why

some policies have slightly smaller mean time to absorption

than the optimal analytical value.

Table I summarizes the mean time to absorption for R1 = 10,

e = 1, λ = 0.5 and Ed = 5 with respect to R0 associated with

different policies. For IF, BF, CT and simple ARQ policies, we

run Monte Carlo simulations for 107 iterations and evaluate the

sample mean. It can be seen from Table I that all policies have

almost the same performance. This observation confirms our

major finding that the optimal policy achieving the minimum

mean time to absorption is not unique.

The effect of quality of the channel on the mean time to

absorption for R0 = 5, R1 = 10, Ed = 5 and e = 2 with

respect to λ is summarized in Table II. As expected, it can

be seen that the mean time to absorption decreases as the

channel quality improves. Also, the performance gap between

the HARQ and simple ARQ mechanism becomes smaller as

the channel quality improves. This is because as the channel

quality improves, the probability of harvesting energy and

accumulating R1 bits of mutual information also increases.

Finally, the mean time to absorption for R0 = 5, R1 = 10,

Ed = 10 and λ = 0.3 with respect to e is summarized in

Table III. We observe that the mean time to absorption is

approximately the same for all policies and it is decreasing

with respect to the amount of harvested energy, e.

The results presented in Table I, II and III confirm our

theoretical results that, indeed, the optimal policy harvests

energy whenever b = 0 or m = R1 and accumulates mutual

information whenever b > Ed. For the rest of the states it does

not matter what the receiver does, as long as, it does not split

the received RF signal.

C. Correlated Channel

In this section, we investigate the performance of the

optimal policy presented in Algorithm 2 for the case of

correlated channel and compare its performance to the three

baseline policies that employ HARQ mechanism as well as

a simple ARQ mechanism. We also consider a randomized

policy, which we call Bernoulli policy which harvests energy

with probability, p, unless its battery state is less than one

unit or it has accumulated sufficient mutual information during

when it solely harvests energy. In the following, we study the

effects of the encoding rate, the time correlation, and the EH

rate. Note that the mean time to absorption is determined by

calculating kb,m,0 and kb,m,1 and then averaging them with

respect to the steady-state distribution of the channel states,

i.e., kb,m = φ(0)kb,m,0 + φ(0)kb,m,1, where φ(0) = 1 − φ(1) =
1−λ1

1+λ0−λ1
.

Remark. Note that, in this section, we do not calculate the

mean time to absorption by Algorithm 2 (i.e., kπ
∗

b,m,0
and

kπ
∗

b,m,1
). Instead, we use the optimal scheduling decisions

dictated by Algorithm 2 for each state (b,m,G) to determine

the mean time to absorption by Monte-Carlo simulations.

This is because both methods yield the same mean time to

absorption for the optimal policy and illustrating both on the

same figure distinctly is not possible.

To investigate the effect of the encoding rate on the mean

time to absorption, we set the simulation parameters as R1 =

10, e = 1, Ed = 5 and p = 0.1. The mean time to absorption

with respect to R0, for negatively and positively correlated

channel states, are depicted in Figures 3a and 3b, respectively.



TABLE I: Mean time to absorption for R1 = 10, e = 1 and Ed = 5 vs. R0

R0 = 1 R0 = 2 R0 = 3 R0 = 4 R0 = 5 R0 = 6 R0 = 7 R0 = 8 R0 = 9
Optimal analytical 15.9941 15.8125 15.6250 15.2500 14.5000 14.5000 14.5000 14.5000 14.5000
Optimal Monte-Carlo 15.9910 15.8103 15.6235 15.2490 14.4992 14.5001 14.4998 14.5000 14.4983
BF 15.9938 15.8116 15.6259 15.2504 14.4999 14.4995 14.4993 14.5012 14.5000
IF 15.9941 15.8143 15.6245 15.2508 14.4987 14.4997 14.5017 14.4989 14.5003
CT 15.9966 15.8140 15.6266 15.2491 14.5020 14.5007 14.5009 14.4984 14.5001
Simple ARQ 15.9992 15.9992 15.9992 16.0006 16.0007 15.9995 15.9996 16.0008 16.0011

