
2473-2400 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2019.2924242, IEEE
Transactions on Green Communications and Networking

IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING 1

Delay-Optimal Resource Scheduling
of Energy Harvesting based Devices

Ibrahim Fawaz, Student Member, IEEE, Mireille Sarkiss, Member, IEEE,
and Philippe Ciblat, Senior Member, IEEE

Abstract—This paper investigates resource scheduling in a
wireless communication system operating with Energy Harvest-
ing (EH) based devices and perfect Channel State Information
(CSI). The aim is to minimize the packet loss that occurs when
the buffer is overflowed or when the queued packet is older
than a certain pre-defined threshold. We so consider a strict
delay constraint rather than an average delay constraint. The
associated optimization problem is modeled as Markov Decision
Process (MDP) where the actions are the number of packets sent
on the known channel at each slot. The optimal deterministic
offline policy is exhibited through dynamic programming tech-
niques, i.e. Value Iteration (VI) algorithm. We show that the
gain in the number of transmitted packets and the consumed
energy is substantial compared to: i) a naive policy which forces
the system to send the maximum number of packets using the
available energy in the battery, ii) two variants of the previous
policy that take into account the buffer state, and iii) a policy
optimized with an average delay constraint. Finally, we evaluate
our optimal policy under imperfect CSI scenario where only an
estimate of the channel state is available.

I. INTRODUCTION

ENERGY harvesting (EH) technology has emerged
recently as a promising solution to improve the energy

efficiency and self-sustainability of 5G mobile and IoT
networks. While relying on renewable energy sources in their
surrounding environments, the mobile devices can harvest
energy to perform their communications and operational tasks.
In this way, they can extend their battery lifetimes by reducing
their dependency on conventional battery and grid power,
decreasing thus their carbon emissions. However, in contrast
to conventional power supply where the available energy is
fixed, harvested energy arrives randomly and sporadically
due to environmental influence (weather, geolocation),
rendering unpredictable the available energy behavior. To
avoid the waste of energy excess and save it for future use,
capacity-limited batteries is used to store the collected energy.
The stochastic energy harvesting process and the energy
storage constraints in addition to the time-varying nature of
the wireless channels bring new design challenges in EH
communications making the optimization of the transmission
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policies a more difficult task. Therefore, efficient resource
scheduling of mobile devices need to adapt the transmission
rate and power to the dynamic levels of the available energy
and the channels in order to ensure the users quality of
service (QoS) and the system sustainability.

During the past decade, extensive research efforts have
been devoted to investigate resource scheduling with EH
capabilities at the transmitters [2]–[11]. Surveys can be read
in [12], [13]. In these works, several performance criteria
have been optimized such as throughput, completion time,
average delay, outage probability, for various models of
energy arrival rate, battery capacity, or fading channel. For
instance, in [2], data amount transmitted during a pre-defined
time was optimized and the transmission completion time
was minimized by choosing carefully the transmit power
when the channel is time-varying. The authors proposed
optimal offline policies based on directional water-filling in
a non-causal energy setting which means that the energy
amount available at any time is known in advance. They also
proposed online policies using continuous time stochastic
dynamic programming in a causal energy setting. The
throughput maximization problem was similarly investigated
in [3] but for limited energy battery and limited data buffer,
allowing thus buffer overflow. The optimal solutions were
proposed by decoupling energy and data problems using a
new variant of directional water-filling with added energy
pumps, or applying recursively the shortest path algorithm.
When only causal Energy State Information (ESI) and
Channel State Information (CSI) are available, the same
throughput maximization problem was modeled as Markov
Decision Process (MDP) in [4] and related optimization
techniques were used. In [5], an online algorithm maximizing
the throughput is designed by assuming capacity-limited
EH system. It relies on a new estimation method of
future energy arrivals without any prior information. Both
offline and online algorithms were also provided in [6]
to maximize the throughput in finite-horizon scheduling
with EH transmitter. The offline solution is expressed in
terms of water levels and the online solution minimizes
successively the expected throughput losses with respect
to the offline optimal decision. Finite-horizon optimization
problem was also considered in [7] to minimize the outage
probability in a EH system. A low complexity fixed threshold
transmission is proposed based on the offline mixed integer
linear programming solution. In [8], an average delay optimal
scheduling problem under energy consumption constraint
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was studied where the transmitter relies on hybrid energy
supplies. Actually, the data transmission is mainly powered
by harvested energy and resorts to power grid as a backup.
The problem was modeled as a two-dimensional Markov
chain and an optimal policy depending on a critical threshold
of the queue length is proposed using Linear programming
formulations. In [9], optimal deterministic scheduling in
EH-powered network satisfying an average delay constraint
and an average consumed energy constraint was obtained
by minimizing the packet blocking probability, due to non-
transmission at the transmitter. The problem was formulated
as an MDP and solved using dynamic programming Value
Iteration (VI) algorithm. In [10], a weighted packet loss
rate under an average delay constraint is minimized leading
to a constrained MDP and solved by using a linear value
iteration approximation that locally determines the energy
allocation at every EH wireless node by multilevel water-
filling. Near-optimal policy was also derived by applying
online learning based on post-decision state framework.
In [11], MDP modeling and online post-decision learning
approach were derived to maximize the data arrival rate at the
transmitter queue under delay and energy constraints. Two
delay constraints were considered: average delay constraint
or statistical delay constraint. This latter is a bounded delay
with maximum acceptable delay-outage probability constraint.

