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Abstract—Design of energy efficient protocols for modern
wireless systems has become an important area of research.
In this paper, we propose a distributed optimization algorithm
for the channel assignment problem for multiple interfering
transceiver pairs that cannot communicate with each other. We
first modify the auction algorithm for maximal energy efficiency
and show that the problem can be solved without explicit message
passing using the carrier sense multiple access (CSMA) protocol.
We then develop a novel scheme by converting the channel
assignment problem into perfect matchings on bipartite graphs.
The proposed scheme improves the energy efficiency and does
not require any explicit message passing or a shared memory
between the users. We derive bounds on the convergence rate
and show that the proposed algorithm converges faster than
the distributed auction algorithm and achieves near-optimal
performance under Rayleigh fading channels. We also present an
asymptotic performance analysis of the fast matching algorithm
for energy efficient resource allocation and prove the optimality
for large enough number of users and number of channels.
Finally, we provide numerical assessments that confirm the
energy efficiency gains compared to the state of the art.

Index Terms—Auction algorithm, bipartite graph, channel
assignment, energy efficiency (EE), linear programming, dis-
tributed protocol, multi-access channel, Rayleigh fading channel,
resource management, wireless networks.

I. INTRODUCTION

Communication networks have been designed to optimize
conventional performance measures such as bit-error-rate,
latency, and data-rate in the past few decades. In the last
few years, the issue of energy-efficient network design has
gained more importance [1], [2], [3], [4]. Information and
communication technologies (ICT) represent about 2% of
the entire world’s energy consumption, and the situation
is likely to reach a point where ICT equipment in large
cities will require more energy than is actually available [5].
For data networks, contrary to the intuition, more energy is
consumed in access networks than in core networks. This
happens because the number of devices in access networks
(i.e. mobile terminals, base stations, and data modems installed
on customers’ premises) is much larger than the number of
communication devices (routers, multiplexers, etc.) in the core
network. This has sparked research in the field of wireless
networks with a focus on the problem of optimizing the energy
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efficiency (EE) at the physical layer by maximizing the ratio
of a SINR-based function over the consumed energy.

Unlike cellular networks where the energy efficiency can be
optimized in a centralized manner, in many cases centralized
optimization is not possible. In this case distributed protocols
are needed as a practical solution to maximize the energy ef-
ficiency of the network. Several approaches had recently been
suggested for optimal distributed allocation. These approaches
utilize an opportunistic version of carrier sensing to determine
an orthogonal allocation which is optimal or near optimal in
the sense of exploiting channel diversity. The first example
is the use of the well known Gale-Shapley stable marriage
theorem [6] to allocate spectra in a multichannel setup [7], [8].
In [8], Leshem et al. demonstrated how a stable channel allo-
cation can be obtained without any explicit transmission using
carrier sensing as a mechanism to prioritize channel. Analysis
of this technique for Rayleigh fading channels appeared in [9].
In [10] and [11] a single user channel is considered and the
optimization is carried out through transmit power control.
In contrast, in [12]- [19] and [20], multiuser interference
channels are considered and a competitive scenario in which
users selfishly aim at individual EE maximization is addressed.
Centralized and decentralized resource allocation in multi-hop
networks for energy-efficiency maximization is studied in [21],
[22].

Other approaches to the distributed channel allocation prob-
lem include game theoretic bargaining solutions [23], [24],
[25] and distributed allocation using multichannel ALOHA
[26], [27]. While the stable allocation which turns out to be
the greedy assignment is almost optimal for Rayleigh fading
channels, it is desirable to obtain the optimal allocation. It is
well known that this allocation can be computed by solving
a linear programming problem [28]. However, in order to
compute the optimal distributed solution [29], [30] revised
the auction technique of Bertsekas [31] which requires a
shared memory or price exchange between the bidders and
the auctioneer. Instead of knowledge of the highest price this
technique only requires knowledge of local prices. Based on
the local prices, an algorithm which can be implemented
using multichannel opportunistic carrier sense multiple access
(CSMA) is presented and its optimality is proved.

One of the disadvantages of the distributed auction algo-
rithm is its convergence time which might be too long in
practical scenarios. It was suggested in [29] to use a simplified
version of the distributed auction algorithm and look for
perfect matching instead of optimal matchings to optimize
energy efficiency. It was proven that the matching algorithm
is asymptotically optimal for sum rate maximization and
simulated results showed fast convergence time. No analysis
for the expected convergence time was given in [29]. In [32]
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energy efficiency is optimized in a distributed manner for
cellular scenario using fractional programming.

In this paper, we propose a distributed optimization al-
gorithm for the channel assignment problem to increase the
energy efficiency of multiple interfering transceiver pairs that
cannot communicate with each other. We show that the prob-
lem can be solved without explicit message passing using
a modified distributed auction algorithm. We then develop a
novel scheme by converting the channel assignment problem
of the distributed auction algorithm into finding perfect match-
ings on bipartite graphs. The proposed fast matching algorithm
reduces the convergence time of the distributed auction al-
gorithm and achieves near-optimal performance. We analyze
the performance of the fast matching algorithm for energy
efficiency maximization and show that the expected energy ef-
ficiency index achieved by the matching algorithm approaches
the optimal energy efficiency index for large enough number of
users and number of resources. We also prove that the expected
number of iterations until convergence of the fast matching
algorithm is O (N log(N)), where N denotes the number of
users. We provide numerical assessments for various wireless
channels that confirm the energy efficiency gains compared to
the state of the art.

The paper is organized as follows: in Section II we define
the maximal energy efficiency problem. Section III discusses
the distributed auction algorithm. In Section IV we present
a fast converging algorithm for a relaxation to the maximal
energy efficiency problem and show that the algorithm for
the relaxed problem terminates within O (N log(N)) iterations
with high probability. The performance of the fast matching
algorithm is studied in Section V. In Section VI we discuss
simulated results for the proposed algorithm. Finally, Section
VII concludes the paper.

