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Abstract—A communication network modelled by a directed
acyclic graph (DAG) is considered, over which a source wishes
to send a specified number of bits to a destination node.
Each node of the DAG is powered by a separate renewable
energy source, and the harvested energy is used to facilitate the
source destination data flow. The challenge here is to find the
optimal rate and power allocations across time for each node
on its outgoing edges so as to minimize the time by which the
destination receives a specified number of bits. An online setting
is considered where an algorithm only has causal information
about the energy arrivals. Using the competitive ratio as the
performance metric, i.e. the ratio of the cost of the online
algorithm and the optimal offline algorithm, maximized over all
inputs, a lazy online algorithm with a competitive ratio of 2 + δ

for any δ > 0 is proposed. Incidentally, 2 is also a lower bound
to the competitive ratio of any online algorithm for this problem.
Our lazy online algorithm is described and analyzed via defining
a novel max-flow problem over a DAG, where the rate on the
subset of outgoing edges of any node are related/constrained. An
optimal algorithm to find max-flow with these constraints is also
provided, which may be of independent interest.

I. INTRODUCTION

Enabling communication nodes to harvest energy from

nature makes them robust, and enhances their lifetime. More-

over, it also makes the communication green. One challenge,

however, is that the energy arrivals from nature are inherently

uncertain, and the communication algorithms have to adapt to

the randomness of energy availability. This paradigm (called

energy harvesting or EH) presents fresh challenges in design-

ing optimal communication algorithms, and in the past few

years, there has been lot of work towards that direction.

In this paper, we consider a source-destination pair that is

connected via an arbitrary directed acyclic graph (DAG). The

DAG models a communication network setting where direct

communication is possible from each node to its first hop

neighbor, i.e. via the edge. We assume that the edges are

orthogonal, i.e. the links do not mutually interfere. However,

the DAG topology is otherwise arbitrary. Each node of the

DAG is powered by EH, where the amount and the time

instants of energy arrivals are assumed to be arbitrary. We

consider the online setting, where any algorithm has only

causal information about energy arrivals, and the objective of

the algorithm is to transport a specified number of bits from

the source to the destination in as minimum a time as possible,

using the energy arrivals at the respective nodes of the DAG.

We call this problem as the delay-minimization problem.

In prior work, delay-minimization as well as the related

rate-maximization problems have been considered for a small

number of nodes [1]–[5], [7]–[9], [15], [12]–[14], [16] such

as point-to-point, a single unicast with multiple relays, MAC

channel with multiple transmit nodes etc. Prior work primarily

addresses the offline setting, while fewer results are known in

the online setting [5], [7]–[9], [12].

By offline, we mean that the algorithm has non-causal

information about all energy arrivals in the future. To the

best of our knowledge there has been no work on the delay

minimization problem for an arbitrary DAG either in the

offline or the online setting, as considered in this paper. The

main challenge in a network setting is that the optimal energy

utilization at different nodes is inter-dependent, making the

problem challenging for an arbitrary network topology.

To quantify the performance of an online algorithm, the

concept of competitive ratio is used, that is defined as the

ratio of the cost of an online algorithm and the optimal offline

algorithm, maximized over the worst case input. This metric

might appear too pessimistic, however, in prior work there has

been success in finding online algorithms that have competitive

ratio of at most 2 for the delay-minimization in a two node

problem [2], [3]. Moreover, in [2] it is shown that no online

algorithm can have competitive ratio better than 2, even for a

two node network.

In this paper, we first propose an online algorithm for

the delay-minimization problem over an arbitrary DAG and

show that its competitive ratio is at most 2 + δ for any

δ > 0. The computational complexity of the algorithm is

O(log(1/δ)), 0 < δ < 1 (Big O notation). Thus, close to

optimal competitive ratio can be obtained by choosing a small

δ while paying a very minor penalty in the complexity, since

the competitive ratio is lower bounded by 2 even for a two

node network [2]. We would like to point out that even the

optimal offline algorithm for the delay minimization problem

over a DAG with EH nodes is unknown, and challenging to

find, given the arbitrary network topology. Nevertheless, we

show that a suitable lazy algorithm is constant competitive in

the online setting, notwithstanding the fact that the optimal

offline algorithm is unknown.

In order to explain the competitive performance of our
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online lazy algorithm, assume that the optimal offline algo-

rithm, starting from time 0, completes the transmissions in

t0 (unknown) units of time. The main idea of the online

algorithm is to estimate t0 reasonably closely. Let this estimate

be t̂0 = t0+δ. Suppose there exists an online algorithm which

can transfer the specified number of bits while transmitting

only in the time duration [t̂0, t0 + t̂0] using only the energy

that arrives in the interval [0, t̂0]. Clearly, such an algorithm is

energy feasible, and moreover its competitive ratio is t0+t̂0
t0

.

This will lead to a 2 + δ-competitive algorithm.

In short, the online algorithm needs to ensure two things,

viz. (i) t̂0 = t0 + δ for some fixed δ, (ii) transport Bo bits

while transmitting only within the time interval
[

t̂0, t̂0 + t0
]

.

To accomplish both these tasks, we take recourse to a novel

max-flow problem over a DAG. Recall that with classical max-

flow problem, given the capacity for each edge of the network,

the maximum flow possible between a source node and its des-

tination is to be determined. A more generalized version of this

is when there are constraints on different subsets of outgoing

edges from each node. For example, in the polymatroidal max-

flow problem [6], [17], the set of rates possible on outgoing

links of any node are defined as the intersection of hyper-

planes. However, a close inspection of our problem reveals

that the rate constraints are not polymatroidal. In particular,

letting rate to be logarithmic in power using the Shannon rate

formula, if the out-degree of a node is 2 with total power P ,

then the rate constraints on the two outgoing links will result

in a region (r1, r2) = (log(1 + αP ), log(1 + (1 − α)P )) as

shown in Fig. 3 that is non-polymatroidal, whose boundary

is traced by 0 ≤ α ≤ 1. Thus the set of possible rates on

two outgoing links subject to a common power constraint is

not polymatroidal. This calls for an alternate approach to the

max-flow problem here.

We show that if the offline optimal algorithm can commu-

nicate Bo bits by time t0 (clearly using only the energy that

has arrived till time t0), the optimal max-flow solution can

maintain a rate of at least B0

t0
for the time interval [t0, 2t0],

while using only the energy that has arrived till time t0. Thus,

employing the max-flow solution from time t0 till 2t0 can also

finish transmission of Bo bits. The only remaining task is to

estimate t0 closely. Fortunately, one can find an upperbound

to t0 by solving a max-flow problem at every energy arrival.