In this paper, we address a resource scheduling for a point-
to-point communication powered by energy harvesting at
the transmitter side. It may correspond to an Uplink (UL)
case where the transmitter is a node with energy harvesting
ability and the receiver is a base station plugged on the
grid. Unlike [8]–[10], the main novelty of this work is by
considering a strict delay constraint on each queued packet in
the transmitter buffer rather than an average delay constraint.
We have initially introduced this hard constraint on the delay
in [14] to find the optimal scheduling policy minimizing the
average power consumption. Now, we incorporate energy
harvesting aspects within the scheduling problem. Working
with hard delay constraint is timely even if it involves a more
complicated system description. It has especially led to a new
way to think information theory by using short-length block
codes as in [15] and by applying it on some resource allocation
issues as in [16] via the notion of Ultra Reliable Low Latency
Communications (URLLC). In this paper, we do not consider
short-length block codes but we consider that the packets
cannot stay in the buffer beyond a certain pre-defined duration.

Nevertheless, the aforementioned transmission policies rely
on the perfect knowledge of the channel state information
or an accurate estimation of the relevant statistics. In typical
wireless systems, the receiver performs channel estimation and
feeds back CSI on limited-capacity feedback channel to the
transmitter in order to design channel-adapted transmission
techniques. In practice, the acquired CSI have errors due
to different factors such as time-varying channel, inaccurate
channel estimation, quantization and feedback errors, which
can inevitably cause performance degradation. Recently,
some works have focused on new design strategies to deal

with CSI imperfections in energy harvesting networks. For
instance, an optimal transmission power policy based on only
1-bit feedback was proposed in [17] for EH communications
over Rayleigh fading channels. The receiver sends bit 1 if
the channel realization is above a certain threshold. Then,
the transmitter does not transmit if the bit is 0 or transmits
with a certain pre-defined power. The related data rate is
chosen according to the threshold and not to the true value of
the channel realization. Consequently, the selected data rate
always ensures a safe transmission but with a pessimistic rate.
The paper found out the optimal feedback channel threshold
and the optimal policy that maximizes the throughput based
on finite-horizon constrained MDP formulation. In [18], the
problem of data amount maximization within a fixed duration
was studied assuming imperfect CSI at the transmitter (CSIT)
in point-to-point communications with an EH transmitter.
The authors proposed first a Markov process to model the
energy arrivals and the channel impulse response with strong
correlations and then derived the optimal online power
scheduling policy using finite-horizon dynamic programming
techniques. In addition, they studied the performance limits
of EH systems under imperfect CSIT through an asymptotic
analysis of the average throughput at low and high average
energy recharge rates. In [19], they determined the optimal
offline policy for a similar problem. In previous paper, they
do not consider the cost to obtain the CSI even imperfectly,
such as the energy consumption to send training sequence
and the time spent to estimate and so not available anymore
for doing data transmission.

In this paper, we investigate both perfect and imperfect
channel state information at the transmitting EH device
in our scheduling problem. In a first part, for perfect CSI
scenario, we ideally assume that the channel is perfectly
known at the transmitter without any cost. Taking into
account sporadic energy arrivals, random data arrivals and
time-varying channel states, we minimize the packet loss
rate, i.e., the average number of discarded packets induced
by strict delay constraint in addition to buffer overflow
constraint. We formulate the problem as an MDP and solve it
using Relative Value Iteration algorithm. We find an optimal
offline stationary policy and compare it with a naive policy
that performs immediate scheduling irrespective of energy
and buffer states, and two variants of it taking into account
the buffer state in the decision process. Then, we compare
our proposed system with a similar one using average delay
constraint. In this part, we mainly consider i.i.d EH process
for sake of simplicity and clarity, but we compare also the
results when time-correlated EH process is considered.
In a second part, for realistic imperfect CSI scenario, we
consider that acquiring channel estimates incurs some time
and energy costs on the system performance. We assess
the previously obtained optimal policy under imperfect CSI
conditions due to channel estimation errors. We also consider
imperfect CSI assumption with Automatic Repeat ReQuest
(ARQ) protocol, allowing thus packet re-transmission.
Therefore, in these cases, the packet loss rate is affected
twofold: on one side, with respect to the imposed strict delay
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because of a smaller transmission period of data packets,
or because of a longer duration of packets in the buffer
for re-transmission (with ARQ protocols); and on the other
side, with respect to the erroneous channel estimation which
can lead to an increase in the number of discarded packets.
We analyze the system taking into account these errors and
show through numerical results that an appropriate trade-off
is needed between the channel estimation accuracy and the
transmission period in order to reduce the dropped packets
depending on the available energy, energy arrivals and data
arrivals.

The remainder of the paper is organized as follows. In Sec-
tion II, we describe the system model. In Section III, we
formulate the optimization problem as an MDP and solve
it using value iteration algorithm. In Section IV, we present
the framework of the imperfect CSI scenario. We provide and
analyze numerical results in Section V. Finally, we give some
concluding remarks and perspectives in Section VI.

II. SYSTEM MODEL

We consider a point-to-point communication over a fading
channel with an energy harvesting transmitter. The transmitter
is equipped with two queues: one corresponds to a capacity-
limited battery to store harvested energy from an external
source and the other is a finite buffer to store data packets
arriving from the upper layer. The communication is slotted
into consecutive epochs of equal duration Ts . At the beginning
of each time slot, scheduling decisions are made to define the
number of packets to be transmitted during the slot depending
on energy arrivals and data arrivals during previous slot as
well as channel states at the current time.

A. Energy model

Due to the random nature of energy harvesting sources, we
model the EH process as an independent identically distributed
(i.i.d.) Poisson distribution with an average arrival rate λe. We
assume that the energy arrives in multiple packets of energy
units (e.u) of EU Joules (J) 1. The received energy is stored in
a battery of finite capacity Be, and is lost when it exceeds Be.
At the beginning of time slot n, let en denote the harvested
incoming energy (counting as a number of the energy units).
Its probability distribution is given by

p(en = e) = e−λe .
(λe)

e

e!
.

