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Centralized and Distributed Architectures for

Energy and Delay Efficient Fog Network based

Edge Computing Services
Arash Bozorgchenani, Student Member, IEEE, Daniele Tarchi, Senior Member, IEEE,

and Giovanni Emanuele Corazza, Senior Member, IEEE

Abstract—Edge computing techniques allow to exploit the
devices at the network borders for computing efforts in order to
reduce the centralized cloud requests. A fog network is a feasible
solution for implementing edge computing services. Within this
scenario, the deployed Fog Nodes (FNs) are able to offload
different portions of a single task to the available nodes to be
processed at the network edge. However, to partially offload,
FNs consume an extra amount of energy for transmission and
reception of the tasks while saving energy by not processing the
whole task on their own. Moreover, offloading requires an extra
transmission and reception time to the task processing time. In
this work, the focus is on a partial offloading approach where the
trade off between FN energy consumption and task processing
delay is considered when estimating the portion to be offloaded
to the available devices at the edge of the network by comparing
a centralized and a distributed architecture. Simulation results
demonstrate the effectiveness of the proposed estimation solutions
in terms of FN energy consumption, average task delay and
network lifetime.

Index Terms—Edge Computing, Fog Networking, Partial Of-
floading, Energy Consumption, Clustering

I. INTRODUCTION

EDGE computing is a recently introduced framework

aiming at bringing the computing capability of the cloud

at the edge of the network with the goal of minimizing the

time required for responding to a task request and reducing

the traffic at the fronthaul [1]. Among different architectural

proposals Mobile Edge Computing (MEC) [2] seems the

most promising, having on one hand the advantages of edge

computing, while considering the presence of mobile nodes

as an additional flexibility, by extending the Mobile Cloud

Computing (MCC) approach [3], [4]. The increasing interest

in MEC is also evident by looking at the standardization

effort in ETSI, where some possible use cases have been

identified: active device location tracking, augmented reality

content delivery, video analytic, radio access network aware

content optimization, distributed content and DNS caching

and application-aware performance optimization [5]. Recently,
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Mobile Edge Computing has been also renamed as Multiaccess

Edge Computing, where the acronym still remains MEC, while

giving much more emphasis on the communication heteroge-

neity that is at the basis of the architectural proposal [6].

While MEC seems to place much more focus on the neces-

sity of having edge computing capability limited to process

the traffic requests at the edge, a similar approach named Fog

Computing was recently introduced. Fog Computing seems to

be an extension of MEC into two different directions: on one

side by trying to exploit as many devices as possible in a

unified approach by resorting to the Internet of Things (IoT)

principles [7], and on the other side by trying to go beyond

the Edge vs Centralized approaches in cloud computing by

introducing a much more fluid view to the architectural

definition, where different devices can be seen as a continuum

from the edge to the centralized cloud of several hierarchical

layers with different capabilities [8].

Within the Fog computing scenario, and the related Fog net-

working scenario, that aims at considering the communication

and networking challenges introduced by the Fog architecture,

the aim of this paper is that of considering different edge

computing approaches.

Within this scenario, we envisage to consider a two-layer

architecture composed of Fog Nodes (FNs), battery operated

nodes with lower computing capabilities, and Fog Access

Points (F-APs), fixed nodes usually connected to the electrical

power network with higher computational capabilities. These

two types of nodes are logically organized into two intercon-

necting layers; to this aim two communication paradigms are

usually considered: Device to Device (D2D) communication

among FNs, and infrastructure communications between FNs

and F-APs [9].

Among different applications that can be envisaged in an

edge computing infrastructure, we focus here on computation

offloading, characterized by the possibility of offloading the

tasks computation to the nearby devices [10], [11]. Due to the

limited FNs capabilities, the edge computing requests cannot

be completely fulfilled with a requested target (e.g., delay

or energy consumption). To overcome this problem, a joint

exploitation of both FNs and F-APs is here considered. In D2D

communications, FNs are able to share their resources with

the neighboring FNs, while in infrastructure communications,

requests are sent from FNs to F-APs for being computed. This

allows to exploit the advantages of both when offloading a

task computation. Moreover, due to the presence of multiple
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Fig. 1. The considered two-layer Fog Network architecture

nodes nearby, a task can be further divided into some portions,

each one allocated to a different node. This technique is called

partial offloading [12].

The considered Fog architectural model is shown in Fig. 1,

where it is possible to see the FNs and the F-APs that interact

in forming the Fog computing infrastructure. The FNs in

this figure are divided into two types: the Requesting FNs

(RFNs), the devices offloading the computational tasks, and

the Computing FNs (CFNs), the devices accepting tasks to be

computed from the RFNs.

The goal of this paper is the optimal distribution of the

computational effort among the nodes by jointly minimizing

the overall task processing delay and the energy consumption

while maximizing the network lifetime [13]. To this aim,

the optimization has been carried out by resorting to two

different approaches, a distributed and a centralized. While

in the distributed each RFN is selecting autonomously the

nodes to be used for computing, in the centralized approach

we foresee to optimize the system by centrally driving the

offloading requests of the RFNs.

Differently from [14], where energy consumption and task

processing delay have been considered for the optimization of

computation offloading, a new optimization approach is here

proposed. This work mainly features the following characte-

ristics with respect to [14]:

(a) Architecture: The F-APs in [14] are considered as an

alternative option in case of no availability of FNs, while

in this work a more realistic architecture is considered, in

which both F-APs and FNs are available for computation

offloading. More importantly a centralized architecture is

additionally proposed in this work. To this aim, one of

the major goals of this work is that of comparing the

centralized and the distributed architectures.

(b) Partial offloading estimation: By the availability of all

types of nodes for computation offloading in the proposed

architectures, a new offloading estimation is proposed.

Differently from [14], which only considers the data

rate for the estimation of the portion to be offloaded to

the available nodes, here, we have considered also the

TABLE I
ACRONYM LIST

Acronym Term

MEC Mobile Edge Computing

MCC Mobile Cloud Computing

IoT Internet of Things

FN Fog Node

F-AP Fog-Access Point

D2D Device to Device

RFN Requesting Fog Nodes

CFN Computing Fog Node

FLOPS Floating-Point Operation Per Second

LPFN Low Power Fog Node

HPFN High Power Fog Node

FCH Fog Cluster Head

FCM Fog Cluster Member

computational power of the available nodes.

The paper is organized in the following way. In Section II,

a literature review of the most influential papers in the

area is given. Then, in Section III, the system model and

the problem formulation are introduced. In Section IV, the

proposed centralized and distributed solutions are described,

while in Section V the numerical results are given. Finally,

in Section VI, the conclusions are drawn. A list of acronyms

used in the following is also shown in Tab. I.

II. RELATED WORKS

Although fog computing and networking has been recently

introduced, the research community is very active in this field.

The task offloading problem has been formulated in [15] as a

joint radio and computational resources problem. From the

architectural point of view, the network in [16] is broken

down into several layers in a way that some cloudlets for

mobile cloud computing are considered. To enhance network

capacity and offloading probability, in this work a D2D-based

heterogeneous MCC network is proposed. Clustering in edge

networking has also been proposed in some works. In [17]

clustering was performed among the access points considering

channel and caching status. A clustering algorithm was also

proposed in [18] for the radio access points dealing with joint

computation and communication resource allocation inside the

cluster.