II. PROBLEM FORMULATION

Before formulating the optimization problem for maximal
energy efficiency, we present various definitions of energy
efficiency for communication networks used in the literature.

A. Definitions of Energy Efficiency

The first and most widely used definition of EE is the ratio
between the throughput and the transmit power (see [12]-
[18], and references therein). Another proposed metric uses
the goodput in place of the throughput [19]. In all of the
above works, as far as the computation of the consumed power
is concerned, only the transmit power is considered, whereas
the power that is dissipated in the electronic circuitry of each
terminal in order to keep the terminal active is neglected. This
assumption was relaxed in [33], by defining the consumed
power as the sum of the transmit power plus a constant term,
independent of the transmit power, which models the circuit
power needed to operate the terminal. Following [33], in [20]-
[11] the consumed power is also defined as the sum of the
transmitted power and the circuit power. Moreover, in these
papers the throughput is replaced by the achievable rate in the
definition of the energy efficiency.

Essentially, each transmitter n is not only interested in
maximizing its own performance in terms of achieved SINR
γn, but also in saving as much battery energy as possible.
This trade-off is well modeled by defining the EE of a
given terminal n, as the ratio between the so-called efficiency
function which measures the SINR-based performance of user
n and the power consumed to attain this performance level
[20]-[11]:

EEn =
f (γn)

pn + Pc,n
. (1)

In (1), Pc,n is the power that is required by the transmitter
electronic circuitry to operate the device, and which is dissi-
pated even during non-transmission periods. For further details
on the circuitry power term, we refer the reader to [34] and
references therein, where several power consumption models
for wireless networks are developed. As for f(γ), in principle
it can be a generic increasing function of the n-th user’s SINR,
with f(0) = 0 and such that (1) tends to zero for growing pn.
Two widely used efficiency functions are:

1) f(γn) = R(1 − e−γn), where R is the communication
rate and (1−e−γn) is an approximation of the probabil-
ity of correct symbol reception. A similar approximation
was used in [13], [14]. Thus, f is the number of bits that
are correctly demodulated at receiver n per unit of time.

2) f(γn) = W log(1+γn), where W is the communication
bandwidth. For strictly static channels f represents the
n-th user’s achievable rate. For quasi-static channels, the
use of f for resource allocation purposes is still well-
motivated in view of the assumption that the channel
coefficients remain constant for longer than the resource
allocation phase.

Variations of option 1) are also available in the literature
in the form of f(γn) = R(1 − e−γn)M and f(γn) =
R(1 − e−γn/2)M , and in this case the function f(·) is an
approximation of the probability of error-free reception of a
data packet of M symbols. An EE that considers both the
case of M > 1 and the circuit power Pc,n was considered
in [33] for a single-hop system. There, it was shown that an
equilibrium for the power allocation algorithm exists, but the
convergence could not be proved. The techniques developed
in this paper could be used to extend the results of [33] to the
relay-assisted scenario, as well. However, in the following we
choose to focus on the equally well-motivated case of M = 1.
Thus, for any M , the resulting EE (1) is a measure of the
number of bits that are correctly decoded at the receiver, per
unit of time and per Joule of energy drained from the battery
of the transmitter. Moreover, all the efficiency functions that
we consider result in an EE (1) which is measured in bits per
Joule, thus representing a natural measure of the efficiency
with which each Joule of energy drained from the battery is
being used.

Two pertinent social welfare performance metrics are the
average EE and the system global EE (GEE), respectively
defined by [14]-[18] as:

EE =
1

N

N∑
n=1

f(γn)

Pc,n + pn
(2)
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and

GEE =

∑N
n=1 f(γn)∑N

n=1 Pc,n + pn
. (3)

Customarily, the GEE in (3) is used to describe the energy
efficiency of the overall system while EE in (2) focuses on
energy efficiency of individual users.

B. Problem Formulation

We consider N transceiver pairs sharing a time slotted
frequency band divided into K sub-bands. This can be seen
as the open sharing model of the cognitive radio [35]. We
assume K ≥ N . This assumption can always be fulfilled:
if N > K than N − K artificial channels with rate zero
could be added and make N = K [31]. Let P be a matrix of
transmission powers where each channel is used by a single
user and Pn,k is defined as the minimal power needed by the
n-th user to achieve a preassigned target rate Rn in the k-th
channel. We assume all the users have continuous sensing over
all channels [8], [32]. This is a reasonable assumption since
the sensing power is only a small percentage of the total power
in wireless networks [36]. We also assume that only one user
can transmit on each channel in each time slot and consider
alien interference from other networks as the additive noise.
Each user experiences frequency selective channel caused by
both channel statistics and out of cell interference (since out
of cell interference affects different users in a different way).

We propose a fully distributed method to maximize the
energy efficiency of the system using different utility functions
as described in the following:

1) Average EE under rate constraint: Under the expected
rate constraints, each entry Pn,k of the matrix P is chosen to
be the solution to the following ergodic rate equation

Rn = E
(

log2

(
1 +
|Hn,k|2Pn,k

σ2
n

))
, (4)

where Hn,k is the channel coefficient for the n-th user at the k-
th frequency and σ2

n is the noise variance of the n-th receiver.
By using Jensen’s inequality, we get

Rn ≤ log2

(
1 +

E
(
|Hn,k|2

)
Pn,k

σ2
n

)
. (5)

The solution to the above equation gives us to minimize the
energy

Pn,k ≥
(
2Rn − 1

)
σ2
n

E (|Hn,k|2)
. (6)

Using equations (6) and (2), we define the utility matrix Uav

such that Uav
n,k is chosen to be the optimal individual EE for

the n-th user in the k-th channel under rate constraint Rn

Uav
n,k =

Rn
φσ2

n

|Hn,k|2 + Pn
, (7)

where φ =
(
2Rn − 1

)
is a function that makes the power

Pn,k used on the k-th channel by the n-th user to satisfy a
QoS requirement. We denote Pn by the minimal power of
the n-th device for its operation including the receiver power
consumption and energy consumed during idle times.