We assume that the processing energy is negligible compared
to the transmission energy, thus the energy stored in the battery
is only used for communication. We also consider the energy
causality constraint where the system can only transmit if a
sufficient amount of energy is available in the battery. Let
bn denote the energy level of the battery at the beginning of
time slot n, bn ∈ {0, ...,Be}, and En the energy consumed to
send packets during time slot n, then En 6 bn. In addition,

1There is a huge amount of literature assuming i.i.d EH processes. We
adopted this approach for sake of clarity. Nevertheless, this work can be easily
extended to time-correlated EH processes. This is done in Section V to plot
Fig. 11.

we suppose perfect energy state information at the transmitter
(ESIT).

B. Data queue model and strict delay constraint

The transmitter receives also data packets and store them for
future transmission in a data buffer of size Bd packets. We
model the data arrival process as an i.i.d. process following a
Poisson distribution with an average arrival rate λd . We assume
that all packets are of the same size L bits. At the beginning
of time slot n, let qn denote the queue length in the buffer,
qn ∈ {0, ...,Bd}, and an the received packets with probability
distribution

p(an = a) = e−λd .
(λd)

a

a!
.

A packet is discarded from the buffer
• if there is a buffer overflow, i.e., if the sum of packets

in the queue and arrival packets exceeds the buffer size.
In that case, we discard the arrival packets in overflow;

• if there is a delay violation, i.e., it stays in the queue
more than K0 slots. This can occur if the system decides
not to transmit for a long period due to energy shortage
or bad channel conditions.

In order to describe the delay violation, we need to introduce
a new variable ki(n) counting the time spent in the buffer
of the i-th packet at time n. By definition, we have ki(n) ∈
{−1, ...,K0},∀i, k and ki(n) = −1 for an empty space in the
buffer (i.e., when the i-th packet does not exist). In Fig. 1,
we provide a buffer state at time n. Notice that k j(n) ≤ ki(n),
∀i 6 j.

Buffer of Bd packets (ordered from the oldest to the newest)

k1(n) ... kqn (n) −1 ... −1

qn packets empty area

Fig. 1. Buffer configuration at slot n.

C. Channel model

We consider a single user flat-fading channel with signal
bandwidth W (Hz) and additive white Gaussian noise with
zero mean and variance N0. During time slot n, the channel
remains constant with complex-valued amplitude h, and varies
in a i.i.d. manner across time slots. We define the channel
gain as gn = |hn |2, where gn is a continuous random variable
distributed exponentially with probability density function
p(g) = 1

ξ e−
g
ξ with mean ξ. For the sake of simplicity, we

assume only quantized channel state xn = Qg(gn), where
Qg(.) represents the quantization process 2. Fixing a sequence
of fading power quantization thresholds, the channel gain xn
is then a discrete variable taking values from a finite channel
state space X.

2This assumption is generally justified in practice to account for the
capacity-limited feedback and has also been adopted in the literature [20]–
[28].



2473-2400 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2019.2924242, IEEE
Transactions on Green Communications and Networking

IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING 4

In order to define the discrete channel states, let M be the
number of quantization levels, {tm}M−1

m=0 the set of thresholds
and {Lm}

M−1
m=0 the set of quantization levels for Qg. The

quantization regions of the channels are then given by
the intervals Im = [tm, tm+1[ with t0 is fixed such that the
transmission of 1 packet using 1 e.u. is guaranteed and
tM = +∞. In our model, we consider a Uniform quantizer.
So, let tmax = tM−1 be the maximal threshold such that the
transmitter can send U0 packets using Be e.u., where U0
is the maximal value of scheduled packets. By applying
E(xn,un) = Be in (1) and un = U0 in (2) (equations (1)
and (2) are defined in next section II-A), we obtain the
corresponding value for xn which is forced to tmax. The
uniform quantization thresholds are given by tm+1 = tm + δ
with m = 0 . . . M −2 and δ = tmax

M−1 . We select the quantization
levels as the lower bound of the regions, which is the
worst case scenario. Thus, Lm = tm for m = 0 . . . M − 1 and
a channel is said to be in state xn = Lm if gn ∈ Im = [tm, tm+1[.

Note that the defined quantization process and parameters
are used by default for the perfect CSI scenario, thus the
values of x correspond to the perfect discrete channel states.
However, for the imperfect CSI, the channel is first estimated
before being quantized. Let ĥn and ĝn = | ĥn |2 denote the
estimated channel and the estimated channel gain. Then, the
estimated discrete (quantized) channel states are defined by
x̂n accordingly. In this case, a channel is said to be in state
x̂n , xn if ĝn ∈ Im′ while gn ∈ Im with m′ , m.

D. Consumed energy

We denote un (un 6 qn) the number of packets to be
transmitted during time slot n of period Ts , through the channel
of gain xn for perfect CSI and the channel of gain x̂n for
imperfect CSI. In the former case, the consumed energy to
transmit these packets is expressed as an integer multiple of
the energy unit. It is given by

E(xn,un) =
⌈

P(xn,un).Ts

EU

⌉
, (1)

where

P(xn,un) =
W N0

xn

(
2

un L
WTs − 1

)
(2)

is the required power for this transmission. In the latter
case, similar expressions are obtained by replacing xn by the
estimated channel gain x̂n and Ts by Ts − τ where τ is the
time required to perform channel estimation.