Some works have considered the delay as the optimization

goal in edge computing. To target a fog server from the user

point of view, [19] considers both communication and com-

puting delays. However, an assumption made in [19] was that

all the users can access all the fog servers. In [20], the authors

have studied the multi-user computation partitioning problem

between mobile devices and cloud. They have proposed an

offline heuristic and considered a large-scale mobile cloud

application with the aim of minimizing the average completion

time.

On the other hand, some papers have considered the energy

consumption as the goal of their optimization. The authors in

[21] studied the impact of offloading on reducing the energy

consumption by focusing on an intensive communication sce-

nario. An Energy-Efficient Computation Offloading (EECO)

algorithm is proposed in [11] based on three main phases:
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classifying the nodes considering their energy and cost feature,

prioritizing them by giving a higher offloading priority to the

nodes which cannot meet the processing latency constraint,

and the radio resource allocation of the nodes considering the

priority. The proposed EECO algorithm allows to decrease

the energy consumption by up to 15% in comparison with

computation without offloading. The authors in [22] have

proposed a matching game approach to solve the problem of

resource allocation of the cached content in fog computing

environments. The aim of the work is minimizing the energy

consumption for the content access for which they have

considered the energy consumption of the requesting node,

embedded computing on the node, baseband processing at the

edge, radio interface, transmission through core network and

internet, and processing in the cloud. The authors in [23] have

introduced an energy efficient fog computing framework in

homogeneous fog networks and proposed a low complexity

maximal energy efficient task scheduling algorithm to derive

the optimal scheduling decision for a task node. In [24] a node

discovery approach in IoT-fog environment was proposed. The

authors mainly worked on the impact of the dynamicity of

the advertiser nodes on device discovery success, which was

proved to be 100%, and also sustainability of the battery-

powered IoT nodes. In [25] the challenges of energy efficiently

multimedia sensing as a service at the cloud edges IoT

was investigated. The authors proposed a resource allocation

approach to achieve optimal multimedia transmission quality

in addition to guaranteeing wireless communication energy

efficiency.

However, computation offloading affects both FN energy

consumption and task delay. Few works have considered both

metrics. The authors in [26] proposed energy-efficient offloa-

ding policies for transcoding tasks in a mobile cloud system.

With the objective of minimizing the energy consumption

while meeting the latency constraint, they introduced an online

offloading algorithm which decides whether the task should

be offloaded to the cloud or executed locally. Task processing

in [27] was based on a decision of either local processing

or total offloading. The authors aimed at minimizing the

local execution energy consumption for applications with strict

deadline constraints. Authors in [28] studied the problem of

network energy minimization while satisfying applications’

delay requirement in cloud radio access networks. A joint

optimization of beamforming design and power allocation

with a decision making strategy is considered. A heuristic

offloading decision algorithm was proposed in [29] with

the aim of maximizing system utility which considers task

completion time and the FN energy consumption. However,

in [29] only a single MEC server was considered. Energy

consumption and latency have also been targeted in [30] for an

offloading approach. In this work, the authors targeted energy

consumption and response time for the offloading scenario to

the centralized cloud.

In our work, we have considered both centralized and dis-

tributed architectures for the partial offloading problem. Mo-

reover, we have introduced two approaches working on both

FN and F-AP layers considering the FN energy consumption

and the task processing delay for a sub-optimal solution to the

partial offloading problem. The proposed approaches estimate

the amount to be offloaded to the available nodes in both

layers such that average task delay, FN energy consumption

and network lifetime are optimized.

III. SYSTEM MODEL

In this work a two-layer architecture for fog computing is

considered. On one hand U = {u1, . . . ,ui, . . . ,uN } represents

the set of FNs in the first layer. The FNs, characterized by

limited computational capabilities, are battery powered and are

the sources of the computational requests in the system. FNs

are able to communicate among themselves for enabling the

direct offloading through direct link technologies (e.g., D2D or

WiFi-Direct). On the other hand, the second layer is composed

by F-APs, whose set is indicated as A = {a1, . . . ,am, . . . ,aM },

characterized by a higher computation capability. The F-APs

are plugged to the electrical network, resulting in a virtual

unlimited energy, and could also be used for the connection of

the FNs with the centralized cloud. F-APs can be exploited by

the FNs for computation offloading. In our system we focus on

both layers by limiting the offloading requests to these layers

and avoiding any offloading requests to outer clouds. The F-

APs act as mobile edge computing resources, providing the

ability of running multiple computations at the same time [11].

In the following, the FNs are considered to be steady and able

to offload their tasks to the neighboring FNs or to the F-APs.

The goal of this paper is to optimally estimate the task

portion to be offloaded by each FN having some tasks to be

computed in order to jointly minimize the energy consumption

and the task processing delay. For pursuing such optimization

we resort to a partial offloading technique that allows to select

the amount of data to be offloaded to each of the possible

candidates among the available FNs and F-APs, while the

remaining can be processed locally. For the sake of readability,

in Tab. II the parameters definitions to be used in the following

equations are listed.

Each FN can be considered in one of four possible states

during its life: transmitting, receiving, computing or idle, i.e.,

S = {t x,r x, com, id}. The transmitting and receiving states

refer to the interaction with other FNs or F-APs and the

computing state refers to the computation performed in the

FN itself (either for a local task or for an offloaded task); the

idle state is considered the remaining time. In the rest of the

paper, nodes refer to both FNs or the F-APs, unless otherwise

stated. The overall energy consumed by the generic ith FN

can be defined as:

E i
FN = E i

tx + E i
rx + E i

com + E i
id (1)

where E i
tx , E i

rx and E i
com are, respectively, the energy con-

sumed during transmission, reception and computation states

and E i
id

is the energy the ith FN spends during its idle state.

The energy spent by the ith FN in a certain state s can be

defined as:

E i
s = Pi

sT
i
s, s ∈ S (2)

where Pi
s represents the power and T i

s the time spent by the

ith FN in the state s.
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TABLE II
SYSTEM MODEL PARAMETERS DEFINITION

Parameter Definition

E i
s The energy consumption of the ith FN in state s

E i
r (t) The remaining energy of the ith FN at time instant t

Pi
s The consumed power of the ith FN in state s

Bi j The bandwidth of the link between two nodes i and j

hi j The channel coefficient between two nodes i and j

PN j
The noise power at receiver side

T l
s The time spent by the ith FN in state s

T l
w j

The waiting time of the lth task in the queue of the jth
node

ri j Data rate of the link between the ith and jth node

Lsl
Size of the lth task

Lrl
Size of the lth task result

Ol Number of operations to process the lth task

ηcomp j
The computational power of the jth node

αl
loc ,i

Local portion of the lth task of the ith node

αl
o f f ,i

Offloading portion of the lth task of the ith node

αl
o f f ,i j

Offloading portion of the lth task of the ith node to the
jth node

E
j

CFN
Energy consumption of the jth CFN

E i
RFN

Energy consumption of the ith RFN

T l
loc ,i

Local computation time for the lth task of the ith node

T l
o f f ,i j

Offloading time of the lth task of the ith node to the jth
node

Dl
i

Total delay of the lth task of the ith node

We suppose that the initial energy of the ith node is E i
r (0).

All the FNs consume a certain amount of energy when they

transmit, receive or compute tasks or even when they are idle.

