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Abstract—In this paper, we study a class of minimum-energy
scheduling problems in non-orthogonal multiple access (NOMA)
systems. NOMA is adopted to enable efficient channel utiliza-
tion and interference mitigation, such that base stations can
consume minimal energy to empty their queued data in pres-
ence of transmission deadlines, and each user can obtain all
the requested data timely. Due to the high computational com-
plexity in resource scheduling and the stringent execution-time
constraints in practical systems, providing a time-efficient and
high-quality solution to 5G real-time systems is challenging. The
conventional iterative optimization approaches may exhibit their
limitations in supporting online optimization. We herein explore
a viable alternative and develop a learning-assisted optimization
framework to improve the computational efficiency while retain-
ing competitive energy-saving performance. The idea is to use
deep-learning-based predictions to accelerate the optimization
process in conventional optimization methods for tackling the
NOMA resource scheduling problems. In numerical studies, the
proposed optimization framework demonstrates high computa-
tional efficiency. Its computational time is insensitive to the input
size. The framework is able to provide optimal solutions as
long as the learning-based predictions satisfy a derived optimal-
ity condition. For the general cases with imperfect predictions,
the algorithmic solution is error-tolerable and performance
scaleable, leading the energy-saving performance close to the
global optimum.

Index Terms—Non-orthogonal multiple access, deep neural
network, energy optimization, resource scheduling.

I. INTRODUCTION

THE UPCOMING 5G communication system is envi-
sioned to provide low-latency services with low-energy
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consumption in supporting users’ high data demand [1].
According to Cisco’s annual visual network index reports [2],
numerous users in the system will be increasingly hungry
for large amounts of data, e.g., high-definition video stream-
ing, and meanwhile they will be also highly demanding on
timely services, in which the users are able to obtain all the
requested data as soon as possible without unacceptable delay.
Reducing the duration of data transmission and squeezing
each terminal’s waiting time in data service, are important for
measuring the overall quality-of-experience of the users [1].

Non-orthogonal multiple access (NOMA), as one of
the promising techniques for 5G new radio, is currently
under investigation for improving the system performance in
throughput, fairness, latency, and energy consumption [3]-[8].
On the one hand, the performance gains of NOMA over
orthogonal multiple access schemes are significant, mainly
due to its high efficiency in channel utilization and the
application of successive interference cancellation (SIC) for
co-channel interference mitigation. On the other hand, the high
computational complexity in resource allocation, and the strin-
gent execution-time requirements in real-time networks, may
pose obstacles in applying NOMA in practical systems. For
example, previously proposed optimal/suboptimal solutions
for solving some high-complexity NOMA resource allocation
problems, may not be practical in real-time systems as they
may require immense computational capabilities and time,
especially for large-scale instances [3], [4], [9]. As a mat-
ter of fact, the time limit to complete a decision-making
process in practice, requires to be within seconds or millisec-
onds [1], [10], whereas solving NOMA resource allocation
problems to a satisfactory level would require a much longer
span of computing time.

The optimal and suboptimal algorithmic solutions for
NOMA resource allocation have been extensively investi-
gated in the literature. The NP-hardness of NOMA resource
optimization has been discussed in [4]. The majority of the
proposed algorithms in the literature are either based on tai-
lored exact algorithms or meticulously designed heuristics.
The former typically leads to prohibitively high complexity,
and can only be applied for small-medium instances [9]. For
the latter, a trial-and-error philosophy has been widely adopted
in suboptimal algorithm development [3]-[5], [7], [8], [11].
This type of design method first comes up with a heuris-
tic idea for simplifying the optimization process, followed by
intensive and time-consuming tests. To achieve competitive
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performance, one has to rely on the feedback from the
tested results, possibly a huge amount of data, in order
to identify the flaws and issues in the original algorithm
design [11]. Then adjustments and updates can be made
in algorithm development. This process often has to repeat
until satisfactory performance is achieved. The algorithmic
solutions are typically designed as one algorithm solving
one optimization problem. However, if some key aspects
vary, e.g., adopting new performance metrics, constraints, or
parameters, the algorithms may need to undergo revisions,
as the changes can possibly destroy the problem structure,
and make the original algorithm’s performance degraded or
even make the solution infeasible. Towards real-time resource
allocation, this algorithm design approach and the previous
NOMA algorithms may exhibit their limitations in supporting
online resource management in highly dynamic and complex
networks [3].

In general, once an optimization problem is proved to be
hard to solve, it is difficult to expect that a heuristic solu-
tion can meanwhile achieve satisfactory performance and with
very low complexity to support real-time optimization [12].
In most cases, a scheduler may have to make a trade-off
between the algorithm’s computational complexity and the
solution quality, which is a dilemma in the conventional
algorithm development. Thus, being aware of the shortcom-
ings, we are motivated to explore an alternative in solu-
tion development for NOMA resource optimization. Machine
learning can provide a powerful alternative in algorithm
design for the complex and highly dynamic systems. As an
approach in the toolbox for 5G network optimization, it has
received considerable research attention recently [13]-[17].
Sun et al. [13] adopt a deep-learning approach and directly
apply it as a heuristic to predict the power allocation
for a classical interference-channel power control problem.
Ghadimi et al. [14] considered reinforcement learning in
resource management. In [15] and [16], machine/deep learn-
ing based approaches were applied in caching networks and
multi-antenna systems. Tsakmalis ef al. [17] investigated a
multivariate Bayesian active learning method for centralized
cognitive radio networks.

A. Contributions

In this paper, the main contributions are from three aspects.
Firstly, we address two emerging issues in resource scheduling
for practical NOMA systems. That is, by taking into account
the dynamic duration in emptying queued data in NOMA,
how to efficiently schedule resources to satisfy all the users’
data demand within deadlines, and how to cope with the high
complexity in resource scheduling, while retaining fast exe-
cution in real-time applications. We formulate two types of
minimum-energy scheduling problems with a set of practi-
cal deadline constraints. Unlike previously studied wireless
scheduling problems [18]-[20], the multiple deadlines for sat-
isfying individual user’s demand in NOMA systems are taken
into account in this work. These make the resource scheduling
problems even challenging to solve. We derive structural anal-
ysis for the problems to enable reasonable solutions, and then

provide numerical and analytical results to illustrate significant
energy-saving gains of applying NOMA and our approach.

Secondly, we investigate the approach of combining deep
learning with conventional optimization algorithms. We pro-
pose a learning-assisted optimization framework to leverage
the power of deep learning and iterative optimization algo-
rithms, aiming at providing efficient and competitive solutions
for solving a class of scheduling problems. We embed a learn-
ing component into the algorithmic design, and let it learn
the behaviors of optimal decisions by training. The learn-
ing component is then used to provide guidance to help the
conventional iterative algorithm to accelerate its optimization
process in real-time systems.