The upperbound itself is at most 2t0, thus a further line search

can find the actual t0. The latter has complexity O(log( t0
δ
))

to obtain an estimate within t0 + δ.

The defined max-flow problem is important in its own right

since it advances the literature on flow maximization. When

compared to the classical and the polymatroidal max-flow, the

novel properties of the considered max-flow problem include

that the min-cut capacity is not equal to the max-flow. Thus,

usual augmenting path algorithms [6] are insufficient to find

the optimal flow.

Our contributions are as follows:

• For an arbitrary DAG, we present a 2+δ (for any δ > 0)-

competitive online algorithm for the delay minimization

problem. Since 2 is a lower bound on the competitive

ratio for any online in a 2-node network case, choosing

δ small gives an almost optimal online algorithm for the

DAG network.

• We define and solve a novel max-flow problem over

a DAG network with non-polymatroidal outflow con-

straints, which is of independent interest in max-flow

literature with edge and node constraints. Using the fact

that a DAG with orthogonal links is equivalent to a

layered network, we propose an iterative algorithm for

solving the max-flow problem on the layered network,

that tries to find max-flow on each layer recursively, and

is shown to be optimal.

• One limitation of our results on DAGs is that all edges are

assumed to be orthogonal. For a special case of a DAG,

a layered network, we show that the max-flow problem

can be solved even while incorporating polymatroidal

interference constraints on incoming edges at nodes, e.g.

non-orthogonal MAC constraints.

Rest of the paper is organized as follows. After detailing

the system model in Section II, we first connect the delay-

minimization problem over a DAG having EH nodes to a net-

work max-flow problem in Section III. We then show how the

optimal solution of the max-flow problem can be used to define

a lazy online algorithm for the original delay-minimization

problem. In addition, we also analyze the competitive ratio of

the proposed algorithm. Thereafter, in Section IV, we derive

an optimal algorithm to solve the non-polymatroidal max-flow

problem, a challenging task in its own right, since unlike the

classical/polymatroidal case, here the max-flow may not be the

same as min-cut. We first consider the specific case of a three

hop layered network in Section V, and generalize to arbitrary

number of layers in Section VI. We present some numerical

results to illustrate the performance of the proposed algorithm

in Section VII. Finally, Section VIII concludes the paper.

II. SYSTEM MODEL AND OBJECTIVES

Consider a directed communication network described by

a graph G = (V,E), where V is the set of nodes, and E
the directed set of edges, each connecting a pair of nodes.

The graph G is assumed to be acyclic, thus, G is a directed

acyclic graph (DAG). Each node is assumed to be full-duplex.

The half-duplex case is fundamentally different and more

challenging even for a two-node network [7]. For node k,

let Ik denote the set of nodes from which there are edges

incident to it, and Ok represent the set of nodes to which

there are outgoing edges from k. Direct communication is

possible between any pair of nodes only if they have an edge

between them. Moreover, communication over distinct edges

is orthogonal and does not interfere with each other. One

example of a considered network is provided in Fig. 1, where

node 1 (the source) wishes to communicate with node 6 (the

destination) via nodes 2, 3, 4, 5 that are connected via directed

orthogonal edges. We also consider some generalization to

non-orthogonal links in Section V-A, for a special topology of

the DAG called the layered network.



1

2

3

4

5

6 ds

Fig. 1. Example network

Each node in the network harvests energy from nature to

power its communication and stores that in a battery of size C.

Following majority of prior work, for analytical simplicity, we

assume that C is large enough such that no charge overflow

happens 1. We assume that an amount Ekj , j ≥ 1 Joules

of energy arrives at node k on the time instant τkj . Let

Ak(t) =
∑

τkj≤t Ekj be the total accumulated energy by node

k till time t. The quantity, as well as time instant, of energy

arrival is assumed to be arbitrary, and can even be chosen

by an adversary. W.l.o.g we will let τkj to be increasing in j.

The information on all the energy arrival processes at different

nodes is assumed to be causally available at a central location,

since we are interested in a centralized solution.

We assume that the rate of transmission over a directed edge

e = (u, v) of G when node u transmits with power P towards

node v is concave in P . In particular, for ease of exposition,

we use a logarithmic rate given by the Shannon formula for a

normalized AWGN channel,

r(P ) = log(1 + P ) bits/sec/Hz. (1)

All the results presented in the paper hold as long as the rate

function is concave in P .

Let node k transmit power Pkl(t) on edge (k, l), l ∈ Ok

towards node l at time t. The total energy ek(s) expended by

node k till time s is then given by

ek(s) =

∫ s

0

∑

l∈Ok

Pkl(t)dt.

Similarly, let Ak(s) denote the total energy arrived at node k
till instant s. Energy causality constraints will imply that

ek(t) ≤ Ak(t), ∀t.

By (1), the instantaneous rate on the edge (k, l) becomes 2

rkl(t) = log(1 + Pkl(t)), ∀t.

1The typical battery size for practical EHNs ranges between 200 mAh-
2500 mAh [18]. A 200 mAh capacity battery can deliver 720 J of energy at
a nominal voltage of 1 V. Also, using a small solar panel, at 66% efficiency,
NiMH batteries receive 1.3 mJ of energy per 100 ms slot. Thus, with two
hours of sunlight, the typical battery size, normalized with respect to Es,
equals 5.33× 105. Hence, in practice, a battery size of 1000 is very small.

2The validity of this formula in a practical setting is justified while having
a sufficient bandwidth for communication, this makes coding and decoding
possible within the time-scales of interest [10].

TABLE I
NOTATION TABLE

Symbol Notation

Ik Set of nodes in layer Ll−1 that have an edge to node k in
layer Ll

Ok Set of nodes in layer Ll+1 that have an edge to node k in
layer Ll

ri For a node i of layer k, the sum-rate out of node i towards
nodes of layer k + 1

Rk For a layer k, the sum of sum-rate ri out of all all nodes i
in layer k

fi For a node i of layer k, the total incoming rate from all nodes
of layer k − 1

gj For a node i of layer k, the sum-rate going out of node i
towards nodes in layer k + 1

U set of nodes i of layer k for which ri < fi
N(S) For a set of nodes S of layer k, N(S) is the set of nodes of

layer k − 1 that have an edge to some node in S

Let Bkl(s) denote the total amount of data (in bits) transported

by node k to its neighboring node l in the time interval (0, s].

Bkl(s) =

∫ s

0

rkl(t)dt.

We now define the main objective of this paper, to solve the

delay-minimization problem, defined as follows. Consider a

source-destination pair (s, d) belonging to G. Source s wishes

to send Bo bits to the destination node d over the edges of

graph G, and the problem is to minimize the time by which

Bo bits are received by node d.