TABLE II: Mean time to absorption for R1 = 10, R0 = 5, e = 2 and Ed = 5 vs. λ

λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9
Optimal analytical 40.9000 20.8000 14.0333 10.6000 8.5000 7.0667 6.0143 5.2000 4.5444
Optimal Monte-Carlo 40.8904 20.7979 14.0320 10.5985 8.4989 7.0659 6.0140 5.1999 4.5443
BF 40.8920 20.7962 14.0337 10.6002 8.4995 7.0666 6.0153 5.1998 4.5445
IF 40.8978 20.7960 14.0331 10.5991 8.5002 7.0667 6.0132 5.1998 4.5443
CT 40.8961 20.8006 14.0333 10.5973 8.4986 7.0665 6.0137 5.2001 4.5444
Simple ARQ 87.3286 31.1145 17.9077 12.3428 9.3310 7.4591 6.1846 5.2607 4.5568

TABLE III: Mean time to absorption for R1 = 10, R0 = 5, λ = 0.3 and Ed = 10 vs. e

e = 1 e = 2 e = 3 e = 4 e = 5 e = 6 e = 7 e = 8 e = 9
Optimal analytical 40.7000 21.7000 15.0333 11.7000 11.7000 8.3667 8.3667 8.3667 8.3667
Optimal Monte-Carlo 40.6956 21.6999 15.0320 11.6995 11.7009 8.3648 8.3651 8.3675 8.3670
BF 40.7015 21.6987 15.0381 11.6986 11.6995 8.3677 8.3653 8.3667 8.3672
IF 40.7023 21.7020 15.0308 11.7030 11.7010 8.3667 8.3658 8.3671 8.3654
CT 40.6980 21.7006 15.0345 11.6995 11.6992 8.3674 8.3663 8.3657 8.3670
Simple ARQ 47.7832 26.5340 19.1515 15.4839 14.0076 11.8479 10.8730 10.4191 10.2021

Unlike the i.i.d. case the knowledge of the channel state makes

a significant difference in the performance of the proposed

optimal policy as compared to the baseline policies. Hence,

when the channel is correlated, a simple scheduling policy is

not sufficient to achieve a low number of re-transmissions.

Next, we study the effect of the channel quality and the

correlation on the mean time to absorption. We set R1 = 10,

e = 1, Ed = 5 and p = 0.1. We fix λ1 = 0.2 and by varying

λ0, we calculate the mean time to absorption as illustrated in

Figure 4a. Similarly, we fix λ0 = 0.2 and by varying λ1, we

calculate the mean time to absorption by the aforementioned

baseline policies and illustrate the results in Figure 4b. Note

that when the channel is negatively correlated, as in Figure 4b,

the gap between the optimal policy and the baseline policies is

high. However, when the channel is positively correlated, as in

Figure 4b, the gap disappears as λ1 increases. This is because,

when the channel is positively correlated, the channel tends

to stay in the same state for a longer time before changing

its state. On the contrary, in negatively correlated channel

states, the channel is more likely to change its state at any

time. This rapid change in state transition in the case of

negatively correlated channel states requires a more adaptive

policy rather than the case of the positively correlated channel

state which rarely changes its state. Thus, the performance

gain of Algorithm 2 is more evident in negatively correlated

channels.

Finally the effect of EH rate, e, on the mean time to

absorption for negatively and positively correlated channel

states is depicted in Figure 5a and 5b, respectively. The results

are obtained by setting R1 = 10, R0 = 5, Ed = 10, p = 0.1,

λ0 = 0.7 and λ1 = 0.2 for negatively correlated channel states;

and λ0 = 0.2 and λ1 = 0.7 for positively correlated channel

states. We, again, observe that the optimal policy outperforms

the baseline policies and the performance gain is more evident
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(a) Negatively correlated channel, λ0 = 0.7 and λ1 = 0.2.
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(b) Positively correlated channel λ0 = 0.2 and λ1 = 0.7.