Thirdly, the proposed approach provides an alternative way
to tackle the trade-off issue between solution quality and
computational complexity. The conventional iterative algo-
rithms may lead to low computational efficiency [4], [9],
[19]-[21], and the simple heuristics typically have limitations
in achieving satisfactory performance [3], [12]. These are the
undesired performance for practical network optimization [10].
In addition, unlike previously proposed learning approaches,
e.g., [11] and [13], simply applying machine-learning mod-
els to directly predict the variable values may not be a viable
choice for the considered problems in this work due to the
huge number of variables in the optimization. The proposed
learning-assisted optimization can reap the benefits of machine
learning and advanced optimization methods, e.g., efficient
computations from the former, high-quality and feasible solu-
tion from the latter. In the proposed approach, the majority
of the computational complexity has been concentrated on the
offline data generation and training phase. The after-training
phase is computationally light, and its computational time is
insensitive to the input size, which is promising to enable an
online optimization in real-time systems.

The rest of the paper is organized as follows. Section II
presents the system models for NOMA, group schedul-
ing, data transmission. Section III formulates two NOMA
based minimum-energy scheduling problems with various
types of deadline constraints, and provides structural analysis.
Section IV analyzes the two problems’ tractability and pro-
poses a learning-assisted algorithmic framework. Numerical
results are demonstrated in Section V. Conclusions are given
in Section VI

II. SYSTEM MODEL

We consider a downlink NOMA system consisting of one
base station (BS) serving K mobile users in a common chan-
nel with bandwidth B. The user set is denoted as K =
{1,...,k,..., K}. We define the starting point of a sched-
ule as Tp. With the time constraint at the transmitter side,
the BS needs to empty its queued data demand Dq,..., Dk
within a time limit 7%, counting from 7g until all the users’
data demands Dy, ..., Dg have been delivered. With the time
requirements at the receiver side, to improve users’ satisfac-
tion, each user k£ in the system has a specific requirement
T} representing the user’s tolerable waiting time to obtain
all the requested data, counting from 7 until user k’s data
D;. has been successfully transmitted. Considering various
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requirements of quality-of-service (QoS) and the performance
metric, the BS is required to optimize its scheduling strat-
egy in data transmission, in order to satisfy all users’ data
demand and to meet a variety of deadlines. Throughout the
paper, we refer to T, as the total transmission deadline, and
define T4, ..., Tk as the individual transmission deadlines for
user 1,..., K, respectively. We remark that the users’ traffic is
assumed static during one decision-making period. When new
traffic arrives during this period, the request will be formed
as a new snapshot, and will be handled in the next decision-
making procedure. The goal of this work is to significantly
reduce the decision-making delay by the proposed learning-
assisted optimization approach, such that the dynamic traffic
can be addressed timely.

A. User-Grouping Scheduling and NOMA

Towards flexible and efficient data transmission, we adopt
dynamic user grouping and apply NOMA in each scheduled
group to mitigate co-channel interference and achieve efficient
frequency utilization. Each mobile device is capable of per-
forming multi-user detection and iterative SIC in NOMA [5].
We refer to a cluster u as a user group/set, consisting of one or
multiple users [19]. Let /C,, be the set of users in group u. Once
a group u is scheduled, the BS will transmit data to all the
users in /C,, with positive rates and last for a certain duration
ty. In practice, the decision-making for grouping and schedul-
ing occurs at the beginning of each scheduling frame. The BS
collects users’ channel state information (CSI) and the data
requests at every frame. Based on the collected information,
the BS makes decisions for grouping and scheduling. Then the
BS sends the control signal (before data transmission) to the
users to notify that each individual user should receive data in
which time slots.

Enumerating all the combinations of the user groups,
provides 25 — 1 possible candidates in total. The union
of all the groups is denoted by U = {1,...,u,..., U},
where U = 25 — 1. For example, suppose K =
{1,2,3}, by enumeration there are seven candidate groups
{1}, {2}, {3}, {1,2},{1,3},{2,3},{1,2,3}, ie, U = 7.
These user groups can be selectively scheduled in a sequential
manner to deliver users’ data demand, and each user’s demand
can be flexibly delivered in multiple groups with non-uniform
data rates. The cardinality of / increases exponentially with K.
To reduce the complexity, some simple schemes are adopted
in previous works, e.g., time division multiple access (TDMA)
which can be simply enabled by setting U = K and |[Cy| = 1
in group enumeration. We remark that the simple schedul-
ing schemes may either fail to satisfy all users’ QoS or lead
to performance degradation. For example, adopting TDMA
to serve each user, one at a time, may fail to meet strict
transmission deadlines [21]. Thus in this work, the selection
of scheduled user groups is not predefined, but is subject to
optimization.

Within a group, NOMA is applied to alleviate the intra-
group interference. In NOMA, the BS transmits a superposed
signal z,, to all the users in Cy,

Ty = Z Dk Sk (D

kEICu

where pj is the transmit power for user k£ and sj is the sig-
nal intended for user k. Note that the transmit power for each
user may not necessarily be uniform. It can be pre-optimized
according to the channel conditions and subject to practi-
cal power constraints and the NOMA protocol. For example,
a low-complexity scheme “fractional transmit power control
(FTPC)” [22] can be adopted for power allocation among
users.
The received signal y;’ at user k’s receiver reads,

Ut = VPEhese + Y /Bilsi 0 (2)

JERLN\{k}

where hj is the channel coefficient from the BS to user %,
and n is the additive white Gaussian noise (AWGN) with zero
mean and variance o2, According to the basis of NOMA,
we adopt the descending order of channel gains as the
decoding order [3]. Note that throughout the paper, for the
convenience in presentation, we assume that the descending
0rde2r of ch%nnel gains is cgnsistent with the user index, i.e.,
% > % >, > % By applying SIC, the signal-to-
interference-plus-noise ratio (SINR) for user k in a group u,
say KCy = {1,...,k,..., K}, is expressed as,

|2
=1 Pj |hk| +o
The corresponding data rate of user &k in u is
re = Blog(1 + SINR}) 4)
In (3), the user k’s receiver can decode and remove the
interfering signals of users k+1, ..., K. The signals intended
for users 1,...,k — 1 are treated as interference [3]. We

use a simple example to illustrate the principle and the
assumption behind this. Considering a two-user group u’ with
Ky = {k,k + 1} and |hy|? > |hy1]?. The system assumes
that if the weak user k + 1 is able to decode the desired signal

' iver. i u  _ Peyrlhega]?
from its receiver, i.e., SINR,{_H = pelheeaPro? > ~, where

v is a threshold, then the strong user k can also decode and
Pt b Prt1 | hog1]? > 5
pelhel?+0? = prplhpsa]?+02 =

remove this signal due to

B. Duration of Data Transmission

In scheduling, we consider dynamic duration in data trans-
mission which comes from draining the queued data at the
BS. To properly measure the time span, the data transmis-
sion at the BS is considered being continuous in the paper.
This is supported by multiple stop-and-wait processes in LTE
systems [10]. We define the total transmission duration as
Ttot = Zueu ty, the simple summation of the transmission
duration of all the scheduled groups.