Therefore, by a certain time t, the ith FN has consumed E i
c(t)

Joule of energy. Thus, the remaining energy of the ith FN at

certain time instant t can be calculated as:

E i
r (t) = E i

r (0) − E i
c(t) (3)

where,

E i
c(t) =

∫ t

0

E i
FN (τ)dτ (4)

In general, the time spent by the jth node, whether it is an

FN or an F-AP, for processing the lth task can be defined as:

T l
comp j

=

Ol

ηcomp j

(5)

where Ol represents the number of processing operations

related to the lth task and ηcomp j
is the Floating-point Ope-

ration Per Second (FLOPS) depending on the CPU of the jth

processing node, which can be an FN or an F-AP.

In case of offloading, the lth task should be transmitted;

hence, the transmission time from the ith FN to the jth node

for the lth task can be written as:

T l
tx,i j =

Lsl

ri j
(6)

where Lsl is the size of the lth task offloaded by the ith FN

and ri j is the data rate of the link between the ith FN and

the jth node. Following this, the result of the processed task

should be sent back from the jth node to the ith FN, leading

to a reception time defined as:

T l
rx,i j =

Lrl

ri j
(7)

where Lrl is the size of the result of the requested task sent

back to the requesting FN, by supposing a symmetric channel

in terms of data rate between the ith FN and the jth node.

By considering the Shannon capacity formula, the data rate

between the ith FN and the jth node can be written as:

ri j = Bi j log2

(

1 +
|hi j |

2Pi
tx

PN j

)

(8)

where Bi j is the bandwidth of the link, Pi
tx represents the

transmission power of the ith FN, hi j is the channel coefficient

between the ith FN and the jth node and PN j
is the noise

power at the receiver side, defined as PN j
= NT Bi j .

In our system we are supposing that the F-APs are able to

process the tasks received from other FNs, while the FNs can

process both tasks generated by themselves or received from

other nearby FNs. To this aim, in reference to the role they are

having, in the following we will refer to the RFNs as those

FNs asking other nodes to process a task, and CFNs as those

FNs computing a task on behalf of other FNs.

Each CFN and F-AP in our work is supposed to have a

queue holding the tasks of the RFNs to be processed. The

waiting time of the lth task at the jth node can be defined as:

T l
wj
(p) =

p−1∑

π=1

Tπ
comp j

(9)

where p is the number of tasks already in the queue of the jth

node at a given time instant.

The concept behind partial offloading is to delegate only a

portion of the computation load to another node. This allows to

have a higher flexibility and optimize the energy consumption

and the time spent for processing the tasks. We define αl
loc,i

as the portion of the lth task that can be processed locally by

the ith RFN generating that task, and αl
o f f ,i

as the amount that

can be offloaded by the ith RFN, where αl
o f f ,i

= 1−αl
loc,i

. We

are considering that the offloaded portion can be further split

among the available nodes. In this case, the offloaded portion

can be written as:

αlo f f ,i =
∑

j∈N(i)

αlo f f ,i j (10)

where N(i) is the set of the neighbor nodes available for

accepting the offloaded portion, and αl
o f f ,i j

is the portion

offloaded by the ith RFN to the jth node.

The time required for offloading the portion of a task from

the ith RFN to the jth node can be written as the sum of the

time for offloading the portion of the task, the time the task

should wait in the jth node queue, the time for computing that

task and the time needed for having the result back:

T l
o f f ,i j(α

l
o f f ,i j) =

αlo f f ,i jT
l
tx,i j + T l

wj
+ αlo f f ,i jT

l
comp j

+ αlo f f ,i jT
l
rx,i j (11)

while the time for local computation, can be defined as the

time needed for computing the remaining portion of the task:

T l
loc,i(α

l
o f f ,i) = α

l
loc,iT

l
compi

= (1 − αlo f f ,i)T
l
compi

(12)
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By assuming that the local and the offloaded portions can be

performed in parallel, the total delay for processing a task can

be rewritten as the maximum of all the offloading times and

the local time, i.e.,

Dl
i(α

l
o f f ,i) = max

∀j∈N(i)

{
T l
o f f ,i j(α

l
o f f ,i j),T

l
loc,i(α

l
o f f ,i)

}
(13)

On the other hand, the energy consumption of the jth CFN,

in case of partial offloading, could be rewritten as:

E
j

CFN
= αlo f f ,i j(E

ji
rx + E

j
com + E

ji
tx) + E

j

id
(14)

where E
ji
rx and E

ji
tx are the energy amounts spent by the jth

node for receiving from and transmitting to the ith node,

respectively; it corresponds to the sum of the energy of

reception, computation and transmission of the portion that

is offloaded plus the idle energy of the jth CFN. On the RFN

side the energy consumption can be rewritten as:

E i
RFN =

∑

j∈N(i)

(
αlo f f ,i j

(
E
i j
tx + E

i j
rx

))
+αlloc,iE

i
com +E i

id (15)

corresponding to sum of the energy required for offloading

the portion to the nearby nodes, performing the computation

of the rest of the task locally, and the energy of idle state. We

introduce now the following Boolean variable:

Ui
FN =

{
1 if the ith FN is a CFN

0 if the ith FN is an RFN
(16)

representing the two possible conditions in which an FN can

be.

In this work, the goal is to minimize the average FN energy

consumption in the network and the overall delay. This leads

to a formulation of the partial offloading problem as:

min
αoff

{
N∑

i=1

(

Ui
FN

∑

j∈N(i)

(
αlo f f ,i j

(
E

ji
rx + E

j
com + E

ji
tx

)
+ E

j

id

)

+

(
1 −Ui

FN

)

·

( ∑

j∈N(i)

(
αlo f f ,i j

(
E
i j
tx + E

i j
rx

))
+ αllocE i

com + E i
id

))}

(17)

min
αoff

{∑N
i=1

∑
l Dl

i
(αl

o f f ,i
)

∑N
i=1

∑
l Λ

i
l

}

subject to:




ηcompm
> ηcompi ∀m, i (18a)

Lsl > Lrl (18b)

Pi
com ≥ {P

i
tx ; Pi

rx} (18c)

di,ι ≤ R uι ∈ U (18d)

di,m ≤ F am ∈ A (18e)

αlloc,i +
∑

j∈N(i)

αlo f f ,i j = 1 (18f)

where αoff is the set of the offloaded portions of all tasks at

a given time instant, and

Λ
i
l =

{
1 if the ith FN generates a task to be processed

0 otherwise

(19)

allows to consider the total number of tasks generated by the

FNs. Hence, the minimization of the FN energy consumption

corresponds to finding the optimal partial offloading parameter

αoff allowing to minimize the energy consumed by all the FNs,

i.e., including both RFN and CFN, or task delay, correspon-

ding to finding the optimal partial offloading parameter αoff

allowing to minimize the task processing delay, defined as

the ratio between the time needed for processing all the tasks

generated at a certain time instant and the overall number of

tasks generated within the same time interval; they are shown

in (17).

Constraint (18a) introduces the hypothesis that the proces-

sing speed of F-APs is higher than FNs’, that is at the basis of

every Fog Network deployment. Constraint (18b) shows that

the length of the requested packet is higher than the packet

result. It is shown in Constraint (18c) that computing power for

an FN is higher than transmission and reception power, leading

the offloading as a feasible solution. Constraint (18d) ensures

that the distance between two FNs should not exceed threshold

R, which is the FN coverage area. Likewise, the distance

between an F-AP and an FN should be smaller than threshold

F as shown in Constraint (18e). The constraint that the local

computation plus the offloading of the ith FN should be equal

to one is shown in (18f). In the following section we propose

a low complexity solution, by decomposing the problem in

three steps, and exploiting two architectural hypotheses.