III. PROBLEM FORMULATION AND RESOLUTION IN
PERFECT CSI SCENARIO

In this section, we assume first perfect CSI at the transmitter
without any cost. Our main objective now is to ensure reli-
able communication by minimizing the number of discarded
packets due to strict delay and buffer overflow constraints. This
can be achieved by finding an optimal policy that specifies the
number of packets u to be scheduled at each time slot based on
the past system states and actions. The optimization problem

can be formulated as MDP problem [30]. We characterize in
this section the appropriate states, actions and reward of this
MDP.

A. State Space

The state space S is the set of s = (k, b, x) where
• k = [k1, · · · , kBd

] is the vector indicating the age of each
packet in the data buffer,

• b is the battery level, and
• x is the channel gain.

Notice that in the previous works [9], [10], the queue length
q describes the data buffer states. In our work, q is replaced
with k due the strict delay constraint. In fact, q is unnecessary
when k is given since

qn = max {i | ki(n) > 0} . (3)

The state space is finite, and the total number of possible states
is |S| which is upper-bounded by (K0 + 2)Bd .|Be + 1|.|X|.
The state space can be significantly reduced by assuming that
packets are queued in an increasing order of time spent in the
buffer, i.e. k1(n) ≥ k2(n) ≥ · · · ≥ kqn (n). For instance, if we
consider Bd = 6, K0 = 3, Be = 4 and |X| = 5, the upper-bound
is 390625 while our system only has 5250 states by removing
all the impossible combinations in k.

B. Action Space

The action space U denotes the number of packets u that the
transmitter can send during a time slot. This space is finite
and the number of actions is |U| = U0 + 1.

C. Markov Decision Process

On one hand, during time slot n, wn = max(un,mn) packets
leave the buffer, either transmitted and/or discarded where un
is the number of transmitted packets and mn is the number
of packets with delay K0 slots in the buffer 3. The age of the
remaining packets in the buffer is incremented by 1. Moreover,
an+1 new packets arrive to the buffer with age 0. Therefore,
the vector k can be updated from slot n to slot n+1 according
to the following rule.

1: for i = 1 to qn − wn do
ki(n + 1) = kwn+i(n) + 1
end for

2: for i = qn − wn + 1 to qn − wn + an+1 do
ki(n + 1) = 0
end for

3: for i = qn − wn + an+1 + 1 to Bd do
ki(n + 1) = −1
end for

On the other hand, during time slot n, en+1 e.u are harvested
and stored in the battery and En e.u are removed from the

3Indeed, if mn ≥ un , un packets are sent on the channel and only (mn −

un) packets will be discarded before time n + 1 since their delay will be
K0 + 1: therefore, mn packets are removed from the buffer. If mn < un , any
packet with an age of K0 will be sent during this slot which implies that the
packets removing from the buffer are only the un transmitted packets.
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battery to schedule un packets. Therefore, at time slot n + 1,
the battery state is updated according to

bn+1 = min {bn − En + en+1,Be} . (4)

We thus remark that kn+1 (resp. bn+1) only depends on
previous state kn (resp. bn), action un (resp. En) and exter-
nal perturbation an+1 (resp. en+1). Therefore, we can define
p(s′ |s,u) as the transition probability to fall in the future
state s′ = (k′, b′, x ′) after taking action u in the current state
s = (k, b, x). Assuming that the buffer, battery and channel
states are independent and channel states are not correlated,
the transition probability satisfies the following equation.

p(s′ |s,u) = p(k′ |k, b,u).p(b′ |b, x,u).p(x ′), (5)

where p(x ′) is the distribution of the channel states,
p(k′ |k, b,u) indicates the probability transitions between buffer
states, and p(b′ |b, x,u) indicates the probability transitions
between battery states. After tedious but simple derivations,
we obtain the transitions between the buffer states and the
battery states according to the following respective rules.

1: if u > q or k ′i > ki + 1 or q′ < q − w then
p(k ′i |ki, b,u) = 0

2: else if k ′i , ki+u + 1 and ki+u , −1 then
p(k ′i |ki, b,u) = 0

3: else if k ′i > 0 and ki+u = −1 then
p(k ′i |ki, b,u) = 0

4: else if q = Bd and u , 0 and k ′i > 0,∀i ∈ {q − w +

1, ...,Bd} then
p(k ′i |ki, b,u) = 0

5: else if q′ < Bd then
p(k ′i |ki, b,u) = e−λd . (λd )

a

a!
6: else

p(k ′i |ki, b,u) = 1 −Q(Bd − q + w, λd),
and

1: if E > b then
p(b′ |b, x,u) = 0

2: else if b′ < b − E then
p(b′ |b, x,u) = 0

3: else if b′ < Be then
p(b′ |b, x,u) = e−λe . (λe )

e

e!
4: else

p(b′ |b, x,u) = 1 −Q(Be − b + E, λe).
where Q(•,•) is the regularized Gamma function.

D. Markov Decision Problem and its Resolution

In the context of infinite-horizon MDP, we consider time-
averaged cost, where at a given time slot n ∈ {0, · · · ,N}, the
system state is denoted by sn = (kn, bn, xn) and µ(sn) = un is
the action deciding the number of packets to be transmitted.
We aim at finding the optimal policy µ? that minimizes the
average number of dropped packets. The cost function of this
infinite-horizon MDP problem is given by

D(µ) = lim
N→+∞

1
N
Eµ

[
N∑
n=1

(
εd(sn,un) + εo(sn,un)

)]
, (6)

where E is the expectation with respect to the policy
µ and where εd(sn,un) is the instantaneous number of
discarded packets due to delay violation and εo(sn,un) is the
expected number of discarded packets due to buffer overflow.
According to [29], we know that finite-state MDP without
additional constraint exhibits an optimal deterministic policy.
Thus, the function µ is a deterministic policy and µ? is the
optimal deterministic policy to be found.