The delay minimization problem can be written as the

following optimization problem with respect to the power

allocation function Pkv(t), v ∈ Ok for each node k ∈ V .

min T (2)

s.t.
∑

l∈Ik

Blk(t) ≥
∑

l∈Ok

Bkl(t), ∀ t, ∀ k ∈ V \{s, d} (3)

∑

l∈Os

Bsl(T ) =
∑

l∈Id

Bld(T ) = Bo, (4)

ek(t) ≤ Ak(t), Pkl(t) ≥ 0, k ∈ V, l ∈ Ok. (5)

Here (3) denotes the flow conservation constraint for each node

other than the source and the destination, i.e., the outgoing

flow is at most the incoming flow, (4) captures the out-flow

and in-flow condition for the source and destination since Bo

bits are needed to be transported, and (5) captures the energy

neutrality constraint for each node. Notice that the above

problem formulation is common to both offline and online

schemes. The former can optimize using the transmission

schedules using the non-causal knowledge of all energy arrival

processes, whereas the latter has to make decisions based on

the causal knowledge of the arrival process.

All logarithms in this paper are with respect to base 2. We

will denote |U | for the cardinality of the set U .



III. ONLINE ALGORITHM AND COMPETITIVE RATIO

Solving Problem (2) is complicated even in the offline

setting, where all the energy arrivals are known in advance. In

this paper, we consider the online setting, i.e., any algorithm

can only use causal information about the energy arrivals and

wants to solve (2). To describe the online setting, we need the

following notation.

Recall that τkj
denote the energy arrival instants at node k.

Let us create a lexicographically increasing sequence of tuples

σ = {(τkj
, k, Ekj

), ∀k ∈ G}.

Thus, σ represents the combined energy arrival sequence on all

nodes in the network. Let TA(σ) and Toff(σ) be the respective

total transmission completion times solving (2), for the online

algorithm A and the optimal offline algorithm (which will

remain unknown), respectively. We use the competitive ratio

as the performance metric for online algorithms, that is defined

for an online algorithm A as

µA = max
σ

µA(σ) = max
σ

TA(σ)

Toff(σ)
, (6)

where the maximum is over all possible energy arrival se-

quences σ, that can be chosen even adversarily. The optimal

competitive ratio µ⋆ is defined as µ⋆ = minA µA and an

algorithm A⋆ is called an optimal online algorithm A⋆ =
argminA µA, i.e, if it achieves the optimal competitive ratio.

Our objective is to find an optimal online algorithm which

achieves the minimum competitive ratio, since by definition,

an online algorithm with low competitive ratio has good

performance even against adversarial inputs.

Towards this direction, we first define a related rate max-

imization problem, which turns out useful while proposing

an online algorithm for solving (2). For a given time t′, let us

construct a scheme in which node k only uses the accumulated

energy Ak(t
′). Moreover, node k is also restricted to not

transmit at all till time t′, and transmit with equal power over

time [t′, 2t′] using the energy Ak(t
′). Thus Pkl(t) = Pkl for the

time interval [t′, 2t′], and
∑

l∈Ok
Pkl =

Ak(t
′)

t′
:= Pk(t

′). The

energy neutrality constraint is clearly met at node k, however

the power allocation Pkl, l ∈ Ok can be further optimized. We

can now choose the powers Pkl, ℓ ∈ Ok, ∀k ∈ G to maximize

the source destination flow in the interval [t′, 2t′]. Thus for

each t = t′ we can define a (max-flow) rate maximization

problem as follows:

max R(t′) (7)

s.t. rkl = log(1 + Pkl),
∑

l∈Ok

Pkl ≤ Pk(t
′), (8)

∑

l∈Ik

rlk ≥
∑

l∈Ok

rkl, ∀ k ∈ V \{s, d} (9)

∑

l∈Os

rsl =
∑

l∈Id

rld = R(t′), Pkℓ ≥ 0, ℓ ∈ Ok, (10)

where in (8) rkl is the rate achieved on each of the outgoing

links l ∈ Ok, while (9) and (10) capture the flow conservation

constraints at each node.

Recall that a max-flow problem over a given directed graph

with specified edge capacities is to find the largest rate of

commodity that can be transported from a given node (source)

to another (destination) that respects the edge capacities [19].

Essentially, Problem (7) is a single source-destination max-

flow problem that maximizes the instantaneous rate (at time t′)
from source to destination if the power used by node k is fixed

to be Pk(t
′) for k ∈ G. The optimal power allocation by each

node on its outgoing links subject to a sum power constraint

of Pk(t
′) is to be found. When compared to Problem (2),

Problem (7) does not have a time based decision component,

since transmit power allocation of node k is fixed for the whole

duration [t′, 2t′], and is thus simpler to solve.

Remark 1. For the rest of the paper, we proceed as follows.

As noted before, the delay minimization problem problem

involves finding optimal power transmission strategies for each

node that are a function of time, which is challenging. To

simplify the problem, we have defined an intermediate max-

flow problem (7) that uses a fixed power transmission strategy,

and we show that if we can solve the max-flow problem

optimally, then we can derive online algorithm for the delay

minimization problem with competitive ratio of 2+δ as shown

in Lemma 2. The solution to the max-flow problem for a two-

layer network is provided in Section V, which is then extended

for arbitrary number of layers in Section VI.

Suppose, for any t′, we can solve (7) to find the optimal

rate as R⋆(t′). Lemma 1 connects Problems (2) and (7), in

turn enabling a lazy online algorithm to solve (2).

Lemma 1. For a given energy arrival sequence σ, let

Toff(σ) be the optimal time obtained by solving (2). Then

Toff(σ)R
⋆(Toff(σ)) ≥ Bo.

Proof. Notice that since the optimal offline scheme only

employed energy collected till Toff(σ), we can as well restrict

node k of the network to use only the energy Ek(Toff(σ)) that

was harvested till time Toff(σ). Out of Ek(Toff(σ)), if node k
spends an energy Ekℓ(Toff(σ)) on its outgoing link ℓ ∈ Ok,

then since log is a concave function, the number of bits sent

by node k on its outgoing link ℓ ∈ Ok with the optimal offline

algorithm is at most

Bub(k, ℓ) = Toff(σ) log

(

1 +
Ekℓ(Toff(σ))

Toff(σ)

)

such that
∑

ℓ∈Ok

Ekℓ(Toff(σ)) ≤ Ek(Toff(σ)).

Thus, the number of bits sent by node k on all its outgoing

links is at most

Bub(k) = max
Ekℓ,ℓ∈Ok

∑

ℓ∈Ok

Toff(σ) log

(

1 +
Ekℓ(Toff)(σ)

Toff(σ)

)

,



∀ ℓ ∈ Ok subject to
∑

ℓ∈Ok
Ekℓ(Toff)(σ) ≤ Ek(Toff)(σ).