2) Average EE under goodput constraint: Another problem
we solve is the energy efficient channel assignment under a
goodput requirement. The achievable goodput is defined as the
rate of the successfully transmitted symbols. In this case Pn,k
is chosen to fulfill a goodput requirement:

Tn = R (1− SER) = R

(
1− e−

|Hn,k|
2Pn,k

σ2n

)
, (8)

for a fixed R > 0 and Tn. The solution for Pn,k is given by

Pn,k =
log
(
1− Tn

R

)
σ2
n

|Hn,k|2
, (9)

and

U good
n,k =

Rn
φσ2

n

|Hn,k|2 + Pn
, (10)

where φ = log
(
1− Tn

R

)
.

3) Global EE under rate constraint: The third problem is
the energy efficiency maximization with respect to the GEE
criterion. Assuming preassigned target rates for the users, the
problem simplifies into a power minimization problem under
rate constraints. We assume that the instantaneous transmis-
sion power is limited per user by Pmax. For simplicity, we
formulate the utility of the GEE as a maximization problem.
We define the utility matrix UGEE for the GEE criterion as

UGEE
n,k =

{
Pmax − Pn,k, Pn,k ≤ Pmax

0, Pn,k > Pmax.
(11)

Combining the utility functions in (7), (10), and (11), the
maximum energy efficiency problem can be formulated as an
integer programming problem in a general form as

max
η

N∑
n=1

K∑
k=1

Un,kηn,k

s.t.∑
k ηn,k = 1, ∀n = 1, 2, .., N∑
n ηn,k = 1, ∀k = 1, 2, ..,K

ηn,k ∈ {0, 1}, ∀n, k

(12)

The constraint matrix of the problem in (12) is totally
unimodular. Thus, the solution to the relaxed problem where
we replace the integer constraint by 0 ≤ ηn,k ≤ 1 is also
the solution to the original problem. The relaxed problem is a
linear programming (LP) problem and can be solved efficiently
in a centralized manner by LP solutions methods such as
the Hungarian method [28]. Although the original problem
in (12) is relaxed, we prove that after the relaxation we can
still achieve asymptotically optimal results in much lower time
complexity than solving the original problem.

In the next section, we describe a distributed auction algo-
rithm for the channel assignment problem in (12) to achieve
maximal energy efficiency of the system. Subsequently, we
describe a fast matching algorithm to reduce the convergence
time of the distributed auction algorithm.
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III. DISTRIBUTED AUCTION ALGORITHM

We propose the use of a fully distributed channel assignment
algorithm for maximal energy efficiency that does not require
any explicit message passing or a shared memory between the
users. The algorithm relies on the auction algorithm [31] and
the distributed algorithm suggested in [30] for sum-rate max-
imization. The distributed protocol consists of a bidding stage
and an assignment stage. The description of the algorithm is
as follows. The utility matrix U is an N×K matrix of energy
efficiency indexes and C is an N ×K cost matrix. The cost
of a channel Cn,k is a unitless number that merely represents
how much user n wants channel k in comparison to the other
users. We define the profit of user n from channel k as the
reward (i.e. energy efficiency index) minus the price of the
channel Un,k −Cn,k. In the initialization stage each user sets
the cost for all of the channels to be 0; i.e., Cn,k = 0,∀n, k,
select ε > 0 and sets his state to unassigned. k̃n is defined as
the most profitable channel of the n-th user:

k̃n = arg max
k

U(n, k)− C(n, k). (13)

The distributed protocol proceeds in iterations. In each
iteration two stages are sequentially performed, a bidding stage
where users raise the price on their most profitable channel and
an assignment stage where channels are assigned to the users
who proposed the highest prices. In the bidding stage, each
unassigned user n find his most profitable channel k̃n and the
profits from that channel γn and his second most profitable
channel ωn

k̃n = arg max
k

(Un,k − Cn,k)

γn = Un,k̃n − Cn,k̃n
ωn = max

k 6=k̃n
(Un,k − Cn,k).

(14)

Each unassigned user raises the price on his most profitable
channel by

Cn,k̃n = Cn,k̃n + γn − ωn + ε, (15)

where ε is a predetermined positive constant that can be seen as
the price of participating in the auction. After the unassigned
users update their prices, all the users bid on their most
profitable channels. If user n gets assigned to channel k he
continues to bid on that channel without raising his bid. If a
user n is unassigned he bids on k̃n with the new bid Cn,k̃n . In
the assignment stage each channel is assigned to the highest
bidding user. A channel without bids stays unassigned and
users who were not assigned to channels become unassigned.
The bidding and assignment stages proceed in iterations until
all the users are assigned to channels. Once all of the users are
assigned to channels, no one raises his bid and as a result the
assignment becomes static. When all the users are assigned
we say that the algorithm has converged. The distributed
auction algorithm appears in Table I. It was proven in [30]
that the distributed auction algorithm for the sum-rate problem
converges in finite time to a solution within Nε from the
optimal solution.

The distributed auction algorithm can be implemented using
an opportunistic CSMA protocol without the use of explicit

TABLE I
DISTRIBUTED AUCTION ALGORITHM

Select ε > 0, set all the users as unassigned and set
C(n, k) = 0, ∀n, k
Repeat

1. Each unassigned user n calculates his own maximum profit:
γn = maxk(U(n, k)− C(n, k))

2. Each unassigned user n calculates his second maximum profit:
k̃n = argmaxk(U(n, k)− C(n, k))
ωn = maxk 6=k̃n

(U(n, k)− C(n, k))

3. Each unassigned user n updates the price of his best channel k̃n
to be C(n, k̃n) = C(n, k̃n) + γn − ωn + ε

4. All the users bid. The unassigned users bid on their new best
channel with the updated bid. The assigned users bid on the last
channel they bid on and with the same price.