At a given slot n, when the system state is sn and the performed
action is un, the number of discarded packets due to delay
violation is given by

εd(sn,un) =
{

0 if mn = 0 or mn 6 un
mn − un otherwise. (7)

The buffer overflow occurs when qn−wn+an+1 > Bd , thus the
number of discarded packets due to buffer overflow is obtained
as follows

εo(sn,un) =
+∞∑

a=Bd−qn+wn+1
(qn − wn + a − Bd).e−λd .

(λd)
a

a!

= λd .(1 −Q(Bd − qn + wn, λd))

+ (qn − wn − Bd)

× (1 −Q(Bd − qn + wn + 1, λd)). (8)

We need to consider an expected reward for the buffer
overflow since at the beginning of the slot (when the decision
is made), the number of incoming packets is only known
statistically.

Finally, our MDP optimization problem can be stated as
Problem 1:

µ? = arg min
µ

D(µ) (9)

We know that µ? exists [29] and can be found via an offline
dynamic programming approach using, for instance, the so-
called VI algorithm [30]. Exploring statistical a priori knowl-
edge of energy arrival and data arrival dynamics and channel
states at the EH transmitter, the offline approach can accurately
model the state transition probabilities of the MDP and provide
an optimal solution. The optimal offline deterministic policy
µ? for Problem 1 can be computed through Algorithm 1.

IV. IMPERFECT CSI SCENARIO

In wireless communication systems, channel state information
is not perfectly known at the transmitter and can include
errors due to the channel estimation process. Indeed, in a
Time Division Duplex (TDD) UL transmission between an
EH device and a base station, the CSI can be obtained at the
EH device by first estimating the channel at the base station
via an UL training process and then feeding back a quantized
version of the estimate to the transmitter. We assume that the
feedback channel is error-free and instantaneous as soon as
the receiver has estimated the channel. Therefore, accounting
for the channel estimation phase, the time slot structure is
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Algorithm 1 VI algorithm
1: Initialization

Set v0(s) = 0 ∀s ∈ S
Fix a tolerance parameter ε > 0
Set n = 1

2: For each s ∈ S compute

vn(s) = min
u∈U

[
c(s,u) +

∑
s′∈S

P(s′ |s,u).Vn−1(s′)
]

(10)

Vn(s) = vn(s) − vn(s0) (11)

where c(s,u) is the instantaneous cost and s0 is a fixed
state chosen arbitrarily.

3: If sp(Vn − Vn−1) < ε , where sp(V) = maxs∈S V(s) −
mins∈S V(s), let πε be the resulting policy that solves
equation (10) and stop; else set n = n + 1 and go to step
2.

divided into two parts: a duration of τ ms to acquire CSI at the
mobile device and the remaining (Ts − τ) ms to schedule data
packets. In particular, the EH device exploits the acquired CSI
to send data whenever scheduling decisions are made. In this
section, we aim at evaluating the optimal policy µ? obtained
with Algorithm 1 when the CSI are imperfect which means
that the current states used for computing the output of µ? are
not necessary correct.

A. Channel estimation

At τ ms after the beginning of time slot n, we consider that
the EH mobile device has an estimated discrete channel state
x̂n as described in Section II-C. This estimated channel can be
obtained through a training sequence of η pilot symbols using
a total training power Ptr during the period τ of the time slot.
Then, the required energy to perform this channel estimation
is

Ece(x̂n) =
⌈

Ptr.τ

EU

⌉
. (12)

Due to the imperfect channel estimation, we have

ĥn = hn + ehn , (13)

where ehn is the estimation error independent of hn and it
is a zero-mean i.i.d. complex-valued Gaussian process with
variance σ2

e per complex dimension. According to [31], this
error variance can be expressed in terms of energy per pilot
symbol Es , the number of pilot symbols used for estimation
η and the Gaussian noise variance per complex dimension σ2

w

as

σ2
e = E[| ĥ − h|2] =

σ2
w

ηEs
=

N0
τPtr

. (14)

Given the channel gain gn, the estimated channel gain ĝn =

|hn+ehn |
2 is a non central χ2 random variable with 2 degrees

of freedom in which the Gaussian variables are independent
with common variance σ2

e/2 and mean gn = |hn |2. It has a
probability density function (PDF) of the form

PĜ |G(ĝ |g) =
1
σ2
e

e
−

g+ĝ

σ2
e I0

(
2
σ2
e

√
gĝ

)
, (15)

where I0 is the zero-order modified Bessel function of the first
kind [32].

B. Error probability and packet loss rate

In this section, we analyze the impact of channel estimation on
the system performance, in particular on the packet loss rate.
In fact, channel estimation can affect the number of discarded
packets in three ways. Firs of all, the transmission period is
reduced which offers less time to transmit the same amount
of data. On one hand, if the channel estimate is smaller than
the actual channel, less packets can be scheduled at decision
instants. Thus, more packets can be queued in the data buffer
with higher delays, and may lead to more delay violation and
buffer overflow occurrences. On the other hand, if the channel
estimate is higher than the actual channel, the scheduled
packets are all dropped. This latter condition incurs additional
loss rate besides the delay violation and buffer overflow losses
given in equations (7) and (8). Therefore, we need to take into
account such errors in the total error probability. This extra
error probability (called, channel mismatch probability in the
rest of the paper) can be expressed as

Pe,CSI = Prob (x̂ > x) =
∑

m′ |m′>m
Prob (ĝ ∈ Im′,g ∈ Im),

(16)
where Im = [tm, tm+1[ and Im′ = [tm′, tm′+1[, m = 0, . . . ,M − 1,
m′ > m are the quantization regions of the perfect channel
state and the estimated channel state, respectively.