Fig. 3: The effect of the encoding rate on the minimum

expected number of re-transmissions for R1 = 10, e = 1,

Ed = 5 and p = 0.1.
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(a) Negatively correlated channel, λ1 = 0.2.
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(b) Positively correlated channel, λ0 = 0.2.

Fig. 4: The effect of the channel quality and correlation on the

minimum expected number of re-transmissions for R1 = 10,

R0 = 3, e = 1, Ed = 5 and p = 0.1.

for negatively correlated channel states for the same reason we

provided for the results in Figure 4.

It should be noted that when the channel states are corre-

lated, the knowledge about the future channel states plays a

major role in making decision about the power splitting ratio.

On the contrary, when the channel states evolve i.i.d. over

time, there exist a class of optimal policies instead of a single

optimal policy.

VII. CONCLUSION

We analyzed a point-to-point wireless link employing

HARQ for reliable transmission, where the receiver can only

empower itself via the transmitter’s RF signal. We modeled

the problem of optimal power splitting using a Markovian

framework, and developed an optimal algorithm achieving

the minimum mean time to absorption for both time varying

i.i.d. and correlated channels. We developed computationally

inexpensive algorithms to calculate the minimum mean time

to absorption and optimize the power splitting ratio starting at

any arbitrary state.

We proved that the optimal policy in case of i.i.d. channel

states is not unique, and indeed the optimal policy belongs
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(a) λ0 = 0.7 and λ1 = 0.2.
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(b) λ0 = 0.2 and λ1 = 0.7.

Fig. 5: The effect of the EH rate on the minimum expected

number of re-transmissions for R1 = 10, R0 = 5, Ed = 10 and

p = 0.1.

to the optimal family of policies. For correlated channel,

we observed that it is only possible to achieve the optimal

performance by intelligently utilizing the information offered

by channel’s correlation information. Finally, we numerically

validated the analytical results established in the paper by

providing extensive number of simulations.

It is worth mentioning that the two-state model, adopted

here, is an approximation of a more general multi-state wire-

less channel. As a future work, we aim to extend this work

for a more general setting where we will consider multi-

rate information transmission, multi-state EH process, and

non-linear EH efficiency. Due to to analytical complexity,

it is uncertain that the optimality result of no-split policy

carries over to the more general setting. In this case, deep

reinforcement learning techniques can be used as a promising

approach to address the aforementioned extensions.

APPENDIX A

PROOF OF LEMMA 1

The proof is by induction.

1) Base case: Let us consider the smallest possible value
for i, i.e., i = 1, such that Ed − e ≤ b < Ed. Note that



since m = R1, the optimal decision is to use incoming
RF signal only for harvesting energy, i.e., ρ∗(b, R1) = 1.
Thus, we get

kb,R1
= 1 + λkb+e,R1

+ (1 − λ)kb,R1
. (33)

For Ed − e ≤ b < Ed, if the channel is GOOD then

the MC transitions into state (b + e, R1), which is an

absorbing state, so kb+e,R1
= 0. Hence, kb,R1

=
1
λ

and

thus, the lemma holds for i = 1.

2) Induction step: assume that the lemma is true for some

i = n, i.e., kb,R1
= n/λ for Ed−n ·e ≤ b < Ed−(n−1) ·e.

3) Proof for case i = n+ 1: Let us calculate the mean time
to absorption for the case n + 1:

kb,R1
=1 + λkb+e,R1

+ (1 − λ)kb,R1
,

for Ed − (n + 1)e ≤ b < Ed − nl,
(34)

which reduces to kb,R1
=

n+1
λ

for Ed − (n + 1) · e ≤ b <

Ed − n · e.

Thus, the lemma holds by induction.