During 740¢, each individual user’s time consumption con-
tains two parts, data transmission and waiting in the queue. We
use 7y, to represent the time consumption that the BS spends
to deliver all the requested data Dy to user k. When a user
group u is scheduled, the time resource is exclusive for the
users in /C,,, and their active transmission time in data services
is ;. On the other hand, ¢, is also counted as the queuing
time for those users in IC\K,, waiting in the transmitter’s
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User 3 {1} {1,3} User 3 1,3} {1}
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User 1 | {1,3} User 1 {1,3}
L Time - Time
To 1 2 3 To 1 2 3
Schedule T: {1}, {2}, {1,3} Schedule T1: {2}, {1,3}, {1}
Fig. 1. An illustrative example for two scheduling schemes and their time

lines in data transmission. Users’ time deadlines are 77 = T3 = 3 and
T9 = 1. In Schedule I, user 2 fails to meet its individual deadline. By
optimizing the order in Schedule II, all the users can obtain their data demand
D1, Dy, and Dsg in time.

cache until their queued data become scheduled and emptied.
Thus, 75, not only depends on the duration of the scheduled
groups, but is also relevant to the scheduling order. Given n
scheduled groups with a specific order, e.g., v = 1,2,...,n,
the total time span for serving a user k is defined as ZL:)l tu,
where i(k) is the position of the last group used to serve user
k in the order. We use a 3-user example in Fig. 1 to illustrate
the insights of the scheduling order. To satisfy users’ demand
D1, Do, and D3 within their individual deadlines 77 = 3,
To = 1, and T3 = 3, from time 7T three user groups ul,
u2, u3 with K1 = {1}, Ky2 = {2}, and Ky3 = {1,3} are
sequentially used to transmit data with the same normalized
duration t,,; = t,2 = ty3 = 1. For both Schedules I and II,
the total time consumption is 7¢o¢ = 3. In Schedule I, for user
1 and user 3, the time span is 3 time units to deliver their
requested data, then 71 = 73 = 3, while 79 = 2 > T5, thus
exceeding the deadline of user 2. Keeping the same active
groups but changing the order in Schedule II, data transmis-
sion for individual users can be completed more efficiently
than Schedule I with 71 = 3,7 =1, and 73 = 2.

III. PROBLEM FORMULATION AND
STRUCTURAL ANALYSIS

We consider two NOMA based energy-efficient schedul-
ing problems (NESP) in this section, in order to transmit all
the users’ demands with minimal energy consumption, and
meanwhile to meet deadline constraints.

A. NESP With the Transmitter’s Deadline

The first NESP problem is formulated in P1. It is focused
on the transmitter perspective, which is motivated by the fact
that the BS is expected to empty the queued data within a
limited time interval, such that the occupied time-frequency
resources can be released for serving the upcoming demand.
In modeling the problem, firstly we enumerate all the possible
user groups Ki,...,Ky,...,Ky. Each group is associated
with a variable, i.e., variables ti,...,t,,...,ty for groups
Ky,...,Ky,..., Ky, respectively. The optimization process
determines which groups to be scheduled to transmit users’
demand and for how long. If ¢, is positive, it means group u is
activated to transmit data with a certain duration ¢,, otherwise
the group will not be scheduled.

Pl:rr%in ZtuZpk

ueld ke,

(5a)

st. > turf > Dy, VEEK (5b)
uEGK
>ty < Thor (5¢)
ueU

The objective (5a) is to minimize the energy consumption
in data transmission, where Zkelcu pi is the total power
consumption in group u. In general, the groups with larger
cardinality lead to higher sum power. By constraints (5b), the
requested data for each user k must be delivered, where set
G ={u €l : ke Ky} contains all the groups that user & is
included, and r;’ is defined by equation (4). In (5c), the BS
should complete all the data delivery within deadline Tj;.

Remark 1: The SIC process in NOMA can impose extra
decoding delay at the receivers. For dealing with this issue
in delay-sensitive scenarios, P1 can be further enhanced by
introducing extra constraints to confine the delay in receivers’
signal processing. In practice, iterative SIC which employs
multiple iterations in signal processing is adopted in NOMA
receivers [5], [7]. If a user’s signal decoding fails in the
first iteration, in the subsequent iterations it will be decoded
again [23]. With soft-decision in iterative SIC, as the num-
ber of iterations increases, it can result in longer processing
delay. Thus we can confine the maximum number of SIC iter-
ations to avoid long process delay. When a user group u is
scheduled, the required iterations in general linearly increase
with the number of users in the group [5], [7]. Let L be
the iterations required for single-user decoding (|XC,| = 1).
The time spent at an iteration is 7. The required SIC itera-
tions for a multi-user group u are min(L|Ky|, Lymaz ), Where
Lynag is the maximum decoding iterations for each receiver.
The accumulated processing delay for user £ € K, in
group u is defined as t, x rf x min(L|yl, Liaz) X T
which increases with the transmitted data bits tur]g and
the number of iterations. In P1, the following constraints
Zuegk tyrg min(L|KCy|, Lingz)T < 13'%, Yk € K can be
imposed to confine each receiver’s processing delay, where

7' is the maximum tolerable processing delay for user k.

B. NESP With the Receivers’ Deadlines

In the following, from the receiver’s perspective, we con-
sider the second NESP problem in P2 which puts more
emphasis on users’ experience. We take into account each
user’s transmission deadline in NESP. In practice, multiple
users may request data service simultaneously with diverse
deadline requirements. For instance, a user who is in a real-
time video conference would have strict time requirement to
obtain the requested data, while another user being in a non-
real-time data download process could be more tolerable to
transmission delay. The BS then needs to decide the optimal
order in addition to determining optimal user groups and their
duration.

P2 : mi
H%in Z ty Z PE (6a)
ueU kelcu
s.t. (5b)
> ty < Tp, Ve €K (6b)

u€G1UGaU,...,UG
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In P2, the objective function, the user-demand constraints keep
same as (5a) and (5b). For the deadline constraints, instead
of (5¢) in P1, each user’s demand in P2 must be delivered
within an individual deadline in constraints (6b). Note that
to avoid redundancy, we do not jointly impose the deadlines
Tiot and T7,..., Tk to P2. We remark that when multiple
users have deadlines in P2, the optimization process no longer
resembles the structure of P1, though all the other parts remain
unchanged. This change makes the scheduling problem P2
more complicated since the consumed time for serving a user’s
demand cannot simply be the accumulated activation time
of the user, and it must be based on a specific scheduling
order. Thus deciding an optimal scheduling order is impor-
tant for P2. In constraints (6b), we firstly define an scheduling
order (assuming 77 < ...,< Tk in P2), and then discuss
its optimality in Lemma 1. The total time span for user k
is accumulated by its transmission duration and the queu-
ing duration in the scheduled groups in Gi U GoU, ..., UG}.
The operator U is used to avoid multiple scheduling for the
common groups in Gi,Go,...,G;. Due to the presence of
users’ deadlines, unlike P1, two intuitive questions arise in P2.
That is, in order to squeeze each user’s transmission time
as much as possible, should the appearance of the groups
containing the same user be consecutive, namely consecutive
group scheduling for every user? Should the user with the
most stringent deadline be served first? Next, we give a neg-
ative answer for the first question by a counterexample, and
use Lemma 2 to provide a positive answer for the second
question.