Then, using Bayes rule and some derivations, we can compute

Prob(ĝ ∈ Im′,g ∈ Im) =
∫
ĝ∈Im′

∫
g∈Im

P(ĝ,g) dĝ dg

=

∫
ĝ∈Im′

∫
g∈Im

PĜ |G(ĝ |g)PG(g) dĝ dg

=

∫
g∈Im

( ∫
ĝ∈Im′

PĜ |G(ĝ |g) dĝ

)
PG(g) dg

=

tm+1∫
tm

(
Q1

(√2g
σe

,

√
2tm′
σe

)
− Q1

(√2g
σe

,

√
2tm′+1
σe

))
PG(g) dg (17)

where PĜ |G(ĝ |g) is given in (15), Q1 is the Marcum function,

and PG(g) =
1
σ2
h

e
−

g

σ2
h for g ≥ 0 and 0 otherwise is the PDF

of the channel gain.

At a given time slot n, when the action un is done by apply-
ing the optimal policy µ? (obtained for the perfect channel
knowledge case) on the estimated channel state x̂n > xn, the
number of discarded packets due to CSI errors is computed as
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εe(un,Pe,CSI) = un × 1(Pe,CSI , 0), (18)

and the cost function of our MDP problem under policy µ?

and imperfect CSI is given by

D′(µ?) = lim
N→+∞

1
N
Eµ

?

[
N∑
n=1

(
εd(sn,un)

+ εo(sn,un) + εe(un,Pe,CSI)

)]
. (19)

V. NUMERICAL RESULTS

We evaluate numerically the optimal policy obtained by resolv-
ing Problem 1. We consider a system as described in Section
II with the following characteristics: the slot duration is Ts = 1
ms and the maximum delay is K0 = 3 (i.e., in absolute time
K0Ts = 3 ms). Energy arrivals follow a Poisson distribution
with mean λe e.u per slot, where EU = 100 nJ. Energy units
are stored in a battery of size Be = 4 e.u. The maximum
available power at the transmitter is Pmax = 0.4 mW. Data
arrivals follow a Poisson distribution with mean λd packets,
where packets are of equal size L = 5000 bits. Data packets are
stored in a buffer of size Bd = 6 packets. Limited by the queue
size, we fix U0 = 6 packets per slot. The mean channel is ξ = 1
and the channel states x takes 5 possible values (expressed in
dB) from the finite set X = {−10,−3.98,−0.97,0.792,2.04}.
These channel values are obtained according to Section II-C.
The noise power spectral density is N0 = −87 dBm/Hz and
the allocated bandwidth is W = 5 MHz.

A. Perfect CSI

In this section, we consider that the transmitter has a perfect
knowledge of the channel state without any cost.

In Fig. 2, we plot the average number of discarded packets
versus the number of iterations for evaluating the optimal
policy obtained by the VI algorithm for various energy arrival
rates λe where the data arrival rate λd is fixed to 1.5. We
show that the VI algorithm converges rapidly within a few
hundreds iterations for most cases. We can also notice that
as λe increases, the average number of discarded packets
considerably decreases. Indeed, when the available energy
from the surrounding environment is larger, the system is able
to send more packets, reducing thus the number of discarded
packets.

In Fig. 3, we display the percentage of discarded packets
versus the data arrival rate λd for different energy arrival
rates for two policies. The first policy is the (deterministic
offline) optimal one introduced in this paper and obtained
after convergence of the VI algorithm. The second policy
is a naive one in which we force the transmitter to send
the maximum number of packets using the available energy
in the battery. As we can observe, the proposed optimal
policy provides significantly better performance than the
naive one in terms of percentage of discarded packets. In

Fig. 2. Convergence analysis for the average number of discarded packets
with different energy arrival rates.

fact, this policy enables us to adapt the transmission rate
according to the buffer, battery and channel conditions. In
addition, we remark that the number of discarded packets
increases when the data arrival rate λd increases because the
buffer overflow could happen more often. On the one hand,
when the energy available to scavenge is low (small λe), an
efficient energy management becomes crucial to ensure the
sustainability of the system, and the gap between both policies
increases. On the other hand, when a large amount of energy
is available (large λe), the system can survive even without
controlling relevantly the energy consumption which leads
to similar performance between the optimal and naive policies.

Fig. 3. Percentage of the discarded packets versus data arrival rate with
different energy arrival rates.

Similar to Fig. 3, Fig. 4 compares the percentage of discarded
packets of the optimal policy with two other variants of the
naive policy. Unlike the naive policy that sends the maximum
number of packets using the available energy in the battery,
the introduced p-Naive policy restricts the number of packets
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sent by the naive one by taking the buffer state into account
through an additional parameter p in that way:

• fixed p: The policy sends only the packet i from the buffer
if ki ≥ p

• variable p: The policy performs a first step similar to
the previous case (fixed p). If no packet satisfies the
condition, p is decreased by 1, and the first step is
repeated, until p = 0.

The naive policy corresponds to a 0-Naive policy. Here, we
choose p = 2 for the p-naive policy. As we can see, taking
only the age of the packets into the buffer without adapting
carefully the number of packets by the energy battery level
and buffer state leads to decrease the number of sent packets,
and therefore the naive policy remains much better.

Fig. 4. Percentage of the discarded packets versus data arrival rate with
different energy arrival rates and different naive policies.