5. Assign channel to the highest bidder (channels with no bids
stay unassigned)

Until all users are assigned

message passing among users. However, only coordination
requirement between users lies with an auctioneer to decide
which user made the highest bid. The opportunistic CSMA
can be used as an auctioneer. We can define the reward that
each user n gets from channel k to be the energy efficiency of
that channel U(n, k). Using the opportunistic CSMA scheme,
each user n tries to access his best profit channel as defined
in (13) with a backoff time of τn = f(k̃n) where f(x) is a
positive monotonically decreasing function. The price C(n, k)
is determined and updated if necessary as described in Table
I. The prices and their corresponding waiting times must
converge in a finite number of iterations as in the distributed
auction algorithm.

It was shown in [30] that the number of iterations needed
until the convergence of the distributed auction algorithm
is bounded by O

(
N3
)
. In the next sections, we suggest a

relaxation to the maximal energy efficiency problem. We show
that the suggested relaxation is asymptotically optimal and can
be solved with O (N log(N)) expected number of iterations.

IV. FAST MATCHING ALGORITHM

In (12), we have formulated the maximum energy efficiency
channel assignment problem for arbitrary values. In the previ-
ous section, we showed that this problem can be optimally
solved in a fully distributed manner using the distributed
auction algorithm. However, the expected convergence time
for the near-optimal distributed auction algorithm might be
too high for practical use. To speed up the convergence time,
we develop a novel scheme by considering a relaxation to the
channel assignment problem where each channel can either
be "good" or "bad". Essentially, channel k is a good channel
(corresponding to the channel gain) for the n-th user with
respect to a properly chosen threshold. We represent a good
channel by 1 and a bad channel by 0. Since every channel can
be either good or bad, the utility matrix of the relaxed problem
becomes {0, 1}N×K , which can be represented using bipartite
graphs. Thus, the channel assignment problem for energy
efficient transmissions is reduced finding perfect matchings
on bipartite graphs.
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TABLE II
ALGORITHM FOR MAXIMAL CARDINALITY MATCHING

1) Initialize hv = 0, ∀v ∈ V , Ufree = {1, 2, ..., N} and set M = ∅
2) While |M | < N do

a) Choose u ∈ Ufree
b) j = argminv∈nu hv
c) M =M ∪ (u, j)
d) uold = {u ∈ U : (u, j) ∈M}
e) M =M \ (uold, j)
f) Ufree = Ufree ∪ uold \ u
g) hj = hj + 1

3) Return

A. Maximum Cardinality Matching on Bipartite Graphs

To formulate the maximum energy efficiency assignment
problem as a matching problem on bipartite graph and for
theoretical analysis, we need various definitions and relevant
results on bipartite graph. These have been presented in the
Appendix A. Using these definitions, we define the maximum
cardinality matching problem as follows: Let G = (U, V,E)
be bipartite graph with vertex sets |U | = |V | = N and an edge
set E. Find a matching M such that |M | is maximal. Here,
U,V in the bipartite graph represent the users and the channels,
respectively, and the edges represent the energy efficiency of
each user in each channel.

The maximum cardinality matching (MCM) problem can
also be formulated as the max-energy efficiency problem (12)
where the reward matrix is a binary matrix with 0, 1 values.
We now present an algorithm that finds a maximum cardinality
matching on bipartite graphs which can be implemented in
a fully distributed manner. This iterative algorithm assigns
an unassigned user to a channel according to the following
scheme: Each channel k ∈ K is assigned a value hk that
represents how many times the channel was reassigned to
different users. Let h(i) = [h1, h2, ..., hK ] be the vector of the
values of the channels on the i-th iteration. At the beginning
of the algorithm all the values of the channels are initialized
to 0; i.e.,

h
(0)
k = 0, ∀k = 1, 2, ...,K.

Let Ufree be the set of all free users. In each iteration,
an unassigned user u ∈ Ufree is chosen and assigned to the
channel with a minimal value he can access and raises its
value by 1. The MCM algorithm is summarized in Table II.

B. Expected Number of Iterations of Fast Matching Algorithm

In this section, we analyze the expected number of iterations
until the algorithm converges for random bipartite graphs.
G = (U, V,E) is called a bipartite random graph if G is
a bipartite graph and the edges in E are independently chosen
with probability p; i.e.,

Pr ((u, v) ∈ E) = p, ∀u ∈ U, ∀v ∈ V. (16)

Denote the set of all random bipartite graphs with vertex sets
|U | = |V | = N and probability p for an edge by B(N, p).
The following known result on perfect matching in random
bipartite graphs was proven by Erdős and Rényi in [37] and
Motwani in [38] :

Theorem (Erdős and Rényi [37]). Let p = (1+ε) log(N)
N and

G ∈ B(N, p) then

lim
N→∞

Pr (G contains a perfect matching)− e−2N−ε = 0.

(17)

Theorem (Motwani [38]). Let G ∈ B(N, p) where p ≥
(1+ε) log(N)

N then for every γ > 0 there exists Nγ such that
for every N ≥ Nγ

Pr(G ∈ B(N, p)) ≥ 1−N−γ . (18)

The next theorem proven in [39] shows that for random
bipartite graphs with p ≥ (1+ε) log(N)

N the number of iterations
until the convergence of the algorithm is less than cN log(N)

log(Np)
with high probability, where c > 0 is a constant.

Theorem (Naparstek and Leshem [39]). Let G = (U, V,E)
be a random bipartite graph with |U | = |V | = N and
p ≥ (1+ε) log(N)

N . Let T be the number of iterations until the
algorithm converges then:

lim
N→∞

Pr

(
T ≤ cN log(N)

log(Np)

)
= 1. (19)

Above theorem ensures that the fast matching finds a
perfect matching with a probability that approaches 1 in
O (N log(N)) iterations.