Thus, summing the bits coming into the destination
∑

k∈Id
Bub(k), we get that Bo ≤

∑

k∈Id
Bub(k).

For node k, with reference to Problem (7), defining the

variable power partition as Pkℓ = Ekℓ(Toff)(σ)
Toff(σ)

, ℓ ∈ Ok and

the total power constraint Pk = Ek(Toff)(σ)
Toff(σ)

, we see that

Bub(k) = Toff(σ)
∑

ℓ∈Ok

r⋆kℓ,

where r⋆kℓ is the optimal rate for Problem (7) with t′ = Toff.

Since this is true for all nodes of V , summing over all nodes

in the network, in particular the ones that have directed edges

to the destination,
∑

ℓ∈Id
r⋆ℓd = R⋆(Toff(σ)) that contribute

the flow towards the destination, we get
∑

k∈Id
Bub(k) =

Toff(σ)
∑

k∈Id
r⋆ℓd. Thus, we get that Toff(σ)R

⋆(Toff(σ)) has

to be at least as much as Bo.

Thus, if we knew Toff(σ) and the solution of Problem (7)

for t′ = Toff(σ), we could directly use Lemma 1 to find a

feasible solution for Problem (2). However, since we do not

know the optimal offline algorithm or Toff(σ), we now define

an algorithm (Algorithm LAZYONLINE) for finding a suitable

time t′ (estimate of Toff(σ)) such that solving for R⋆(t′) will

result in a feasible solution for Problem (2). Notice that R⋆(t′)
depends on Pk(t

′), ∀k. Let us extend this definition and denote

R⋆(t′,∆t′, s), as the solution to (7) where the energy available

at node k is only the energy accumulated till time s, i.e., Ak(s),
and the algorithm transmits for time interval [t′, t′+∆t′] with

equal power
Ak(s)
∆t′

from each node, and the optimisation is over

the power allocation Pkl on outgoing edges from k to nodes

l ∈ Ok. Thus each node can only use the energy harvested

till time s in evaluating R⋆(t′,∆t′, s). The case of interest

here is s ≤ t′. The definition of R⋆(t′,∆t′, s) allows the

implementation of a look ahead scheme to find a suitable upper

bound to Toff (σ) in Algorithm LAZYONLINE.

Algorithm 1 LAZYONLINE

On the first energy arrival (anywhere in the network) instant,

min τkl, initialize the time counter c = min τkl.
if
(

2cR⋆(c, 2c, c) ≥ Bo

)

then

Find tmin = min{t′ : t′R⋆(t′) ≥ Bo, c ≤ t′ ≤ 2c}.
Obtain the static power allocation P ⋆

kℓ, ℓ ∈ Ok, k ∈ V
achieving R⋆(tmin) in (7).

Employ this static power allocation for time [tmin, 2tmin]
and send Bo bits.

else

Update time counter to c = min
(

2c,min{τkl : c < τkl}
)

(double the counter or go to the next energy arrival

instant),

Wait till time c, then go to Step I

end if

Notice that the algorithm first checks at time c, whether

the energy that has arrived in interval [0, c] is sufficient

to send Bo bits within the interval [c, 3c] or not, i.e.,

whether 2cR⋆(c, 2c, c) ≥ Bo or 2cR⋆(c, 2c, c) < Bo. If

2cR⋆(c, 2c, c) < Bo, then it is not possible to transmit Bo

bits using energy that has arrived till time c in interval [c, 3c]
of width 2c. This also means that if no new energy arrives in

interval [c, 2c], then it is not possible for any online algorithm

to transmit Bo bits in interval [0, 2c]. Thus, if the next energy

arrival τkl > 2c, then c is updated to 2c. In case new

energy arrives before time 2c, c is updated to next energy

arrival instance. Since the algorithm is online, this means that

after checking at c, we wait till time 2c or the next arrival

instance whichever happens earlier and check again whether

2cR⋆(c, 2c, c) < Bo or not.

On the other hand, if 2cR⋆(c, 2c, c) > Bo, then we can

employ a line search to find the parameter tmin ∈ [c, 2c]
such that tmin = min{t′ : t′R⋆(t′) ≥ Bo, c ≤ t′ ≤ 2c},
and the line search complexity is O(log 1/δ) steps for an

accuracy of δ ∈ (0, 1). Note that we are assuming with

Algorithm LAZYONLINE, that each node using the full-duplex

mode is able to forward the bits it is receiving on its outgoing

links without any delay. We can even account for the forward-

ing (decoding/encoding) delay within the overall completion

time, since the forwarding delay is typically small compared

to the bits transmission time.

Lemma 2. The competitive ratio µLazy(σ) of online algorithm

LAZYONLINE is at most 2 + 2δ
Toff(σ)

, where δ is the step-size.

Proof. Let the counter be at c = c⋆, when the algorithm

LAZYONLINE breaks. From Lemma 1, c⋆ ≤ Toff(σ) + δ.

Thus, using the static power allocation P ⋆
kℓ, ℓ ∈ Ok found

by the solution of (7) for R⋆(c⋆), Bo bits can be sent to the

destination from time [c⋆, 2c⋆]. Thus the time taken to finish

transmission of Bo bits by LAZYONLINE is TLazy(σ) = 2c⋆.

Therefore, the competitive ratio of Lazy is at most

µLazy(σ) =
2c⋆

Toff(σ)
≤

2Toff(σ) + 2δ

Toff(σ)
≤ 2 +

2δ

Toff(σ)
.

Theorem 1. Algorithm LAZYONLINE is an optimal online

algorithm.

Proof. From [2], it follows that for G where there are only two

nodes, the competitive ratio for solving (2) is lower bounded

by 2. From Lemma 2, choosing the scanning width δ small

enough (controlled by the complexity budget) in algorithm

LAZYONLINE, we can make its competitive ratio arbitrarily

close to 2, completing the proof.

Note that the choice of δ will depend on the complexity

budget, since the complexity of algorithm LAZYONLINE is

O(log(1/δ)).

For the rest of the paper, we concentrate on solving

(7) which is a max-flow problem with logarithmic output

utility/flow under sum-power constraint at each node. Since

Problem (7) is of interest on its own, we present a self

contained presentation of its solution.
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Fig. 2. Mapping a DAG to a layered network.