In Fig. 5, we show the percentage of discarded packets
due to delay violation among all the discarded packets for
the optimal policy with different data arrival rates λd and
energy arrival rates λe. As explained before, a packet can be
discarded due to either delay violation or buffer overflow.
When the data arrival rate increases, the probability to discard
a packet due to buffer overflow increases which decreases the
contribution of the delay violation in the discarded packets.
When the energy arrival rate decreases, the percentage of
discarded packets due to the delay violation slightly increases
because, in average, a packet remains more often in the buffer
since there is no energy enough to transmit it. Hence, it is
flushed from the buffer for latency’s purpose.

In Fig. 6, we plot the average consumed energy versus the
data arrival rate λd with different energy arrival rates λe. We
observe that the optimal policy consumes less energy than
the naive one while sending more packets because it adapts
the number of transmitted packets per slot to the channel
conditions and the battery state and thus, the transmission is
done according to the energy it consumed.

Fig. 5. Percentage of the discarded packets due to delay violation versus data
arrival rate and energy arrival rate with the optimal policy.

Fig. 6. Average consumed energy versus data arrival rate with different energy
arrival rates.

In Fig. 7, we show the average battery state versus the packet
arrival rate λd with different energy arrival rates λe. As the
optimal policy offers a lower energy consumption (see Fig.
6), the battery is less used and its energy level is thus higher.
This ensures a better sustainable communication with less
number of discarded packets.

In Fig. 8, 9 and 10, we compare the performance of our
optimal policy to the optimal policy obtained by forcing the
average (instead of the strict) delay to be less than a pre-
defined threshold. Both policies are applied assuming buffer
overflow and delay violation as the way to drop the packets,
but the second policy is optimized just in order to minimize
the buffer overflow and keep an average delay small enough.
Therefore, this policy is obtained as follows: according to
the Little’s law, we propose to convert the average delay
constraint Dct into an average queue length constraint Qct

since Qct = λd .Dct where λd is the data arrival rate. The
policy ensuring a bounded average delay can be found by
solving the following Constrained Markov Decision Problem
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Fig. 7. Average battery state versus data arrival rate with different energy
arrival rates.

(CMDP):

µ̃Qct = arg min
µ

lim
N→+∞

1
N
Eµ

[
N∑
n=1

εo(sn,un)

]
(20)

s.t. lim
N→+∞

1
N
Eµ

[
N∑
n=1

qn

]
6 Qct (21)

where qn is the queue length. Notice that we do not consider
the delay violation for this optimization since the strict delay
is not taken into account in this policy as we just force the
average delay to be less than a threshold. So the policy µ̃Qct

is done to handle properly the average delay and not the strict
delay.

Our optimal policy adapted to strict delay has been computed
with K0 = 3. In order to compare both policies in the strict
delay constraint set up (it means that the packet is dropped
if the delay is strictly larger than K0 even if we apply the
policy µ̃Qct ), we need to choose properly Dct . It makes sense
to force Dct ≤ 3 in order to have a small amount of dropped
packets due to delay violation. As Dct = 2 or Dct = 3 have
led to similar performance, we have fixed Dct = 3.

As we can see, our policy outperforms the policy considering
only the average delay in terms of percentage of discarded
packets, consumed energy (in most cases), and battery levels
(in most cases). So, it was worth to do the effort to optimize
the policy by taking into account the strict delay into the
state model rather than just using the optimal policy adapted
to the average delay with a well-tuned threshold.

We now consider that the EH process is time-correlated. In
order to cast this assumption into an MDP framework, we
need to add EH process e to the state of the system, i.e.,
s = (k, b, e, x) instead of (k, b, x) as done previously. Then, a
new optimal policy taking into account the EH correlation is
re-computed by using the same tool, i.e., the VI algorithm.
Here, we assume that the transition probability of the Markov
Chain satisfies the following equation

Fig. 8. Percentage of the discarded packets versus data arrival rate with
different energy arrival rates between strict and average delay policies(µ?
and µ̃3, respectively).

Fig. 9. Average consumed energy versus data arrival rate with different
energy arrival rates between strict and average delay policies (µ? and µ̃3
respectively).

p(s′ |s,u) = p(k′ |k, b,u).p(b′, e′ |b, e, x,u).p(x ′), (22)

where p(b′, e′ |b, e, x,u) is obtained according to the following
rules:

1: if E > b then
p(b′, e′ |b, e, x,u) = 0

2: else if b′ < b − E then
p(b′, e′ |b, e, x,u) = 0

3: else if b′ = min(Be, b − E + e) then
p(b′, e′ |b, e, x,u) = p(e′ |e)

4: else
p(b′, e′ |b, e, x,u) = 0.

In addition, the transition probability from a energy arrival
state j at time slot n to another energy arrival state i at time
slot n + 1 is given by
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Fig. 10. Average battery state versus data arrival rate with different energy
arrival rates between strict and average delay policies (µ? and µ̃3 respec-
tively).

p(en+1 = i |en = j) =
(1 − ρe) |i−j |

|He |−1∑
k=0
(1 − ρe) |k−j |

(23)

where ρe is the so-called correlation factor and He is the set
of potential energy units harvested during one slot.

In Fig. 11, we compare the performance of the optimal policy
(adapted to time-correlated EH process) with the naive policy.
We set He = {0,1,2} e.u. per slot.

Fig. 11. Percentage of the discarded packets versus data arrival rate with
different correlated energy arrival rates between strict and naive policies.

The proposed optimal policy is still better than the naive
policy. The performance of the system decreases when ρe
increases because the system will be trapped in the state e = 0
for a longer period of time, leading to more discarded packets.

B. Imperfect CSI
In this section, our goal is to evaluate the proposed optimal
policy when the transmitter relies on an estimated version of
the channel state. The estimation phase duration is equal to
τ = 10 µs (1% of Ts), and a power of Ptr = 4 mW is used.
The corresponding energy consumption for the estimation
phase is thus E = 40 nJ which can be neglected to the energy
unit, and therefore we assume Ece = 0 e.u..