IV. CENTRALIZED AND DISTRIBUTED PARTIAL

OFFLOADING APPROACHES

In order to solve the problem we resort to a decomposition

in three steps. At first, we will classify the nodes based on

their energy status. This selection allows to divide the nodes

into groups where the higher energy nodes are able to process

the tasks for other nodes, while the lower energy nodes benefit

from offloading. In the second step, each FN belonging to the

lower energy group selects the potential nodes for offloading

the processing task; this step is performed in two possible

ways by resorting to a centralized and a distributed approach.

Finally, in the third step, each RFN is optimally selecting the

portion to be offloaded to each of the selected nodes.

On one hand we are dealing with a centralized approach

where the offloading decision is taken from a central entity

supposed to be able to know the status of each node, while

in the distributed approach each FN is selfishly deciding its

offloading policy by optimizing the offloaded portion among

the nearby nodes.

We are considering in this paper that the tasks can be com-

puted by both F-APs and FNs, and we have also categorized

the FNs in CFNs, those that can perform the computation,

and RFNs, those that are offloading a task; the basic idea of

the centralized architecture is that the RFNs and the related

offloaded portion are centrally selected, while in the distributed

architecture the RFNs select the CFNs and the F-APs for

offloading.

A. FN Classification

Since one of the two objectives we are pursuing is related to

the minimization of the energy, the first step aims at classifying
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Fig. 2. The 3-quantile function of the remaining energy level distribution

the FNs based on their energy level. We suppose that the FNs

having a higher remaining energy are better candidates for

performing the computation of the incoming tasks. On the

other hand, FNs with a lower remaining energy are preferred

to offload the computation to others to save energy. FN

classification is updated every time a new task is generated by

FNs, so that the classification is based on the most updated

remaining energy level. To this aim, we exploit a 3-quantile

function to classify the FNs considering their remaining energy

level. All FNs are classified into two lists, High Power FNs

(HPFNs) and Low Power FNs (LPFNs), as shown in Fig. 2.

The FNs whose remaining energy is higher than the upper

quantile index, Er ,Q2, of the energy level distribution of all

FNs are considered as HPFNs, and the rest are the LPFNs.

We define the LPFN and HPFN lists, ℑLPFN and ℑLPFN , at

time instant t respectively as:

ℑLPFN (t) =
{
ui |E

i
r (t) ≤ Er ,Q2(t)

}
(20)

ℑHPFN (t) =
{
ui |E

i
r (t) > Er ,Q2(t)

}
(21)

The upper quantile index is:

Er ,Q2(t) = inf
{
E i
r (t), i = 1, . . . ,N |p ≤ FEr

(i)
}

(22)

where p is equal to 2/3, in case of upper 3-quantile, and

FEr
(i) represents the distribution of the remaining energy of

all FNs. The pseudo-code of the FN classification is shown

in Algorithm 1, where, for each FN (line 3), the remaining

energy at time instant t is compared with the upper quantile

index (line 4) in order to classify the FNs into one of the two

lists, i.e. ℑLPFN and ℑLPFN (lines 5-7).

Algorithm 1 3-Quantile Function

1: Input: E i
r i = 1, . . . , N

2: Output: ℑLPFN and ℑHPFN

3: for each ui ∈U do

4: if E i
r (t) ≥ Er ,Q2 then

5: ℑHPFN ← ui
6: else
7: ℑLPFN ← ui
8: end if
9: end for

B. Architectural Approaches

The second step deals with the offloading decision. To this

aim, two approaches have been considered.

1) Centralized Offloading Approach: In the centralized

approach, the idea is that of primarily selecting the nodes able

to process the tasks, i.e, the CFN; such nodes will select the

nearby RFNs. To this aim we resort to a cluster architecture

where the FNs can be classified in two types: Fog Cluster

Heads (FCHs) and Fog Cluster Members (FCMs). Each cluster

can be composed of one FCH and several FCMs. The FCHs

are selected in a way that they are able of performing the

computations of the tasks requested by the FCMs within their

cluster [31]. Hence, the FCHs result to be the CFN while the

FCMs are the RFNs.

The cluster formation is started by the FCHs (or CFNs),

which are taken from ℑHPFN , due to their higher energy

amount. Each FCH considers potential FCM candidates, taken

from ℑLPFN , for the cluster formation as long as they are

within its coverage area. FCMs are better candidates for

becoming RFN due to their lower energy amount and, hence,

asking for offloading to the CFN represented by the FCH. We

have considered two policies based on the two layers for the

computation offloading:

(a) FN layer

(b) FN and F-AP layers

In the first policy, we are only considering the presence of

the FNs in the network. Hence, FCMs partially offload their

tasks to the associated FCHs. In this case, the set of clusters

is CFN = {cFN
1
, . . . , cFN

g , . . . , c
FN
G
} and |CFN | ≤ |ℑHPFN |,

where the gth cluster is defined as:

cFN
g = {ui |ui ∈ ℑLPFN , |c

FN
g | < cFN

cap, dg,i ≤ R} (23)

where cFN
cap is the capacity of a cluster corresponding to the

maximum number of cluster members. Similar to the FNs

classification step, this procedure is updated every time a new

task is generated, since the FNs’ energy level change in a

different way depending on the role they have. Indeed, through

the clusters updating, the FNs having consumed more energy,

i.e., FCHs, might change their role to FCMs, and the reverse.

This approach results also in increasing the overall life time

of the network by indirectly equalizing the FNs energy level

by allowing a higher consumption for those nodes having a

higher amount of energy and a lower consumption for the FNs

having a lower amount of energy.

However, the FCMs not being associated to any cluster, are

inserted into the set L1, which is the set of nodes performing

the computation locally including all the FCHs generating their

own tasks; it is defined as:

L1 =
{
ui |{ui ∈ ℑLPFN ,ui < cFN

g }; {ui ∈ ℑHPFN }
}
∀g (24)

On the other hand, in the second policy, both FNs and F-APs

layers are available. Hence, FCMs can partially offload to the

associated FCH and F-APs. In this case, the FCMs which are

not in any clusters can still exploit the F-APs if available.

Likewise, the FCHs can partially offload to the F-APs within

their coverage area. As shown in Fig. 3, the FCMs can be

connected to the FCHs and the nearby F-APs. Likewise, the

FCHs (or the CFNs) are also able to offload to nearby F-APs

their own tasks. The set of F-APs cluster having FNs in their

coverage area is CF−AP = {cF−AP
1

, . . . , cF−APm , . . . , cF−AP
M

}

and |CF−AP | ≤ M , where the set of FNs connected to the

mth F-AP is defined as:

cF−APm =

{
ui |ui ∈ {ℑLPFN ;ℑHPFN },

|cF−APm | < cF−APcap , dm,i ≤ F
}

(25)
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Fig. 3. Centralized Architecture

where cF−APcap is the capacity of an F-AP corresponding to

the maximum number of nodes that an F-AP can manage.