APPENDIX B

PROOF OF THEOREM 1

Assume that at time slot t the system is at state (b, m).
Consider policy π

split which always chooses 0 < ρ < 1.
Hence, it follows that RH (ρ) < R1, RL(ρ) < R0 and, from
(10), we have I(t) ≤ R1. Also, it is easy to verify that for any
b, we have kb,m1

≤ kb,m2
whenever m1 ≥ m2. Thus, a lower

bound on kπ
split

b,m
in (19) can be established as,

kπ
split

b,m
≥ 1 + λkb−1+ρe,R1

+ (1 − λ)kb−1,m+R0
. (35)

Furthermore, since b−1 < b−1+ρ·e < b−1+e, from Lemma 1,

we know that kb−1+ρe,R1
= kb−1,R1

. Hence, the lower bound

in (35) is exactly the same as kπ
no−split

b,m
given in (20), i.e.,

kπ
no−split

b,m
≤ kπ

split

b,m
.

APPENDIX C

PROOF OF THEOREM 2

The proof is by induction. For the base case consider the
initial case when j = 1 so that b = Ed + 1, Ed + 2, . . . and
m = R1 − 1. We have

kπ
0

Ed+1,R1−1 =1 + λkπ
∗

Ed,R1
+ (1 − λ)kπ

∗

Ed,R1
= 1, (36)

kπ
1

Ed+1,R1−1
=

1

λ
+ kπ

∗

Ed+e+1,m

>kπ
0

Ed+1,R1−1. (37)

Note that when b = Ed + 1, Ed + 2, . . ., by choosing ρ = 0,
regardless of the channel state, the next state, (b − 1, R1), is

an absorbing state so kπ
0

b,R1−1
= 1. Thus, the lemma holds for

j = 1. In the induction step assume that the theorem holds for

j = n − 1, i.e., kπ
∗

b,R1−n+1
= kπ

0

Ed+n−1,R1−n+1
=

∑n−1
i=1 (1 − λ)

i−1

for b = Ed + n − 1, Ed + n, . . .. Now, we prove that the claim
is also true for j = n.

kπ
0

Ed+n,R1−n
=1 + (1 − λ)kπ

∗

Ed+n−1,R1−n+1

=1 +

n−1
∑

i=1

(1 − λ)i

=

n
∑

i=1

(1 − λ)i−1, (38)

kπ
1

Ed+n,R1−n
=

1

λ
+ kπ

∗

Ed+n+e,R1−n

>
1

λ
+ kπ

∗

Ed+n+e,R1−n+1

=

1

λ
+ kπ

∗

Ed+n−1,R1−n+1

=

1

λ
+

1 − (1 − λ)n−1

λ
(39)

Furthermore,

kπ
0

Ed+n,R1−n
=

1 − (1 − λ)n

λ

=1 + (1 − λ)
1 − (1 − λ)n−1

λ
< kπ

1

Ed+n,R1−n
(40)

For the last part of the proof, we need to show that kπ
∗

b,R1−n
=

kπ
0

Ed+n,R1−n
for b = Ed + n + 1, Ed + n + 2, . . .. We may write:

kπ
∗

b,R1−n
= 1 + (1 − λ)kπ

0

b−1,R1−n+1

= 1 + (1 − λ)kπ
0

Ed+n−1,R1−n+1
= kπ

0

Ed+n,R1−n
(41)

APPENDIX D

THE OPTIMALITY OF ALGORITHM 1

In Lemma 1, we characterized the minimum mean time to

absorption for all states (b, R1), for b = 0, . . . , Ed − 1. Also,

in Theorem 2, we characterized the minimum mean time to

absorption for states, (b, R1− j) where, b = Ed+ j, Ed+ j+1, . . .

and j = 1, . . . , R1. Furthermore, Theorem 1 proves that at any

state (b, m), the receiver should either choose to harvest energy

or accumulate mutual information. Note that the iterations are

ordered in Algorithm 1 (line 4-8) so that kπ
0

b,m
and kπ

1

b,m
only

depend on kπ
∗

b−1,R1
, kπ

∗

b−1,m+1
, and kπ

∗

b+1,m
which are obtained

at the previous rounds of the algorithm.