Firstly, We conclude that consecutive group scheduling can
be valid for some users but may not always hold for every user.
Consecutive scheduling for a user means that all the activated
groups for serving a user must be scheduled consecutively in
the scheduling order, e.g., like users 1, 2, and 3 in Schedule II
in Fig. 1, otherwise it is a nonconsecutive schedule, like user 1
in Schedule I in Fig. 1. Although Fig. 1 suggests that a con-
secutive schedule is better than a nonconsecutive one, in some
instances the consecutive schedule may fail to guarantee the
feasibility as well as the optimality. An example is shown
below.

Example 1: Consider a nonconsecutive schedule for user k
in a specific order ..., u,u’,...,u", 4, ..., where % and
iy, are the only two scheduled groups for user k, and groups u’
and u” contain the other users. Suppose all the users’ deadlines
are satisfied by using these groups and this order. If we simply
exchange the position between u’ and 4, or between %, and
u”, to form a consecutive schedule for user k, either of the
changes may make some users’ transmission time longer due
to postponing groups u’ or % in the sequence and thus may
cause deadline violation.

Regarding the second question, we conclude that it is an
optimal principle for determining the scheduling order. We
prove the following lemma, and derive an algorithm to deter-
mine the optimal scheduling order for P2. In general, changing
the order for a user not only affects the user itself but also may
influence whether other users’ deadlines can be met. This is
one of the difficulties in determining the optimal scheduling
order.

Algorithm 1 Determine Optimal Scheduling Order for Any
Feasible Schedule in P2
Input: Deadlines 74, ..., Tk, a feasible schedule with groups

in set G*
Output: Optimal order o*
1 o*=10
2: Sort T4,..., Tk in an ascending order (suppose 77 <

..., < Tk here for simplicity).

3:for k=1,...,K do

4: o* = O*U{gkﬂg*}
s GF=G"\{GyNG"}
6: if G* = () then

7: break.

8

: Return: o*

Lemma 1: Defining the strictest deadline among the users
of a group as the group deadline, i.e., mingcx, T%. then
there exists an optimal scheduling where the active groups
are organized following the ascending order of the group
deadlines.

Proof: Suppose in the optimum, two groups, u’ with the
group deadline 77 and u” with its group deadline 7%,
have T1 < Ty but ' is scheduled after u”, i.e., schedule
1: ...,u"”,...,4,..., which violates the defined ascending
order. Note that due to the optimality in schedule 1, the strictest
deadline T7 has not expired by the end of the activation time of
group u. Based on schedule 1, we then construct a new sched-
ule by moving group u' to be right after v/, i.e., schedule 2:
...,u’,u” ..., and correspondingly, group u’, as well as the
groups between of u” and u’ in schedule 1, are shifted earlier
in the sequence to fill the gap of u”. The rest of the groups
after u/ in schedule 1 remain unchanged. Since T; < Tb,
group u” still meets its group deadline T% in schedule 2 which
is feasible and also optimal as the consumed energy remains.
Repeating the process for the groups that are not organized as
the order defined by the lemma, we obtain an optimal schedule
with this group ordering, and the conclusion follows. |

Lemma 1 concludes the principle for deciding an optimal
scheduling order in P2. The optimal order in P2 may not nec-
essarily be unique, but adopting the order defined in Lemma 1
can always lead us to an optimal and feasible solution (if the
problem is feasible). For any feasible schedule, we summarize
the procedure of determining the optimal order for the sched-
ule in Algorithm 1 and conclude the algorithm’s optimality in
Corollary 1. In Algorithm 1, the scheduled groups in set G* are
organized into up to K segments. Suppose 77 < ..., < Tg,
the user with the strictest deadline, i.e., user 1 in this case, is
firstly taken care of. All the active groups u € G N G* are
put in the first segment and scheduled in the first iteration.
The groups’ scheduling order in a segment can be arbitrary,
and the order is recorded in o*. Then the scheduled groups
are excluded from set G*. The procedure repeats until G* is
empty.

Corollary 1: Given the optimal groups of P2, the optimal
scheduling order can be determined by Algorithm 1 with
polynomial-time complexity.
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Given the formulations for the two NESP problems in P1
and P2, we then characterize the connection between the
optimal energy Ef of Pl and ES of P2 in the following
remark.

Remark 2: Assuming the same input parameters for Pl
and P2, if Tyt = max{Ti,..., Tk}, then Eik < Eék
The reason can be explained as follows. Consider the same
parameters in P1 and P2, and assume 77 < ..., < Tgk.
If Tio+ is set to be the maximum of the deadlines, i.e.,
max{T1,..., Tk} = Txg = Tit, Pl is a relaxed ver-
sion of P2, since the scheduling order can be arbitrary in
P1 and only the maximum deadline T}, is present in PI,
whereas P2 submits to extra deadlines 77,..., Tx_1 and a
specific scheduling order. The two problems are equivalent,
ie., B = E5, when deadlines T4, ..., Tk _ in P2 are redun-
dant, e.g., setting Tyt = 11 =,...,= Tk. If the deadlines
T1,..., Tk are binding, the solution space of P2 is part of
P1, and the conclusion follows.

IV. SOLUTION DEVELOPMENT: LEARNING-ASSISTED
OPTIMIZATION

In this section, we first characterize the complexity and the
difficulty in solving P1 and P2, then we propose a learning-
assisted framework to efficiently solve P1 and P2, and show
the advantages.

A. Characterizations for Complexity and Difficulty

The two NESPs are linear programming (LP) problems
which can be solved by standard optimization tools, e.g., the
simplex algorithm [24]. However, the linearity here does not
conclude the problem’s tractability. In fact, with the input size
2K — 1 in P1 and P2, the computational complexity and the
computational time of NESP increase exponentially with K.
We derive the hardness results in Lemma 1.

Proposition 1: P1 and P2 are NP-hard.