However, the FNs not able to offload to any neighboring nodes

belong to the local list, L2, defined as:

L2 =
{
ui |{ui ∈ ℑLPFN ,ui < cFN

g ,ui < cF−APm };

{ui ∈ ℑHPFN ,< cF−APm }}
}
, ∀g,m (26)

The pseudocodes of the centralized architecture when using

the policy limited to the first layer (a) or both layers (b) are

shown in Algorithm 2 and 3, respectively. Algorithm 2 has

as input the two sets of nodes ℑHPFN and ℑLPFN (line 1),

having the HPFNs and LPFNs previously categorized, while

the output (line 2) is represented by the set of clusters CFN ,

including one FCH and at least one FCM each, and L1, the

set of nodes performing the local computation. The algorithm

starts by considering each HPFN as an FCH candidate (lines

3-4), and, for each of them, the FCMs, selected among the

LPFN, having a distance with respect to the selected FCH

lower than the coverage range, are put into its cluster, up

to the cluster maximum capacity (lines 5-9). In the end, the

remaining LPFNs and all the HPFNs are put into the set

L1, the list of the nodes performing the local computation

(lines 11-16). Similarly, Algorithm 3 has as input the two sets

of nodes ℑHPFN and ℑLPFN (line 1), while the output is

represented by the set of clusters CFN , the set of clusters

CF−AP , including one F-AP and at least one FN each, and

L2, the set of nodes performing the local computation (line 2).

The algorithm starts by first populating the FN clusters, each

one composed by one FCH, selected among the HPFNs, and

at least one FCM, selected among the LPFNs. The selected

FCMs should have a distance with respect to the FCH lower

than the coverage range, and each cluster can be composed by

a maximum number of FNs (lines 3-10). Moreover, due to the

presence of the F-APs, the FNs are put into the F-AP clusters,

if respecting the same constraints, i.e, the distance with respect

to the F-AP and the F-AP cluster capacity (lines 11-23); this is

performed for both LPFNs (lines 12-17) and HPFNs (lines 18-

22). In the end, if there are FNs not belonging to any cluster,

they are put into the set L2, the list of nodes performing a

local computation (lines 24-29).

Algorithm 2 Centralized architecture (a)

1: Input: ℑHPFN , ℑLPFN

2: Output: CFN and L1

3: for each ui ∈ℑHPFN do

4: cFN
g ← ui

5: for each uι ∈ℑLPFN do
6: if di , ι ≤ R and |cFN

g | < cFN
cap then

7: cFN
g ← uι ; |c

FN
g | = |cFN

g | + 1; remove uι from ℑLPFN

8: end if

9: end for
10: end for
11: for each ui ∈ℑHPFN do
12: L1 ← ui
13: end for
14: for each uι ∈ℑLPFN do
15: L1 ← uι
16: end for

Algorithm 3 Centralized architecture (b)

1: Input: ℑHPFN , ℑLPFN

2: Output: CF−AP , CFN and L2

3: for each ui ∈ℑHPFN do
4: cFN

g ← ui
5: for each uι ∈ℑLPFN do
6: if di , ι ≤ R and |cFN

g | < cFN
cap then

7: cFN
g ← uι ; |c

FN
g | = |cFN

g | + 1
8: end if
9: end for

10: end for

11: for each am ∈A do
12: cF−AP

m ← am

13: for each uι ∈ℑLPFN do
14: if dι ,m ≤ F and |cF−AP

m | < cF−AP
cap then

15: cF−AP
m ← uι ; |c

F−AP
m | = |cF−AP

m | + 1;remove uι from
ℑLPFN

16: end if

17: end for
18: for each ui ∈ℑHPFN do
19: if di ,m ≤ F and |cF−AP

m | < cF−AP
cap then

20: cF−AP
m ← ui ; |c

F−AP
m | = |cF−AP

m | + 1;remove ui from
ℑHPFN

21: end if
22: end for

23: end for
24: for each ui ∈ℑHPFN do
25: L2 ← ui
26: end for

27: for each uι ∈ℑLPFN do
28: L2 ← uι
29: end for

2) Distributed Offloading Approach: Unlike centralized ap-

proach, in the distributed approach the idea is that the RFNs,

belonging to the set ℑLPFN , select the available nodes for

task computation. In this architecture, the RFNs can offload

to multiple available CFNs within their coverage area [14].

Differently from the centralized approach, where the RFNs

were selected by the CFNs, in the distributed approach the

RFNs autonomously select the CFNs among the ℑHPFN .

Likewise, the RFNs can select several F-APs in the second

layer as long as they are within their coverage area. The

scenario is represented in Fig. 4.

By taking into account the presence of FNs and F-APs, two

policies have been considered for the distributed approach by

exploiting the two layers for the computation offloading:

(a) FN layer

(b) FN and F-AP layers
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Fig. 4. Distributed Architecture

In the first layer, RFNs partially offload to the nearby

CFNs while performing the remaining computation locally.

Unlike the centralized method, where the RFNs were able

to offload only to one associated CFN, in the distribu-

ted architecture they can offload to multiple CFNs at the

same time. The CFNs available for one RFN are arran-

ged into clusters. The set of clusters centered on RFNs

is shown as BRFN ,1
= {bRFN ,1

1
, . . . , b

RFN ,1
x , . . . , b

RFN ,1
X

},

where |BRFN ,1 | ≤ |ℑLPFN |. Moreover, the RFNs that can be

connected to the zth CFN are put in the group bCFN
z ; the set

of groups compose BCFN
= {bCFN

1
, . . . , bCFN

z , . . . , bCFN
Z
}.

The xth RFN when the F-APs are not available is defined as:

bRFN ,1
x =

{
ui |ui ∈ ℑHPFN , |b

CFN
z | < bCFN

cap , dx,i ≤ R
}

(27)

where bCFN
cap is the computing capacity of a CFN. On the other

hand, in the second policy, RFNs can partially offload to both

CFNs in the first layer and F-APs in the second layer. Moreo-

ver, the CFNs perform a local computation for their own tasks

in the first policy while they can partially offload to the F-APs

in the second policy. In case of working on both layers, the set

of RFNs cluster in which both CFNs and F-APs are available is

shown as BRFN ,2
= {bRFN ,2

1
, . . . , b

RFN ,2
x , . . . , b

RFN ,2
X

}. The

xth RFN when both layers are available is defined as:

bRFN ,2
x =

{
ui |{ui ∈ ℑHPFN , dx,i ≤ R, |bCFN

z | < bCFN
cap };

{am ∈ A, dx,m ≤ F}, |cF−APm | < cF−APcap

}
(28)

The pseudocodes of the distributed architecture for layer

one (policy (a)) and both layers (policy (b)) are shown in

Algorithms 4 and 5, respectively. In both cases the inputs

are represented by the sets ℑHPFN and ℑLPFN , including

all the HPFNs and LPFNs previously categorized (line 1).

Algorithms 4 has, as outputs, the set of RFNs centered clusters

BRFN ,1 and the list of nodes performing the local computa-

tion, L1 (line 2). In this algorithm, the RFNs, belonging to

the LPFN set, select as many CFNs as possible as long as the

distance and capacity constraints are respected (lines 3-10). In

the end, the remaining LPFNs, not able to select any CFNs

among the HPFNs list, and all the CFNs, are put into the set

L1, the list of the nodes performing local computation (lines

12-17). In Algorithm 5, the outputs are instead the set of RFNs

centered clusters BRFN ,2, composed of both HPFNs and F-

APs, the F-AP based clusters CF−AP including the FNs within

their coverage range, and the list of nodes performing the local

computation, L2 (line 2). In this algorithm, the RFNs select

as many CFNs (lines 4-9) and F-APs (lines 10-14) as possible

respecting the distance and capacity constraints. Moreover, due

to the presence of the F-APs, the HPFNs are put into the F-

AP clusters, if respecting the same constraints, i.e, the distance

with respect to the F-AP and the F-AP cluster capacity (lines

18-23). Finally, the remaining LPFNs and HPFNs are put into

the list of the nodes performing local computation, L2 (lines

25-30).