IV. MAX-FLOW PROBLEM

For the ease of exposition, rather than working with a

DAG, we instead consider an equivalent layered network,

where there are K intermediate layers between the source

and the destination. The set of nodes in the intermediate layer

k ∈ {1, . . . ,K} is denoted as Lk. Source s is at layer 0, and

the destination is at layer K + 1. Notice that in a layered

network edges exist only between nodes of adjacent layers,

i.e. between nodes of Lk and Lk+1. In Fig. 2, we illustrate

via a simple example how an equivalent layered network (on

the right) can be constructed from a DAG (on the left), where

a ≡ a′, b ≡ b′, d ≡ d′, and c′′ ≡ c. The extra nodes b′′ and c′

have infinite power (no power constraint). Essentially, the idea

is that each if a pair of nodes u, v have an edge between them

that either belong to the same layer or are in non-adjacent

layers, add extra nodes (dummy nodes) corresponding to u, v
with infinite power to make the network a layered network. For

brevity we omit the precise construction, which is immediately

clear from the above description.

Problem (7) is essentially a max-flow problem, where, the

rate achievable on any subset of outgoing links from any

node are constrained, unlike the classical problem where each

edge has individual rate constraint/capacity. Even with these

additional constraints, if the outgoing rate constraints are

polymatroidal, i.e. defined by intersection of hyperplanes, one

could use the result from [6] to find the solution. However, the

rate constraints of the type considered in Problem (7) are not

polymatroidal ones. For example, if the out-degree of a node

is 2 with total power P , then the rate constraints (7) will result

in a region (r1, r2) = (log(1 + αP ), log(1 + (1 − α)P )) as

shown in Fig. 3 that is non-polymatroidal, whose boundary is

traced by 0 ≤ α ≤ 1. Thus, Problem (7) is in fact a novel

problem, which is of independent interest in the max-flow

literature. Moreover, the flow-conservation constraints (9) and

(10) are equal to a difference of log terms which in general

need not result in a convex constraint set. In Lemma 3, we

however, show that Problem (7) is a concave problem (where

by concave, we mean that the objective funciton is concave

with convex constraint set) by exploiting the special structure

of the problem.

Lemma 3. Problem (7) is concave in the underlying variables

Pkl, l ∈ Ok, k ∈ V .

Proof. Consider two feasible sets of power allocation schemes,

say P̄ = {Pkl, k ∈ V, l ∈ Ok} and Q̄ = {Qkl, k ∈ V, l ∈ Ok},
both respecting the power constraints. The former allocates

r1

r2

log(1 + P )

log(1 + P )

(

log(1 + αP ), log(1 + (1 − α)P )
)

Fig. 3. Rate region for out-degree 2 with total power P .

Pkl for the edge (k, l) whereas the latter assigns Qkl. For

0 ≤ λ ≤ 1, we have λ log(1 + Pkl) + (1− λ) log(1 +Qkl)

≤ log(1 + λPkl + (1 − λ)Qkl). (11)

In other words, any linear combination of the rates achieved

by the allocations Pkl and Qkl for the respective fractions of

time λ and 1 − λ on a link can also be achieved by using

a constant power λPkl + (1 − λ)Qkl for the whole duration.

Since the available link rate got augmented by (11), we know

that the solution to max-flow is at least as much as the linear

combination of the end-to-end flow achieved by P̄ and Q̄. This

shows the required concavity.
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Fig. 4. Fully connected layered network

To illustrate the behaviour of the max-flow problem with

non-polymatroidal constraints, we now consider two examples.

The first network, shown in Fig. 4, is a layered network with

2 layers. The available power is marked above each node.

In order to demonstrate the effect of link capacities on the

max-flow, we will plot the s → d max-flow (throughput) as

a function of the link power (equivalently link rate) P5 from

node 5 to the destination, for two different power constraints

at the source.

In Fig. IV, the upper curve (colored blue) shown is for a

source power Ps = 20, while the lower curve (colored red) is

for Ps = 15. When the power P5 at node 5 is low, the source

is a power surplus node, i.e., Ps = 15 or Ps = 20 gives

the same max-flow. However, as P5 increases, the source can

utilize all its power to increase the max-flow. The solutions for

this example were obtained using standard numerical solvers

from convex programming.

While having concavity is desired, standard numerical so-

lutions will face the curse of dimensionality when there are
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many nodes. Hence our next goal is to identify and exploit sub-

structures of the problem, where iteratively solving ‘smaller’

problems can lead to global optimal solution similar to the

classical or the polymatroidal max-flow problems.
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d

Fig. 6. Example where max-flow is not equal to min-cut.

Remark 2. Problem (7) is also special in comparison to the

classical or the polymatroidal max-flow in the sense that the

max-flow is not equal to the min-cut. To see this, consider

Fig. 6, where the nodes a, b and c have respective powers

Pa, Pb and Pc, with Pb << Pa << Pc. Consider a cut by

the set of links (a, b)− (c, d) that separates the nodes {a, b}
from {c, d} (which is also the min-cut), whose cut-capacity is

log(1 +Pa) + log(1+Pb). However, the achievable max-flow

is only log(1 + αPa) + log(1 + Pb), where α is such that

(1 − α)Pa = Pb since (1 − α)Pa amount of power is routed

from a to b to completely utilize the capability of node b. In

case of polymatroidal constraints, in this example, the min-cut

will be (a)− (b, c), and the min-cut capacity will be equal to

the max-flow [6].

Next, to highlight the basic idea on how to solve Problem

(7), we consider a 2-layer network, and propose an algo-

rithm which performs iterative rate optimization only between

layers. The optimality of the algorithm will also be shown.

Extension to more than 2-layers is described in Section VI.

V. OPTIMAL ALGORITHM FOR K = 2-LAYER NETWORK

Recall that in a layered network, the source connects to all

nodes in the first intermediate layer L1. Since K = 2, each

path from source to destination has 3 hops, this is illustrated

for an example network in Fig. 4. All nodes in the set L2
connect to the destination. The middle section comprises an

arbitrary subgraph of edges between L1 and L2. Since the

out-degree of all nodes in layer 2 towards the destination is 1,

the power allocation for these nodes towards the destination is

trivial, and we define their achievable rates as mjd = log(1+
Pjd) for j ∈ L2. We propose the following algorithm to find

the optimal flow (refer Problem (7)) from the source to the

destination for K = 2.

ALGORITHM FlowMax

Step I: Initially set Psi =
Ps

|L1|
∀i ∈ L1, and mjd = log(1 +

Pjd), ∀j ∈ L2.

Initialize, counter c = 1, R(0) = 0.

Step II: Assign fi = log(1 + Psi) for i ∈ L1.

Step III: For nodes i ∈ L1, find the optimal outgoing rates

ri =
∑

l∈Oi
ril by solving

R(c) = max
∑

i∈L1

ri such that

ri ≤ fi and
∑

l∈Ij
rlj ≤ mjd, j ∈ L2.