Proof: By constructing a graph G with K nodes and treat-
ing each node as a user, the NP-hardness proof of P1 can be
referred to the cell clustering and scheduling (CCS) problem
in [19] which is proved to be NP-hard by a polynomial-time
reduction from the fractional chromatic number in graph G.
It can be proved that any two users connected by an edge
in graph G will not be in the same group at the optimum of
P1 instance. Therefore all the scheduled (optimal) groups in
P1 correspond to independent sets in graph G. Solving the P1
instance gives the answers for the recognition version of frac-
tional chromatic number. For P2, based on the conclusion in
Remark 2, we construct a polynomial-time reduction from any
instance of P1 by setting 77 =, ..., = T = Ttot. By doing
so, Th =,...,= Tk _q1 can be always satisfied if the user K’s
deadline, which becomes the total transmission deadline T%¢,
is met. Hence a special case of P2 is at least as hard as PI,
then in general P2 remains hard with the presence of multiple
deadlines. ]

Note that both P1 and P2 fall into the domain of schedul-
ing problems. For minimizing the energy consumed in data
transmission, if TDMA is feasible, it is the optimal schedul-
ing scheme [19], [21], e.g., when users’ demand is low

and can be satisfied within deadline(s) by TDMA. In this
paper, we are more focused on realistic scenarios with heav-
ier data traffic and stricter time limits in data transmission.
For these cases, TDMA fails, and the optimal scheduling is
required.

In practical systems, stringent execution-time is required in
real-time scheduling, thus P1 or P2 is expected to be solved
efficiently. For many-user cases, the conventional iterative
approaches may reach their limits in supporting online real-
time network optimization. Solving such difficult problems to
satisfactory performance would require a much longer span of
computing time. Thus, understanding the practical limitations
of the conventional approaches, we are motivated to explore
new avenues in solution development.

In order to provide a reasonable algorithmic solution, we
first investigate and reveal the major difficulties in efficiently
solving P1 and P2. The first aspect is the exponentially
increased variables. To determine the optimal groups, when K
is large the optimal algorithms have to go through and eval-
uate a huge number of variables, e.g., the iterative procedure
of identifying the column(s) with “the most negative reduced
cost” in the column generation algorithm, or the successive
pivot operations in the simplex algorithm [24]. On the other
hand, by the LP theory, in the optimum, the number of sched-
uled groups is no more than the number of constraints [20].
One can observe that the number of constraints in P1 and P2
is linear in K. As a matter of fact, the NESP’s output vector
[t1,..., tu,...,ty] will be very sparse, since most of the ele-
ments/groups in the vector will be zero/inactive. At the global
optimum, most of the groups will not be used at all. Therefore
to accelerate the optimization process, an effective way is to
confine the searching space and let the algorithm avoid explor-
ing those unused groups. However, it is not immediately clear
which groups are not optimal and should be excluded from
the 25 — 1 candidates. This introduces the second difficulty
which is the implicit combinatorial aspect in P1 and P2. In fact,
although the variables in P1 and P2 are continuous, integer
decisions have to be made, e.g., determining whether a user’s
data should be transmitted in group(s) or entirely delivered
by TDMA. If the information of this combinatorial part can
be known prior to the optimization process, the computational
efficiency will be largely improved.

B. The Proposed Algorithmic Solution

We propose a learning-assisted optimization framework to
provide high-quality and time-efficient solution. The idea is
to apply learning-based approaches to help the optimal algo-
rithm to tackle the most difficult and time-consuming part in
the optimization. We train a deep neural network (DNN) for
P1 or for P2, and let them learn how the optimal solutions,
in terms of the patterns of optimal user grouping, behave in
the optimization process. A maturely trained DNN can be
used to provide guidance to confine the searching space of
P1 and P2. The training of DNN is carried out at the pre-
optimization stage such that the computational efforts can
be significantly reduced for real-time applications and with
satisfactory performance.
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Fig. 2. An illustrative example: The features of the optimal groups.

The rationale behind this learning-based approach is that
in many instances, the same types of optimization problems
are usually solved repeatedly on a regular basis [11]. These
problems share some common structure but differ in the input
data. As a result, there exists relations between the input data
and the optimization results. This provides an opportunity for
machine-learning based approaches to learn this relationship,
and then to predict the results, or to provide good initial-
ization points for kick-starting heuristic-based optimization
procedures. In the NESP problems, although the problems
are of high complexity, one can still recognize the patterns
between the input parameters and the scheduled groups in the
optimum. We use a 15-user example in Fig. 2 to illustrate the
features of the optimal groups in P1. From Fig. 2(a), when
Tot becomes large, TDMA transmission will be preferred to
more users in the optimum. If the deadline is strict, almost
all the users are scheduled in groups instead of TDMA since
the optimal solution may have to choose the groups with large
cardinality to guarantee the feasibility. Then the probability of
using those small-cardinality groups can be very low. From
Fig. 2(b), we observe that on average only very few types of
cardinality are actually used in the optimum. Overall, around 1
to 4 cardinality types out of 15 are scheduled. The optimization
process will be more efficient if the searching process can
be more concentrated on the large-cardinality groups, instead
of the whole solution space. In addition, towards high com-
putational efficiency in real-time operations, the complexity
of feed-forward operations of the DNN is mainly from the
matrix multiplication, e.g., weight matrix times input matrix,
the activation function, and the learning function [25], which
are of low complexity in general, and can be executed fast in
practice [26].

Considering the exponential number of groups in the
optimization, it prohibits the DNN simply setting its output as
the optimization variables t1, ..., ¢ty of P1 and P2, mainly due
to the difficulties and the degraded performance in approximat-
ing the DNN’s input-output relations with a huge number of
variables [26]. Moreover, the solution feasibility of P1 and P2
will be sensitive to the prediction accuracy of the DNN. Any
prediction error in DNN’s output #1,..., ¢y can easily result
in failures of satisfying all the constraints. Alternatively, we
adopt an error-tolerable design in DNN predictions, such that

hil? ..., hic|2

Dy,...,Dk biyba, ... by

Fig. 3. Illustration of a fully connected DNN for P2.

the developed solution can benefit from the DNN prediction
and meanwhile enable feasible solutions.

By our design, the DNN is expected to provide or learn
two types of key information. One key information is formed
by a K-dimension binary vector b = [b1, b2, ..., bg]. The
element b, indicates whether user k’s demand D is trans-
mitted alone in the whole scheduling period (b = 0), i.e.,
TDMA, or delivered in any group(s) (b = 1). The other
information type is stored in another K-dimension binary vec-
tor b = [131, ba, ..., BK], where l;k represents whether any
of k-cardinality groups should be scheduled in the optimum
(Bk = 1), or not used at all (I;k = 0). We summarize the
input and output of the adopted DNN below, and an illustrative
structure of the trained DNN is shown in Fig. 3.

DNN Input: Channel coefficients h = [|h1|%, ..., |hg|?],
user demand d = [Di,...,Dg], user power p =
[p1,-..,pK], and transmission deadline T%,: specific for P1,
and individual deadlines T7,..., Tk specific for P2.