Algorithm 4 Distributed architecture (a)

1: Input: ℑHPFN , ℑLPFN

2: Output: BRFN ,1 and L1

3: for each uι ∈ℑLPFN do

4: for each ui ∈ℑHPFN do
5: if dι ,i ≤ R and |bCFN

z | < bCFN
cap then

6: b
RFN ,1
x ← uι

7: b
RFN ,1
x ← ui ; |b

CFN
z | = |bCFN

z | + 1
8: end if
9: end for

10: end for

11: remove uιs which are in BRFN ,1 from ℑLPFN

12: for each uι ∈ℑLPFN do
13: L1 ← uι
14: end for

15: for each ui ∈ℑHPFN do
16: L1 ← ui
17: end for

Algorithm 5 Distributed architecture (b)

1: Input: ℑHPFN , ℑLPFN

2: Output: CF−AP ,BRFN ,2 and L2

3: for each uι ∈ℑLPFN do
4: for each ui ∈ℑHPFN do
5: if dι ,i ≤ R and |bCFN

z | < bCFN
cap then

6: b
RFN ,2
x ← uι

7: b
RFN ,2
x ← ui ; |b

CFN
z | = |bCFN

z | + 1
8: end if
9: end for

10: for each am ∈A do
11: if dι ,m ≤ F and |cF−AP

m | < cF−AP
cap then

12: b
RFN ,2
x ← am ; |cF−AP

m | = |cF−AP
m | + 1

13: end if
14: end for
15: end for

16: remove uιs which are in BRFN ,2 from ℑLPFN

17: for each am ∈A do
18: for each ui ∈ℑHPFN do
19: if dι ,m ≤ F and |cF−AP

m | < cF−AP
cap then

20: cF−AP
m ← ui ; |c

F−AP
m | = |cF−AP

m | + 1
21: end if
22: end for

23: end for
24: remove uis which are in CF−AP , from ℑHPFN

25: for each uι ∈ℑLPFN do
26: L2 ← uι
27: end for
28: for each ui ∈ℑHPFN do
29: L2 ← ui
30: end for

A comparison between the centralized and distributed ar-

chitectures is briefly shown in Tab. III.
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TABLE III
COMPARISON OF THE CENTRALIZED AND DISTRIBUTED APPROACHES

Centralized Distributed

Selection Policy
RFNs are selected by
CFNs and F-APs

RFNs select the CFNs
and F-APs

RFNs
FCMs taken from
ℑLPFN

LPFNs taken from
ℑLPFN

CFNs
FCHs taken from
ℑHPFN

HPFNs taken from
ℑHPFN

FN Layer
connection with one
CFN

connection with mul-
tiple CFNs

F-AP Layer FCMs and FCHs LPFNs and HPFNs

C. Partial Offloading Estimation

Even if the problem in (17) cannot be solved in a closed

way, in the previous sections we introduced two steps that

allow to relax the problem. The problem relaxation allows

to simplify the problem and scale it down by optimizing

separately the amount of data to be offloaded. In this section,

by exploiting this relaxation we will calculate in a closed

form the optimal amount of data to be offloaded based on

the constraints.

In order to evaluate the amount of data to be offloaded

we proceed in a two step method. First of all, we estimate

the portion to be offloaded to each of the available nodes; in

order to do this we will consider that each RFN is aware of

the processing power of the nearby computing nodes and data

rate of each link. Then, considering the offloaded portion and

the characteristics of the neighboring nodes, we estimate the

portion that should be performed locally. With the proposed

approach the estimation of the local and offloaded portion is

performed in the same way in both centralized and distributed

architectures.

1) Partial Offloading Portion estimation: To estimate the

amount that should be offloaded to each of the available nodes

that are going to perform the computation of a task portion,

we have considered both data rate and computational power

of the available neighboring nodes.

When the ith FN decides to offload a task, there are j ∈ N(i)

available nodes, where N(i) is a set of neighboring nodes of

the ith FN available for computing. As a result, the task can be

divided into several portions to be offloaded to each of those

available nodes. We define βl
i j

as the portion of lth task to be

offloaded from the ith node to the jth node. Due to the impact

of the offloaded portion on task processing delay and energy

consumption of all FNs, we have considered two goals for the

estimation of partial offloading portion, βl
i j

:

(a) Task processing delay

(b) Node energy consumption and task processing delay

If the task processing delay is considered, the amount of the

lth task to be offloaded to the jth node can be defined as:

Ûβl
i j
= γ ·

ri j∑
j∈N(i) ri j

+ (1 − γ) ·
ηcomp j∑

j∈N(i) ηcomp j

(29)

where γ is a coefficient giving a weight to the importance

of the data rate and computational power in the estimation.

This estimation considers the data rate of the link and the

computational power of the node, for offloading a higher

portion to the nodes with better characteristic. If both task

TABLE IV
PARAMETERS DEFINITION

Parameter Definition

βl
i j

Offloaded portion of the lth task from the ith node to the
jth node

Û
βl
i j

Offloaded portion of the lth task from the ith node to the
jth node considering goal (a)

Ü
βl
i j

Offloaded portion of the lth task from the ith node to the
jth node considering goal (b)

γ Estimation weight coefficient

T̃ l
o f f ,i

Offloading time for the lth task of the ith node conside-
ring each of the estimation goals

α̃l
loc ,i

Estimated local portion of the lth task of the ith node
considering each of the estimation goals

Ẽ
j

CFN
The estimated energy consumption of the jth CFN

Ẽ i
RFN

The estimated energy consumption of the ith RFN

processing delay and energy consumption are considered the

amount of the lth task to be offloaded to the jth node can be

defined as:

Üβl
i j
= γ ·

ri j

E
i j
t x+E

i j
r x∑

j∈N(i) ri j
+ (1 − γ) ·

ηcompj

E i
id∑

j∈N(i) ηcomp j

(30)

In this formula the ith RFN’s energy is affecting the delay

and computational power metrics to estimate the portion to

be offloaded to each available node; in particular, the energy

spent in transmission and reception is affecting the data rate

metric while the energy spent in idle affect the computational

power metric. Hence, a higher portion will be offloaded to

those nodes allowing to consume less energy. As a result not

only delay is minimized but the energy consumption is also the

target of the minimization. For the sake of readability, Tab. IV

has been provided presenting the definitions of the parameters

used in the equations of Section IV-C.

2) Local Computation Portion estimation: After having

estimated the portions to be offloaded to the available neighbo-

ring nodes for computation, we have to estimate the amount

that should be performed locally considering the characteris-

tics of the available neighboring nodes.

Since one of the objectives is minimizing the delay, the

idea is that of imposing that the amount of time spent for the

local computation is equal to the amount of time spent for the

offloading phase. This corresponds to minimize the idle time

for any FN; hence imposing:

T l
loc,i = T l

o f f ,i (31)

where:

T l
loc,i = α

l
loc,i

Ol

ηcompi

(32)

and

T l
o f f ,i =

max
j∈N(i)

{
αlo f f ,i j

Lsl

ri j
+ T l

wj
+ αlo f f ,i j

Ol

ηcomp j

+ αlo f f ,i j
Lrl

ri j

}

(33)

corresponding to set the local computation time to the maxi-

mum among all the times spent for offloading to the neighbor
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nodes of the ith RFN. The amount of data offloaded to the jth

node from the ith node is represented by αl
o f f ,i j

. By resorting

to the estimation of the partial offloaded amount obtained

in (29) and (30), it is possible to write that:

αlo f f ,i j = β
l
i j(1 − α

l
loc,i) (34)

where βl
i j
= Ûβl

i j
or βl

i j
= Üβl

i j
depending on the selected goal.