Step IV: Define U = {i ∈ L1 : ri < fi}

If
(

|U | = 0 or |U | = |L1| or |R(c)−R(c− 1)| ≤ ǫ
)

break;

Else

Compute the effective unused source power as

∆ =

(

∑

i∈U

(Psi − eri + 1)

)

.

Redistribute the unused power as

• for each j ∈ U c, Psj = Psj +
∆

|L1|
.

• for each i ∈ U , Psi = eri − 1 + ∆
|L1|

.

c = c+ 1, Go back to Step II

EndIf

The main idea of the algorithm is to initially assign equal

power from the source to all its outgoing edges in Step II.

With equal power allocation, let fi, i ∈ L1 be the incoming

rate into node i ∈ L1 from the source. Subject to incoming

constraints fi for nodes i ∈ L1 and out-going rate constraints

of mjd for nodes j ∈ L2 to the destination, in Step III, we

find the optimal sum-rate between nodes of layer 1 and 2,

where the optimal out-going rate for nodes i ∈ L1 is denoted

by ri.
The collection of nodes i ∈ L1 for which the out-rate ri

computed in Step III is lower than the incoming rate fi they

are receiving from the source is called U . Nodes in U are

unable to support the rate they are getting in from the source.

In the next iteration, power from the source is reduced towards

nodes of U and increased towards U c to update fi, i.e., fi is

increased for nodes i ∈ U c and decreased for i ∈ U . One

important point is that even after updation of fi’s we do not

make fi = ri but instead keep fi > ri. This might slow

the algorithm’s speed, however, avoids technical difficulty in



proving its optimality. We show in Lemmas 5 and 6 that

if in any iteration |U | = |L1| or |U | = 0 (in which case

the algorithm terminates), respectively, then the corresponding

rates obtained are optimal. Otherwise, the algorithm terminates

at convergence.

Theorem 2. For K = 2, Algorithm FlowMax converges to

the optimal solution of Problem (7).

Proof. Following Lemma 4, Lemma 5, Lemma 6, Lemma 7,

it follows that whenever the algorithm FlowMax stops (break

condition is satisfied), a rate arbitrarily close to the optimal

rate is achieved (specified by choosing any ǫ > 0).

Lemma 4. The sum-rate R(c) computed from layer 1 to 2 is

non-decreasing in c.

Proof. From the definition of the algorithm, fj(c+1) > fj(c)
for j ∈ U c(c) and fj(c + 1) > rj(c) for j ∈ U(c). Thus,

in each iteration, the effective constraints fj for sum-rate

maximization in Step III are strictly enlarged.

Lemma 5. If in iteration c, U(c) = L1, then R(c) is optimal.

Proof. If U(c) = L1, then ri(c) < fi(c) for all i ∈ L1,

where ri(c) is the optimal rate computed by the optimal sum-

rate algorithm for node i ∈ L1 in Step III. Thus, R(c) =
∑

i∈L1
ri1 is an upper bound on the achievable rate. This is

also achievable by just reducing the rate from source to node i
from fi(c) (achievable from Step 1 of iteration t) to ri(c).

Lemma 6. We have ∀ c ≥ 2, |U(c)| > 0. Furthermore,

|U(1)| = 0 will imply that R(1) is the optimal throughput.

Proof. The second statement is proved first. Notice that we

started with equal power allocation from source to define fi =
log(1 + Ps

|L1|
), ∀i ∈ L1. Thus as discussed before, due to the

concavity of the logarithm, ms :=
∑|L1|

i=1 fi is the largest rate

the source can transmit at. If |U(1)| = 0, this means that

ri = fi is achievable for all i ∈ L1, and hence
∑|L1|

i=1 ri =
∑|L1|

i=1 fi = ms, the maximal throughput from source to L1,

is achieved.

For the first statement of Lemma 6, let c be the earliest

iteration where |U(c)| = 0 for c > 1. Thus, in iteration c,

ri(c) = fi(c) for all nodes i of layer 1. For the set U(c− 1)
at iteration c − 1, we claim that if |U(c)| = 0 for c > 1,

then |U(c − 1)| = 0 as well, contradicting the existence of

an earliest such instant for c > 1. If |U(c − 1)| > 0, then

going from iteration c − 1 to c, the constraint fi(c − 1) for

i ∈ U c(c−1) is relaxed to fi(c) > fi(c−1), and our algorithm

also ensures fi(c) > ri(c− 1) for i ∈ U(c− 1).

Now U(c) = 0 will imply that the rates ri got increased

for all i ∈ L1, while going from iteration c − 1 to c. Thus,

a larger sum-rate is feasible for nodes of i ∈ U(c − 1) in

iteration c − 1 without decreasing the rate for nodes of i ∈
U c(c− 1), contradicting the optimality of rate vector [r1(c−
1) . . . r|L1|(c− 1)] found in Step III of iteration c− 1.
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Fig. 7. Illustration of power reallocation in PowerAug for a layer connected
network.

Lemma 7. If the sum-rate satisfies R(c+ 1) = R(c) for any

iteration c, then the rate vector r(c) = [r1(c) . . . r|L1|(c)] is a

global maxima.

Proof. From the definition of the algorithm, fj(c+1) > fj(c)
for j ∈ U c(c) and fj(c + 1) > rj(c) for j ∈ U(c). Thus,

if R(c + 1) = R(c), that means that in the strictly open

neighborhood of r(c), there is no ascent direction available.

Since Problem (7) is concave, it follows that the rate output by

algorithm FlowMax is in fact optimal if R(c+1) = R(c).

A. Non-orthogonal links

Recall that our network model assumed non-interfering or

orthogonal links at each node. However, Algorithm FlowMax

can also accommodate interfering links at the receivers. For

example, if each node has multiple access constraints [11]

on its incoming edges, then the incoming rate constraints

are polymatroidal, and we can extend our results for layered

networks. Recall that we earlier argued that without any

constraints on incoming edges of any node DAG is equivalent

to a layered network. This assertion need not be true while

incorporating interfering links.

Lemma 8. For a layered network (not necessarily a DAG)

with K = 2, Algorithm FlowMax converges to the optimal

solution of Problem (7) even when additional receiver side

polymatroidal constraints are imposed on the incoming edges

to any node.

The proof is essentially the same as that of Theorem 2,

since even with polymatroidal constraints enforced at nodes

of layer 2, the sum-rate maximization between layer 1 and

layer 2 for each iteration is a concave problem as before. This

result can be extended for any number of layers K , similar to

the orthogonal links case in Section VI.