DNN Output: Prediction vectors b = [by, by, ..., bk] and
b=1[by,ba,..., 0Kl

The proposed learning-based optimization framework is
summarized in Algorithm 2. In general, the optimization pro-
cedure consists of an offline DNN training phase and an online
operation phase. In the offline training phase, taking P1 as
an example, we use a tuple [}, = (h®,d® p® T}, b°, Bs)
to represent the s-th training sample for P1 (I3, =
(h®,d*®,p* {T},..., T} }, b°, Bs) for P2). We generate real-
izations h®,d®, T;,, and pre-optimized power p°. The
information of b% and b° is extracted from the optimal solu-
tion. We use a 4-user example to illustrate the procedure of
preparing b® and b’ in the training set. As the first step we
apply the exact algorithms, e.g., simplex or column generation
algorithm, to obtain the optimal solution, say optimal groups
{1, 3}, {2, 3}, {1, 2}, {4}. Next, the vectors b® and b° will
be formed as b® = [1,1,1,0] and 5° = [1,1,0,0] in the train-
ing set. The zero elements are due to the fact that user 4 is
transmitted alone in TDMA, and all the 3-cardinality and 4-
cardinality clusters are not scheduled in the optimal solution.
By repeating the above data-generating process, we obtain
the entire training set (l};l, N TR lgl) for P1, where
S is the maximum number of generated data samples in DNN
training. Feeding the DNN by a sufficient large training set,
the DNN is able to progressively optimize its weight values
and learn the relation between the input and the output [26].
Analogous to the training set generation, the validation and test



622 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 3, NO. 3, SEPTEMBER 2019

Algorithm 2 Learning-Assisted Optimization Framework for
P1 and P2

Input: Ty for Pl, T,...Tg for P2, and D;... D,
|h]? .. ... pg for both P1 and P2.
Output ..
1: Offline Tralmng Phase:
2: Generate training, validation, and test sets for P1 or P2.
3: Complete the training of DNN1 for P1 or DNN2 for P2.
4: Online Operation Phase:
5: Take an input from the test set for P1 or P2.
6: Obtain the predicted vectors b and b via DNN’s output.
72 M=K b /Kand M=K b/K
8: for k=1,...,K do
9o if by ¢ {0,1} and by, > aM (or by > oM) then

10: b =1 (or b =1)

11:  else

12: by, = 0 (or by = 0)

13: U*=U

14 for k=1,...,K do

15:  if b = 0 then

16: U =UN{ueld” : keKy, |Ky|>1}
17:  if by, = 0 then

18: U =U\{ueld” :|Ky| =k}

19: Replace U by U* in P1 or P2
20: Obtain ¢, ..., t7; by applying optimal algorithms to solve
the restricted P1 or P2 with U/*.

sets are generated independently. For cross-validation process,
the validation set is used to avoid over-fitting effect [25].
The test set (which is unseen during training) is then used
in the after-training phase, for evaluating the performance of
the DNN.

In the operation phase, taking an input from the test set and
giving it to the well-trained DNN, the DNN can efficiently
provide the required key information, i.e., the output vectors
b and b. Note that there may exist fractional elements in b
and b. We then design a rounding approach to convert those
fractional elements to blnary We firstly compute the mean
values M and M for b and b, respectively. If any fractional
b > aM or bk > oM, we set b, =1or bk = 1, respectively,
otherwise zero, where o > 0 is a control parameter to balance
the computational efficiency and the optimality. Relying on
the binary b and b from the DNN’s output, a considerably
large amount of groups are expected to be excluded from U,
forming a small-scale candidates set U* for P1 or P2. By
doing so, the proposed method is able to break the trend of
exponentially increased complexity in P1 and P2. Then solving
a small-scale P1 or P2 can be much more efficient than a
large-scale one.

We remark that as long as the well-trained DNN can pro-
vide precise predictions or the predictions achieving the same
accuracy effect, the proposed solution in Algorithm 2 guaran-
tees global optimality. Analogous to b and b in DNN, let b*
and b" be the binary vectors derived from the optimal solu-
tion. When we say a predicted element by, € b (or ZA?I@ € b)is
accurate, it does not necessarily mean that the value of by, € b

must be exactly same as b; in optimal b*. We characterize
an sufficient optimality condition in Lemma 2 below, and
define b; or bk is accurate if b, — by > 0 or bk - b* >0,
respectively.

Lemma 2: Algorithm 2 guarantees global optimality if b —
b*iOandE—B*i-O.

Proof: The rationale is that if the predicted vectors b and
b can keep all the optimal groups in the restricted set /*,
Algorithm 2’s optimality will be guaranteed, and the pre-
dicted b and b are considered achieving the same effect of
the accurate prediction. Specifically, if an element b = 0 in
the optimum, user k£ will be transmitted by TDMA and only
one group u with K, = {k} is needed for user k. Then the
predicted b; can be either zero or one without affecting the
optimality since in either case, group u will be in U*. This
is because ideally, if the DNN’s prediction is accurate, the
DNN’s output (after rounding) should be b = 0, e.g., firstly
read b = 0.1 from the DNN’s output then round it to by = 0
in Algorithm 2. In this case, the TDMA group {k} will be the
only group for user k in U*. However, the DNN’s predictions
may not be completely accurate, and the rounding process
may not guarantee to always round by, to zero. For example,
we may read b, = 0.9 from the DNN’s output due to its
imperfect predictions. Then the rounding process may round
it to by, = 1 which mismatches with optimal b; = 0. As a
result, the proposed algorithm will keep all the groups con-
taining user k, including the TDMA group {k}, in U*. Thus
we have by > b7 or by = b}.

If bZ is one, the accurate predicted value should be by, = 1,
otherwise some of the optimal groups could be removed from
U* in Line 16, and these groups will be no longer considered
in solving the optimization problem in Line 20, thus the algo-
rithm loses the optimality. For 132 € b, the logic is analogous,
hence the conclusion. ]

From Lemma 2, as long as the optimality condition holds,
Algorithm 2 in fact equivalently transforms a large-scale
optimization task to a small-scale one by precisely excluding
non-optimal groups without loss of any optimality. In case
of the condition violation in b and b, the designed control
parameter o can be scaled down to tolerate prediction errors
and improve the prediction accuracy. For instance, suppose
M = 0.5, « = 1, and accurate bzc‘ should be one in the opti-
mum, however, due to imperfect estimation we read b, = 0.49
from the DNN’s output. In Algorithm 2, b; will be rounded to
zero as by, < aM, meaning that any groups involved by user
k will be excluded from the optimization process for solving
P1 or P2, though at least one group among them is clearly
optimal. For this case, we can scale down «, say 0.9, then
by, will be set one as by = 0.49 > oM = 0.45, and all the
groups containing user k will be searched in the last step of
Algorithm 2.

V. PERFORMANCE EVALUATION

In this section, we provide numerical results to illustrate
the performance gain of NOMA compared to the interference-
channel (IC) based scheduling [19], [20] and TDMA. We show
the effectiveness of the proposed learning-assisted approach,
in terms of complexity and computational time reduction,
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TABLE I
SIMULATION PARAMETERS

Parameter Value
Carrier frequency 2 GHz
Channel bandwidth 1 MHz
Number of users 15-25

Path loss COST-231-HATA
Shadowing (Log-normal) 8 dB standard deviation
Fading Rayleigh fading

Noise power spectral density ~ -173 dBm/Hz

BS maximum transmit power 5 W

Power allocation for users FTPC [22]

DNN’s prediction accuracy, and the performance gap between
Algorithm 2 and the optimum.