In what follows, we analyze the fast matching algorithm in
wireless channels and show that the proposed scheme can be
implemented in practical systems to find asymptotically op-
timal solution to the energy efficiency maximization problem
with a small number of iterations.

V. PERFORMANCE OF FAST MATCHING ALGORITHM

In this section, we analyze the expected number of iterations
required by the fast matching algorithm in a Rayleigh fading
channel, and show that the proposed algorithm is asymp-
totically optimal for the maximally energy-efficient channel
assignment problem.

As described in the previous section, the main idea of the
fast matching algorithm is to transform U into a binary 0, 1
matrix Ũ, and then apply the matching algorithm on Ũ. The
transformation from U to Ũ is done by applying a judiciously
chosen threshold athresh

n ≥ 0 for each row:

Ũn,k =

{
1, Un,k ≥ athresh

n

0, Un,k < athresh
n .

(20)

To ensure asymptotically optimal solutions to the max-energy
efficiency problem, athresh

n must satisfy the following require-
ments:

1) Only the best channels (corresponding to the channel
gain) of each user should be above athresh

n .
2) Ũ should contain a perfect matching with high proba-

bility.
The first condition ensures that the solution to Ũ can provide a
good solution to the max-sum problem. The second condition
ensures that with high probability all of the users will get
assigned by the algorithm. We define a parameter m such that
m log(N) best channels of each user are above the threshold.
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Assume that each row n of U consists of i.i.d random
variables and assume that the cumulative distribution function
(CDF) of each entry of Un,k is given by Fn. A proper choice
of athresh

n would be

athresh
n = F−1

n

(
1− m log(N)

N

)
, (21)

where m > 2 [39]. The choice of the threshold satisfies the
first condition since only m log(N) best channels of each
user are above the threshold. Theorem by Erdős and Rényi
in [37] ensures that with high probability Ũ contains a perfect
matching if athresh

n ≥ 0 for all n = 1, 2, ..., N . Hence, the
proposed algorithm can converge faster with high probability
when target rate of each user be chosen independently such
that with high probability athresh

n ≥ 0 for all n = 1, 2, ..., N .

A. Target Rates for Rayleigh Fading Channels

We model the channels of each user as Rayleigh fading
channels; i.e., the channel attenuation |Hn,k|2 is an exponential
random variable given by

|Hn,k|2 = Gn · Fn ·
1

rαn
, (22)

where Gn is a global normalizing factor, Fn is an exponen-
tially distributed gain (due to the Rayleigh fading channel
with a multi-path effect), rn is the distance between the n-th
transmitter from its receiver and α is the path loss exponent.
Hence, the PDF of |Hn,k|2 is:

f|Hn,k|2(x) = λne
−λnx, (23)

where
λn =

rαn
Gn

=
1

E(|Hn,k|2)
. (24)

The instantaneous rate of user n in channel k is given by [40]:

Rn,k = log2

(
1 +
|Hn,k|2Pn,k

σ2
n

)
. (25)

We now present sufficient conditions on Rn such that the fast
matching algorithm converges within O (N log(N)) expected
number of iterations.

Theorem 1. The fast matching algorithm converges within
O (N log(N)) expected number of iterations in a Rayleigh
fading channel with SNR γ̄ =

PmaxE(|Hn,k|2)
σ2
n

if the following
requirement is satisfied for all n:

Rn ≤ log2

(
1 + γ̄ log

(
N

m log(N)

))
(26)

for the rate requirement, and

Tn
R
≥ 1−

(
1 +

N

m log(N)

)γ̄
(27)

for the goodput requirement.

Proof: The proof is presented in Appendix B.
Theorem 1 provides conditions on the target rate of each

user under which the proposed algorithm has a faster conver-
gence rate. Examining (26) reveals that a target rate equal to
the capacity of the channel satisfy the rate requirement for

TABLE III
FAST MATCHING ALGORITHM USING OPPORTUNISTIC CARRIER SENSING

FOR THE n-TH USER

Initialize hk = 0, ∀k ∈ K, set assigned=false
set bn to be the indices of m log(N) best
channels of the n-th user, set Niter = 0
Repeat

1. If assigned=false then
1.1Niter = Niter + 1

1.2 Find the channel with minimal value ĵ = argmini∈bn hi
1.3 Choose random backoff time τn
1.4 If a busy tone was transmitted on channel i before τn then

1.4.1 No transmission attempt by the n-th user in the current
time slot

1.4.2 hi = hi + 1
1.5 Else

1.5.1 Transmit a busy tone on the ĵ-th channel.
1.5.2 hĵ = hĵ + 1

1.5.3 Set assigned=true
1.6 End if

2. Else
2.1 If a busy tone was transmitted on channel i before τmax then

set hi = hi + 1
2.2 Niter = Niter + 1

2.3 If i = ĵ
2.3.1 No transmission attempt by the n-th user in the current

time slot
2.3.2 Set assigned=false

2.4 Else transmit a busy tone on the j-th channel.
3. End If

Until all users are assigned or Niter = (N − 1)2

If Niter = (N − 1)2

run the distributed auction algorithm from [30].
End If

faster convergence. Note that users do not require external
knowledge or message passing among users since the con-
ditions can be verified by each user independently. Hence
each user can choose a target rate and verify the convergence
conditions without relying on other users.

B. Asymptotic Optimality

We now show that the fast channel assignment is asymptot-
ically optimal for Rayleigh fading with properly chosen target
rates. For the asymptotic analysis, we use some known results
from order statistics [41], and presents in Appendix C.