VI. MULTI-LAYER NETWORK WITH K > 2

In this section, we generalize the algorithm FlowMax to

K > 2 layers. For ease of exposition, we only describe the

algorithm, when the network is layer-connected, i.e., any two

nodes k1, k2 of layer j are reachable from each other by using

only edges (without considering the direction) between layer

j − 1 and j, e.g. see Fig. 7, where nodes c, b, and e are

reachable from each other using edges from only the preceding

layer. We omit the details for a general network where to reach

node k1 from k2 both of layer j, we might have to reach nodes

of layers j − 2 or lower (worst case, the source) as shown in

Fig. 8.
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Fig. 8. Illustration of power reallocation in PowerAug for a non-layer
connected network.

Let Puv be the power assigned on the directed edge which

connects node u to v of two consecutive layers, and ruv :=
log(1+Puv). We will take Pus (for source s) to be infinity, as

there is no constraint before the source node. Let du denote

the outgoing degree of node u. For a set S ⊂ Lℓ, let N (S) be

the set of nodes in the preceding layer Lℓ−1, having an edge

to some node of S, i.e., N (S) = {j : j ∈ Lℓ−1, e(j, v) =
1, for some v ∈ S}.

ALGORITHM FlowMax-II

Step I: Let Piv = Pi

di
, ∀v ∈ Oi, and Pjs = ∞ for the source

node s. Start with layer k = 2.

Set count c = 1.

Step II: (Vector {ri, i ∈ Lk−1},P) = LayerOPT(k,P).

∆ =
∑

i∈Lk−1

fi −
∑

i∈Lk−1

ri.

Step III: Declare U(c) = {i ∈ Lk−1 : ri < fi}.
If
(

(U(c) = ∅) OR (U(c) = |Lk−1|) OR (k = 1) OR (∆ ≤
ǫ)
)

k = k + 1.

Else

Update Powers: P = PowerAug(k, U(c),P).
For ℓ = k − 2 to 2, run LayerOPT(ℓ,P), sequentially.

Set k = 1. EndIf

Step IV: c = c+ 1, go to Step II if k < K . If k = K , break.

SUBROUTINE LayerOPT(k,P)

Input: Layer k, Power allocation P of all links.

Output: Rate vector ri, i ∈ Lk−1 and associated new power

allocation P of all links.

Step I: Assign

fi =
∑

u∈Ii

log(1 + Pui), ∀i ∈ Lk−1

gj =
∑

v∈Oj

log(1 + Pjv), ∀j ∈ Lk.

Step II: Find optimal ri =
∑

j∈Oi
rij (sum-rate out of node

i in layer k − 1, where rij = log(1 + Pij), ∀i ∈ Lk−1) by

solving

max
∑

i∈Lk−1

ri such that ri ≤ fi and
∑

i∈Ij

rij ≤ gj . (12)

SUBROUTINE PowerAug
Input = (k, U,P = {Puv}): Layer k, set U of layer k − 1,

current power allocation P for all nodes.

For a set S ⊂ Lℓ, let

N (S) = {j : j ∈ Lℓ−1, e(j, v) = 1, for some v ∈ S},
i.e., the set of nodes of the preceding layer than have an edge

to some node of S. For v ∈ U of layer k − 1,

let rv =
∑

i∈Lk
rvi and fv =

∑

t∈Lk−2
log(1 + Ptv), where

fv > rv since v ∈ U .

While there exists any u ∈ N (U)∩N (U c) of layer k− 2, do

Pick any v ∈ U
If
∑

t∈Lk−2\u
log(1+Ptv) > rv % incoming rate into v from

nodes other than u is > rv %

Puv = Puv

2 ,

Puw = Puw + Puv

2du
,

∀ w ∈ U c such that (u,w) is an edge ;

where du is the out-degree of u with edges in U c

Else

Let log(1 + P̃ ) = rv −
∑

t∈Lk−2\u
log(1 + Ptv)

Puv = P̃ + Puv−P̃
1+du

,

Puw = Puw + Puv−P̃
1+du

, ∀ w ∈ U c such that (u,w) is an edge;

End If

Update U = U ∪ {w ∈ U c} for w such that (u,w) is an edge

End While

Following the same philosophy of ALGORITHM FlowMax

for the K = 2-layer network, ALGORITHM FlowMax-

II for a multi-layer connected network (MLN) is proposed

where the main idea is to sequentially solve a sub-problem

(LayerOPT(k,P)), that is a sum-rate maximization problem

between layer k − 1 and layer k for some k, with incoming

flow constraints fi, i ∈ Lk−1 from layer k − 2 and outgoing

flow constraints gj for nodes j of layer k.

Starting with k = 2, solving LayerOPT(k,P) gives rate

ri for i ∈ Lk−1. If the sum-rate (
∑

i∈Lk−1
ri) output by

LayerOPT(k,P) is almost (additive difference of ǫ) equal to

the sum of incoming flow constraints (
∑

i∈Lk−1
fi) from layer

k−2, we move to the next layer, and solve LayerOPT(k+1,P).

Otherwise, we need to reduce (increase) the rate coming into

nodes i ∈ LK−1 for which ri < fi (ri = fi) by reallocating

the power on outgoing links of nodes of layer k − 2, as done

in subroutine PowerAug. This power reallocation, changes

the outgoing flow constraints for nodes in layer k − 2, and

subsequently to maintain feasibility, we find LayerOPT(j,P)

iteratively for j = k−2 till layer 2 subject to the new outgoing

rate constraints from nodes of layer k − 2.

With the layer connected network assumption, the power

reallocation in subroutine PowerAug is done as follows. In

first iteration, set of nodes i ∈ Lk−1 with ri < fi (ri = fi)
are called U(0) (U c(0)). We find a node of layer k−2 that has

an edge to both sets U(0) and U c(0) and decrease the power

on the link towards U(0) and increase it on all links of U c(0),
such that for nodes in U(0) even after updation fi > ri. Then

we include the nodes of layer l− 1 for which power has been



increased on at least one incoming link, into set U(0) (remove

it from U c(0)) and call it U(1). Repeat the above process until

there is any node in U c(0). For example, see Fig. 7 where the

considered two layers are layer-connected, and only node c
(circled) is part of U(0). Hence, power is decreased on link

(a, c) and increased on (a, b). Subsequently, node b is made

part of U(1) (circled) and power is decreased on link (f, b)
and increased on (f, e). Since the network is layer connected,

it is easy to see that at the end of this procedure, all nodes of

layer k − 1 have their fi increased for i ∈ U c(0) and fi > ri
(by choice) for i ∈ U(0).

When the network is not layer-connected as shown in Fig.

8, the power is reallocated via node i and not directly via node

f.

Theorem 3. Algorithm FlowMax-II converges to the optimal

solution of Problem (7) if the network is layer connected.