APPENDIX E

THE OPTIMALITY OF ρ = 0 WHEN b > Ed

Due to space limitations, we only provide a sketch of the
proof with complete details given in [36]. We need to show

that kπ
0

Ed+j−i,R1−j
< kπ

1

Ed+j−i,R1−j
for all j = 1, . . . , R1 and

i = 0, 1, . . . , j − 1. The proof is by induction. For the base
case, we need to show that the theorem holds for i = 0 and

all j = 1, . . . , R1, i.e., kπ
0

Ed+j,R1−j
< kπ

1

Ed+j,R1−j
, which is an

immediate result of Theorem 2. Next, in the induction step,
assume that the theorem is true for i = n and all j = 1, . . . , R1

i.e., kπ
0

Ed+j−n,R1−j
< kπ

1

Ed+j−n,R1−j
. Then, using (21) and (22),

it is possible to show that:

kπ
1

Ed+j−(n+1),R1−j
=

1

λ
+ 1 + (1 − λ)kπ

∗

Ed+(j−1)−n,R1−(j−1)
, (42)

kπ
0

Ed+j−(n+1),R1−j
≤

1

λ
+ (1 − λ)kπ

∗

Ed+(j−1)−n,R1−(j−1)
, (43)

which results in kπ
0

Ed+j−(n+1),R1−j
< kπ

1

Ed+j−(n+1),R1−j
, proving

that the statement also holds for i = n+1, and all j = 1, . . . , R1.



APPENDIX F

kπ
0

b,m
= kπ

1

b,m
FOR 1 ≤ b ≤ Ed , 0 ≤ m ≤ R1 − 1

Due to space limitations, we only provide a sketch of the

proof with complete details given in [36]. We have to show

that kπ
0

i,R1−j
= kπ

1

i,R1−j
for i = 1, . . . , Ed and j = 1, . . . , R1. The

outline of the induction proof is as follows:

• For the base case we show that kπ
0

i,R1−1
= kπ

1

i,R1−1
for all

i = 1, . . . , Ed. It is easy to verify that kπ
0

Ed,R1−1
= kπ

1

Ed,R1−1
.

By assuming that kπ
0

i,R1−1
= kπ

1

i,R1−1
, from (21) and (22) ,

one can calculate:

kπ
1

i−1,R1−1 = kπ
0

i−1,R1−1 = 1 +
Ed − i + 2

λ
. (44)

• In the induction step, we assume that the theorem is true

for j = n and all i = 1, . . . , Ed.

• Using the induction step, (21), and (22), we obtain the

following result for the case n + 1:

kπ
0

i−1,R1−(n+1)

= kπ
1

i−1,R1−(n+1)
=

1

λ
+ Ed − i + 2 + (1 − λ)kπ

∗

i−1,R1−n
.

(45)

Hence, the theorem holds for j = n + 1 and all i = 1, . . . , Ed.

Therefore, the statement is true by induction.

APPENDIX G

PROOF OF THEOREM 3

The proof of the theorem is straightforward and proceeds

as follows:

1) When b = 0, the receiver has no energy to activate

the RF transceiver and should first recharge its battery.

When m = R1, the receiver collected sufficient mutual

information to decode, but needs energy to perform the

decoding operation. Hence, it harvests energy.

2) This part of the theorem is proven in Appendix E.

3) In Appendix F we show that whenever b = 1, 2, . . . , Ed,

and m = 0, 1, . . . R1 − 1, then kπ
0

b,m
= kπ

1

b,m
. Consider a

policy β which satisfies part 1 and 2 of the theorem.

Whenever b = 1, 2, . . . , Ed and m = 0, 1, . . . R1 − 1,

the policy chooses ρ = 0 with probability p. The mean

time to absorption of policy β, k
β

b,m
can be calculated

as follows

k
β

b,m
= pkπ

0

b,m
+ (1 − p)kπ

1

b,m
= kπ

0

b,m
= kπ

1

b,m
. (46)
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