By neglecting the queue waiting time, T l
w , that is assumed to

be unknown by FNs, we can rewrite (33) as:

T̃ l
o f f ,i = max

j∈N(i)

{
βli j(1 − α

l
loc,i)

Lsl

ri j
+ βli j(1 − α

l
loc,i)

Ol

ηcomp j

+ βli j(1 − α
l
loc,i)

Lrl

ri j

}
(35)

Hence, by exploiting (31), (32) and (35), it is possible to write:

αlloc,i
Ol

ηcompi

= max
j∈N(i)

{

βli j(1 − α
l
loc,i)

Lsl

ri j

+ βli j(1 − α
l
loc,i)

Ol

ηcomp j

+ βli j(1 − α
l
loc,i)

Lrl

ri j

}

(36)

Through simple algebraic operations, it is possible to estimate

the amount of local computation for the ith node as:

α̃lloc,i =

max
j∈N(i)

{
βl
i j

(
Lrl

ri j
+

Lsl

ri j
+

Ol

ηcompj

)}

Ol

ηcompi

+ max
j∈N(i)

{
βl
i j

(
Lrl

ri j
+

Lsl

ri j
+

Ol

ηcompj

)} (37)

In the end, any jth node is requested to process an amount

equal to (1 − αl
loc,i
) · βl

i j
· Ol related to the lth task of the ith

node.

Having estimated the local and offloading portion, conside-

ring α̃l
o f f ,i

= 1 − α̃l
loc,i

and exploiting (13) we can calculate

the total delay, when the ith FN is offloading to the available

neighboring nodes, as:

Dl
i(α̃

l
o f f ,i) = max

j∈N(i)

{

βli j α̃
l
o f f ,i

Lsl

ri j
+ T l

wj
+ βli j α̃

l
o f f

Ol

ηcomp j

+

βli j α̃
l
o f f ,i

Lrl

ri j
,

(
1 − α̃lo f f ,i

) Ol

ηcompi

}

(38)

On the other hand, the energy consumed by the jth CFN,

by exploiting (14), can be written as:

Ẽ
j

CFN
= α̃lo f f ,iβ

l
i j

(
E

j
rx + E

j
com + E

j
tx

)
+ E

j

id
(39)

which is the energy consumption for receiving, computing

and transmitting the offloaded part from the ith node to the

jth node plus the idle energy of the jth node. Likewise, the

energy consumption for the ith RFN, by exploiting (15), can

be written as:

Ẽ i
RFN =

∑

j∈N(i)

(
βli j α̃

l
o f f ,i

(
E
i j
tx + E

i j
rx

))

+

(
1 − α̃lo f f ,i

)
· E i

com + E i
id (40)

(a) Not Optimized

(b) Optimized

Fig. 5. Task delay for offloaded and local portions.

It is worth to be noticed that in (38), (39) and (40), βl
i j

could

be equal to either (29) or (30) depending on the minimization

goal.

In Fig. 5a the total delay for the lth task of the ith RFN is

shown, when the αl
loc,i

and βl
i j

are not optimized. As seen, in

this example 4 portions of the lth task are performed locally

and the rest are offloaded to the 3 available nodes, which could

be CFNs or F-APs. If the offloading portion is not optimized it

might lead to having the local delay longer than the offloading

delay, or the reverse. However, as shown in Fig. 5b, if αl
loc,i

and βl
i j

are optimized both local and offloading delay are equal

by minimizing the idle time leading to a shorter delay.

V. NUMERICAL RESULTS

In this section, the numerical results obtained through

computer simulations are presented. In the following we are

comparing the performance for the single layer scenario with

the performance of the two-layer scenario. Moreover, the

comparison is performed between the delay minimization

policy and the joint energy and delay minimization policy.

These options have been considered in both centralized and

distributed architectures.

The computer simulations are performed in Matlab where

the considered parameters are listed in Tab. V. The simula-

tion is performed for comparing the performance in terms
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TABLE V
SIMULATION PARAMETERS

Parameter Value

Dimension 100m x 100m

Communication Protocol IEEE 802.11

Task size (Lsl
) [1-5] MB

Task result size (Lrl
) [0.2-1] MB

hi j
Outdoor RRH/Hotzone, Model
1: Pico to UE [32]

Bandwidth (B) 10 MHz

Noise Density (NT ) -174 dBm/Hz

FN to FN coverage range (R) 25 m

F-AP coverage range (F) 50 m

Maximum Initial energy (E l
r (0)) 5000 J

Task Operation (Ol ) 50G

FN Flops 15G FLOPS

F-AP Flops 150G FLOPS

Computation power (Pcom) 0.9 W

Idle power 0.01 W

FN Transmission power (PFN
tx ) 1.3 W

F-AP Transmission power
(PF−AP

t x )
1.5 W

FN reception power (PFN
r x ) 1.1 W

F-AP reception power (PF−AP
r x ) 1.3 W

of average task delay, average FN energy consumption and

network lifetime as:

• Average Task Delay: The average time spent by a task

for transmitting, waiting, computing and receiving back

the result;

• Average Node Energy Consumption: The average energy

all FNs have consumed per second;

• Network Lifetime: The time instant beyond which 20%

of the FNs deplete their battery [13].

In the following we briefly describe the simulation envi-

ronment implemented in Matlab. We hypothesize an area of

100 × 100 meters, with a variable number of FNs randomly

positioned in the area, while there are 5 F-APs placed in

the locations shown in Fig. 1, so that when working on two

layers every FN can be always connected to at least one

F-AP. Once the FNs are placed in the area, each of them

randomly generates tasks with a Poisson distribution having

average one task every 50 s; this value have been selected

after a careful optimization. The size of tasks generated by

each FN has a uniform distribution between 1 MB to 5 MB;

the selection of this interval is driven by the application

scenario that considers the case of nodes offloading heavy

computing tasks to the nearby nodes for saving energy and

reduce the overall delay. Although all of the FNs are identical

in terms of computational power, we have also considered

F-APs with higher computational capabilities resulting in a

heterogeneous network. We have considered a battery capacity

for all the FNs equal to 5000 Jouls; however, each FN has an

initial random energy level between 70% and 100% of the

battery capacity. When the tasks are generated by each FN,

based on the architecture, either centralized or distributed,

the available nodes for the task offloading are identified. In

the centralized architecture the FCHs, belonging to the set

ℑHPFN , are selected and their Euclidean distance with all the

other LPFNs, belonging to the set ℑLPFN , is evaluated. The

LPFNs enter the cluster as long as they meet the distance and

cluster capacity requirement. In each run of the simulation the

clusters are updated and, because the energy level of the FNs

changes, the clusters and the connections change as well. In

the distributed architecture, instead, the LPFNs identify the

HPFNs within their coverage and select them by taking also

into account the cluster capacity. The rest of algorithm for

both centralized and distributed architecture works based on

the policies defined in IV-B. In the end, the RFNs offload a task

portion to each of the selected nodes based on the estimation

they have made considering either, delay or joint delay and

energy consumption.