Proof. If Algorithm FlowMax-II never encounters the Else

condition in Step III, i.e., it never encounters a bottleneck layer

and power allocations on previous layers need not be updated,

then the optimality is obvious from Lemma 5, Lemma 6, and

Lemma 7. If Algorithm FlowMax-II does encounter the Else

condition in Step III for some iteration, then in Lemma 12, we

show via Lemma 9, 10, and, 11 that the minimum achievable

intra-layer sum-rate (mink
∑

i∈Lk
ri) is non-decreasing in any

iteration. Eventually, the Else condition in Step III will not be

encountered for any layer, and the optimality will follow from

Lemma 5, Lemma 6, and Lemma 7.

Definition 1. Let the sum-rate (
∑

i∈Lk−1
ri) between layer k−

1 to layer k be defined as Rk−1. With the Algorithm FlowMax-

II, sum-rates Ri, i = 1, . . . ,K are updated sequentially from

left to right, and then right to left whenever Else condition

in Step III is encountered (a bottleneck layer). To distinguish

between left to right and right to left updates, we define
−→
Rk

and
←−
Rk as the rate achieved between layer k − 1 to layer

k on the left to right (forward) and right to left (backward)

iterations, respectively.

Lemma 9. Let the Algorithm FlowMax-II be working on layer

Lb and satisfy the Else condition in Step III, i.e., it has hit a

bottleneck and power allocations on previous layers needs to

be updated. Let the current sum rate from layer Lb to Lb+1 be

Rb. Then after power augmentation (by subroutine PowerAug)

on outgoing edges from layer Lb−1 towards layer Lb, the sum-

rate from layer Lb−1 to Lb, defined Rb−1 is at least as much

as Rb.

Proof. Subroutine PowerAug ensures that even after power

augmentation on outgoing edges from layer Lb−1 towards

layer Lb, the rate Rb is achievable from Lb to Lb+1, i.e.,

after power augmentation, the incoming sum-rate from layer

Lb−1 to layer Lb,
∑

i∈Lb
fi ≥ Rb. Since Rb−1 =

∑

i∈Lb
fi,

we have Rb−1 ≥ Rb.

Lemma 10. Let the Algorithm FlowMax-II be working on

layer Lb and satisfy the Else condition in Step III. Let the

current sum rate from layer Lb to Lb+1 be Rb. Then when

subroutine LayerOPT is run for layers Lb−2 till layer 2 from

right to left, consecutively, the sum-rate obtained on layer Lk,

2 ≤ k ≤ b− 2 (defined as
←−
R k) is at least as much as Rb.

Proof. It is important to note that when Algorithm FlowMax-II

is working on layer Lb and satisfy the Else condition in Step

III, then the current sum-rate
−→
Rk on all layers Lk, k < b,

(found for layers from left to right until previous iteration)

satisfies
−→
R k ≥ Rb, since layer b is the current bottleneck.

Since a larger rate than Rb is achievable on all previous layers,

even after power augmentation, to change the sum-rate from

layer Lb−1 to layer Lb, by continuity, a rate larger than Rb

is still achievable on previous layers, implying that
←−
Rk ≥

Rb.

Note that it is possible that
←−
Rk ≤

−→
Rk in consecutive

updates, but we only need that
←−
Rk ≥ min1≤ℓ≤b Rℓ = Rb

for all k ≤ b.

Lemma 11. Let the Algorithm FlowMax-II be working on

layer Lb and satisfy the Else condition in Step III. Let the

current sum rate from layer Lb to Lb+1 be Rb. Let the

subroutine LayerOPT has been run for layers Lb−2 till layer

2 from right to left, and
←−
R k has been found. Then when the

Algorithm FlowMax restarts going from left to right, let the

sum-rate in layer k be defined as
−→
Rk. Then

−→
Rk ≥

←−
Rk for

each k till layer b.

Proof. Follows from Lemma 4.

Lemma 12. The bottleneck layer rate min1≤ℓ≤K Rℓ is non-

decreasing in each iteration of Algorithm FlowMax-II.

Proof. We know that whenever a bottleneck layer Lb is

encountered by the algorithm, (Else condition is satisfied in

Step III with sum-rate Rb), then one pass from layer b − 2
to 2 and one pass from layer 2 to b − 1 is made to update
←−
R k(new) and

−→
Rk(new), k ≤ b− 1.

From Lemma 9, 10, 11, we know that
←−
R k(new) ≥ Rb as

well as
−→
R k(new) ≥ Rb. After this, the subroutine LayerOpt

is run for layer Lb, and the the updated rate Rb(new) is at

least as much as before following the same argument as in

Lemma 4. Since Rb is the current minimum sum-rate, the

result follows.

VII. SIMULATIONS

In this section, we illustrate the numerical performance of

our algorithm to maximize the max-flow (7). We consider the

2-layer network shown in Fig. 4 and plot the max-flow for

various values of Ps and P5 obtained via Algorithm Flow-

Max. Recall that Fig. 5 was generated directly by solving

Problem (7) using a convex solver while Fig. 9 is obtained

by executing Algorithm FlowMax. It is worthwhile to note

that corresponding curves for Fig. 5 and Fig. 9 exactly match,

where Algorithm FlowMax algorithm converged in at most 5
iterations for each value of P5.

Next, to model the non-orthogonal links, we once again

consider the two-layer network of Fig. 4, and let the edges



0 2 4 6 8 10

5

5.5

6

6.5

P5 Watts

M
ax

fl
o
w

(b
/s

/H
z)

Ps = 20
Ps = 17.5
Ps = 15
Ps = 12.5
Ps = 10

Fig. 9. Max-flow as a function of link power P5

incident to node 4 and 5 have constraints defined by the rate

region of a Gaussian multiple access channel, which is poly-

matroidal. Thus, the change needed in Algorithm FlowMax is

only in Step III, where additional polymatroidal constraints are

imposed on the rates from layer L1 to L2, without losing out

on the concavity of maximization between layer L1 and L2.

We demonstrate the throughput performance under additional

Gaussian MAC rate constraints on nodes 4 and 5 in Fig. 10.

Fig. 10 and Fig. 9 are comparable for Ps = 20, and it is

worthwhile noting that the max-flow achieved with interfering

links is significantly smaller as expected.
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Fig. 10. Throughput with interfering incident links with Ps = 20

VIII. CONCLUSIONS

In this paper, for the first time we propose an online

algorithm for an arbitrary communication network that is

representable by a directed acyclic graph and where all nodes

are powered by EH. We show that that the proposed algo-

rithm is optimal in terms of the competitive ratio, and the

optimal competitive ratio is 2. In the process of analysing the

competitive ratio we consider a novel max-flow problem with

logarithmic utilities and derive an optimal algorithm for it.
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