Theorem 2. Let AGEE
OPT be the optimal solution to the max-

energy efficiency problem for the global energy efficiency
defined in (3) and let AGEE

FMA be the solution obtained by the
fast matching algorithm. If the rates satisfy (20) and a perfect
matching exists, then for Rayleigh fading channels:

lim
N→∞

E{(AGEE
FMA}

E{AGEE
OPT}

= 1 (28)

Proof: The proof is presented in Appendix D.

Theorem 3. Let AEE
OPT be the optimal solution to the max-

energy efficiency problem for the individual energy efficiency
defined in (2) and let AEE

FMA be the solution obtained by the
fast matching algorithm. If the rates satisfy (20) and a perfect
matching exists, then for Rayleigh fading channels:

lim
N→∞

E{AEE
FMA}

E{AEE
OPT}

= 1 (29)
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Fig. 1. Expected number of iterations required by algorithms for convergence.

Proof: The proof is presented in Appendix E.
It is noted that the asymptotic results of Theorem 2 and

Theorem 3 have exactly the same meaning as any other
asymptotic analysis. That is, the performance of the fast
matching algorithm approaches the optimal solutions for large
enough users and resources. Also note that in most types
of asymptotic analysis, the important question: "How close
is the asymptotic performance to the optimal solution?" is
primarily dealt with through simulations, as discussed in the
next section.

C. Distributed Implementation of Fast Matching Algorithm

We can implement the fast matching algorithm without the
use of explicit message passing using opportunistic CSMA.
Opportunistic CSMA [42] is a distributed transmission pro-
tocol suggested for wireless sensor networks. Opportunistic
CSMA is composed of carrier sensing and a waiting strat-
egy. Since continuous sensing of all channels by all users
is assumed, each user in the network calculates a fitness
measure ψn and maps it into a waiting time τn based on
a predetermined common decreasing function f(ψn). Here,
each user waits until the waiting time ends and if no one
transmitted on its most wanted channel then it is allowed to
transmit. Hence, the user with the highest ψn transmits in the
channel. This can be seen as a distributed winner determination
algorithm where the winner gets the channel.Note that since
instantaneous sensing is assumed it implies that there are no
collisions. This is because the probability of two users having
the same random listening time is zero.

The fully distributed fast matching algorithm for maximal
energy efficiency using prioritized CSMA proceeds as follows:
At the beginning of each time slot each unassigned user finds
the channel with the lowest value among the good channels
(defined in ) i.e. one of the best m log(N) channels. Next,
each unassigned user waits a random amount of time and if
no one transmitted on any of the channels before the waiting
time then that user transmits a busy signal on the channel with
lowest value and raises the value of the channels by 1. Each

assigned user waits for the maximum time allowed τmax. if
no user transmits on the assigned channel until τmax, then the
assigned user transmits on the channel. When a user senses
that a busy signal was transmitted on a channel before τmax,
that user raises the value of that channel by 1. The schematic
description of algorithm is depicted in Table III.

VI. NUMERICAL ANALYSIS

In this section, we demonstrate the performance of the fast
matching algorithm using computer simulations. We compared
the proposed algorithm with the greedy, distributed auction,
and centralized Hunganrian methods under multi-path fading
and longterm shadowing effect.

We considered a network of N users distributed uniformly
in a radius of 50 m to 500 m with a BS in the center. The
carrier frequency was 2 GHz with a per-user transmission
bandwidth of 200 KHz. The channel was divided into N sub-
channels. The channel of each user pair was generated by the
extended pedestrian A model (EPA) of the LTE standard with 9
random taps. The path loss exponent was taken as α = 3. The
users were assumed to be moving at a speed of 3 km/h. We also
considered channel between users to the BS to be log-normal
distributed with a spreading factor of 4 dB. We assumed
maximum spectral efficiency of 8 bits/sec/Hz for each user.
We compared the performance of the fast matching algorithm
with other algorithms by computing the average power and
global energy efficiency of the network. We fix the parameter
m = 2.5 to get m log(N) channels above the threshold with
m > 2. The target rates were chosen using (45) and the
threshold was computed using athresh

n = F−1(1 − m log(N)
N ).

The simulations were averaged over 5000 iterations.
We investigated the expected number of iterations achieved

by the fast matching algorithm compared to the distributed
auction algorithm. First, we verify that the number of iterations
required by the fast matching algorithm exceeds cN log(N)
with a probability of less than 1

N . In Fig. 1a, we plotted the
empirical probability that the fast algorithm exceeds N log(N)
iterations against the theoretical bound of 1

N for N = 10...103.
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(b) EPA channel model with log-normal shadowing.

Fig. 2. Average per-user transmit power requirement to achieve a spectral efficiency of 8 bits/sec/Hz.

The figure shows that the simulations support theoretical result
on the expected number of iterations for convergence. Next,
we compared the expected number of iterations of the fast
matching algorithm with the distributed auction algorithm
until convergence. The comparison is shown in Fig. 1b. As
predicted, the expected number of iterations needed by the
fast auction algorithm is smaller than the expected number of
iterations by the distributed auction algorithm.

In Fig. 2, we demonstrate the average transmit power
requirement to achieve a desired target rate (i.e. spectral
efficiency taken 8 bits/sec/Hz) by various algorithms under
two channel scenarios. It can be seen that the fast matching
algorithms performs better than the greedy method. However,
the proposed algorithm requires higher transmit power than
the auction method but requires significantly less number of
iterations in convergence, as shown in Fig. 1b. As expected,
the centralized scheme using Hungarian requires the minimum
average transmit power. Moreover, the optimal distributed
scheme, the auction method, performs very close to the
Hungarian method.

We also compared the network energy efficiency of various
algorithms in Fig. 3. Although the distributed auction algo-
rithm achieves the maximum energy efficiency (as depicted in
Fig. 3a), the proposed fast matching algorithm provide greater
gain per iteration (as depicted in Fig. 3b) due to less number
of iterations required for convergence.