The simulation scenarios are defined based on the con-

nections they have with the layers and their estimation goals;

each simulation runs 1000 seconds. Moreover, in order to

obtain steady results each simulation run has been carried

out 10 times; to this aim, in the following figures, each point

on the curves represent the average over the 10 runs, while

the error bar represent the variance of the 10 runs. A fifth

scenario labeled as Local, in which all FNs perform a local

computation, has been also considered as a benchmark.

In the figures legend we are considering that the numbers

corresponds to the number of layers involved in the com-

putation (i.e., 1 and 2), while the letters D and DE show,

respectively, delay minimization (29) and the joint delay and

energy minimization (30) policies for the αl
loc,i

estimation.

First of all, we evaluate the performance of the centralized

and distributed architectures in terms of task delay, by com-

paring the scenario with only one layer and the scenario with

both layers.

(a) FN Layer: As seen in both Fig. 6a and Fig. 6b, scenarios

working only on the first layer seem to make smaller

changes when the number of FNs is increasing comparing

with the scenarios performing on both layers. In centra-

lized scenario, when the number of FNs increases, the

delay increases; this is because when there are few FNs,

only few of them can be assigned to a CFN (FCH), and

as a result more FNs perform a local computation which

leads to a lower delay. On the other hand, increasing

the number of FNs, the possibility of having an FCH

nearby is higher and the delay for offloading to an FCH

is higher than performing a local computation. However,

in the distributed scenario that is the reverse. When the

number of FNs is not high, there are few CFNs (HPFNs)

available but when the number of FNs increases more

CFNs (HPFNs) would be available for performing the

computation in parallel which leads to a lower delay. The

centralized scenario has a higher delay comparing with

distributed scenarios due to the fact that when the cen-

tralized scenario is limited to the first layer, there is only

one FCH in each cluster performing the computation for

the RFNs (FCMs). However, in the distributed scenario

each RFN (LPFNs) can offload to several CFNs (HPFNs)

leading to parallel computation which results in a lower

delay.

(b) FN and F-AP layers: As depicted in both Fig. 6a and

Fig. 6b, the delay is increasing sharply when the number

of FNs increases. When the number of FNs is reduced in

both centralized and distributed approaches the FNs have
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Fig. 6. Average Task Delay

lower possibility of having CFNs nearby to offload; as a

result higher portions are offloaded to the F-APs, leading

to a lower delay. However, when increasing the number

of FNs, more CFNs (FCH for centralized and HPFN for

distributed) are available and a lower portion is offloaded

to the F-APs in the second layer which leads to a higher

delay.

In the end, as the number of FNs performing the com-

putation in first layer increases, delay decreases, due to a

parallel computation as depicted in Fig. 6b. Furthermore, when

computational power is higher (i.e. offloading to F-APs), delay

is also lower, as depicted in the scenarios working on both

layers in both Figs. 6a and 6b. When all the FNs perform local

computation the delay would be the same for both centralized

and distributed scenarios as shown in scenario labeled Local.

We evaluate then the performance of the centralized and

distributed architectures in terms of average FN energy con-

sumption by comparing the system performance in only one

layer or both layers.

(a) FN Layer: According to both Fig. 7a and Fig. 7b, the

scenarios limited to the first layer consume more energy

in comparison with scenarios working on both layers by

showing that offloading only to the nearby FNs results

in higher energy consumption. Moreover, there is no

significant difference if considering only the delay or
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(b) Distributed Architecture

Fig. 7. FN Energy Consumption

both delay and energy optimization because there is no

difference in offloading different task portions to different

nodes and, in the end, the FNs are consuming energy for

performing the computation regardless of the portion that

was offloaded.

(b) FN and F-AP layers: When working on two layers, both

centralized and distributed architectures result in a lower

energy consumption, as seen in both Fig. 7a and Fig. 7b.

By exploiting the availability of F-APs some portions

are offloaded to the F-APs leading to a lower energy

consumption. Moreover, considering both the delay and

energy, a higher portion is offloaded to F-APs, resulting

in a slight improvement.

The performance of the centralized and distributed archi-

tectures in terms of Network Lifetime is finally evaluated and

the results are here compared in case of working only on the

first layer or on both layers.

(a) FN Layer: As seen in both Fig. 8a and Fig. 8b, in

the scenarios working on first layer, independently from

the parameter considered for the estimation of αl
loc,i

,

the nodes go off at the same time and earlier than the

scenarios working on two layers in both centralized and

distributed architecture. Moreover, it could be seen that

number of FNs do not have an impact on the network

lifetime; this is due to the fact that all the generated tasks

are processed by the FNs regardless of the portions they



IEEE TRANSACTION ON GREEN COMMMUNICATIONS AND NETWORKING, VOL. XX, NO. YY, MONTH 20ZZ 13

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Mobile Devices (n)

1.5

2

2.5

3

3.5

4

L
if
e

T
im

e
 o

f 
2

0
%

 o
f 

F
N

s

104

1L-DE

1L-D

2L-DE

2L-D

Local

(a) Centralized Architecture

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Mobile Devices (n)

1.5

2

2.5

3

3.5

4

4.5

L
if
e

T
im

e
 o

f 
2

0
%

 o
f 

F
N

s

104

1L-DE

1L-D

2L-DE

2L-D

Local

(b) Distributed Architecture

Fig. 8. Network Lifetime (20%)

were offloaded.

(b) FN and F-AP layers: It can be seen in both Fig. 8a

and Fig. 8b that when number of FNs is reduced in

both centralized and distributed scenarios there are fewer

options in the first layer and as a result more portions are

offloaded to the second layer which results in a higher

energy saving and longer network lifetime. However,

when the FNs are more, there are also more options avai-

lable in the first layer for offloading, resulting in higher

energy consumption and shorter lifetime. Furthermore,

in the centralized scenario in which there is maximum

one available FCH for the FCMs, lifetime is slightly

higher and this is due to the fact that in the distributed

architecture there are more CFNs (HPFNs) involved in

the first layer for computation, resulting in consuming

more energy comparing with the centralized architecture.

Furthermore, considering both delay and energy for the

estimation of offloaded portion results in a longer lifetime

in the centralized architecture.

VI. CONCLUSIONS

In this work, partial offloading in edge computing has

been studied. Two architectures solutions, i.e., centralized and

distributed, have been considered for the partial offloading sce-

nario. We have proposed a heuristic solution based on relaxing

some of the hypotheses of the partial offloading optimization

problem, for minimizing task processing delay and FN energy

consumption. Considering these two parameters we have esti-

mated the portion to be offloaded to each of the available nodes

at the network edge in order to meet the objectives. Simulation

results demonstrate the impact of different parameters, i.e.,

delay and joint energy and delay, different layers and different

architectures on the performance of the network in terms of

FN energy consumption, task processing delay and network

lifetime. It is possible to notice that the distributed architecture

appears to be more appropriate for partial offloading scenarios

when delay has higher priority, due to the fact that it can

exploit parallel computation by a larger number of FNs. On

the other hand, the centralized architecture appears to be more

suitable when priority is given to FNs energy consumption and

network lifetime, due to the fact that F-APs are more involved

in the computation with respect to the distributed architecture.

It is also interesting to note that, even if the presence of F-APs

is always an advantage, when the FN density is increasing the

performance obtained by using only the FN layer is similar

to the scenario with both layers when priority is given to FNs

energy consumption and network lifetime. This is an indication

in favor of structureless wireless networks.
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