In Fig. 12, we compare the percentage of discarded packets
between perfect and imperfect CSI scenarios. For low data
arrival rate λd , the gap between both scenarios is large. Indeed,
in our set up, the smallest channel mismatch probability is
between 10−3 and 10−2 which implies that the percentage of
discarded packets is necessary worse since as soon as the
channel is over-estimated, the packets are dropped. However,
when the data arrival rate increases, the buffer overflow can
happen more often and the channel mismatch probability
has less impact, which lead both scenarios to behave similarly.

Fig. 12. Percentage of the discarded packets versus data arrival rate with
different energy arrival rates between perfect and imperfect CSI scenarios.

In Fig. 13, we compare the optimal and naive policies under
perfect and imperfect CSI scenarios. For small energy arrival
rate λe, the optimal policy under imperfect CSI is better than
the naive policy with perfect CSI, because the latter sends
packets without any adaptation to the energy and data arrivals,
so energy shortage can happen more often and the number
of discarded packets increases. For high energy arrival rate,
imperfect CSI has stronger impact since the energy has to
be controlled in a smarter way and knowing the channel
accurately is more required.

In Fig. 14, we compare the percentage of discarded packets
for different estimation times τ (expressed in % of Ts). For
low data arrival rate λd , increasing the estimation time leads
to a better channel estimation, which slightly reduces the
number of discarded packets since the impact of estimation
error is high in this configuration (see Fig. 12). Nevertheless,
after a certain threshold, for instance τ ≈ 5%, the number
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Fig. 13. Percentage of the discarded packets versus data arrival rate with
different energy arrival rates for different policies and between perfect and
imperfect CSI scenarios.

of discarded packets will increase because the remaining
communication time of the slot is smaller. This leads to
decrease the number of sent packets and so to increase the
number of packets into the buffer, exhibiting thus more delay
violation and buffer overflow. For high data arrival rate,
we know that the estimation accuracy is not required (see
Fig. 12). Therefore, increasing the estimation time directly
decreases the performance since the system has less time for
data packets transmission.

Fig. 14. Percentage of the discarded packets versus the estimation time τ
(expressed in % of Ts ) with different data and energy arrival rates.

In Fig. 15, we display the nature of discarded packets
in percentage due to delay violation, buffer overflow and
channel mismatch with different data and energy arrival
rates. The number of discarded packets due to channel
mismatch is significant for low data arrival rate because
the delay violation or the buffer overflow can happen less
often. However, for high data arrival rate, the number of
packets discarded due to channel mismatch is negligible

and the policy behaves approximately in the same way
for perfect and imperfect CSI. Nevertheless, the imperfect
CSI degrades the whole system (on the delay violation
and buffer overflow) since a part of the time slot is now
devoted to perform the estimation rather than the transmission.

Delay

85%
Estim.

12%

Overf.
3%

(a) λd = 0.5 - λe = 0.5

Delay
26%

Estim.
1%Overflow

73%

(b) λd = 3.0 - λe = 0.5

Delay
8%

Estim.
90%

Overf.
2%

(c) λd = 0.5 - λe = 2.0

Delay
8%

Estim.
2%Overflow

90%

(d) λd = 3.0 - λe = 2.0

Fig. 15. Percentage of the discarded packets due to delay violation, buffer
overflow, and channel mismatch with different data and energy arrival rates.

Under imperfect CSI assumption, it is usual to allow packet
re-transmission through an Hybrid Automatic Repeat ReQuest
(HARQ) protocol instead of trashing the packet once sent [33].
But adapting our work to HARQ requires a huge modification
of the MDP framework. Here, we just run our policy (the
optimal one described in Section III) when ARQ and Chase
Combining HARQ (CC-HARQ) protocols are carried out. The
only modification is to keep the packet in the buffer at the
end of the ARQ process instead of wasting it. So there is a
trade-off between the higher probability for each packet to be
correctly decoded at the receiver, the higher duration for the
packet to stay in the buffer while waiting for the feedback,
the higher energy consumed for re-transmitting the packet. In
Fig. 16, ARQ and CC-HARQ are implemented with at most
two transmissions (one re-transmission is allowed only). When
λe is low, using ARQ and CC-HARQ is not efficient because
re-transmitting the same packet twice consumes energy while
it is not available in large quantities. However, when λe is
large, these two protocols significantly reduce the number of
discarded packets due to imperfect CSI.

VI. CONCLUSION

We have addressed resource scheduling problem under energy
harvesting capabilities with strict delay constraint and perfect
CSI. More precisely, we have solved the packet loss opti-
mization problem using MDP framework and dynamic pro-
gramming techniques. The optimal policy adapted the number
of transmitted packets according to the channel conditions,
the available energy in the battery, and the battery level
such that the number of discarded packets is minimized. We
have compared our proposed strict delay based policy with
different variants of a naive policy and the state-of-the-art
policy relying only on the average delay, showing significant
savings in packet loss and energy consumption. Finally, we
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Fig. 16. Percentage of the discarded packets versus data arrival rate with
different energy arrival rates between perfect and imperfect CSI scenarios.

have evaluated the impact of imperfect CSI without and with
ARQ protocols on the optimal policy in terms of additional
packet loss due to the channel estimation time and errors. As
perspectives, we aim i) to use Deep Reinforcement Learning
(DRL) techniques to deal with the curse of dimensionality,
ii) to include offloading capabilities, where the system can
choose to execute packets locally, offload it to nearby servers
or base stations having more resources according to the buffer,
available energy, and channel conditions under unknown CSI.
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