Finally, we demonstrate the asymptotic optimality of the
proposed algorithm by simulating over large network in Fig. 4.
The figure shows that the fast matching algorithm approaches
the optimal auction algorithm as network size increases as
proved through analysis in Theorem 2. However, it requires
much larger system sizes to achieve the optimal solution since
the increase in the reward becomes slower as number of users
increases (i.e., when N > 200). It can also be seen that
the greedy algorithm is not asymptotic optimal and performs
poorly compared with the fast matching algorithm.

VII. CONCLUSION

We presented a fully distributed protocol for resource allo-
cation to optimize the energy efficiency of a wireless network.

We converted the channel assignment problem into finding
perfect matchings on bipartite graph which was shown con-
verge within O (N log(N)) expected number of iterations with
high probability. The algorithm was based on a version of the
auction algorithm which solves a matching problem. We also
showed that under mild assumptions on the fading distribution,
the fast matching algorithm produces asymptotically optimal
solutions to the energy efficiency problem. The proposed
algorithm was shown to perform better than the greedy method
and achieves near-optimal performance with lesser number
of iterations than the auction algorithm. The fast matching
algorithm can be implemented using carrier sensing protocol
to compute the channel assignments.
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APPENDIX A: BIPARTITE GRAPH

Definition 1. Let G = (V,E) be a graph with a vertex set V
and an edge set E. The neighbor set of vertex v ∈ V is given
by

nv = {u ∈ V : (u, v) ∈ E} . (30)

Definition 2. Let G = (V̂ , E) be a graph with a vertex set V̂
and an edge set E. If V̂ can be divided into two subsets U, V
such that

nu ∩ U = ∅, ∀u ∈ U
nv ∩ V = ∅, ∀v ∈ V.

we say that G is a bipartite graph and we denote it by
G(U, V,E).

Definition 3. Let G = (U, V,E) be a bipartite graph with a
vertex sets |U | = |V | = N and an edge set E. Let M ⊆ E and
let G̃ = (Ũ , Ṽ ,M) be a bipartite subgraph of G with vertex
sets |Ũ |, |Ṽ | = N and an edge set M . M is a matching on G
if

max
v∈U∪V

|nv| = 1. (31)
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Fig. 3. Global energy efficiency of network for the EPA channel model with and without log-normal shadowing.

Definition 4. Let G = (U, V,E) be a bipartite graph with
vertex sets |U | = |V | = N and an edge set E.M is a perfect
matching if M is a matching and |M | = N .

Definition 5. Let G = (U, V,E) be a bipartite graph with
vertex sets |U | = |V | = N and an edge set E. Let M ⊆ E and
let G̃ = (U, V,M) be a bipartite subgraph of G with vertex
sets |U |, |V | = N and an edge set M . A vertex v ∈ U ∪ V is
free if |nv| = 0 otherwise we say it is not free.

Definition 6. Let G = (U, V,E) be bipartite graph with vertex
sets |U | = |V | = N and an edge set E. If G is a random
graph where each edge occurs with probability p we say that
G ∈ B(N, p).

Definition 7. if G ∈ B(N, p) and for any non-maximal
matching M there exists an augmenting path for M of length
at most 2L+1 where L = c log(N)

log(Np) and c > 0 is some constant.

Lemma 1. Let T be the number of iterations until the
algorithm terminates and let hv be the value of vertex v at
termination, then

T =

N∑
v=1

hv (32)

Lemma 2. Let G = (U, V,E) be a bipartite graph with vertex
sets |U | = |V | = N and an edge set E. Let M(i) ⊆ E be a
non maximal matching obtained by the algorithm in the i-th
iteration. Let hv(i) be the value of vertex v in the i’th iteration
of the algorithm. Let Dl(i) be a subset of V defined by:

Dl(i) = {v ∈ V : hv(i) ≥ l} . (33)

If v0 ∈ Dl(i) and (u, v0) ∈M(i) then

nu ⊆ Dl−1(i) (34)

Lemma 3. Let G = (U, V,E) be bipartite graph with vertex
sets |U | = |V | = N and an edge set E. Let M(i) be a
non maximal matching obtained by the algorithm in the i’th
iteration. Let u0 ∈ U be a free vertex such that in the i’th
iteration of the algorithm nu0

⊆ Dl(i). Let u1 ∈ U be the
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Fig. 4. Asymptotic convergence of the fast matching algorithm to the optimal
solution.

end point of an alternating path P with |P | = 2 starting from
u0 then

v 6∈ Dl−2(i) \Dl−1(i) ∀v ∈ nu1 (35)

Lemma 4. Let G = (U, V,E) be bipartite graph with vertex
sets |U | = |V | = N and an edge set E. Let M(i) be a
non maximal matching obtained by the algorithm in the i’th
iteration and let u0 ∈ U be a free vertex such that in the i’th
iteration of the algorithm nu0

⊆ Dl(i); then every augmenting
path of G on M(i) starting from u0 is at least of length 2l+1.

Theorem (Berge [43]). Let G = (U, V,E) be a bipartite
graph with vertex sets |U | = |V | = N and an edge set E.
If G contains a perfect matching there exists an augmenting
path in G for any partial matching M .

Using the above theorem and Lemma 4, we have the
following results:

Lemma 5. Let G = (U, V,E) be a bipartite graph with vertex
sets |U | = |V | = N and an edge set E. If G contains a
perfect matching and for any non-perfect matching M ⊆ E
there exists an augmenting path of length at most 2l+ 1, then
for every v ∈ V at each iteration of the algorithm until the
algorithm terminates

hv(i) ≤ l + 1,∀i, v ∈ V (36)
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Lemma 6. Let G = (U, V,E) be a bipartite graph with vertex
sets |U | = |V | = N and an edge set E. If G contains a perfect
matching and T be the number of iterations until the algorithm
terminates then

T ≤ N(N − 1) (37)

Lemma 7. Let G ∈ B(N, p) and let and let T be the number
of iterations until the algorithm terminates then

T ≤ N(L+ 1). (38)

where L = c log(N)
log(Np) .