A. Experimental Setup

For DNN training, the adopted DNN consists of a N-node
input layer, a N-node encoding layer for data regularization,
two hidden layers with 100 and 50 neurons for further learning
the relations between the input and the output, and a 2K-node
output layer, where N = 3 K + 1 for P1 and N = 4K for P2.
The resilient back-propagation (RProp) algorithm is used as
the learning heuristic in DNN training and the online opera-
tion phase [26]. Fig. 3 shows an illustrative structure of DNN2
for P2, and DNNI1 for P1 is analogous (replacing T7,..., Tk
by Tio¢ in the input nodes). The simulation parameters are
summarized in Table 1. To prepare the power-allocation vec-
tors p in training sets, we adopt a low-complexity scheme
“fractional transmit power control (FTPC)” [22] for power
allocation among the users. In FTPC implementation, we scale
the control parameter «, ranging from zero to one, to optimize
the user power p = [p1,...,pK], Wwhere @« = 0 enables
equal power allocation among p1,...,pkg, and increasing «
results in more power to the users with inferior channel con-
dition for fairness consideration. We remark that any other
power allocation algorithm can also be adopted in training
data generation.

B. Performance of NOMA in Energy Saving and Meeting
Deadlines

To evaluate the performance of applying NOMA in reduc-
ing energy and in meeting deadlines, six scheduling schemes,
i.e., NOMA for P1 and P2, TDMA for P1 and P2, and
IC for P1 and P2, have been implemented for comparisons.
Their optimal solutions are enabled by applying standard LP
algorithms. In IC scheduling, e.g., [19] and [20], no SIC is
performed in each group, thus the interference part in equa-
tion (3) is replaced by the sum of intra-group interference,
Le, D ier,\{k} pj|hx|?. The results of optimal energy are
illustrated in Figs. 4 and 5 for P1 and P2, respectively, where
uniform users’ demand of 10 Mbits and 15-user cases are
adopted. In both figures, we generate one thousand instances
and show the average performance over the normalized time
lines.

In Fig. 4, we compare the energy consumption with and
without circuit energy for NOMA and IC schemes. The cir-
cuit energy is modeled as P, Zueu t, where P, is circuit
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power and is set as 2 W in this simulation. We consider
the circuit energy in Fig. 4 is linear with the transmis-
sion duration Eueu ty, and is independent of the transmis-
sion rate [27]. Then the objective function in Pl becomes
mint, > ey tu D gerc, Pkt Pe D yey tu- Firstly, for the two
schemes without circuit energy (two solid lines), the range of
Tiot is between interval [Tfeqs, Tidmal, Where T is the
minimum duration to keep the problem feasible, and T}y,
is the maximum transmission duration to keep the constraint
Zuel/{ ty < Tiop active. If Ty < T'feqs the problem becomes
infeasible, and if Tt > Tgme TDMA will be optimal for P1.
Within the interval Ttot € [Tfeqs> Ttdma), the TDMA scheme
cannot deliver all the demand within deadline T, and there-
fore user groups will be scheduled to save transmission time
by allowing simultaneously serving multiple users. Compared
to IC scheduling, the performance gain of adopting NOMA is
significant. In general, the transmission energy in both NOMA
(refer to the objective function in P1) and IC based schedul-
ing will dramatically increase if more stringent deadline is
imposed. However, the growth rate and the energy consump-
tion in NOMA are much lower than IC. In addition, since part
of the co-channel interference can be removed in each sched-
uled group, NOMA is able to achieve higher data rate and thus
support the strict-deadline transmission. For instance, the nor-
malized minimum 7%,; in NOMA is 6, whereas IC becomes
infeasible at T}, = 12. Secondly, for the two schemes with



624 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 3, NO. 3, SEPTEMBER 2019

circuit energy (two dashed lines), the performance curves of
NOMA and IC keep consistence with the two schemes without
circuit energy, though the energy consumption is higher than
the two solid lines. The energy consumption monotonically
decreases when time Ty, increases. The minimum energy
will not be able to further reduce if T%,; becomes redundant.
Unlike the two solid-line schemes (without circuit energy),
we remark that the optimal scheduling may not be TDMA
when the minimum energy is achieved in the two dashed-line
schemes. This is because with circuit energy, TDMA needs
longer transmission time, thus it can result in higher circuit
energy consumption. At the minimum-energy point, the trans-
mission energy may not be minimum but the consumed circuit
energy can be less by adopting non-TDMA schemes. Then the
overall energy-saving performance may benefit.

Next, we examine the performance gain of NOMA in P2,
and illustrate the relation between P1 and P2. The aver-
aged results are shown in Fig. 5. As we expected, same
as in P1, applying NOMA in multi-deadline scheduling can
bring considerable performance benefits, compared to IC. In
addition, as a verification of Remark 2, if we set uniform
T1 =,...,= Tg = Tiot, the energy of NOMA and IC in P1
is the same as their performance in P2. If we keep the longest
deadline max{Ty,..., Tk} as Tiot, say Tx = Tiot, and
consider non-uniform deadlines, i.e., generate T7,..., Tgx_q
by random values but bounded by T}, the consumed energy
of NOMA and IC in P2 is bounded by P1, which is con-
sistent with the conclusion in Remark 2. One may observe
that when the longest deadline max{71,..., Tk}, say Tk,
becomes binding (see the left end of the curves), the gaps
between the uniform and non-uniform cases are marginal. The
reason is that if the maximum deadline becomes tight, then the
room for scaling other users’ deadlines becomes small, that
is, 11, ..., T 1 may need to be close to Tk otherwise the
problems can be infeasible, leading to the small gaps with the
cases of uniform 71 =,...,= T = Tiot.

C. Performance of Algorithm 2 in Computational Efficiency
and Complexity Reduction

To illustrate the computational efficiency of the proposed
Algorithm 2 in its online operation phase, we compare the
CPU time (in seconds) in computations between Algorithm 2
(from Lines 5 to 20) and two optimal iterative algorithms, i.e.,
the simplex algorithm and the column generation algorithm.
The former is a conventional algorithm for optimally solving
LP, and the latter is proposed to improve the former’s compu-
tational efficiency with guaranteed optimality. To provide a fair
comparison, we implement and evaluate the three algorithms
in a unified platform, MATLAB. All the three algorithms are
applied to solve P1 and P2, and the averaged computational
time per instance are shown in Table II.

In the results, from 5-user to 15-user cases, all the three
algorithms can solve P1 and P2 very efficiently. For the cases
of K > 15, the CPU time in Algorithm 2 keeps at the same
magnitude as before, whereas the time in the other two algo-
rithms exponentially increases with the number of users. The
two conventional iterative algorithms may not be applicable in

TABLE II
COMPARISON IN COMPUTATIONAL TIME

Cases  Simplex  Column Generation  Algorithm 2
K=5 0.015 0.015 0.013
K=10 0.078 0.043 0.019
K =15 0.569 0.421 0.049
K =20 156.1 113.9 0.075
K=21 357.9 176.1 0.108
K =22 2132 1175 0.194
K =25 >3600 >3600 0.398

online optimization, though the column generation has largely
reduced the computational time compared to the simplex algo-
rithm. As can be foreseen, the computational efficiency of
Algorithm 2 is insensitive with the increase of the input size.
Overall, Algorithm 2 is promising to provide the optimized
solution in time and with good performance in scalability.

To reveal the insights behind Table II, we use Fig. 6 and
Fig. 7 to explain the reason why the proposed Algorithm 2
enables high efficiency in solving P1 and P2. We consider
K =5, 15, 25 in Fig. 6 and Fig. 7. In the simplex and
the column generation algorithms, to optimally solve P1 and
P2, a number of |I/| candidates have to be searched, that is
U] = 2° — 1 = 31 for 5-user cases, || = 2" — 1 = 32767
for 15-user cases, and |U| = 225 — 1 = 33554431 for 25-user
cases. It is evident that for lager K, searching such a huge num-
ber of groups is too time consuming. In contrast, a majority
of the candidate groups in Algorithm 2 have been excluded in
|L{*| by relying on the predicted information from the DNN’s
output vectors b and b. One can observe that the magnitude
of |U/*| for large K has been reduced to hundreds on average,
compared to millions in |I/|. As a result with the small-size
|L4*|, the optimization problem in Line 20 of Algorithm 2 can
be solved efficiently, which therefore leads to a fast comple-
tion of the optimization process in Algorithm 2, even for the
large-size inputs.

Remark 3: The high computational efficiency of
Algorithm 2 displayed in Table II, Fig. 6 and Fig. 7,
does not mean that we reduce the total computational efforts
or simplify the optimization process in solving P1 and P2, like
the most of heuristic algorithms. By our design, to facilitate
real-time optimization we shift the majority of computations
from the online operation phase to the offline data generation
and training phase, such that the computational complexity
in the online phase is moderate. In the offline training phase,
the algorithm’s solution quality can be improved or scaled
by the computational efforts, e.g., scaling training set size S,
which is a prior stage to the online optimization, and is less
time-sensitive than the online phase.

From Fig. 6 and Fig. 7, for few-user cases, e.g., K = 5,
the performance gain of Algorithm 2 is marginal. Thus the
proposed approach is preferred to apply to solve the large-K
cases, evident by its effectiveness in computations. From the
results, Algorithm 2 is particularly efficient if the deadlines are
loose. When imposing strict deadlines to Fig. 6 and Fig. 7, the
average number of considered candidates in U* is moderately
increased. In addition, one may notice that for the same K,
the average cardinality of |I/*| in P2 is lager than that in P1,
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Fig. 7. Capabilities of Algorithm 2 in confining the number of candidates

for P2. Benchmarks: 2% — 1 = 31 for 5-user cases, 215 — 1 = 32767 for

15-user cases, and 225 _ 1 = 33554431 for 25-user cases.

though the CPU time for solving P1 and P2 remains at the
same magnitude. The reason can be explained as follows. The
cardinality of U/* becomes smaller if more users are scheduled
by TDMA, i.e., more zero elements in vector b, and if the
scheduled groups are more concentrated with fewer types of
cardinality, i.e., more zero elements in vector b. In P1, this is
the preferred type of group selections, e.g., in the optimum,
more users will be in TDMA for large Ty, and only large-
cardinality groups will be used for small 7%,;. However, by
imposing multiple deadlines T7,..., Tk in P2, the choices
of the scheduled groups can be more diverse than in P1. For
instance, some users in P2 would be scheduled by TDMA if
their deadlines are loose, and some other users have to be
scheduled in multiple groups with different cardinality due to
their diverse deadlines. As a result, overall, more candidates
may need to be searched for P2 than P1 in Algorithm 2.

D. Performance of Algorithm 2 in Approximating Optimum

Next, we evaluate the DNN’s prediction accuracy which
is an important aspect in determining the performance of
Algorithm 2. In each instance, based on the optimal solution
we derive the corresponding optimal b* and b, and compare
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Fig. 8. Average prediction accuracy in DNN’s output.
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Fig. 9. Average gaps between the optimum and Algorithm 2.

them with the DNN’s predicted vectors b and b. Then we
show the average accuracy results in Fig. 8§, for example, the
value of “0.9” means that 90% of the elements in b or b do not
lead to loss of any optimality. From the results of Fig. 8, the
DNN can achieve high prediction accuracy only after train-
ing by a considerable number of instances. We observe that, a
well-trained DNN can provide an overall accurate prediction
in b and b, around 93% to 96%. Moreover, the quality of
prediction in both b and b can be further improved by trading
computational efforts via decreasing a.. By our design, small
o means that if we are not certain about excluding a type of
groups, then we keep them in |U/*|, in order to avoid wrongly
excluding those optimal groups due to imperfect prediction in
DNN. On average, the accuracy of b is higher than b. This
is because in general, the patterns of determining TDMA or
non-TDMA for a user is easier to be recognized than the pat-
ters of determining which cardinality of the groups should be
used.

Then in Fig. 9, we show the Algorithm 2’s ability in
approaching the optimum with respect to the training progress.
We compare the energy obtained in Algorithm 2 with the
optimal energy to derive the gaps. For instance, “1.0” in
Fig. 9 means that on average the energy performance in
Algorithm 2 is consistent with the optimum. Based on the
completely/relatively accurate information of » and b, most
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of the optimal groups are identified to be included in the
restricted set U*, thus Algorithm 2 can achieve close-to-
optimum performance. In Fig. 9, by relying on a well-trained
DNN, the energy gaps between Algorithm 2 and the optimum
is less than 9%. By adopting small «, Algorithm 2 approaches
to the optimum, but may pay more computational time than
the case of a = 1.

VI. CONCLUSION

We considered applying NOMA in minimum-energy
scheduling with practical deadline constraints. Considering the
dynamic duration of transmission, and the queuing delay in
data services, we formulated two resource scheduling prob-
lems, aiming at efficiently emptying the BS’s queued data or
providing timely services to satisfy users’ demand by con-
suming less transmission energy. To deal with the practical
issues of the high complexity in resource optimization and the
stringent execution-time requirements in real-time operations,
we proposed a learning-assisted optimization framework to
provide an algorithmic solution for solving a class of schedul-
ing problems. Numerical results firstly show the benefits of
NOMA in saving energy and reducing transmission time.
The results also demonstrate the promising performance of
the proposed method in improving computational efficiency
and optimality approximation. The developed algorithm is
able to efficiently provide optimal scheduling solutions if the
predictions in the deep learning model are precise. For the
general cases, the solution can be close to the global opti-
mum, around 5% to 9% gaps on average. The computational
time is insensitive to the input size.
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