APPENDIX B: PROOF OF THEOREM 1
Using (6), minimal power needed to achieve rate Rn is given

by:

Pn,k =

(
2Rn − 1

)
σ2
n

|Hn,k|2
.

For Rayleigh fading channels, |Hn,k|2 is exponentially dis-
tributed with the CDF:

F|Hn,k|2(x) = 1− e−λnx. (39)

Hence, the CDF of Pn,k is given by

FPn,k(x) = e−
λnσ

2
n(2Rn−1)
x . (40)

The expected number of iterations will be O (N log(N))
only if there exists a perfect matching in the graph with a
probability of at least 1 − 2

Nα−1 . From Theorem of Erdős
and Rényi in [37], there exists a perfect matching with a
probability of at least 1− 2

Nm−1 only if the expected number
of edges connected to each vertex is at least m log(N) for
m > 2. Hence, to fulfill this requirement, the expected number
of channels in which each user is able to transmit without
violating his power constraint is at least m log(N). A user
can transmit on a channel only if the power needed on the
channel to achieve the target rate is less than Pmax. Thus,

FPn,k(Pmax) ≥ m log(N)

N
(41)

Hence, the target rates for each user must satisfy:

F−1
Pn,k

(
m log(N)

N

)
≤ Pmax. (42)

The inverse CDF of FP (n,k)(x) is given by

F−1
P (n,k)(x) =

λnσ
2
n

(
2Rn − 1

)
log( 1

x )
. (43)

Using (42) and (43), the target rates must satisfy:

F−1
Pn,k

(
m log(N)

N

)
=
λnσ

2
n

(
2Rn − 1

)
log
(

N
m log(N)

) ≤ Pmax (44)

Simplifying (44), we get:

Rn ≤ log2

1 +
Pmax log

(
N

m log(N)

)
λnσ2

n

 . (45)

Thus, the fast matching algorithm converges with an expected
O (N log(N)) number of iterations.

Following the same steps for the goodput requirement, we
get

Tn
R
≥ 1−

(
1 +

N

m log(N)

)Pmax
λnσ2n

. (46)

Using λn = 1
E(|Hn,k|2) , γ̄ =

PmaxE(|Hn,k|2)
σ2
n

in (45) and (46),
we prove the Theorem 1.

APPENDIX C: ORDER STATISTICS

Definition 8. Let A be a random variable with CDF FA(r)
and let A1:N < A2:N < ... < AN :N be random variables
obtained by taking N samples from A and ordering the
samples in an increasing order. Ak:N is called the k-th order
statistics of A with N samples.

Definition 9. Let kN be a function of N such that kN →∞ as
N →∞ and limN→∞

kN
N = 0 then AN−kN+1:N and AkN :N

are called intermediate order statistics.

Definition 10. Let F (x) be a differentiable, absolutely con-
tinuous distribution function. If

lim
x→F−1(1)

d

dx

(
1− F (x)

f(x)

)
= 0 (47)

then the third Von Mises condition is satisfied.

Theorem (Falk [44]). Let F be an absolutely continuous CDF
satisfying one of the Von Mises conditions. Suppose kN →∞
as N → ∞ and limN→∞

kN
N = 0. Then there exist norming

constants αN and βN > 0 such that

AN−kN+1 − αN
βN

d−−→ N (0, 1) . (48)

where αN = F−1
(
1− kN

N

)
and βN =

√
kN

Nf(αN ) .

APPENDIX D: PROOF OF THEOREM 2 (GEE ASYMPTOTIC
OPTIMALITY)

We first derive probability distribution function and quantile
function of U(n, k) given that the power is lower than Pmax:

FUGEE
n,k

(x) = 1− e
an
Pmax e−

an
Pmax−x , (49)

where an = λnσ
2
n

(
2Rn − 1

)
and

F−1
UGEE
n,k

(ρ) = Pmax +
an

log(1− ρ)− an
Pmax

. (50)

We now observe that the probability distribution in (50)
satisfies the third Von Mises condition resulting

lim
N→∞

E
(
UGEE
N−m log(N)+1:N

)
= F−1(1− m log(N)

N
)

= Pmax +
an

log (log(N))− log(N) + an
Pmax

(51)

We now obtain simple bounds on E
(
AGEE

OPT

)
and E

(
AGEE

FMA

)
:

E
(
AGEE

OPT

)
≤

N∑
n=1

E (AN :N )

= NPmax −
N∑
n=1

an
log(N)− an

Pmax

(52)
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and

E
(
AGEE

FMA

)
≥

N∑
n=1

E
(
A
N(1−m log(N)

N ):N

)
= NPmax −

N∑
n=1

an
log(N)− log (m log(N))− an

Pmax

(53)

It is now easy to see that

NPmax −
∑N
n=1

an
log(N)−log(m log(N))− an

Pmax

NPmax −
∑N
n=1

an
log(N)− an

Pmax

≤
E
(
AGEE

FMA

)
E (AOPT)

≤ 1.

(54)

It can be seen that

lim
N→∞

NPmax −
∑N
n=1

an
log(N)−log(m log(N))− an

Pmax

NPmax −
∑N
n=1

an
log(N)− an

Pmax

= 1.

(55)
Finally, we use (54) and (55) to get (28) of Theorem 2.

APPENDIX E: PROOF OF THEOREM 3 (EE ASYMPTOTIC
OPTIMALITY)

The proof is identical to the proof of Theorem 2. The only
difference is that the CDF FUav

n,k
(x) is given by

FUav
n,k

(x) = 1− e−
λn(2Rn−1)σ2nx

Rn−c(n)x . (56)

It is easy to verify that all arguments applied to the CDF in
Theorem 2 can also be readily applied to the CDF in (56).
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